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Summary 

The objective of thl«; research is the conception, development and 

critical evaluatio.i of a new class of devices employing the nonlinear 

interaction of acoustic surface waves (ASW) and photo-excited charge 

carriers to achieve rapid-scan optical imaging.  The c'evice operating 

principles arc to be demonstrated initially through the use of silicon; 

however, a major objective is to obtain imaging with infrared radiation 

using narrow bandgap semiconductors.  The experimental effort involves 

both separate medium and monolithic device configurations. 

The research is designed to emphasize the demonstration of two newly 

envisioned device concepts for ASW imaging using silicon.  The devices 

initially are fabricated using silicon in order to benefit from the well 

developed understanding and controllability of silicon surface properties. 

One of tiiese devices, a transverse parametric imaging device, in addition 

to increased dynamic range, is expected to read an image in a time that is 

at least one-tenth of other proposed ASW devices. 

The second device, ror which operation is based on second harmonic 

generation, has been successfully operated as an imager, with signifi- 

cantly better performance than previously reported devices depending on 

attenuation to form the image.  The actual advantage achieved by the 

second harmonic generation device was about 10 db, although as much as a 

30 db increase in dynamic range is possible. 

A study of a ZnO-silicon monolithic configuration for acoustic surface 

wa^e imaging was begun in collaboration with the Naval Research Laboratory. 

The result of this effort is an optical imaging device not requiring an air 

gap, 

A'SMding page blank 
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On the analytical side, a new large-signal convolution theory has 

been developed which will account for previously unexplained results 

from ASW convolution experiments. 

The research program will continue to explore the above mentioned 

device concepts, and additionally provide critical evaluations of these 

and other ASW devices proposed for optical imaging. 

MMM IMHB 
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I.  Second Harmonic Generation for Optical Imaging" 

(R. L. Gunshor, P. S. Schenker, C. W. Lee) 

Recently reported ASW optical image devices transform spatial varia- 

tions in light intensity to a corresponding set of amplitude variations 

in time on an electrical signal.  This is accomplished by coupling rf 

surface waves propagating on a piezoelectric substrate to an adjacent 

semiconductor medium; the light-perturbed surface charge density is 

spatially variant along the path of ASW propagation.  Reported devices 

differ in the wave-particle interaction phenomenon employed to obtain 

the image.  Moll, et al.,  describes a device which achieves image con- 

2 
version via light induced signal attenuation.  Takada, et al.,  describes 

a device based on image induced variations in the longitudinal acousto- 

3 
electric voltage, and Luukkala and Merilainen  report a device that senses 

the coupled impedance mismatches resulting from light Induced spatial 

discontinuities in surface charge density.  This report concerns ASW 

conversion of optical images with light enhancement of second harmonic 

generation as the wave-particle interaction mechanism.  Similar in cor- 

figuration to the device reported by Moll, et al ., the device described 

here employs two contrapropagating surface waves to form the converted 

image signal.  One pulse serves as the power source for harmonic genera- 

tion while another higher power pulse Imparts image information to the 

harmonic by local decoupling of the semiconductor-ASW interaction.  The 

second harmonic and its copropagating fundamental source will subsequently 

be referred to as reading signals; the higher power contrapropagating signal 

is termed a decoupling pulse. 

*(ThIs work is reported In Applied Physics Letters, December 15, 197*0 
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Frequencies  are 25 and   50 MHz  Respectively and Decoupler 
Input   Is  at  90 MHz 
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The use of harnronic generation for optical imaging makes available 

the 40 db dynamic range associated with second harmonic generation of ASW 

In the presence of a semiconductor.  This effect portends a large har- 

monic signal amplitude variation for surface carrier density variations 

Introduced by a given range of light intensity.  In addition, unlike a 

device which is based on light-induced attenuation of the fundamental, 

output in the dark can approach zero. 

