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3. shetract (continued)
register structurc, data types ard operators, control operators’ and address calcu-
lation., These may be evaluated in terms of four types of costs: execution time,
memory space, cost of programming, and the cost of hardware. The methods precented
are rostly concerned with time.
A set of programs, the subject set, was used to represent the ISP workload. This
was chosen primarily to investigate the variations in the results caused by var-
iation of language, language implementation, algorithm, and programner.
Register structure is investigated through the concept of a register life. This
is the period from when a register is loaded. until its last use before the next
time it is lsaded. The methods provide data relevant to two problems:
a) What is the optimal number of registers? b) How desirable is generality of
registers?
An algorithm is presented which will find how many registers are live at each time
during the program execution. This algorithm is extended to compute an upper
bound o the increase in time if the program were to run on an ISP with fewer
registers. This computation is based on temporarily storing registers that are
live but unused for long periods, and on interleaving several lives in one register
The thesis also presents a classification of the operations that may be performed
on a register. This induces a classification of register lives which may be used
to assess the need for generality.
Most of the other methods presented apply equally to data operators, control
operators, and addressing, The main problems are:
a) How to detect operators that are in the ISP, but not used sufficiently to just-
ify them, This is done by frequeucy counts and various derivatives therof. Par-
ticularly interesting are the frequency results obtained by weighted summation over
the whole subject set, b) llow to detect oprators that should be included in the ISP,
Theis problem is approached by studying instruction sequences.
The main problem in detecting sequences is to reduce the space and time requlire-
ments of the analysis program. This problem was solved by using a multi pass al-
gorithm. Tach pass extende the exicting scqucnces by one instruciion., Afler each
pass, neurisiic meiiwds are used to discard insignificant sequences.
The thesis proposes methods to study operand values, information used for control
and addressing, information related to the addressing problem for tests, and infor-
mation on use of indirection,
The most inportant conclusions drawn about the validity of the methods are: The
experimental results show good incernal consistency. Their trend is independent
of algorithm and programming language. They agree well with previous knowledge.
The dependence on language is most important for those languages that use a run
time system. The use of data operators and data structures depend on algorithm,
the register usage does not,
In a subject set for a full scale analysis, the data operators and data structures
of the area of applications should be well represented. The individual subject
pograms should be large enough that dominating loops are avcided.
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ABSTRACT

The thesis develops and evaluates methods for evaluation of the architecture of instruction
set processors (ISPs). (An ISP is the logical processor defined by the instruction set,
independent of physical implementation). The methods are based on analyzing traces of
program executions which contain information about every instruction executed.

The main advantages of the methods are:
a) They permit a very detailed study of ISP behaviour.
b) They are not restricted to specific languages or processors.
c) They are easily programmed.

Methods and experimental results are presented for four aspects of ISP architecture:
register structure, data types and operators, control operators and address calculation.
These may be evaluated in terms of four types of costs: execution time, memory space, cost
of programming, and the cost of hardware. The methods presented are mostly concerned
with time.

A set of programs, the subject set, was used to represent the ISP workload. This was
chosen primarily to investigate the variations in the results caused by variation of language,
language implementation, algorithm, and programmer.

Register structure is investigated through the concept of a regisier life. This is the period
from when a reygister is loaded, until its last use before the next time it is loaded. The
methods provide data relevant to two problems:

a) What is the optimal number of registers?

b) How desirable is generality of registers?

An algorithm is presented which will find how many registers are live at each time during the
program execution. This algorithm is extended to compute an upper bound on the increase in
time if the program were to run on an ISP with fewer registers. This computation is based
on temporarily storing registers that are live but unused for long periods, and on

interleaving several lives in one register.




The thesis also presents a classification of the operations that may be performed on a
register. This induces a classification of register lives which may be used to assess the need
for generality.

Most of the other methods presented apply equally to data operators, control operators, and
addressing. The main prablems ara:

a) How to detect operators that are in the ISP, but not used sufficiently to justify them.
This is done by frequency counts and various derivatives thereof. Particularly
interesting are the frequency results obtained by weighted summation over the whole
subject set.

b) How to detect operators that should be included in the ISP. This problem is
approached by studying instruction sequences.

The main problem in detecting sequences is to reduce the space and time requirements of
the analysis program. This problem was solved by using a multi pass algorithm. Each pass
extends the existing sequences by one instruction. After each pass, heuristic methods are

used to discard insignificant sequences.

The thesis proposes methods to study operand values, information used for control and
addressing, information related to the addressing problemn for tests, and information on use of
indirection.

The most important conlusions drawn about the validity of the methods are: The experimental
results show good internal consistency. Their trend is independent of algorithm and
programming language. They agree well with previous knowledge. The dependence On
language is most important for those languages that use a run time system. The use of data

operators and data structures depend on algorithm, the register usage does not.

In a subject set for a full scale analysis, the data operators and data structures of the area
of applications should be well represented. The individual subject programs should be large
enough that dominating loops are avoided.
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A NOTE ON TERMINOLOGY

By an instruction set processor or ISP we mean the logical processor defined by the
instruction set, as opposed to its pii sical implementation. Included in the ISP structure are
such things as instruction formats, register structure, instruction interpretatio» algorithm
(including address calculation), datatypes and their representation, etc. Computer families,
like the IBM 360 and 370 series and the COC 6000 series are examples of ISPs with several
different physical implementations.

Obviously the logical structure can not always be entirely divorced from its physical
counterpart, nor is such a separation always desirable. There should be no doubt, in our

further discussion, when we take the physical aspects into account.
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We use the term ISP to mean the instruction set processor itself, not the notation for
describing such processors defined by Bell and Newell ([BelC71]). As a concession to
readers unfamiliar with it, we have tried to avoid using this notation. The associated

terminology, however, is used.

Italics are used for words that are previously defined. Underlining is used for woras that

are being defined, or otherwise stressed.

In the tables of results, O means an exact zero, 0.000 o similar constructs mean less than
1/2000 (in this case) but not exactly O.

Unless otherwise stated, the term "PDP-10" is used to mean the DECsysteml0 ISP or the
KA10 processor of that system, both described in [DEC71}




TABLE OF CONTENTS

PAGE

NG il o . . el g p T e e B e GeE ey e n prEel v o R ]
ACKNOWLEDGEMENTS . . . . . . - o v v v o v oo v s s v oo s o v 0 a0 w00 o iii
ANOTEONTERMINOLOGY . . .« v v v v v o v v oo e o e e e e e e e e iii
TABLEOFCONTENTS . . . . o . . o v v s s v oo mm o s o 0 s ot 0 &80 v
BEREDUBTEIN . . . 0 L. ns s aa s s s s e B BN T T B E ey 1
.1 Overview of the thesis . . . . . .« « v« v v v v o v o e e e 2

1.2 The problem . . . . . . o v v vt 3

1.2.1 Obtaining dynamic information . . . . . . . o o o e e e e e 6

1.3 Restrictions in dOMain . . . . .« ¢ v o o v o o e e e s e e e 8

1.4 Relabed WOPK . . . . . v o o o 2 s o s a8 s s a e s E e e s 9

1.4.1 Contributions of the thesis . . . . . . .« .« ¢ v v v v v oo e e e 17
PR ARG et b el 48 ¢ A s fatass o g pOa & 19
2.1 The role of the instruction word . . . . . o o o v o e e e e 20

2.2 TR s %l . A% v o' o T4 06 b G oD P we p 4 a by 22

23 I R R 24

2.4 Programming Cost . . . . . v« o s e s e e 25

25 Hardwar® COSt . « « o =« « v o o+ o o o s 0 s o s s m s e s e e 27
VALIDATION STRATEGY . . . . .+t v v v vt o v o s o v s s oo m s v 00w 28
3.1 Some simplifying assumptions . . . . . . .o oo e e e e e e . 29

3.2 Selectionof data . . . . . .« v v o e e e e e e 31
3.2.1 Language selection . . . . . . . .. e s e e e 31
322 Thesubjectset. ..........cvcvmevoov oo 32
3.23 Subsets of the subjectset . . . . . . . .« o oo e e e 40
REGISTER STRUCTURE . . . . . « v v v v v v s v s s o s m s o v o o x 000 41
4.1 The basic tradeoffs . . . . . .« v v v e e e e e e e e e e e 41

4.2 Some definitions . . .« . . h w e e e e e e e e e e e e 44

4.3 A register usage classification . . . . ... oo e e e e e 47

4.4 Register life detection . . . . . . . . .o 49
4.4.1 e L R R 56

45 Register life classification . . . . . . . . .o 57
45.1 QUABIRY, . i b - s B s A sm B Ewwa s o o k-8 & sk 64

4.6 Register bIOCK Siz€ . . .« v v v a e e 65
4.6.1 Detecting simultaneous lives . . . . . . o . o e e e e e e e e e 66
4.6.2 Cost of reducing the register block . . . . . . .« v v v oo e e e 74
4.6.3 Some SOUrCes Of BFFOF .« . « v o v v v o v e e e e e 75
4.6.4 Utilizing dormant periods . . . . . . o e e e e e e e e e e e e 78
4.65 SR Abs c b DG s wi s s pewE YW e &g W EGE S 81

4.7 Utilities of ValuBS . .« v v v v v b e e e e e e e e 83

4.8 Register structure, Conclusions . . . . . .« v v oo v e e e e e 85

B p— T ———



S DATATYPES ANDOPERATORE . . . . . . . . . . . v v v o 0 6 0 s 00 s 5 o oo o
5.1 BIrSESNBYABOBIMEIL £ & i 1ol =16 o sjuiwe v g Ko ) 0 1o (1 o on o Lolilo o o'
5.1.1 Instruction classification -Mixes . . . . . . . . . ... ... ...
5.1.2  The FGR function and similar measures . . . . . . . . . . . . .. ..
5.1.3 Summary of frequency results . . . . . . . .. L0 0 .
5.2 Collection of instructionsequences . . . . . . . . . . . .. .. ...
5.2.1 erpRogiam: " et Al b e 2ol p oo ahasw &6 ols o b o
922 Theproning heurebles . . . . . . . . . ... ... ....¢0 5
523 Sowcesoferrors . . . . .. ... ... 000 b e e e w e e
5.3 Results from the sequence program . . . . . . . . . . . . . « .« . . .
5.3.1 TG CORPHERS " = 8 o w5 B8 o o i o 5 @A m @ 98 D 1E G 6 o e [
SIS RORET LM SR AR A S L e A d BRI o B B
SIgln Ao o a1 TR s oii e be ) be b g el g ;o bl
5.3.4 The CALGO algorithms, initial remarks . . . . . . . .. ... . ...
5.3.5 BN SO bl b D O ek @ EEIE G e € Dl Ol B T 3 W
5.3.6 GRS NS el rra ot & @ SERD] T B B O et € o o6 e 3
5.3.7 IREEABRNEDS - o Gl G+ d G 66 Gty b foot 0 @ o 6l 6 1 o
SRR NI s A L D Pt n g g e G e e g
. S A
T I O ol oo Bmbll 011 o o el o o R R e ey
5.4 Sequences applied to datatypes . . .. .. .. .. ... .....
5.4.1 e D N T I Lol S R e R O T S T SO O
55 Propertiesof operands . . . . . . . . . . . . ... ... ...
5.6 Data types,Conclusions . . . . . . . . . . . . . . e
@ CONTROLCOPEMRTORE. . . - - . . . 05 s s e e Bk B E s e s e e
6.1 Sequences appliedtocontrel . . . . . . . .. L0000 00w
6.2 Some SpeCiaproblemes . . . . . - . . .. L L b e e e w0 e
6.2.1 Controll inform@ation . . . . . < . . v 0 o b i e e e e e e
6.2.2 e iretrliclioms. - © v v s p s s s P E T EE B eE e e
6.3 Control operators, Conclusions . . . . . . . . . .. ... ... ..
7 ADDRESS CALCUATION . . . o v v o v o v oo b e ns Bl b e e
7.1 Dot MRGEHORIRR. . o o . v e 5 55 e e b e e e e e h e B
7.1.1 Sequences applied to addressing . . . . . . . ... 0000
7.1.2 Indexing andiindirection . . . . o . . . .. v s e e e s e e
7.13 Addressing information . . . . . . . . . . ... 00000 e e s
7.1.4 Operand andresult modes . . . . . . . . . . . . . . ... ...
7.2 Addriessing, CONCIUSIONE . . . . o « « ¢ « 6 4 f e h e e e e e e e
SRR ICONCIMUSKINE - 1o o O e @ SR < - ol 6D e 6 56 @ B T
| 8.1 Overview of themethods . . . . . . . . v v v v v v v v v v v o
8.2 Validity of the m@theds . . . . . . . . « « o0 v 8w v 0 v 0w o
| 83 SR eBONES o % o i o B E st fs B O e o 6B % Bl
84 Improvements tothemethods . . . . . . ... . .. .. .....
8.4.1 NSNNESUHIOEE vl 0 1D (010 348 MDD 6 DINGe: G T E e 9 F 5
APPENDIX A BIDISRE@ONY . & « o v« o v v fw e e e e w B e e e W G e e
APPENDIX B The register usage classification . . . . . . ... ... ... ...
APPENDIX C Output from register classification program . . . . . . . . . . . . ..
APPENDIX D Thetotal SNIFT . . . . . . . . . . . ¢t v et v v s s s oo o s

B M L aag R T T T w



APPENDIX E Listing of the short subject algorithms . . . . . . . . . .. .. ... E-1




CHAPTER |

INTRODUCTION

Speilet er givet 0s Mensker av Gud

men Fanden har giet det den Feil:

at det aldrig kan vigse hvordan man ser ud
naar man kke ser 1 of Speil

Kumbel Kumbell

This thesis is concerned with the architecture of Instruction Set Processors. It identifies the

most important parameters of such architectures, their interdependence and their associated

costs. It proceeds to present a collection of methods for evaluating some of these costs.
Most of the effort of the thesis lies in developing these methods and studying their
performance for one ISP and a set of programs (a subject set) running on that ISP,

Our point of view is that of the programmer, or ma)}bn more correctly, that of the program
being executed. The goal of our methods is to evaluate the features of ISPs in terms of their ‘
utility to the program (or programmer). Thus the questions that they will attempt to answer
can be generalized tc: "How well does the programm:r/compiler utilize the features made
available to him through the instruction set? Which of these features should be removed or
changed? Which should be added

The methods are based on analyzing traces of programs being executed, where the trace
contains information about every instruction executed by the program. The analysis is
performed by separate programs, and is thus completely disjoint from the writing of the
trace. Most of the methods presented, and certainly the most important ones, have been
implemented as programs and used in experiments. The cxperimental results agree well with
previous knowledge and with intuition, and are also consistent among themselves. Hence the
experimental evidence supports the validity of the methods.

The experimental results that we present are from experiments designed primarily to
evaluate the methods, not the ISP that we have worked on. In particular the programs we
have analyzed are small, and from a restricted application area. Hence, although many of our
resuits certainly permit valid conclusions about the ISP we have worked witht, our set of
subject programs has been too restricted to provide the basis for a valid, full scale
evaluation of a general purpose ISP.

t The PDP-10




INTRODUCTION

1.1 Overview of the thesis

This introductory chapter presents an overview of the basic ideas of the methods. It then

gives a survey of related work and relates our work to this.