Description of Experiment 

Figure 1 shows tlie device configuration.  Experiments were performed 

using a 5.0 cm long, 1.2 cm wide, 1 mm thick YZ-cut lithium niobate sub- 

strate with aluminum interdigital transducers fabricated using conven- 

tional photolithographic techniques.  A 0.25 mm thick, 1.25 cm long 

nominal 1000 Q-an  n-silicon sample 's pressed into intimate contact with 

the substrate surface, achieving corpling between the rf piezoelectric 

fields associated with the acoustic surface waves and charge can iers in 

the semiconductor.  The fundamental frequency wave is launched by a five 

finger pair interdigital transducer designed for 25 MHz; harmonic output 

is taken from a five finger pair interdigital transducer at 50 MHz.  The 

decoupling pulse is introduced at 90 MHz via a ten finger pair interdigital 

transducer.  Transducers are fabricated in pairs (Fig. 1) to allow conven- 

tional delc-y line measurements; the bean width of all transducers is 2 mm. 

The harmonic output is bandpass filtered at 50 MHz and displayed on a 

250 MHz cathode ray oscilloscope.  Output at the 25 HHz fundamental fre- 

quency may likewise be displayed on the oscilloscope for purposes of 

comparing images formed by harmonic generation and those produced by 

at tenure ion phenomenon. 

- — ^  - ■  ■ '— 
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FIG. 3- Plot of 20 log]n(output voltage/output /oltaqe in the dark) vs 

intensity of illumination of a 2-nm wide strip of light for fundamental 

and  second  harmonic output. 
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The experiment is performed in the following manner.  The fundamental 

and contrapropagating decoupling pulse are synchronized in time at tQ  such 

that the leading edge of the reading pulse and trailing edge of the de- 

coupling pulse coincide at the output edge of the semiconductor.  Encoding 

of the image information onto the reading pulse is complete when the 

decoupling pulses arrives at the input end of the semiconductor.  The 

decoupler pulse leading edge is now corcident with the reading pulse 

I 
trailing edge; this occurs at approximately t0 + y^ where vs is the sur- 

face wave velocity and i  is the semiconductor length.  Therefore the 

reading pulse must have a length 11,     Spatial variations in optical 

intensity along the beam path are thereby expanded in time by a factor 

of two due to the contra-flow process. 

In the absence of a decoupling pulse all portions of the reading 

signal will experience an identical interaction with the photo-excited 

charge carriers.  Introduction of the decoupling pulse results in signi- 

ficantly reduced interaction5 between charge carriers and the reading 

pulse at the locale of the decoupling pulse.  Thus, the fundamental 

experiences a localized relaxation in attenuation and the harmonic a 

localized loss of charge carrier enhancement correlated to the charge 

density at the decoupled locale.  This ultimately results in a dip in 

harmonic output whose tlmj of occurence and duration corresponds to the 

position and length of an optical disturbance of the semiconductor surface 

charge density.  Simultaneously, the fundamental output displays an image 

that is the "negative" of the second harmonic image.  The choice of 

duration of the decoupling pulse is a compromise between image size and 

resolution; a short pulse is beneficial to resolution but leading to 

reduced signal-to-noise ratio in the output. 

- - 
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Experimental Results 

Figure 2a demonstrated the ability of the decoupling pulse to remove 

charge carriers from Interaction with the reading pulse.  This display Is 

obtained by copropagatlng reading and decoupling pulses under a semi- 

conductor Illuminated with a 2 mm wide strip of white light (Fig. 1). 

The previously described reduction In harmonic enhancement and relaxation 

of attenuation Is observed where the decoupling and reading pulses are 

coincident. 

Figures 2b,c respectively, show the fundamental and harmonic outputs 

when the experimental configuration is prepared for imaging by contra- 

oropagating tne decoupling pulse with the reading pulse in proper syn- 

chronization.  Thi experimental parameters are the same as for Fig. 2a. 

The results o' Fns. 2b,c are obtained by optimizing the experimental 

parameters for test Image display In each case. 

Figure 3 shows how the fundamental and second harncnic vary as a 

function of light intensity In the absence o^ a decoupling pulse, again 

a 2 mm strip of incident illumination is used.  In both casos one observe., 

a saturation intensity; this light level Is a function jf semiconductor 

dark resistivity, surface preparation, air gap, and choice of operating 

frequency.  For a given variation In incident light Intensity It Is 

apparent that a greater variation In amplitude occurs for the harmonic 

than for the fundamental. 