In Chapter 2 we present the types of cost associated with implementing and using (or not

using) ISP features, and discuss their relationship.

Chapter 3 describes the major sources of errors and variation that might influence our
experimental results, and describes how we seiected a set of subject programs to evaluate

these influences.

Chapters 4 through 7 contain the core of the thesis. In those chapters we analyze the
instruction set processor, concentrating on those features for which we have developed
methods of evaluation. The order of presentation is:

Chapter 4: Register structure

Chapter 5: Data types and their operators

Chapter 6: Control operators

Chapter 7: Address calculation

Each chapter is further divided into sections, each disc_ussing a different feature or.aspect of
the chapter topic. For each feature, we discuss the motivation for having this feature, and
the costs and tradeoffs associated with it. Our methods for estimating some of these costs
are described, and experimental results are presented where applicable. For each method its
limitations, sources of errors, and dependencies on the various sources of variation, as

presented in Chapter 3, are discussed.

For our analysis we rely heavily on the multidimensional computer space presented by Bell
and Newell [BelC71). The dimensions of this space represent such things as intended
application, technology, word size, etc., and possess several levels of detail. We have made
this structure finer or coarser to suit our needs, and will use it freely below without further

reference to its origin.

The most important dimensions for classification of instruction set processors are (with those

most highly related on the same line):



INTRODUCTION 3

Computer (system) function
Processor function
Memory accessing algorithm - primary memory size
. Addresses per instruction - M.processor state
Word size - number base - data types
Control structures
As stated in Section 3.1, we take the computer and processor functions to be given, i.e.
we investigate general purpose computers with a bias towards scientific calculations. The
next four coordinates above each corresponds to one of the four chapters listed.

The last chapter summarizes the results and points out areas for future research.

The thesis describes two processes more or less in parallel. One is the development of the
methods and their use to evaluate ISP architecture in terms of the costs discussed in Chapter
2. The other is the evaluation of the methods themselves, in terms of the framework
described in Chapter 3. Both processes go on through Chapters 4 to 7, and conclude in
Chapter 8.

1.2 The problem

Several approaches may be used to improve the performance of computers. These are to a
large extent orthogonal and are often combined, as exemplified by many current commercial
designs.

One approach is to use faster circuit technology for a brute force increase of speed, leaving
the ISP architecture unchanged. This approach is of no interest to the present discussion.

- Another approach involves radical changes in the organization of the central processor, in
particular higher d. gree of parallelism on the task, instruction or sub-instruction levels. This
B - sometimes implies more or less drastic changes in the way programs are thought about and
formulated, as exemplified by the CDC STAR [HolS71], ILLIAC-IV [BarG68), and C.mmp
[WulW72] machines. In other cases, as in the CDC 6600 design [Thol64], parallelism is on
+_‘ ¥ the instruction level, retaining the classical instruction stream concept and at worst requiring
local reformulation of the algorithms. Instruction parallelism is peripherally of interest to our
discussion, (see Section 2.3). Parallelism on the task level is outside the scope of this
thesis.

- T RIS il s




INTRODUCTION

A third approach is to improve the architecture of the Instruction Set Processor (ISP), but
staying within the classical Von iNeumann type of machine. This approach is the background
for our work. A difficulty with it, but also a major reason for it, may be the interest ve.ted
in existing instruction sets. In such a case the problem may be how to extend it compatibly,
or to find features thai may be removed at a reasonable cost. Data provided by our methods
may be used in solving this protiem and also to some extent when designing new instruction
sets from scratch.

There is ample evidence that the ISP archite:ture is indeed an important factor in processor
efficiency and economy. Notable is a study by J. A. Stewart [Stel.nd], comparing program
sizes and execution speed of three contemporary computerst having approximately the same
word sizestt and instruction execution timest!. When moving benchmark programs between
these computers, program sizes varied by factors from 1.3 to 2.7 and running time by factors
up to 5™ Some of this variation may be due to inferior compilers and other software.
However, code sequences for commonly occuring constructs indicate that the problem to a
large extent lies with the instruction set.

Another example is provided by the Burroughs B1700 computer, (see page 15) A

considerable gain in tpace and time is claimed by the designers of this computer system,
achieved by designing instruction sets ailored to the higher level language used.

Human intuition about program behavior is notoriously bad. This has been demonstrated by
several investigators. One example is given by Knuth in his well known study ot FORTRAN
programs [KnuD70). The personal experience of people who have observed some aspect of
their programs® behavior, as reported in countless stories of computer folklore, tend to
corroborate this.

The cited studies clearly demonstrate a need for quantitative methods which can aid the ISP
architect in deciding values for the design parameters of his ISP, and to justify his decisions.
The data obtained should be as independent of technology as possible, so that they will not
change as technology progresses. They can then be used to compare the cost of
implementing a structure using different technological solutions, or to compare the cost and
utility of different structures in the context of the available technologies.

t The 1BM 360/44, the SDS Sigma 5 and the PLP-10.

tt 32 or 36 bits.

tt For commonly used instructions, factors ranged from 0.7 to 1.8 compared to the PDP-10.
tttt The PDP-10 being the best
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Ideally the behaviour of all programs executing on the ISP should be studied. This can be
done only superficially, as by accounting data and similar information. For a detailed study
one is forced to restrict oneself to a set of, hopefully representative, subject programs.
Given an application area, and such a subjec! set to represent it, there are several methods
of obtaining data on program behaviour. They may be classified as static or dynamic

methods, depending on whether data are collected before or during execution.

Static information can be collected manually, by compilers, or by some program a.nalyzing the
relocatable or absolute code. Such methods should he used to obtain the space cost (see
Sestion 2.3) of the code and static data structures, but can not be used to obtain
infcrmation pertinent to the execution behavior of the subject program. For this purpose
dynamic data are needed. Several methods of obtaining such data are described and
compared in Section 1.2.1. We chose to use iraces containing information on every
instruction executed by the program. These traces are written on an appropriate storage
medium, and are analyzed later by separate programs. The advantages of this method are
that the exact sequence of events is preserved, and that a large amount of detail may be

recorded. We discuss the appropriateness of this choice in Section 2.

As we present the methods, their intended domain is to evaluate the features of ISP
architectiure. The particular ISP design parameters that we consider include the number and
types of registers, the data types and their operators, control operators and their associated
data structures, 2nd address calculation methods. Our methods fall mainly in two groups, one

dealing with register structure, the other with data and control operators.

Register structure is evaluated through the concept of “register lives". We present a method
to detect such lives, and to find to what extent registers are simultaneously alive. From this
we are able to find an upper bound on the increase in execution time which would follow if
the number of physical registers were reduced. We also present a method to assess the
need for generality of registers. '

Our methods for operators and data types are based on frequency counts of single operators
and of sequences of operators. We present an algorithm for counting the occurrences of
sequences of arbitrary length, including a set of pruning heuristics designed to detect which
sequences are in some sense significant. Only occurrences of such sequences are counted;

this is what makes our algorithm economically feasible.

We expect the methods to provide useful evaluation of existing designs as well as suggest

B R W T




INTRODUCTION 6

improvements in existing designs and give ideas and guidelines for new designs. Such new
designs could be for general purpose processors, or for processors specially designed for
some particular language or some special class of computations. Such a specialized
application is defined more by the selection of subject programs to which we apply our .
methods than by the methodology as such.

Our methods can also be applied to domains less related to ISP design. As will be seen they
have obvious applications in compiler design and language design, and also in the art of
tuning programs to make them more efficient. In particular we expect our method for
register utilization to be of interest to these domains.

/s in any other inquiry, the answers to one set of questions raise new questions that one
would like to answer. In some cases our methods will produce compact data bases which will
allow certain kinds of simple questions to be answered after the original analysis, and at a
much lower cost.

1.2.1 Obtaining dynamic information

Dynamic information can be collected by hardware monitors, by programs running in parallel
with the subject program*, by code inserted into the subject program by the compiler, or as
in our case, by running the subject program on an interpreter for the ISP in question. In any

case, the data can be analyzed on the fly or saved for later analysis by special programs.

Programs or hardware monitors may be used to sample the program counter and other

pertinent parts of the processor state. This can give us information about the (relative)

frequercies of various events, such as the execution frequency of the different parts of the

program. Considerable analysis of the subject program is required to obtain information

about its local behavior. Information about the sequence of events, such as the behavior

across programmed jumps, can not be reconstructed completely. Also no information about

register content and operand values is available. Furthermore, in the case of sampling by .
program, the results are not exact, but depend on sampling rate and random events.

Code inserted by the compiler is usually restricted to maintaining execution frequency counts

t As can be done in several contemporary systems.
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for each straightline segment of code, since collecting more extensive information this way
would make code size prohibitive. Hence we again have the problem of reconstructing
sequences of events. Considerable analysis is nceded to obtain detailed information on the
ISP level behavior of the program, since the primary data relates to the language level. We
are furthermore restricted to analyzing programs wiitten in languages that have this feature
in their compiler (or a suitable preprocessor), and w hich are available for recompilation. It
aiso disturbs locality aspects of the prcgram execution. It is, however, more accurate than
sampling, since we are guaranteed that all executed parts of the code are represented in the

results in proportion to their execution frequency.

We chose to run the subject program using an interpreter for the ISP under investigation,
and collected information on each instruction as it was interpreted. This method is usually
called instruction tracing, or just tracing. The information was, in our case, written on
magnetic tape. This method allows one to study not only the instruction stream as seen by
the processor, including the path taken through sequences of programmed jumps, but also to

follow operand and index values, indirect address chains etc., if so desired.

Also, tracing is language and compiler independent. It can be applied to any subject program
that can be brought into the format acceptable to the interpreter. In many cases (as in ours)
the interpreter will be a relocatable module running on its own ISP, which will then accept
the standard relocatable format for the subject program. For a rmicroprogrammed processor,
the microprogram may be extended to output the information desired (See page 16).

A further advantage is that analysis is naturally separate from the data cullection. Provided
a rich enough trace is written, new types of analyses can be performed at any time without
having to retrace the subject program. Since writing the trace is cheap compared to
analysing it, this may at first sight seem to be of little value. It does, however, guarantee
that the results of different analyses are consistent and Independent of changes in the
program traced, the compiler compiling it, and of random environmental influences.

In terms of computer resources needed to apply the methods, tracing is probably more
costly than the others. Tracing a program using our current interpretert increases running
time by a factor of about 60, and the analysis programs are slow. This is, however, of little
importance. As will be seen, a considerable amount of detailled information can be obtained
at a cost which is not prohibitive, and the writing of the analysis programs is straightforward
compared to what it would be with the other methods, to obtain similarly detailed information.

T TR HPTE T TR gr . e e I A -
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To have sufficiently detailed information, we wrote at least 4 werds of trace for each
instruction executed. These were: The instruction word, the program counter and elfective
address, the contents of the accumulator and of the effective address. If indirection or byte
access was used, two further words were written for each level of indirection, containing the
address and contents of the bytepcinter or indirect word. Writing at 556 bpi and bloching
1000 words to a tape record, this allowed us to trace about 600 000 instructions on a 2400
ft. reel of tape. This corresponds to 1.5 - 2 seconds of CPU {PDP-10/KA10) time when
executed at full speed.

Most of our methods use only the instruction word. Hence time could be saved both while
tracing and analyzing, by omitting the other information in the trace. This would also permit
more information to be written on each tape. In the interest of generality, however, we used

the approach stated.

An alternative to instruction by instruction tracing is the jump trace described by Alexander
[AleW72), (see page 14). With this tracing method information is written to the trace only
at instructions which change the program counter. In between such points the program runs
at full speed. This method is fast, but information on operands and register contents
between tabulation points is lost. To fully realize the gain in speed, the compiler should
know about the tracer and insert appropriate instructions to call it. Analysis is simplified if
the compiler also outputs a file of descriptions of each straightline segmen' of code. This
dependence on the compiler restricts the set of subject programs that ran be analyzed,

increases code size and disturbs locality, as discussed above.

1.3 Restrictions in domain

We will restrict ourselves to traces obtained by executing single programs on an interpreter
for the ISP to be evaluated. This means that we bar oursel/es from studying problems
related to interrupt handling, detailed 1/0 management, multiprogramming and other operating
system issues. On the other hand it allows us to concentrate on the behavior of one single
program during a continuous span of time, without being disturbed by interference from
other programs. This permits a study of the local behavior of the subject program to any
desired level of detail. From this point of view the invisibility of interrupts is a strength
rather than a restriction. Also, a change in the execution speed of an operating system will
imply & change in the behaviour of its ervironment. Hence in studies of operating system
behaviour one should restrict oneself to information that can be collected on the fly.

e . o e O e o
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A further advantage 15 that the trace is reproducible and free from random perturbations
caused by interrupts etc. This is not strictly true for programs that use shared resources
(such as primary memory dynamically allocated to users) or resources that operate in parallel
to the traced program. In such cases different code might be executed depending on

resource status.

Aithough mzst of our methods are applicable with minor modifications to most ISPs, we focus
our attention on ISPs with a general register structure. We take this term in a wide sense,
meaning roughly that a sizeable repertoire of operations is available uniformly over a vector
of 4, 8 or more registers. Another characteristic is that the registers can be addressed from
more than one field of the instruction word'. (See also Thapter 4). Limiting cases are 2 or
3 address machines on one hand and one address machines with no index registers on the

other; we do not, however, consider these.

Our experimental results are from the PDP-10, which has a vector of 16 extremely general
registers, and a very general instruction set, particularly for control operations (a rich set of
skips and jumps, several forms of subroutine jumps etc.). Hence this ISP is a good starting
point fcr detection of unnecessary features. However, as will be seen, we have also been

able to detect some deficiencies of this ISP that are not due to unnecessary generality.

1.4 Related work

Studies of frequency counts of instruction executions have been described by several
authors. The best known is the Gibson mix, developed by Jack C. Gibson at IBM in 1959.
Gibson divided the instructions of the IBM 704 and 650 into 13 classes and counted how
many instructions were executed from each class. His sample size was 17 programs,
approximately 9 million instructions. The results are described in [GibJ70]; we tabulate them

in Figure 5-3.

Gonter [GonR69] has compared the Gibson mix and the UMASS mix H using essentially the
same classification and tracing 15 million instructions on the COC 3600. His results correlate

well with Gibson’s; they are tabulated in Figure 5-3.

t Accumulator field, index field, memory address field, base register field etc.
t* UMASS = University of Massachusetts

e -
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The substance of these results is that LOADs and STOREs account for about 307 of the
instructions executed, branches for 167 to 387, index manipulations 137 to 187, arithmetic 3%
to 197. The results depand both on the ISP and the subject set.

Other similar mixes and experiments are reported by Arbuckle [ArbR66]), Conncrs, Mercer
and Sorlini [ConW70], Raichelson and Coliins [RaiE66], and Herbst, Metropolis and Wells
[Her£55) The latter is the earliest report known to the author.

The emphasis of the above studies was mostly on evaluation of the raw processing capacity
of the central processor. Little emphasis was made on improvements in the instruction
repertoire or central processor structure.

Foster, Gonter and Riseman, [FosC71a)] have gone one step further, by starting to investigate
the effects of reducing the instruction set. They report their experience with two measures
of instruction set utilization. Both of these measures are equally applicable to static and
dynamic instruction counts. The static measures give an estimate of the space cost (Section
2.3) and the dynamic measures estimate the time cost (Section 2.2) associated with
using the instruction set. The examples of [FosC71a] use the CDC 3600. Our use of the<e
measures is described in Section 5.1.

The first of their measures is the undiluted information-theoretic measure of information
content:

T
I=-% p;*log2(p)
ie]
where
pi is the probability of using the i'th opcode
T is the total number of different opcodes

log2 is the logarithm base 2

Intuitively, the interpretation of I is the average number of bits of information corveyed by
each opcode. The value of this measure is doubtful, particularly with a fixed wordlength,
since the space that could be saved in each instruction word by using the encoding depends
on the frequency of occurrence of the instruction in question, and has no relation to its need
for operand addressing capability etc. Furthermore, optimal encoding with respect to it
implies variable length encoding of the opcodes and a correspondingly more complicated
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decoder?.

The other measure they propose is a function computed as follows: Order the operation
cides by frequency of occurrence. Let C; be the number of occurrences of the i'th opcode
in this ordering, (C; 2 C;,; for all 1. Let P be the total number of instructions in the sample,
and T the number of different opcodes, as before. The FGR function is then computed as:

N
tGRN)=1-1/P £ C, (l<N<T)
=1
This function measures the effort necessary to recode or run the original program on a
central processor with a smaller instruction set. Indeed FGR(N) is that fraction of the
instructions which would have to be recoded (static) or interpreted (dynamic), were the
instruction set reduced to the N most commonly occurring instructions. For some of these

the recoding might be impossible, this is not taken into account.

Substituting execution times for C, and P above, and ordering the C, accordingly, we obtain a
measure of the fraction of execution time accounted for by the omitted instructions, in this

case the least timeconsuming ones.

These measures were used on a set of CDC 3600 programs. In the dynamic case the
suboperation field of the opcodes was disregarded. Also, a different sample was used for
the static results than for the dynamic ones. The static I varied from 3.59 to 5.36 for the
different programs, with a theoretical maximum of 7.16. The dynamic | varied from 3.94 to
4,64, with a theoretical maximum of 6.00. FGR(32) variec from O to about 0.2 in the static
case, and from | to 0.06 in the dynamic case. This shows that a reduction of the instruction
set to 32 instructions would cause some increase in program space, but that the instructions
that must be interpreted are ones that are executed rarely.

A related study is by Foster and Gorter [FosC71lb). They investigated the effect of
interpreting opcodes differently depending on the recent history of the ISP. Thus on a one
accurnulator machine the sequence LOAD ADD occurs often, LOAD LOAD hardly ever. Hence
the LOAD and ADD instructions might use the same encoding in the instruction word, provided
the LOAD instruction changes the state of the decoder. A "set state” instruction provides the

necessary escape mechanism. The intended application is to combine a large instruction set

t An approximation to this encoding was used with the Burroughs B1700. See further
discussion on page 15.

P m——
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)
with a :mall opcode field, thus freeing instruction word space for addressing. They verify
their idea by an analysis of some CDC 3600 programs.

The results show that over 677 of the instructions could be executed without use of the
ascape mechanism, even if the opcode field was reduced to 3 bits. For a 5 bit field, 957 of
the instructions could be executed directly. By circumventing some machine specific
properties in their data, the result for ¥ bits was improved to 747.

Riseman and Foster [RisE72] [FosC72] have used traces to study the effect of data
dependencies on the execution speed of parallell processors. They postulate a machine
where only the execution of the instructions take time; instruction fetch and dispatch, and
data fetch and store, take no time. Further there is an infinite supply of registers and
functional units so that no instruction is held up for the lack of hardware. The instruction set
is as for a COC 3600, and traces from this machine were used in their experiments.

There are two restrictions which prevent instructions from being executed:

a) Their operands have not yet been computed.

b) The exact instruction to execute can not be determined until some condition (jump)

has been resolved.

Restriction b) can be circumvented by assuming a nondeterministic processor, where both
paths of the program are executed in parallell until the condition is resolved. This
nondeterminacy can be carried to infinite depth, or restricted to a maximum of N unresolved
conditions.

The experiments show an average speedup by a factor of 1.72 for N = 0, 2.72 for N = |,
7.21 for N = 8, and 24.4 for N = 128. For infinite nondeterminacy (N = w) the speedup was
by a factor of 51.2. Similar results were found by Tjaden and Flynn [TjaG71) The results
show that conditional jumps, and their dependency on caiculated results, is a severe
restriction on axecution speed.

Several investigators have used traces to study addressing patterns, with the object of
determining optimal design of paging systems and cache memories. We mention Coffman and
Varian [CofE68), Gibson [GibD67], Hatfield [HatD72], Kaplan [KapK71] (see below), Lewis and
Yue [LewP71], and Seligman [Sell.nd}.

A few authors have described more comprehensive studies based on traces:
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At 1BM, Murphey and Wade [MurJ70] used traces to evaluate the performance of the 1BM
| - 360/195. Traces were made of programs beiieved to be representative of the 195 workload,

as they were executed on other 360 models. Detailed studies were made of the behavior of
. these programs in a 195 simulator. The emphasis of this study was on design validation and
performance prediction. Particular studies were made of the efficiency of the mechanism for

parallel execution of different instructions.

Winder at RCA [WinR71], [WinR73), describes the method of tracing used on the RCA Spectra
70/45 and also in some detail the various studies performed. These include cache system

studies [KapK71), paging analysis, miscellancous program statistics emphasizing 1/0,

SIMSCRIPT simulator driven by the trace was used to investigate architectural variants like

memory banking, cache parameters, instruction lookahead, multiprocessing etc.

|
|
l branching and conditions, indexing, and operand length for variable length operands. A
|

Wortman [WorD72] has designed an experimental technique to evaluate computer

architecture, in particular its suitability for particular programming languages. It is based on

collecting static and dynamic statistics on the use of language fragments. Language

fragments are constituents of program code which map into non-overlapping segments of
object programs, and 'hich do not contain data dependent loops. As a case study Woriman
chose a PL/I dialect called Student PL, and designed a stack oriented architecture suitable for
this language. An interpreter for the architecture was written, and also a compiler to
‘ translate Student PL programs into its machine language. For his subject set he chose about
i 1000 small student programs from an undergraduate programming course. Three kinds of

‘ statistics were observed:

Source program statistics, essentially the number of application of each production during

syntax analysis.

Object program statistics, ie. frequencies of occurrences of the machine instructions

. (language fragments), and pairs and triples of these in the generated code.

Run time statistics, i.e. frequencies of execution for the individual machine instructions.

Based on these statistics he made several improvements in the instruction set, and found
reductions of about 507 in each of program storage space, data and instruction accesses, and

number of bits accessed. The most significant improvements were:

Information relating object instructions to source lines was moved to secondary storage.
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The data accessing method was improved.

An immediate {ype instruction was introduced to move constants to the stack. (727 of
the constants found were integer constants, and 98.87 of these could be represented in s

6 bits).

The handling of conditionals and “builtin” functions was improved.

By refining his language fragments Wortman also was able to compare his machine design
with the IBM 360 as a vehicle for PL/L

Alexander [AleW72] has made a study similar to Wortmans, but for ar excisting ISP (The IBM
360) and a language (XPL [McKW70)) used mostly for compiler writing. His main goal was to
investigate how the features of the XPL language were used, and what requirements they
posed on the ISP. He presents statistics on source programs, object programs and run time
behaviour. These were obtained by modifying the XPL compiler (XCOM), and by full trecing
and jump tracing. His subject set was slightly ditferent for the different analyses, it
consisted of XCOM, several compilers written for undergraduate and graduate courses, ond

his own analysis programs. His results can be summarized as:

Floating point and decimal arithmetic are not used by XPL, this leaves 91 instructions that
can potentiaily be generated by XCOM. Of these only 47 were actually generated. 10 of
these account for 847 of the instructions executed. The 10 most generated instructions
account for 857 of the total number of generated instructions, this set intersects the

previous set of 10 by 9 instructions.

XCOM allocates 3 registers as accumulators. The first of these was named in 477 of the
accumulator references (as opposed to index or base register references). The second
was named in 267, and the third in 117 of the accumulator references; Hence
expressions rarely are complicated enough that many accumulators are needed. The

register used for indcxed access accounts for 117 of the accumulator references.

427 of the references 1o index or base registers were to register 0, i.e. no indexing or
base was used. That is; almost half of the addresses were unmodified. 87 were used in
array accessing, 317 were used to access statically allocated data (as base). 7 fixed

registers were allocated by XCOM for this latter purpose.
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Most of the branches were to locations cluse to the branching instruction. Alexander
suggests that the branch instruction of the 360 could be modified to address relative to
the current program counter, and the 4 bits now used for base register addressing could
instead be used to augment the written address field, to make it 16 bits long. Such an
inetructior would suffice for 997 of all branches. 5K bvtes of load instructions would be

eliminated, saving 157 of the program space.

1¢ upcodes were conditionally decoded, as proposed by Foster and Gonter [FosC71b] (see
above), 16.27 of the program space could be saved by an encoding of the opccde in 3

bits. This result pertains to one particular subject program.

Alexander extensively compares his dynamic and static results, and comments upon the
significance to constructs used or not used within loops, and on special properties of the XPL
language and system. He also advocates the use of program profiles, and in this context

points out the need for string manipulating instructions in compilers.

Studies of architecture based on tracing have probably also been performed by computer
manufacturers. Such work is usually considered "company private", and is not published, but
a few have been: The work by Murphey and Wade [MurJ70], and that by Connors, Mercer
and Sorlini [ConW70), all at IBM, and also that by Winder [WinR71], [WinR73) and Kaplan
[KapK71] at RCA. All of these are mentioned above.

A particularly interesting machine design is the Burroughs B1700, [WilW72a), [WilW72b). In
this system microcoded interpreters are provided for several "S-languages”, each of them
corresponds roughly in level to a classical machine language, but is tailored to fit the needs
of a particular higher level language. The microprograms address memory by bit position,
and desired access width is suppilied on each access. Hence the processor gains efficiency

primarily in two ways:

a) Time efficiency is gained by using an S-language tailored to the application (higher
level language), hence having essentially the "right instructions” for the task at hand.

Each instruction is usually more complex than most classical machine instructions.

b) Space efficiency is gained by encoding the S-language instructions in different
formats depending on the need for space to represent the feature in question, and its

frequency of use.
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One such S-language is SDL, particularly suited to systems programming. The opcodes of this
language are of 3 lengths, 4, 6 or 10 bits, whereas a fixed length encoding would require 8
bits. By using this encoding, space is gained at the cost of an increased decoding time. The
two encodings menti:ned were compared to the Huffman encoding, which is space optimal.
The following results \vere found:

Encoding: Space saved: Time lost:
Fixed 8 bits 07 07
SOL 4, 6, 10 bits 397 2.67
Huffman code 437 17.27

Hence the chosen encoding is almost as space efficient as the Huffman encoding, and almost
as time efficient as the fixed field encoding.

Similarly the SDL addresses were encoded using 8 different formats and a 3 bit field to
distinguish them, giving a 387 saving in memory space compared to the 4 byte addresses
needed on a byte oriented machine with fixed length addresses spanning the same address
space.

For FORTRAN and COBOL programs, using the appropriate S-language, the reduction in
program space was found to be 407 - 707 over the 18M 360 and the Burroughs B3500.

Furthermore, access width can be a parameter to the S-language interpreter, allowing the
compiler to generate code more suited to the actual problem and also making possible a
planned "Dial a precision FORTRAN".

Wirth ([WirN72]) has given a qualitative review of a particular ISP, the CDC 6000 series, from
the viewpoint of programming ease and error detection. In particular he points out
deficiencies of the data representations.and operator implementations that make the
detection of errors, and hence the guarantee of a correct result, impossible or at best
uneconomical. He also points out the lack of an instruction for calling reentrant programs.
His experience is from the implementation of PASCAL [WirN71] for this ISP, but his
arguments apply equally well to all language implementations where security and error

detection is a .’ sign goal, and to all uses of recursion or reentrancy.

For microprogrammed processors, the microprocrammed interpreter can be extended to
collect execution time data. This approach is advocated by Saal and Shustek [SaaH72}. For
simple types of data this allows the subject program to run at almost full speed. However,

full tracing by microprogram will be limited in speed by the device recording the trace.
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Since analysis time is considerably larger than trace time in any case, the advantage is
doubtful. The authors discuss various aspects of implementing such techniques, and present
data relating to opcode utilization and frequent instruction pairs. These results differ little
from those of Alexander [AleW72] and Foster et. al. [FosC71b].

We have previously identified the most important dimensions of ISP architecture to be:
register structure, data spes and operators, control operators and structures, and address
calculation,

Of these, the operator dimensions have been relativcly well explored in the works cited.
This applies in particular to studies of the utilities of existing operators and possibilities for
more efficient encodings. The problem of finding desirable but non existing opcodes has
been touched upon by Alexander and Wortman, but needs further work.

Other properties of control have been partially explored, particularly locality of jumps
(Alexander), and the use of test instructions and conditions (Alexander, Winder). Locality
properties of address streams have been studied in connection with virtual memories and
caches, but the data structuring aspect is largely unexplored. Register structure has barely
been touched (Alexander).

1.4.1 Contributions of the thesis
QOur main contribution to this field of work is the methods for register utility and generality.

We also break new ground in our work on instruction sequences. Previously Alexander (see
page 14) has presented dynamic counts of sequences, but only of length up to 3. Our
present program can accumulate counts for sequences of lengths up to 20% Our pruning
heuristics make the accumulation of counts for sequences of this lenght economically feasible.
In fact we point out an improvement to our algorithm which will make the accumulation of
sequences of this length and longer much more efficient than with our present program.

Finally our approach is general (see Section 1.2.1), we present results spanning algorithms

t This limit was arbitrarily set because we believed longer sequences would not be of

interest. The method can handle sequences of arbitrary length.
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coded in several languages and by different programmers, and we try to evpluate the
influence of these factors on our results. Earlier work has in some cases ([AleW72)] and
[WorD72]) been confined by methodology and other considerations to one language. In other
cases the selection of subject programs and goals have been more restricted.

We can not leave this section without mentioning the influence on our work by that of Foster,
Gonter and Riseman [FosC71a). The FGR functicn introduces some very simple and relevant
measures ot the utility of ISP features, namely the change in execution time or instruction
count resulting from a change in the ISP. Foster et. al. applied this idea to opcode utilisation.
Much of our work consists of applying it to other features of ISP architecture.
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In this chapter we discuss the various basic cost measures pertaining to ISP features. After

some introductory remarks we list four types of cost. For each of these we discuss its

related inaccuracies, other ways to measure it, and its relation to the other types of costs.
As a necessary introduction to this discussion we will make some comments on the instruction

word and issues related to it. This follows after the introductory remarks.

definition and other relevant issues, such as the way or ways we measure it and their j
The four types of cost we propose are general. We believe they apply to all ISP structures,
not only those with general registers. The units in which we measure might, however, vary
with the structure of the processor in question. This is true even within the class of general

register processors.