Figure A shows the Image of two Illuminated strips respectively 0.3 mm 

and 0.6 mm wide separated by 1.0 mm.  The dlsplav is obtained using the 

second harmonic output scheme.  The dimensions of strip viHths and spacing 

correspond to two, four, and seven wavelengths at the fundamental frequency. 

■ - - 
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The level of i1lumlnat'on used for Figs. 2 and 3 was 10 db above 

1 mW/cm2; the level of i11umination producing unity signal-to-noise 

ratio in the second harmonic output is found to be about 6 db below 

1 mW/cm2 at 6328 A. 
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I I.  Optical Imaging with J ZnO-Si Monolithic Device 

(R. L. Gunshor, R. F. Pierret, J. K. Elliott, K. L. Davis*) 

The device consists of a 1.2 micron rf-sputtered ZnO layer on 

300 frcm (111) n-silicon.  A pair of interdigital transducers launch 

pulse modulated input signals At 179 MHz, and a convolution output is 

obtained from a thin (transparent) aluminum gate electrode on top of 

the ZnO.  The input pulse lengths are 3-0 ysec and 100 nsec: the width 

of the narrower pulse determines the resolution of the imager. 

Measurements have been made of image output for various liqht 

intensities and dc gate voltages.  Resolution limits have been observed 

using projected images of alternating light and dark strips. 

A corrpiete discussion of this work will appear in the final report. 

*Dr. Davis is at the Naval Research Laboratory, Washington D. C. 
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III.  Large-Signal Acoustic Surface Wave (ASW) Convolver Response Theory 

(R. F. Pierret and R, L. Gunshor) 

Work is in progress to develop a simple large-signal response theory 

for the ASW onvolver, one of the structures under consideration for 

projected ASW imaging applications.  In such applications, and in design 

considerations, a simple response theory is clearly desirable.  Incor- 

porating metal-insulator-semiconductor modeling and formal ism, we have 

derived the large signal circuit representation for the convolver shown 

in Fig. 5»  Using this circLit: representation, we have already established 

simple theoretical expressions for the convolver output; we are in the 

process of making quantitative comparisons between the predicted convolver 

output and the output derived from experimental ZnO-SiOj-Si structures. 

Preliminary comparisons between experiment and theory are excellent. 

Detailed comparisons with experiment, relative evaluation of competing 

convolver variations, design optimization and extension of the theory 

to the transverse acoustoelectric effect are all part of the ongoing 

program. 
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IV.  Acoustic Surface Wave Measurement of Majority C.irrier Mobility 

(R. F. Pierret and R. L. Gunshor) 

In a recent publication Bers.et al.  utilized acoustic surface wave 

(ASW) techniques to ascertjin the effective mobility of near surface 

carriers in a semiconductor accumulation layer.  Their experiment 1 

confiyuralion consists of a high resistivity n-silicor sample placed 

on top of a lithium niobate substrate.  The ASW is launched on the 

lithium niobate, and propagates under the silicon.  The piezoelectric 

fields associated with the ASW tend to produce a drift of electrons along 

the direction of propagation.  The resulting direct current, called an 

acoustoelectric current, is measured and used to compute the value of 

the surface mobility.  The cited paper was significant in that it illus- 

trated the potential of ASW techniques in probing semiconductor surface 

properties.  Unfortunately, Bers, et al. compared their experimental 

results against earlier non-ASW experimental results and a theoretical 

formulation all specifically concerned with minority carriers in surface 

inversion layers. 

We note that the appropriate theory for najority carriers in accumu- 

lations layers was first formulated by Greene, et al.  and was later 

presented in a more convenient form by Goldstein, et al.  For the 

Bers, et al. structures and the normalized surface potential (U-) range 

probed, the theoretical effective mobility to bulk mob'lity ratio 

iv  cr/Vo)   it  accurately approximated by 
et T  B 

eff 
= 1 

-U-/2 
r    S 
72 e 

e l' " e      Jdx (1) 

Us-7 
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where 

f(x)   = e"x/2  erf/(Us-x)/2 
(2) 

and r ■ 0.001.  The precedinn majority carrier theory and the Bers, et al. 

experimental results are compared in Fig. 6.  Very good agreement between 

the corrected theoretical predictions and the ASW measured mobilities is 

clearly evident. 
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