Computer resources are allocated in units of space and time: space in memory units, time in
processing, control and communication units. Since some memory must be in use whenever
the central processor is in use, the product of space and time is a relevant measure of cost
for the usage of memory units and time alone for other units. These are the basic units for
measuring the costs incurred by running the program on the machine. Relating these to
economic terms requires knowledge of the actual cost of the units of the computer, and of
the operating expenses. In addition, the cost of producing the program (designing, coding
and debugging), in terms of human effort and machine resources, depends on a gcod ISP

design and may be highly relevant.

Since we are concerned with the ISP we will disregard costs related to secondary memory
except insofar as they are expressed by the costs relating to primary memory. Similarly the
basic instructions for 1/0 are not part of the ISP seen by the user (See Section 1.3), hence
S we also disregard 1/O costs and the costs of control and communication units. The latter are
to some extant expressed by the cost of the central processor. The time cost (see below)
associated with 1/O and secondary memory usage is considered independent of and irrelevant

to ISP architecture, and will be disregarded except where explicitly noted otherwise.
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Motivated by the above remarks and by further discussion below, we will regard the costs of
having or lacking a given feature in an ISP as falling in 4 basic categories:

1) Execution time (time cost)

2) Memory space (space cost)

3) Programming effort (programming cost)

4) Hardware to implement ' . ‘eature (hardware cost).
This list is roughly in order of importance. Our methods will be almost solely concerned with

time cost, but the others will be kept in mind and mentioned when relevant.

The weighing and trading off of these costs is the concern of the ISP designer and falls
outside the scope of this thesis. Our goal is to provide methods for computing them, and in
particular the time cost, exactly or approximately, as seems relevant and possible for the

feature in question.

2.1 The role of the instruction word

The instruction word occupies a central position in any ISP design, being the quantum in
terrns of which the ISP forces the programmer to express his algorithm. Hence it brings
together all the issues of ISP design and must be a focal point for our research.

Some different views on how the instruction word can be organized are represented by the
CDC 6000 series, the PDP-10 and the IBM 360 series. The 6000s have 60 bit words and
about 70 different user instructions packed 2 to 4 to a word; the PDP-10 has 36 bit words
and about 420 different user instructions each filling one word; the 360 has about 130 user
instructions of 16, 32 or 48 bits, :he major data formats are 16 or 32 bits, memory fetch
width is 8, 16, 32 or 64 bits depending on the model. Good performance is attempted in the

first case by fast instruction issuance, in the others by powerful instruction sets.

We now present some of tne issues relating to the instruction word organization in a top
down order, neither implying any order of importance nor a sequence in which design
decisions should be made. As is exemplified by the above designs, there is no generally
accepted way of resolving these issues. In fact, the solution is often strongly influenced by
historical or marketing constraints, or other external considerations. In particular the
introduction of the 8 bit byte by 1BM with the 360 series in 1964 has had a standardizing

influence.




The first issue is the size oi the instruction word. The cost and power ranges, and in

particular the addressing space, planned for a new processor, will to a large extent influence
what features need to be accommodated in the instruction word. Its size is also influenced
hy issues not relating to the instruction word as such, particularly the desired accuracy of
the arithmetic and other data types and the memory fetch width.

A short instruction word implies at first sight a small space cost. Similarly a short instruction
word may imply reduced instruction fetch time, particularly if more than one instruction is
packed into one memory word. A slightly shorter decoding time might also result from a
short instruction word. However, the advantage of a short instruction word turns into a
disadvantage when the set of available features becomes too poor. At some point commonly
used operations have to be expressed as a sequence of two or more instructions, and both
time cost and space cost rise!. Obviously there is an optimum for both space and time, not
necessarily the same, and probably not very well defined™. There is also an associated

hardware cost, usually increasing with instruction word size.

To simplify the discussion we will from now on assume that the word length is given, and one
and the same for instructions and for integer and real operands. On this assumption we
consider the problem of which of the desirable features can be represented within the
instruction word. This represents little limitation on the scope of our methods. Data
obtained by them are certainly valid arguments in discussions of instruction word size, and
the changes in the methods needed to handle more esoteric cases of mixed wordiengths are
mostly trivial. ‘

The next issue brought up is the division of the instruction word into fields. Each field
represents some capability of the ISP, such as operator selection, addressing mode selection,
operand selection etc. Which capabilities to include is an open question, indirect addressing

and base register addressing being cases in poir.t.

Having decided which capabilities are wanted, there is the question of the size of each fieid,
and which functions to include for each capability.

Knowing the relative values of the possible functions in a capability and given its field size,

t A similar argunent holds for data word lengths, in that case it is the need for accuracy

which pushes towards longer words.

#t [n particular this depends on the application.
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one may select a set of functions for it. Some idea of the relative merits of functions from
different capabilities is necessary to decide on the field sizes, or on the desirahility of having
a given capability at all. Note that a function becomes particularly expensive when the field
capacity? of that capability is about to be exhausted. This means trading it against a
considerable reduction in some other capability or against an increase in the instruction word
size. In fact, the cost paid is usually that of doubling*t the n.mber of functions. Once this
cost has been paid, however, functions that would not otherwise have been considered, can
be impiemented cheaply.

The goal of our methods is to estimate the relative costs and usefulness of capabilities and
their functions. They thus give exactly the kind of information that sheds light on the
problems of how to allocate the instruc'ion word space to capabilities and functions.

The allocation of functions to capabilities is not unique. Also ctructural changes in one
capability may imply significant changes in anotrer. One example is provided by two address
ISPs. When both operands can be accessed by a full address, the traditional LOAD and
STORE instructions are subsumed by a MOVE instruction. Another example is the handling of
1/0 devices. Commonly there are instructions like “connect”, "send function” and “read
status" to control these. On the PDP-11 this is not sc. The relevant registers of the
external devices have been allocated functions in the addressing capability and the above
instructions are subsumed under the MOVE instruction. Yet another example is provided by
general registers. If these are part of the addressing space, register to register functions

are not needed in the operation capability, they are subsumed under the memory to register
functions.

2.2 Time cost

The primary time gost is the time the central processor spends executing thc program. For
reasons explained in Section 1.3 the primary time cost excludes time speat in interrupt
handling, whether the program’s own or others’. Unless specifically mentioned, the term time
cost is used to mean primary time cost.

t Usually some power of two.

t Assuming a binary instruction word.
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Execution time can not be measured directly by our methods. We propose three
approximations:

One is the instruction count, i.e. the number of instructions executed. This suffers from the
inaccuracy caused by assuming that all instructions execute in the same time. This is further
discussed below. Modifications could be made depending on addresing mode (particularly
indirection) and other features. This was not done in our case. The major advantage of this
measure is the ease with which it is computed, and its independence of technologyt and
processor implementation. The instruction count also has another quality: In addition to
being a crude measure of time, it is a precise measure of the number of opportunities there
have been to express something in the program.

For many designs, the memory reference count may be more appropriate. The PDP-11 is a
good example of this, since for the same data operation the number of memory accesses
varies depending on addressing mode. In case of the ADD instruction the number of memory
accesses may thus vary between | and 7.

If there is no overlapping between instruction executions, a more accurate measure is the
computed time, that is the sum of the execution times of all instructions executed. Even this
is inaccurate since execution times of many instructions depend on operand values or lengths
and also on hardware, like primary memory cycle time. The latter may vary even within the
same run if the job is swapped. However, the time obtained in this way is probably as
accurate as that used for accounting and other purposes by operating systems, where
operating system overhead and interrupt handling on behalf of other jobs often is a major
source of errors.

We may get an indication of the inaccuracy of the instruction count as a me-sure of the time
cost by comparing it with the computed time. This is done in Figure 3-4, which displays
the average instruction execution rate for our subject set in units of thousand instructions
per second of computed time (kips = kilo instructions per second). As the table shows, this
rate varies from 210 to 417 kips, with an average of 324 kips and a standard deviation of
63. Hence the instruction count may vary by a factor of 2 for programs of the same

t A faster floating point unit would make a great difference in the execution time for many
programs, but not in the instruction count. In one of our subject programs (Aitken E, see

Section 3.2.2), 237 of the executed instructions, consuming 547 of the computed time,

are for floating point arithmetic.
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computed time. Assuming tne computed time to be close to correct, we may conclude that

the instruction count is not overly accurate as a measure of time. We still use it, however,

for the stated reasons.

For a central processor where there is overlap between instruction executions the
instruction count may be sufficient. Alternatively an interpreter for the instruction
dispatching mechanism may be programmed and an appropriate version of computed time
obtained. The choice depends on whether one wants to evaluate the instruction set as such,
or the processor that executes it. Such an interpreter might introduce additional

inaccuracies.

The relations between the time and space costs through the instruction word are described
in Section 2.1. The tradeoff discussed there applies to all capabilities and functions of the

instruction word, and also to the implied data types.

The secondary time gost is the time spent in operating systems functions on behalf of the
running job. This can be measured by clock or by using operating system routines as the
subject programs of the analysis. This cost is influenced by the space cost as discussed in

Section 2.3.

2.3 Space cost

This is the cost of the primary memory that a program occupies for code and data (static and
dynamic). The importance of this cost follows from the relatively high cost of primary

memory, which is commonly an expensive part of a computer installation®.

Contributing to the space cost is instruction space and data space. Given an application ooth
of these will vary with the ISP, in particular with the available data types and their

operators. Variations in register structure and control operators will influence program

space and space for temporary storage.

t With the current trend towards semiconductor memories, the technology is the same for the
memory and the processor. Since the memory is usually much larger (in gates), memory cost

will continue to be high until another technology becomes economical.
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Space cost is best measured by static metheds or by estimation based on miscellaneous
assumptions as relevant in the particular case. The data space for dynamic data structures
can not be measured by static means. It can be measured by dynamic methods, but we
present no method for this at the present time.

For static methods one may rely on the compiler in question to produce the statistics, or a
special program may analyze core images, relocatable programs or some similar general form
of the program. The first approach suffers from lack of generality as discussed in Section
1.2.1. The second may have inaccuracies due to the difficulty of distinguishing instruction
words ‘rom data, in particular constants and descriptors. This inaccuracy depends on the
central processor structure, it will be small or nonexistent on a central processor where code
and data are completely separated, as on the HP 3000.

Space cost is measured in bits, alternatively in words. Whenever we estimate this cost there
will be inaccuracies inherent in the particular assumptions made. These will be discussed in
each case.

Memory access width relates the space and time costs by forcing unnecessary space to be
used rather than increasing the time cost. Memory access width is again influenced by the
amount of space necessary for representing data types. Dynamic methods may be desirable
here, to determine the space necessary to represent the actual significance of numerical
opetands (See Section 5.5).

Also space cost relates to time cost through the instruction word as discussed in Section 2.1.
For a computer with a dynamic memory management (paging, overlaying) there will be an
associated secondary time cost for this function which usually increases with the space cost.
In a multiprogrammed situation there will also be a relation to secondary time cost through
central processor idle time whenever the program is difficult to multiprogram. This also
increases with the space cost.

2.4 Programming cost

This cost may be broken down as cost of design and coding, debugging and maintenance.
Costs incurred by errors during production runs may also be included. Each of these is often

a significant fraction of the costs associated with a program. The most important way of
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reducing the programming cost is to write programs in high level languages. However, for
efficiency reasons, and in order to gain access to machine features, much coding still takes
place in assembly languages. Similarly most debugging is done by means of assembler
oriented debuggers, or at least requires good knowledge of the representation of the
program in ISP terms. Hence a gocd ISP architecture contributes to reducing this cost in
several ways:

By supporting high level languages and other good programming mcthadologies. This
includes techniques for program factorization, like subroutines, coroutines anu separately
compiled modules, which should be well supported by the ISP. Also important are natural
representations for a rich set of other control operators and their associated data
structures.

By supporting program security. A program should be protected against its own errors
as well as those of other programs. Tne instruction set should not encourage the
programmer to make unnecessary mistakes, and the ISP should permit inconsistencies to
be detected during execution!. Possible dynamic checks could be: consistency of data
types and operators, validity of effective address with respect to named data structure,
consistency of control operators and their data etc. The standard techniques for

protection against other programs are to a lesser extent relevant to our subject.

By having the right operators. That is: fewest possible operators should have to be
fabricated from existing ones. This contributes to understandability. For particular
languages or application areas instructions for indexing in two dimensions, parameter
checking, etc. might be relevant.

By being clean and elegant. This means that the capabilities and their functions should
be well defined and conceptually well separated (orthogonal). There should be few and
well defined instruction word formats. The data types and control operators should be
well defined, and their representations should be easily understandable. General
concepts should be preferred to special.

The methodology and elegance dimensions of this cost are currently not quantifiable except

by purely subjective evaluation. Personal biases and preferences will have a strong

t Wirth, [WirN72] has stated the case for this form of security and its dependence upon the
ISP very eloquently. See Section 1.4.
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influence. As for the security dimension, the cost and value of proposed checking

mechanisms can be estimated using our methods to obtain data on dynamic usage. We also
provide methods for evaluating existing and missing operators, namely the freque cy counts
and FGR function (Section 5.1 through Section 5.1) and the sequences (Section 5.2).

Except for the "right operators” dimension, most of the programming cost is accumulated over
features missing from the ISP. Introduction of new features, to lower the programming cost,
will usually be at increased space, time and hardware costs. However, a generalization of

existing features will often entail a reduction of all costs.

We have discussed this cost partly to point out that security measures can be buiit into the
ISP at some (often low) cost in space and time, and that our methods can be used to estimate
these costs. We also want to point out that we do not advocate rushing headlong into making
some improvement suggested by our methods to save space or hime, without considering the
issues just discussed.

25 Hardware cost

This is the cost of the hardware of the central processor needed to implement a feature.
Given the approximate computing power of the processor and its general structure, the
varying part is mostly a cost of electronic circuitry. Since the cost of integrated circuits is
rapidly falling and becoming a small fraction of the cost of a computer system, the hardware

cost is becoming less significant.

Estimating the he-dware cost is outside the scope of this thesis. As a general rule each
feature introduced into the ISP will increase it, less so if the new teature, or part of it, is
subsumed under an already existing concept and using existing hardware. It follows that an
increased hardware cost is usually the consequence of an improvement designed to reduce
the space and time costs.

Time cost can be reduced by using faster circuits, thus increasing the hardware cost. This is
irrelevant to the ISP architecture. Hardware cost is independent of space cost, its relation to

programming cost is discussed in Section 2.4.
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CHAPTER 3

VALIDATION STRATEGY

A major concern of our research has been to establish the validity of the methods we have
developed. We wanted to ascertain that they apply with more or less equal generality to the
ISP structures outlined in Section 1.3 and to all application areas where this class of
processors is commonly used. We wanted to be confident that the results obtained by using
them reflect general requirements of programmers, algorithms, languages and compilers
rather than idiosyncrasies of particular instances of such. Specifically we wanted to assess

the influence of each sturce of variation on dur results.

The sources of variation can be groupea cc*

Yariation due to algorithm.

Variation due to programmer.

Variation due to language used.

Variation due to the particular implementation of that language (including the operating

system).

Variation due to the ISP.
One might also want to consider variation due to choice of representations, particularly for
data structures. This variation is closely related to those due to algorithm, programmer and
language, and we do not treat it as a separate source of variation here.

The validity of the results have been‘judged by several criteria:
The methods confirm already known efficiencies or deficiencies of the ISP considered.

The methods give new insight into deficiencies or efficiencies of the ISP which are
subsequently verified by other means.

The methods themself may measure or illuminate the same property of the the ISP from

several angles and these results corroborate each other.

In special cases the approximate measures found can be compared against direct

measurements.
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In this chapter we describe some simplifying assumptions which were made, and how we
chose a subject set in order to investigate the influence of the above sources of variation.
As the presentation of each method, and the experimental results obtained by it, is
concluded, we aiso discuss the results in view of this validation strategy. Finally these

discussions are summarized in Section 8.2.

3.1 Some simplifying assumptions

To make a full scale investigation of the effects of all these sources of variations would be a
major programming task. Particularly costly is tracing on several ISPs, and selecting the
subject programs from a wide area of applications. Firstly we would need an interpreter
program for each of the ISPs to be investigated. Secondly, we would have to change the
analysis programs to reflect the other 1SPst. Thirdly, in selecting subject programs we would
need several programs from each major area of application. These would have to be coded
in each of the selected languages and brought to run on each of the selected iSPs betore
analysis of them could start. The analysis would entail a large expense in computer
resources and the result would bring on us a data reduction problem of considerable
magnitude. In addition it would involve locating and consulting experts in each application

area.

We believe that we have legitimately evaluated our me thods without going to this large scale

investigation, by introducing two simplifying assumptions:

1) We restricted ourselves to one ISP, viz. the PDP-10. This alleviated the first two

difficulties above, but deprived us of tie possibility of investigating the variation due

- to a change of ISP. Almost all of our experimental results would change if we
performed our analyses on a different ISP, particuarly the results for register

utilization, details of instruction sequences, and addiessing. In some cases the

t There is an obvious advantage of running the analysis programs on the same processor as
is traced, since many of the representations have obvious and efficient formats. Most of our
programs were written in FORTRAN to ease portability, but even so many of the

representations would have to be changed when tooling for another ISP.
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methods would have to be modified, or new methods developed, to handle spacial
features of particular ISPst. We believe this to be of little importance in the present
context. Our goal was to assess the ability of our methods to detect the utilities and
costs of features in ISPs, as opposed to comparing ISPs. Since our methods justified
themselves for one ISP we feel confident they will work satisfactorily for most.
Analogously, if we were developing methods to determine the cost/utility ratio of
programming language feat'.;es based on their usage, we would certainly measure the
performance of programs on several 1SPs but we might well restrict ourselves to one
language provided it were sufficiently rich. Further justification follows from the
generality of the PDP-10 as discussed on page 9. If the findings of our validation did
not have a certain generality to them we would suspect this assumption of failing. As

it is, we don’t.

2) We restricted ourselves to one, albeit rather general, area of application. This
reduced the set of subject programs to manageable proportions. Again, we believe
that since our methods showed their worth in evaluating an ISP over one application
area then they can be applied over a spectrum ot areas, separately or in union. We
would expect the findings to differ from area to area but mostly in data types and
data operators. This is probably the best understood part of the domain that our
methods can be applied to and hence of least importance to us. We would also
expect data accessing methods to be iniluenced by the application and our
assumption deprived'us of assessing this influence. Considering this assumption, we
restricted our study to programs mostly from the area of technical and scientific

computations, but with some other programs included, in particular compilers.

We summarize this discussion as follows: The intended goal of our methods is to evaluate

features of ISPs as suitable for a given general or specialized application area. Our main

concern in validating the methods was to assess the influence of factors not related to the

ISP or to the area of application.

t Consider the 1BM 360 ISP as an example, and compare it with the PDP-10. Base register
addressing would imply that more registers would be used, and that information about
ad-ressing would become more important. The differences in instruction sets would imply
changes, at least in detail, of the instruction sequences. Also methods for investigation of the

use of condition codes would have to be implemented.
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3.2 Selection of data

Again, since we evaluated the methods, and not any particular ISP, we were not worried that
our selection of subject programs quantitatively constituted a fair representation of any
actual workload. Rather we wanted to see all programming structures that occur with some
minimal frequency in real world programs represented in our test sample. To estimate the
influence of the various sources of variation we studied the behaviour of several versions of
the same several algorithms, programmed by different programmers, in different languages
and, if possible, compiled by different compilers for the same language.

3.2.1 Language selection

To study the language variation, we selected four available languages suited to the chosen
application area, namely: FORTRAN, ALGOL, BASICt and BLISS. These languages cover a

range of age, degree of security, inherent efficiency and structure:

FORTRAN [IBM56], [USAS66] was designed about 1954 but has since been mcdified and
extended considerably. ALGOL [NauP63] was designed in 1957-60, BASIC [KemJ61] in the
early sixties [KemJ61], BLISS [WulW70] was designed around 1969.

In terms of control structuces, including program factorization mechanisms, all the chosen
languages have looping and conditional constructs. BASIC is the poorest, having subroutines
but no locai names. FORTRAN has more structure, particularly subroutines and localized data.
ALGOL has even more, notably the compound statement with its consequences for the other
control structures, block structure, and an advanced parameter mechanism. BLISS is
comparable to ALGOL, with a simpler parameter mechanism, but it has coroutines, and intra
routine cantrol structures so rich that a general GO TO has been omitted. This contributes
towards better structured programs.

For data structures, FORTRAN, BASIC and ALGOL all have vectors and multidimensional
arrays, BLISS has any data structure which the programmer cares to define.

* To obtain a fair comparison of the language structures involved, we did not use the matrix

operators of BASIC where they would normally be called for.
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BASIC has only one type', floating point, converting to integer indexes automatically as
needed. ALGOL and FORTRAN have several arithmetic types with automatic type conversion,
and also a Boolean type. BLISS has no types but relies on the written operator to determine

the correct operation.

FORTRAN and BLISS have almost no run time checking, BASIC checks array bounds, ALGOL

does this and also has extensive checking of parameters inciuding type conversion.

BLISS generates the most efficient object progrems, largely due to a highly optimizing
compiler. FORTRAN programs are efficient, ALGOL programs are less efficient due to the high
degree of security and to the precise definition of evaluation order in the context of possible
side effects. BASIC programs are inefficient due to a particularly fast and dirty compiler.

It follows that our languages span most of the variations found within commonly used

languages for scientific and technical calculations.

3.2.2 The subject set

,‘FOr our subject programs we first selected six algorithms from the "Collected Algorithms
from the Communications of the ACM", (CALGO). The selection was made in such a way that
it included as many as possible of the common data types, data structures, control structures
and parameter forms found in higher level languages. We also attempted to cover as wide a
range as feasible of the modified SHARE classification, used by CALGO to classify the

algorithms. Other criteria used in the selection were:

The algorithm must have a reasonable size, - large enough to contain the interesting
features in context, but small enough to be ccded in all four languages, traced and

analyzed in a reasonable time.

The remarks and certifications in the CALGO collection should not indicate that trouble

might be expected using the algorithm.

The subject matter of the algorithm should be sutficiently known to this author that he
could detect obvious errors in the published algorithm and in his various versions of it.

t Excluding the string type which we don’t use.
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Writing a main program for the algorithm should be straight forward.

The CALGO algorithms selected are briefly described in Figure 3-1, along with the rest of
the subject set. This set of algorithms gives us a good indication of the variations due to
algorithm and language. Listings of all the ALGOL versions, all 4 versions of PERT, and all 5

versions of Aitken, are reproduced in Appendix E.

The language structures searched for, showing how they occur in the selected algorithms,
are tabulated in Figure 3-2. The statement count given s the approximate number of
ALGOL statements! in the published version, included as a measure of the coding effort. As
is seen from the table, several of the desired structures are not represented. Double
precision arithmetic is only present in one algorithr, Crout, very locally in space (though not
in time), and only in the ALGOL and FORTRAN versions since BLISS and BASIC do not support
this type. Complex arithmetic is only marginally present, since Bairstows method finds
complex roots but does no calculations using them and no variables are Jzclared of this type.
Bit manipulation, bit vectors and characters are not used by any of these algorithms. Note
also that real arithmetic in treesort is present only to the extent in which it is needed for
comparisons of magnitude, or for initialization.

Only Crout’s method uses two dimensional arrays and we found no suitable algorithm using
arrays of 3 or more dimensions'!, and no triangular or ragged arrays. We also found no

suitable algorithms using record structures or lists, although Treesort uses linked structures.

We found a rich selection of GO TOst, conditionals and loops, and one instance of a CASE
statement (switch, computed GO TO). Since only BLISS and ALGOL support recursion, and this
feature is little used in published algorithms, we did not include it. For the same reason we
included no algorithm using label parameters. Other parameter forms are well represented.

In particular, Ising passes procedure names as parameters. For this reason Ising could not
be coded in BASIC.

t Not counting <block>s and <compound statement>s. Thus "IF B THEN BEGIN A:=X+1; L:=I-1
END CLSE A:=X-1;" counts as 4 stalements.

t Knuth [KnuD70] reports that 1.47 of the static variable occurrences in his FORTRAN sample
has 3 or 4 indices or parameters. He does not distinguish function calls from array accesses.
Assuming functions of many parameters to be more common than arrays of many dimensions,
this supports our findings.

tt Most of the GO TOs caused little problem when transiating into BLISS, an exception was

the Bairstow program which required artificial loops, compounds and a function.

e L e D
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CALGO no.

Bairstow

CALGO no.

Crout

CALGO no.

Treesort

CALGO no.

PERT

CALGO no.

Havie

CALGO no.

Ising

30

43

113

119

257

355

FIGURE 3-1
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Description of the subject set.

Bairstow/Newton method for polynomial roots.

Author: K. W. Ellenberger. Corrections by W. J. Alexander, K. J. Cohen and
J. J. Kohfeld.

Modified SHARE category C2: Zeroes of polynomials.

Data: Initialization by explicit assignments.

This is a classical algorithm for the probiem.

Crout’s method for linear equations with pivoting.

Author: H. C. Thacher. Corrections by C. Domingo and F. Roderiguez-Gil.
Modified SHARE category F4: Linear equations.

Data: Matrix values computed by simple expressions. Logarithm used for
right hand sides.

A classical algorithm for the problem.

Treesort.

Author: R. W. Floyd.

Modified SHARE category M1: Sorting.

Data: Initialization by simple expression. Initial order is inverse of desired.
A logarithmic sorting algorithm,

Evaluation of a PERT network.

Authors: B. Eisenman and M. Shapiro. Corrections by L. S. Coles.
Modified SHARE category H: Operations research, graphs.

Data: Initialization by explicit assignments.

A somewhat speeded up algorithm for this problem.

Numerical integration by Havies method.

Author: R. N. Kubick.

Modified SHARE category Dl: Quadrature.

Data: Integrands are simple expressions involving square root or
exponential,

A modified Romberg integration.

An algorithm for generating Ising configurations.

Author: J. M. S. Simoes Pereira.

Modified SHARE category Z: Al' others.

Data: Maximal n read from teletype; n, x and t varied by loops over all
significantly different combinations. :

An (x,t) Ising configuration is a sequence (S,,...5,) of zeroes and ones such
that:

n n-1
TS, =x and T 1S - Sil =t

12} iz}

The problem is of interest in theoretical physics.
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Aitken

SEC

FORFOR

FORTEN

ALGOL

BASIC

BLISS

This algorithm was included mainly because routine calls is its most
importart control structure. Since routine names are passed as parameters
it could not be coded in BASIC.

N-point polynomial interpolation.

Authors: M. R. Barbacci, L. E. Flon, G. N. J. Rolf, W. A. Wulf and A. Lunde.
(Each contributed one version of the algorithm. The slowest version was
omitted. The fastest (and shortest) version was further improved by about
107 in speed and size, and included. Hence five versions of this algorithm
were used.)

Modified SHARE category El: Interpolation.

Source language: BLISS.

Data: Natural logarithm tabulated at irregular intervals by loop.

Standard polynomial interpolation.

Zeroes of simultaneous nonlinear equations by secant method.

Author: G. W. Stewart.

Modified SHARE category C5: Zeroes of trancedental functions.

Source language: FORTRAN

Data: Functions are linear combinations of linear and quadratic terms in the
variables, parameters read from teletype.

The program was designed for research in the problem area and method.

Compiler for FORTRAN.

Source language: Assembler.

Data: FORTRAN version of the Treesort algorithm.

A compiler of the Digitek design, simulating a one-accumulator processor.

Compiler for FORTRAN.

Source language: BLISS.

Data: FORTRAN version of the Treesort algorithm.

A compiler doing flow analysis and generating efficient code.

Compiler for ALGOL.

Source language: Assembler, structured control by macros.

Data: ALGOL version of the Treesort algorithm.

A fast ALGOL compiler generating efficient code (for ALGOL). Language
slightly extended.

Compile and link phases of the BASIC system.

Source language: Assembler.

Data: BASIC version of the Treesort algorithm.

A fast compiler generating extremely inefficient code.

Compiler for BLISS

Source language: BLISS.

Data: BLISS version of the Treesort algorithm.

A slow compiler generating efficient and smail code.
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FIGURE 3-2

Language properties of the small subject algorithms:
x means property present in algorithm.
- means property marginally present in algorithm.

i
. p
Name: Bairst. Crout Tsort PERT Havie Ising Aitken “ i
3
CALGO number: 30 43 113 119 257 355 - i
Mod. SHARE categ.: Cc2 Fa Ml H D1 z E .
Statement count: 120 40 15 60 35 45 30
Types: i
Integer X X X X X X X
Fioating X X X X X
Double fi. :
Complex -
Boolean X i
Bits
Characters J
Data structyres;
1 Dim arrays X X X X X X X

2 Dim. arrays

>2 Dim, arrays

Ragged/triang. arr.

Records

Lists

Linked X
Packed X

Contro! structures;

Go to X X
Conditionals X X X
Cases

Counting loops X X X
Other loops X X X X
Subroutines X X X X
Recursion

x X X X
x
x

Parameter forms:

Constants X

Variables X X X
Expressions X

Arrays X
Routines X
Labels

x X X X X
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A related source of variation is that of language implementation. Luckily the PDP-10 has two
FORTRAN systems, FORTRAN 40 and FORTRAMN TEN, here denoted FORFOR and FORTEN or
simply FOR and TEN. Hence we had an obvious way of assessing this variation. We analyzed
all the CALGO algorithms plus SEC (see below) using both of the FORTRAN systems. Due to a
suspected bug in TEN, we did not use the optimize option of TEN when compiling our
programs. The various versions of these algorithms will be denoted ALGOL Ising, BASIC
Crout etc.

To estimate the variations due to programmer habits we included 5 versions of an algorithm
as coded in BLISS by 4 experienced programmers. The algorithm was polynomial
interpolationt which nicely completed our coverage of the modified SHARE categories. BLISS
was chosen since it gives the programmer more alternative forms of expression than do the
other languages. This was thought to be of importance considering the small algorithm.
These five programs are denoted by the letters L, G, B, A and E (efficient).

For each of these algorithms a main program was written, to provide data for the algorithm
and present the results. To initialize the data for the algorithms we used explicit
assignments of either constants or calculated vaiues, usually simple expressions involving the
indices of the variables to be initialized. A short indication of the method used in each case
is given with the description of the algorithm in Figure 3-1.

After a few trial traces it became obvious that input and output accounted for a large
fraction of the total activity. Not only did format interpretation take much time, but also
channel and file initialization and status checking. We therefore decided to leave 1/0 out of
the traced part of the algorithms, with a few exceptions: one parameter to the Ising program

is read from the teletype, and a minimal output was included in some cases.

Our sample so far had one major drficiency: all the programs traced were small. To rectify
this we traced all the compilers involved, that is the ALGOL and BLISS compilers, the compile
and link phases of the BASIC system and the two FORTRAN compilers. All these traces were
made while compiling the appropriate version of the Treesort algorithm. An additional
benefit from this was that we got examples of many of the structures our CALGO sample did
not have, including bit manipulation, bit vectors, character handling, records, lists and

t By Aitkens method as described in Milne [MilW49].

e
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recursion. We also believe that compilers account for a large fraction of the resources used
in any installation and hence are of particular importance as constituents of sets of typical
programs.

We further included one somewhat larger program from the technical scientific calculations
area, this was a program, SEC, to solve nonlinear simultaneous equations. This program was
analyzed using both versions of FORTRAN.

The resulting subject set consists of the 6 CALGO algorithms written in each of the 4
languages, the Aitken algorithm written in BLISS by 4 programmers, 5 compilers and the
large scientific numerical program. These programs are well distributed over the area
spanne. by the modified SHARE classification. The following general categories are
represented:

B (Standard functions) by the integrands for Havie.

C (Polynomials, zeroes) by Bairstow and SEC.

D (Integrals and differential equations) by Havie

E (Polynomial approximation) by Aitken.

F (Matrix operations} by Crout.

G (Statistics, permutations, subset generation) by Ising (related).

H (Operations research, graphs) by PERT.

L (Compiling) by the compilers.

M (Sorting, data conversion) by Treesort.

Z (Others) by Ising.
The FORTRAN versions of the 6 CALGO algorithms, and also the large scientific program, were
analyzed as compiled using the two different FORTRAN compilers. Thus, since the BASIC
version of Ising was excluded, the sample altogether consisted of 41 traces. The traces vary
in size from 19000 to almost 600000 executed instructions. Altogether about 5.3 million
instructions were traced, correspOndin; to almost 16.8 seconds of CPU time (computed time)
on the KALO. This should give a good basis on which to evaluate the methods. The
computed time and instruction count of the subject set are tabulated in Figure 3-3. The
average instruction exectyt':m rate for each program is tabulated in Figure 3-4.

o
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FIGURE 3-3

% Time cost of the subject set.
Computed time in seconds.
Instruction count in 1000s.

Source language: ALGOL BASIC BLISS FORFOR  FORTEN

Bairstow 0.12 0.45 0.09 0.08 0.08

] 36 156 23. 21 19
: Crout 0.32 0.49 0.25 0.43 0.23
115 163 62 109 63

Treesort 0.47 0.55 0.26 0.27 0.35

140 187 106 111 97

PERT 0.16 0.41 0.07 0.08 0.07

63 157 26 32 27

Havie 0.48 0.33 0.12 0.18 0.17

\ 168 103 28 38 36
- Ising 0.22 - 0.07 0.05 0.05
3 91 - 25 20 20
SEC - - - 2.08 1.94

- - - 541 497

Algorithm\Programmer E B A G L

Aitken 0.18 0.19 0.21 0.41 0.44

44 47 60 143 139

ALGOL BASIC BLISS FORFOR  FORTEN

Assembler written 0.19 0.25 - 1.56 -

compilers 74 85 - 591 -

BLISS written - - 1.67 - 0.78

compilers - - 593 - 295

BLISS versions would have been faster if OWN vectors and matrices had been used instead
of LOCAL and parameter.

{ WARNING: The format of this table is slightly different from the standard table format of the
later chapters, first used in Figure 3-4.

AR L . .. P g s
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FIGURE 3-4

Instruction execution rate of the subject set
in units of 1000 instructions per second (kips)

Algorithm\language ALGOL BASIC  BLISS FQRFOR FORTEN
Bairstow 300 345 261 247 243
Crout 362 330 249 256 277
Treesort 300 339 401 412 275
PERT 394 380 397 395 402
Havie 351 308 230 210 219
Ising 410 - 379 391 417
Secant - - - 260 256
Algorithm\Programmer E B A G L
Aitken 245 243 282 344 318
3 | Source progr.\Compiler ALGOL BASIC  BLISS FORFOR FORTEN
. Treesort 382 343 354 379 379

Max: 410, Min: 210, Average: 324, Standard dev.: 63.

3.2.3 Subsets of the subject set

In some cases it is desirable to study the experimental results from a subject set
representing a subarea of the area of application. Our subject set falls naturally into three
such subsets:

a) The compilers.

b) The numeric set consisting of SEC, Bairstow, Crout, Havie and Aitken.

¢) The nonnumeric set, consisting of Treesort, PERT and Ising.
This subdivision is used in Section 5.1.

T T g N L ———C
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CHAPTER 4

REG.STER STRUCTURE

We will now discuss the motivation for, and costs associated with general register designs.
The main problems we attack are:

a) What is the optimal number of registers? This is the most important issue in
connection with register structure. All the costs discussed below depend heavily on
this number.

b) How desirable is generality? This can be an issue in some cases, particularly for
designs with a short instruction word.

We do not pretend to solve these problems, only to present methods for elucidating them.

The central concept in our methods is that of a register life. We present an algorithm for
detecting such lives, a method of classifying them according to the types of the events
constituting them, an algorithm to detect simultaneous lives, and finally methods to estimate
the cost of simulating parallel register activity in fewer registers than were used by the
original subject program as traced. The data obtained by these methods are highly relevant
to the problems of register block size and generality. The first few subsections discuss
register structures in general, terminology, and other top:cs common to the methods.

4.1 The basic tradeoffs

In old ISP designs, the arithmetic registers that the programmer had access to were the
actual input registers to the arithmetic unit. A typical design would have an accumulator (A
register), and an extension of it (Q register) to hold double length products and dividends,
quotients, multipliers, and the like. The second operand for arithmetic would come from
primary memory. Further there would be a number of index registers which would have a
restricted set of arithmetic and testing operations. From a slightly different viewpoint one
might say that the registers were divided into groups according to criteria such as:
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Floating point capability

Full fixed point capability

Simple fixed point capabilities and indexing

Temporary storage only

etc.
The “simple fixed point" group could be those having addition and subtraction only, possibly
further restricted to immediate operands only.

As electronic circuitry became cheaper 2nd faste: compared to primary memory it became
feasible anc common to have a small electronic memory in the central processor for locally
important operands. Operands, as specified by an extra address in the instructions, are
transferred through a switch from these memory cells to the arithmetic input registers,
whereas the latter registers are invisible to the programmer. One or both of the operands
may come from this memory, the alternative being primary memory as before. As a natural
extension, this memory contains not only the arithmetic operands but also the indexes,

control information etc. The terms registers, register block, and in particular general
registers, are now used to mean this local memory.

The general registers commonly serve a combination of several functions:

Arithmetic registers

Index registers

Base registers (double indexing)

Subroutine linkage

Program flag regist~rs (for Booleans)

Stack pointers

Address pointers (to data)

Temporary data storage

Temporary program storage (for small loops)

Program counter (PC)

etc.
Few, if any, computers have registers with all these properties. In particular, few machines
have the PC in a general register (exception: the POP-11), and few may execute programs
from them (exception: the PDP-10). The register block may be part of the memory address
space for all functions (as in the PDP-10), just for some (as in the UNIVAC 1107), or not at all
(as in the 1BM 360).

We will devote this section mainly to registers for data manipulation. Indexing and
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inditection will be discussed, however, to the extent that they are operations involving
registers.

Assuming that indices, if they exist at all, are always held in "registers" adcressable by short
addresses in the instruction word, we may list several factors that motivate the transition to
a general register design:

To save addressing space in the instruction word compared to two address designs. This

is not discussed further in the thesis.

To save code space and instruction excutions compared to single accumulator designs. To
estimate this factor is outside the scope of the thesis.

To have a fast store for locaily important operands. This is further discussed in Section
1 4.6

To have a full complement of operators for indices and control irformaticn as well as for
normal arithmetic cperands. We discuss this in Section 4.5.

To clean up the ISF ‘tecture and central processor design. This is again motivatea
by programming ¢ .d hardware considerations, to estimate its cost anc utility is
outside the scope of this thesis.

The costs of general registers are contributed by:

Space cost of lengthened instruction words compared to one address design. This
t question is not addressed in the thesis.

Time cost of load and store instructions compared to a full two address design. Some of

;‘
E the results of Chapter 5 may bear on this factor.
F Time cost of saving and restoring registers. This can be reduced by having special

"process swap" or "register save/restore” insiructions, or by having separate blocks of
registers for each program or for groups of r.rograms, commonly defined by the interrupt

structure. Hence this cost may or may rot apply on interrupts. The cost certainly
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applies on subprogram calls, particularly if subprograms are separately compiled*. Again
some of the results from Chapter 5 apply.

Time cost of register access switch. This time is small compared to the time gained by
not accessing primary memory, but may increase somewhat with the number of registers.
It may be estimated from the results in this chapter.

Hardware cost of the registers and the switch. To estimate this is outside the scope of
the thesis.

The relative importance of these factors depends on the state of technology. In partlcu!ar
the current trends towards cache memories, and towards larger, faster and cheaper
electronic memories, tend to make the fast local store argument less important. To make
valid design decisions when faced with cost effectiveness requirements, it is necessary first

to establish quantitatively their relative importance in a technology independent way.

4.2 Some definitions

The intent of these definitions is to make precise the term “register life", and to define some
important properties of register lives.

t Our analysis of the trace of the BLISS compiler indicates that a "declarable register" is
restored more than 5000 times every second due to subroutine calling; the same number as
by restoring 16 registers 312 times. A complete process swap would thus have to be
performed over 300 times per second in order for the time cost of register saving due to
process swaps to exceed that due to subroutine calling. We believe this is a high frequency
of process swaps for the PDP-10 (KA10), but not extremely high. Including the “F-register”,
the count for BLISS rises to 16500 registers per second, corresponding to about 1000
process swaps per second. (This is about 1.15 registers saved per routine call). The
“temporary registers" are not included at all in these counts. Measurements performed on the
IBM 360/91 indicate about 470 SVCs and 1/0 interrupts per second. Assuming the 360/91 to
be ten times as fast as the KA10, this corresponds to about 50 process swaps per second on
the KA10. All this indicates that register saving because of routine calls is significantly more
costly than register saving due to process swaps.

— e =T L Sy
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A register is lpadid when a new value is brought into it that is unrelated to its previous
value (except for possible use of the old vaiue in the address calculation).

A register is modified when a new value is brought into it which is the result of an
operation involving the old value as one of its operands.

A register is ysed when it is loaded, moditied, employed in address calculation, used as an

operand, stored, tested or otherwise referenced from an instruction.
A register is read when it is used but not modified or loaded.

Since our finest grain of time is that of one instruction, a register may be loaded and
otherwise used at the same time. In a finer time scale this would not be so. Hence we
regard the sets of loadings, modifications and readings of a register as disjoint. Their union
is the set of all usages of that register. Two other subsets are often needed:

A register is changed when it is modified or loaded, it is accessed when it is read or
modified.

A register life (R-life) iar a given register is the span of time starting when the register
is loaded and ending with the last access before the next time it is loaded*. If a register
is used in the address calculation of a load to itself, this use is regarded as an access in
the life prior to the loading.

Typically a register life starts with a LOAD; operations like ADD, STORE, SHIFT etc. may
reference the register and possibly modify it during its life, it may be used as a stackpointer,
ingdirect address etc.

The initial loading usage in a register life is called its first use, the term last use has an
equally obvious definition. The first and last uses of an R-life constitute its transitions.
The length of an R-life is the time from its first use to its last use, both endpoints
included.

t An R-life should be thought of as closely related to its register. Formally this could be
incorporated into the definition by defining an R-life to be a triple: <Register name, time of
load, time of last use>.
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A register is live during an R-life for that register. It is dead when it is not live. It is
dormant when it is live but has not been used for some long period of time specified in
each actual case.

We emphasize that we are observing the dynamic behaviour of programs, hence the
observed R-lives are in general different from those that we would observe by a static study
of the code between the instructions responsible for the first and last uses, and the usages
of a register during its life may involve instructions from quite remote parts of the code.

The ‘following definitions are introduced in order that we may classify R-lives according to
the kinds of operations they have been used for. This will be used to assess the need for
generality of registers.

A register usage classification is a set of possible modes or attributes, each describing a
different way in which a register may be used by an instruction.

A simple classification could be: {<loaded>, <stored>, <used for integer arithmetic>, <used for
real arithmetic>, <used otherwise>}. A more complete classification is presented in Section
4.3.

A register usage attribute is a member of a register usage classification. The above
classification has 5 attributes: <loaded>, <stored>, etc.

A register usage class is a set of register usage attributes, i.e. a subset of the register
usage classification.

When no confusion can arise, the word “register” is usually omitted from the above 3 terms.

Each R-life has a usage class associated with it, which is uniquely defined by the (unordered)
set of usages of the register during its life. We will usually use the term to denote a class
defined in this way.

A register usage classification is in a sense a generalization of the set of instructions and
other basic operations of the processor which involve the registers. It may also be thought
of as a classification of the instructions of the ISP in terms of how they use registers. Given
an opcode and a field of the instruction word which may specify a register, a usage attribute
is true or false depending on whether that instruction uses the register specified by that
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field in that particular mode. This is in fact the way it is represented in our analysis

program.

4.3 A register usage classification

In Figure 4-1 and Appendix C we present a register usage classification for the PDP-10.
It is designed to detect the loading, modification and reading of registers, «s well as the
various forms of reading or modification. This classification was used in our analysis
programs to detect and classify R-lives. Although it is designed for a particular ISP, few and
obvious modifications would be necessary to use it for any other register oriented ISP,

This classification grew and generalized as we were working with it. Our experience is that
the classification given in Figure 4-1 is satisfactory. It contains three minor improvements
over the one we actually used for our analyses. The "Used as uperand” and "Immediate
fixpoinit add or subtract® attributes were included post hoc. Also, our analysis brOgram did
not check for instruction fetches from registers, only for jumps into registers or XCTH
instructions addressing registers. The errors caused by this omission are considered
insignificant, /

For technical reasons the machine representation of the register usage attributes separate
them into two kinds, reference attributes and access attributes. Reference attributes are
used to define the three major types of reference, i.e. loading, modification or reading.
They are used by the analysis programs as case selectors, and hence represented as
consecutive values. The access attributes are used to accumulate the types of usage of a
register during its R-life. They are represented as bit positions in a field, so that they may
be easily included into a register usage class by OR-ing.

Since tiere are 3 fields in each instruction word of the PDP-10 which may reference a
register, the actual description of each instruction consists of 3 sets of attributes, each
corresponding to one of these fields and the different ways it may use a register. Further
complication follows from the existence of instructions which reference two registers by the

"ACC" field, from the special treatment of register O by many instructions, and from the

t For example, if analyzing the PDP-11, autoincrement might be introduced as an attribute.

tt Execute contents of effective address

e AT |G e




REGISTER STRUCTURE 48

FIGURE 4-1

A register usage classification.

Reference attributes:
Not used
Loaded
Modified
Used but not modified
Undefined (Monitor communication etc.)

Access attributes:
Indexing data accesses
Indexing jumps or executes
Indexing immediate operands
Immediate fixpoint add or subtract
Fixpoint add or subtract w. memory operand
Fixpoint multiply or divide
Floating point arithmetic
Halfword modified
Byte loaded or stored
Modified by logical operation
Modified by shift
Used as stackpointer
Used to hold an address (As in Block transfers etc.)
Tested
Used for monitor parameter
Used as byte pointer
Used as indirect address
Used as an operand
Stored
Executed (XCT’eds or fetched as an instruction)

“result to memory" mode of many PDP-10 instructions. These complications affect the
reference attributes, hence corresponding code has to be built into the analysis program. In
Figure 4-1 we described the classification as independent of these complicating matters. The
full classification, as we used it, is reproduced in Appendix C.

t Le. referenced by an execute instruction
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4.4 Register life detection

In order to say anything beyond trivialities about register usage, it is necessary to detect
the register lives. The following simple algorithm will do this in one scar over the trace. A
register usage classification is needed which includes at least the attributes “loaded” and
"accessed”. As the trace is read, the algorithm keeps for each register the times of its most
recent loa” and use. For each instruction in the trace, all fields that can possibly reference a
register have to be examined with this in mind. Whenever the register is loaded anew, or at
the end of analysis, the transitions of its most recent R-life are the most recent load and use
respectively. In our experiments we used the instruction count as our time measure; the
computed time could be equally well used.

As each R-life is detected, its length is immediately known. Similarly the number of
references to each R-life, the number of memory and register references etc. are easily
accumulated by this algorithm.

Distributions of lifelengths and usages per R-life from a typical analysis run are shown in
Figure 4-2. Because of the dominance of short lives but with a significant number of long
ones, a logarilhmic division was used in the table. These results are too voluminous to
present in full for all of our subject programs. In Figure 4-3 we tabulate for each subject
program what fractions of all the lives are accounted for by lives of lengths at most 7, 15
and 31 instructions. Similarly in Figure 4-4 we tabulate the fractions of all lives that are
accounted for by lives with at most 3, 7 or 15 usages.

A summary of other results of this algorithm from analyzing our subject programs is shown
in Figure 4-5 through 4-11. All these results were obtained under the assumption that a
register was dead when it had been dormant for 200 instructions. The reason for this
assumption, and a ~scussion of its consequences, is given in Section 4.6. For the present
results it means that a few lives (the exact number is tabulated in Figure 4-26) are
considered as two or more, with correspondingly shorter lives and fewer references per life.

This algorithm is critically dependent on the ability to define the “load" and "access" usage

attributes with the intended intuitive meaning. Certain instruction sequences, like HRR, HRL!

t These instructions load the right and left halves of a register respectively, leaving the
other half unchanged. Alone they were considered modifying instructions; however, HRRZ

etc., which explisitely change the whole register, were considered loading.

i i L R
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LIFE
LENGTH
= 1
2 - 3
4 - 7
& - 15
16 - 31
32 - 63
64 - 127
128 - 255
256 - 511
512 - 1023
1024 - 2047
2048 - 4095
4096 - 8191
8192 - 16383

16384 - 32767

USAGES

IN LIFE
l - 1
2 - 3
4 - 7
8 - 15
16 - 31
32 - 63
64 - 127
128 - 255
256 - 511
512 - 1023
1024 - 2047
2048 - 4095
4096 - 8191
8192 - 16383

16384 - 32767

FIGURE 4-2

Distributions of lifelengths and usages per R-life

NUMBER
OF LIVES

27186
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3298
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! FIGURE 4-3

.

Fraction of R-lives of length at most 7,
of length at most 15,
of length at most 31.

Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow s7 0.771 0.560 0.830 0.852 0.824
<15 0.920 0.769 0913 0.915 0.898
<31 . 0.965 0.995 0.966 0.952 0.930

Crout <7 0.709 0.631 0.624 0.606 0.636
<15 0.875 0.846 0.884 0.857 0.788
<31 0917 0.988 0.943 0.934 0.939

Treesort <7 0.906 0.549 0.882 0.902 0.901
<15 0.998 0.769 0.999 0.999 0.998
<31 0.999 0.999 0.999 0.999 0.998

PERT <7 0.816 0578 0.902 0.952 0.927
<15 0.883 0.783 0.961 0.982 0.979
<31 0.930 0.999 0.982 0.990 0.983

Havie <7 0.604 0.756 0.585 0.526 0.808
<15 0.734 0.956 0.840 0.767 0.846
<31 0.806 0.998 0.918 0.989 0.981

Ising <7 0.645 - 0.859 0.888 0.822
<15 0.808 - 0.908 0.952 0.936
<31 0.885 - 0.960 0.992 0.984
Secant <7 - - - 0.782 0.603
<15 - = - 0.930 0.970
<31 - = - 0.979 0.985
Algorithm\Programmer £ B A G L
Aitken <7 0.601 0.631 0.696 0.927 0.820

<15 0794 08ll 0.853 0.943 0913
<31 0914  0.925 0.941 0.983 0.970

Source progr.\Compiler AL.GOL  BASIC BLISS FORFOR FORTEN
Treesort <7 0.771 0.588 0.804 0813 0.827
<15 0.856 0.801 0.923 0.915 0.897

0.975 0.949 0.950
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FIGURE 4-4

Fraction of lives used at most 3 times
used at most 7 times
used at most 15 times

Algorithm\language ALGOL BASIC  BLISS FORFOR FORTEN
Bairstow <3 0.819 0.736 0.830 0.670 0567
<7 0.961 0994 0913 0.945 0.921

<15 0.990 0.999 0.966 0.974 0.970

Crout <3 0743 066! 0.444 0.702 0.661
s7 0.967 0.999 0.934 0.972 0.951
<15 0.989 1.000  0.952 0.993 0.993

Treesort <3 0.627 0.741 0.732 0.886 0.602
s7 0.998  0.984 0.904 1.000 0.999
<15 1.000 1.000 1.000 1.000 1.000

PERT <3 0.788 0.755 0.831 0.831 0.896
<7 0.963 0.999 0.977 0.990 0.984
sl5 0.981 1.000 0.988 0.994 0.991

Havie <3 0574 0.731 0672 0614 0563
<7 0.910 0.966 0.853 0.776 0.858
si5 0.982 0.999 0.994 0.996 0.995

Ising <3 0.640 - 0.832 0.755 0.765
<7 0.955 - 0.924 0.975 0.958

<15 0.986 - 0.966 0.983 0.995

Secant <3 - - - 0.603 0.520
<7 - - - 0.970 0.965

515 - - - 0.985 0.986

Algorithm\Programmer E B A G L
Aitken <3 0618 0573 0.772 0.913 0.787

s7 0.883 0.893 0912 0.979 0.9¢4
<15 0.944 0.944 0.952 0.988 0.976

Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort <3 0.753 0.523 0.842 0.614 0.870
<7 0.946 0.800 0.975 0.961 0.970

<15 0.989 0.966 0.994 0.986 0.995
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FIGURE 4-5

Number of register lives

53

Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 12985 46101 7727 6133 5831
Crout 51087 52978 15871 46308 23515
Treesort 58088 55686 3€493 49017 44269
PERT 24324 156974 11264 12769 10387
Havie 60262 32189 7710 9504 8160
Ising 35919 - 9310 7196 7024
Secant - - - 198167 175569
Algorithm\Programmer E B A G L
Aitken 13425 14390 19626 62495 43650
Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN
Treesort 21662 16034 220222 203239 108675

The high number of R-lives for the FORFOR and ALGOL versions of Crout, compared to the

BLISS version, is probably due to the use of double length arithmetic in those versions.

Similarly the high number of register lives for the ALGOL versions of Havie and Ising is
probably due to the large number of procedure and name parameter calls.

FIGURE 4-6

Average lifelength in instructions

Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 12.3 12.3 11.2 12.9 12.9
Crout 13.6 11.3 18.2 15.1 15.9
Treesort 6.1 11.9 9.0 4.2 5.8
PERT 10.9 11.4 8.4 5.0 7.9
Havie 16.6 11.2 135 14.3 20.0
Ising 165 - 9.7 58 9.2
Secant - - - 8.1 9.6
Algorithm\Programmer E B . A G L
Aitken 143 14.7 13.0 6.9 11.9
Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN
Treesort 17.4 23.8 9.7 14.9 11.4

g & g AR
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FIGURE 4-7

Usages per R-life
Algorithm\language ALGOL BASIC  BLISS FORFOR FORTEN
Bairstow 4.6 3.6 4.6 4.6 4.4
Crout 3.8 3.7 6.6 3.7 3.9
Treesort 3.9 35 48 2.9 2.9
PERT 4.1 3.4 3.8 3.1 3.2
Havie 44 3.7 5.8 5.4 5.2
Ising 4.0 - 45 3.1 3.3
Secant - - - 3.8 3.8
Algorithm\Programmer E B A G L
Aitken 5.4 5.5 5.2 39 5.2
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 3.7 6.0 35 4.1 3.2
i
FIGURE 4-8

Average number of live registers

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN

' Bairstow 4.4 3.6 38 38 4.0
Crout 6.0 3.7 4.7 6.4 6.0

Treesort 25 35 3.1 1.8 27

PERT 4.2 3.6 3.6 20 30

Havie 6.0 35 8.7 3.6 45

sing 6.5 - 3.6 1.9 3.2

Secant - - - 30 3.4
Algorithm\Programmer E B A G L

Aitken 4.4 45 4.2 3.9 3.7

Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN

5 Treesort 5.1 45 36 5.1 4.2

Average number of lives is computed as: (sum of lifelengths)/(program length)
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FIGURE 4-9
Memory references per instruction

Algorithm\language ALGOL BASIC  BLISS FORFOR FORTEN ,

Bairstow 0.61 052 050 0.62 0.60

Crout 0.44 0.59 0.50 055 0.64

Treesort 0.65 0.50 051 057 0.63

PERT 051 0.47 053 0.69 0.63

Havie 0.30 0.45 0.31 0.44 0.35 ]

Ising 0.40 - 0.60 0.67 0.60 ]

Secant - - - 0.60 053

Algorithm\Programmer E B A G L i

Aitken 0.45 0.48 052 0.50 053 i
1

Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN i

Treesort 0.40 0.32 0.45 0.42 0.40 ;

The instruction fetches are not included in the memory reference counts.

FIGURE 4-10

Register references per instruction

Algorithm\language AIGOL  BASIC  BLISS FORFOR FORTEN
Bsairstow 1.66 1.05 1568 1.35 1.37
Crout 1.67 1.21 1.67 1.56 1.46
Treesort 1.62 1.04 1.65 1.28 1.32
PERT 1.58 1.05 1.61 1.25 1.22
Havie 1.57 1.14 1.61 1.36 1.16
Ising 158 - 1.66 1.11 1.13
Secant - - - 1.39 1.33
Algorithm\Programmer E B A G L
Aitken 1.66 1.67 1.69 1.69 1.64
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN

Treesort 1.09 1.13 1.32 1.39 1.17

e e e am e ¢
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FIGURE 4-11

Register references per r.>mory reference

Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 2.7 20 3.2 2.2 23
Crout 3.8 2.1 3.3 2.8 23
Treesort 25 2.1 3.2 2.2 2.1
PERT 3.1 2.2 3.0 1.8 1.9
Havie 5.2 25 5.2 3.1 3.5
Ising 4.0 - 2.8 1.7 1.9
Secant - - - 23 2.1
Algorithm\Programmer E B A G L
Aitken 3.7 35 3.3 3.4 3.1
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 2.7 35 29 3.3 2.9

on the PDP-10 effectively constitute a load, hut usages of these instructions in other cases

do not. As a consequence, some lives may not be properly detected.

A comparison of the results of our sequence program, as described in Section 5.2, with
the listing of the ALGOL run time support system, seems to indicate that this source of error
rmay be significant for our ALGOL brograms, particularly Crout, Havie and Ising, which contain
many procedure calls and name parameter transmissions. For the compilers traced there are
many halfword loads, but no significant pairs of halfword loads, and for the otner programs

there are no danger signs in our results.

4.4.1 Summary
We summarize these initial results as follows:

Register lives are in general short, less than 32 instructions. Only for 3 of our -.1 subject
programs are more than 107 of the R-lives 32 instructions or longer, and for 11 of the
programs 997 of the lives are shorter than 32 instructions. The average lifelength is less
than 24 instructions for all programs, less than 15 for 32 of them and less than 10
instructions for 14 programs. These results vary systematically with the algorithm; PERT and

!
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Treesort have short lives, Havie has long lives. The BASIC programs form an exception, they
all have lifelengths between 11.2 and 12.3 instructions.

The average number of usages per life varies between 3.1 (FORFOR PERT, FORFOR lsing) and
6.6 (BLISS Treesort). Again the results from the BASIC programs vary little with algorithm
(3.4 to 3.7, the other results vary more with the algorithm, but not very systematically
except for the two FORTRAN versions. These correlate well with each other.

The average number of live registers is less than 7 for all 41 programs, 4 or less for 24 of
them. ALGOL programs generally keep more registers live than do programs in the other
languages (See footnote on page 74). The results from the BASIC programs again vary
little with the algorithm. The correlation between the FORTRAN versions is not as good as
{or the lifeiengths and the usages per life.

The high ratio of register references to memory references suggest that those registers

which are live are effectively used for temporary resuits.

The influence of language and algorithm is not clear. Generally results from the BASIC
programs are almost independent of the algorithm, and the ALGOL results often show a
consistent trend, but with some variation. In some cases the correlation between the two
FORTRAN versions is good. This indicates that the differences found are due to language and
not to implementation. Variations due to the programmer are marked, as witnessed by the

results from Aitken.

45 Register life classification

Specialization of registers may seem irrelevant in view of the current tendency towards
general register structures, and the consequent increased generality of ISP ard program
structure. However, specialization may be of relevance in short wordiength computers,
where the addressing space saved by omitting register addresses can be used for more
important capabilities.

To assess the utility of a fu'' set of operators for each register we need to know which kinds
of operations are performed on a register during its R-life. One way of obtaining this

information is to use a finer register usage classification than the "loaded”, "accessed” one
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sufficient to determine the livest, and to extend the life detection algorithm to compute the
usage class for each R-life. That is: at each usage of an R-life the appropriate usage
attribute is included in the usage class. Hence the number of R-lives in each usage class may

be accumulated.

This method for classifying R-lives has twc variants. One is to accumulate the usage classes
strictly for one register life. The other is, for binary operations, to let the the usage class of
the result become the union of the classes of the operands. The former is most reievant
when we analyze a structure with very general registers to detect unneeded generality, the
second variant can be used on an ISP with specialized registers to see the need for a more

general structure. Our experimental results were obtained by the former variant.

The information may be tabulated by the register number, allowing us to see for each
physical reqister how it was used. More interesting is to tabulate, for each usage class,

statistics on the number of lives in each class, their average length and number of usages.

We call this the usage class table or UCT.

None of our analyses showed more than 200 different usagc classes. About half of these
account for more than 997 of the total number of lives. Hence the UCT forms a very compact
database describing the register usage, which can be manipulated or stored for later use at a
low cost. A natural format is to store the UCT sorted by the number of lives in the class, or
by the sum of the lifelengths represented by the class. Thus we may cheaoly ask questions
that were not thought of at the time of the original analysis and, in particular, we may study
that UCT which is the union of all the UCTs of the individual subject programs. Unfortunately
it was not realized until a late stage in our experiments that the UCTs would be small. Hence

we have not saved the UCTs from our analyses.

Several forms of output may be obtained from the UCT. A very simpleminded output
procedure, which takes usage classes as its parameters, can be employed to print data
pertaining to all classes that are subsets of, supersets of, or other simple combinations of the
classes given as parameters. 'n this way we may obtain statistics on the usage classes a
priori thought to be significant. Another procedure may used to find combinations of
attribuvies that frequently occur in the same usage class. The result of such an analysis will
be an a posteriori classification of the R-lives corresponding to suitable types of more

specialized registers.

t The one in Section 4.3 is a typical exemple
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In our case, we believed a priori that the classification into floating point accumulators, fixed

point accumulators, index registers with simple arithmetic capabilities and temporary storage

)

only, ic of such a significance (See page 41). This belief is well founded in history. We
display the fraction of lives in each of these arithmetic classes in figures 4-12 through
4-15. Each class is defined by the "strongest” form of arithmetic used in it, floating point
being stronger than fixed point multiply and divide, which again is stronger than fixed point
add and subtract. R-lives not used for arithmetic may still be used for logical or other
operations. These four classes are disjoint. We denote them: Floating, Fixed, Counter and
Noari.

Some other classes were also thought to be of interest. The fractions of R-lives that were
used only as storage locations are tabulated in Figure 4-16, this class is denoted
Iemporary. The fractions of R-lives used for indexing (whether for data accessing, jumps or
immediate operands) are tabulated in Figure 4-17. This class is not disjoint from the
arithmetic classes, and is denoted |ndexing.

Yet another classification of interest is the intersection of the indexing class with the
arithmetic classes. We have no concise results for these classes, except the printout of .i

statistics for all indexing classes discussed below.

An output procedure as described above was programmed to print the number of lives,
fraction of total number of lives, average lifelength and an interpretation of the usage class
encoding, for the selected set of classes. It was used to print the whole of the UCT as well
as the subclasses for arithmetic and indexing discussed above. An example of tnis output is
given in Appendix B.

A study of these printouts brought up several questions which could not be quantitatively
investigated since we did not have access to the old UCTs. We formulated several

hypotheses, however, and checked them manually in a scan over all the printed resuits.

1) A significant number of lives are of length one. This was verified. Some partial
explanations could be: Values of subroutines returned in registers but not used at the
call site. Double length results of integer multiplication and two results of division

(quotient and remainder) where only one is used. Linenumbers of BASIC programs are

: loaded into a register for each source line executed, these are used only when errors are
detected.
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' FIGURE 4-12
Fraction of lives with no arithmetic

Class Noari
Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 0.213 0.637 0574 0.494 0.470
Crout 0.528 0.716 0.214 0.349 0.440
Treesort 0.315 0.686 0.257 0.784 0565
PERT 0.597 0.735 0.547 0.457 0.416
Havie 0.628 0.680 0.482 0.496 0.412
Ising 0.695 - 0.620 0.744 0.622
Secant - - - 0.263 0.266
Algorithm\Programmer £ B A G L
Aitken 0.317 0.390 0.402 0.475 0.391
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 0.844 0.744 0.921 0.802 0.886

FIGURE 4-13

Fraction of lives with fixed point add/subtract

Class Counter
- Algorithm\language ALGOL BASIC  BLISS FORFOR FORTEN
l Bairstow 0.504 0.106 0.054 0.118 0.141
L | Crout 0.304 0.009 0.096 0.189 0.122
Treesort 0.355 0.103 0.710 0.208 0.056
PERT 0.380 0.122 0.397 0516 0.552
Havie 0.278 0.085 0.149 0.123 0.156
Ising 0.300 - 0373 0.250 0.370
[ Secant - - - 0.359 0.303
f Algorithm\Programmer E B A G L
Aitken 0.210 0.202 0.302 0.423 0.389
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN

‘, Treesort 0.130 0234  0.074 0.190 0.108
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FIGURE 4-14
’
' Fraction of lives with fixed point multiply /divide
Class Fixed
Algorithm\language ALGOL BASIC  BLISS FORFOR FORTEN
Bairstow 0.009 0.001 0018 0.042 0.019
Crout 0.006 0.064 0.433 0.156 0.142
Treesort 0.317 0 0.011 0.000 0.370
PERT 0.002 0.000 0.004 0.006 0.006
Havie 0.002 0.001 0.031 0018 0.015
Ising 0.006 - 0.007 0.006 0.008
Secant - - - - 0.175 0.199
i Algorithm\Programmer E B A G L
Aitken 0 0 0 0 0.085
; Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 0.026 0.013 0.005 0.009 0.008
i FIGURE 4-15
Fraction of lives with floating point arithmetic
Class Floating
Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 0.274 0.256 0.354 0.347 0.369
Crout 0.163 0211 0.257 0.306 0.296
Treesort 0.014 0.211 0.022 0.008 0.009
PERT 0.021 0.143 0.053 0.021 0.026
Havie 0.092 0.233 0.339 0.363 0.418
Ising 0.000 - 0 0 0
Secant - - - 0.203 0.232
Algurithm\Programmer E B A G L
Aitken 0.473 0.408 0.296 0.102 0.136
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN

Treesort 0.000 0.003 0 0 0
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FIGURE 4-16
Fraction of R-lives used as temporaries only
Class Temporary
Algorithm\language ALGOL BASIC  BLISS FORFOR FORTEN
Bairstow 0.028  0.067 0.179 0.101 0.121
Crout 0.018 0.101 0.049 0.137 0.142
Treesort 0.001 0.107 0.000 0.000 0.001
PERT 0016 0.128 0.188 0.069 0.104
Havie 0.072 0.279 0.062 0.250 0.019
Ising 0.059 - 0.086 0.147 0.067
Secant - - - 0.041 0.030
Algorithm\Programmer E B A G L
Aitken 0.062 0.078 0.092 0.112 0.015
Source progr.\Compiler ALGOL BASIC BLISS FORFOR FORTEN
Treesort 0.096 0.089 0.180 0.151 0.153
FIGURE 4-17
Fraction of lives used for indexing
Class Indexing
f Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 0513  0.407 0.226 0.341 0.251
Crout 0519 0374 0520 0.195 0.244
Treesort 0.482 0.412 0.683 0.431 0.476
PERT 0592 0.421 0.556 0.445 0.497
1 Havie 0524 0.365 0.387 0.278 0.203
Ising 0571 - 0.484 0.267 0.249
Secant - - - 0.376 0.406
Algorithm\Programmer E B A G L
Aitken 0.185 0.196 0.232 0.318 0.474
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 0.401 0.364 0.341 0509 0313
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2) A significant fraction of the R-lives are never stored. This hypothesis was verified for all
subject programs. It clearly demonstrates that registers are not orly needed to produce

results, but also as indices and fast temporary storage.

3) The usage classes representing most lives have few attributes, ie. 2 or 3. This
hypothesis was verified in all subject programs. It supports the idea put forward by
Knuth [KnuD70), that programmers rarely do anything complicated.

4) Most lives for indexing use no arithmetic at all. This was true in most cases, but with

notable exceptions.

5) Most lives used for indexing have no arithmetic stronger than fixed point add and
subtract. Largely verified, but strong exceptions. Particularly noteworthy was the Crout

algorithm, the only one where two dimensional arrays were used. There was a great

difference between programs using a muitiplicative address calculation (dope vectors)
(FORTRAN and BLISS versions) and those using lliffe vectors (ALGOL version) for array
accessing.

6) Lives used for floating point arithmetic rarely use fixed point arithmetic. True for all
subject programs that have a significant amount of floating point arithmetic. The
indications were that the exceptions were usages for fixed to floating conversion or vice

versa, largely occuring in the initialization phases of our programs.

Another observation was that most usage classes, aithough not the most frequent ones,
contained the "tested” attribute.

An obvious source of error with this method is its dependence on the correct detection of R-
lives, as discussed on page 49. As noted there, this error may be significant for some of our
ALGOL programs.

Another deficiency is that the representation of a usage class does not take into account that
some attributes may contribute to the class many more times than others. The algorithm
could be augmented to compute the number of occurrences of each usage attribute while
accumulating the class of an R-life. Even if these counts were averaged over the ..ves in
each usage class, one word of storage would be required for each combination of attribute
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and usage class, i.e. at least 4000 words. Since most lives are short and of few usages, we

believe that this addition to the algorithm does not justify its cost. We believe that the trend

of such results would be that the infrequent events are even less frequent than shown by

our present methods. J‘
|

45.1 Summary
:

The results in figures 4-16 to 4-15 lead us to the following conclusions: ;
i

For clgorithms containing floating point arithmetic, up to 427 of the R-lives are from the 1

"Floating” class, but usually considerably fewer: 207 to 377. The BASIC programs form an

xception, even though all arithmetic in BASIC is done in floating point, at most 267 of the R- i

lives are from this class. Except for BASIC programs, there is a systematic variation with the E

algorithm. i

Lives with fixed point multiplication and division occur almost only in the programs that use
the multiplicative method for matrix access, or that use integer division for unpacking. Hence
the dependence on algorithm is marked, but less so than for the "Floating" class, and
particular techniques used by or enforced by the language or its implementation become
significant.

For the other classes, the interaction of the needs of the algorithm with the register
allocation mechanism of the compilers obscure any systematic etfects due to each of these
factors singly. There is, however, some more stability to the results from the ALGOL and
BASIC programs than from the others. This is most probably due to the run time system of
ALGOL and to the lack of integer arithmetic in BASIC.

ALGOL programs have a high number of lives in the "Counter" class, (307 to 507 of the lives);
BASIC programs have a very large number of lives with no arithmetic (637 to 747). ALGOL
programs also have a high number of lives in this class (217 to 697).

487 to 597 of the R-lives in ALGOL programs are used for indexing. The fraction of indexing
lives is also high in BLISS programs (237 to 687) and BASIC programs (377 to 427), but not
consistently. For the FORTRAN programs this fraction varies between 197 and 497, the

agreement between the two FORTRAN versions is good.
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For The "Temporary" class, the results vary between 0 and 287. For ALGOL programs the
results are consistently low, 0.17 to 7.27. For BASIC programs they are high: 6.77 to 287.

The substance of these results is: The classes for strong arithmetic are used only if the
algorithm or the accessing method used by the compiler requires such arithmetic. Hence for
these classes the dependence on the algorithm is strong. In the classes for weak and no
arithmetic the results seem to depend more on the language, particularly for those languages
which enforce a strong regimen on their programs, such as ALGOL by its run time system and
BASIC by its restriction to floating arithmetic and by its strictly statement by statement

execution (no information is carried in registers between source program lines).

These findings corroborate those of Alexander [AleW72), which indicate that two or three of
the physical registers on the IBM 360 are used as accumulators, whereas most of them are
used as indices or base registers.

The results for the FORTRAN and BLISS programs show little systematic variation except for
a good agreement between the FORTRAN versions of the same algorithm.

4,6 Register block size

The results presented in Figure 4-9 through Figure 4-11 indicate that for our subject set the
number of register references is between two and three times the number of memory
references. Hence the need for a register block is well demonstrated by experiment, as well
as being motivated by programmer experience. The problem is more one of size, i.e. how
many registers can be utilized efficiently enough to warrant their cost. In addition to its
obvious dependence on the other properties of the ISP, this number depends on the
structure of the algorithm, the cleverness of the programmer and the compiler and the
fineness of the factorization of the program. The combined effect of these factors is

represented by our subject set.

We now present a sequence of methods which in a gradually better way measure the utility

of the register block and the time costs associated with its usage.

We have already presented some crude measures in Section 4.4: The number of memory and

register references per instruction presented in figures 4-9 through 4-11 are of relevance,

another measure is the average number of live registers in Figure 4-8.
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Some better measures could be developed if we knew the number of registers that are are
live at each point in the program. In the next suBsection we present an algorithm tor
computing this. This algorithm is extended to compute, for any N, what fraction of the time at
least N registers were live, and finally to give a coarse estimate of the time cost incurred if
the number of registers were reduced below the maximum used by the program. This
estimate is based on the number of usages in each R-life. A further improvement takes into
account long dormant periods of registers. We now describe these algorithms, the associated

cost measures, and the experimental results, in more detail.

4.6.1 Detecting simultaneous lives

The algorithms are embodied in a two stage (or pass) program, the first stage reads the
trace and writes an intermediate file of data items describing each R-life. This file is
processed in the reverse order by the second stage. The algorithms are described below,

and illustrated by an example in Figure 4-!

The first stage is actually the algorithm which detects register lives, described in Section 4.4,
with a minor addition: As each R-life is determined, (at the start of the next R-life for that

register), a data item containing the times of its transitions, its usage class, number of usages

1 etc. is written to the intermediate file.

The second stage reads this file backwards while maintaining a simulated time (s-time) which
decreases as the algorithm proceeds. Initially the s-time is the duration of the program, later
it is equal to the time of the transition most recently processed by the algorithm as
described below.

The stage two program keeps a data entry describing the state (live or dead) of each
physical register, there is also a counter of live registers, and a linked list of at most two

entries (each describing an unprocessed transition) per physical register, as described below.

Initially the second stage reads the data items decribing the last R-life for each register, and
enters the transitions in the list, sorted by decreasing time. The algorithm proceeds by
processing the transition first on the list, i.e. that having the highest time. Current s-time is

set to this time, and the table and counter are updated according to the nature of the

transition. If the transition was a firsc use, we have finished processing an R-life. The next
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data item for that register is immediately read from the file (see below), and its transitions
are entered in the list. Hence when the analysis is under way, the list contains one transition
for each live register, (i.e. its first use), and both iransitions for the other registers (whose

data items have been read, but whose times of last use are less than the current s-time).

Note that, by the way the intermediate file was written, its data items are ordered by the
time of first use of the next (later in execution time) R-life of the register involved. When
the file is read backwards by stage 2, one item is read each time a [first use has been
processed. The item read is the one that was output by stage one at that point of the trace
when the execution time of the subject program was equal to the current s-time. But that is
exactly the data item describing the next (earlier in execution, lower s-time) R-life for the
register just processed by stage 2. An exception may occur when the same instruction
loaded two registers, and hence started two R-lives, in which case their order in the file may
be the reverse of what stage 2 expects. Consequently data space is needed to describe in
full exactly one R-life for each physical register, plus one extra R-life possibly being held
over for one read operation. This is further illustrated in Figure 4-18. The order of

events during the interval described by the figure is:

During execution:

Before TO: RO, R2 and R3 are live.

At TO: Rl is loaded, L10 starts. R3 is accessed.

At Tl: RO is loaded using RO as index. Hence LOO and LO1 overlap at T1.

At T2: Last usage ot LOl and L20.

At T3: Last usage of L10; RO is loaded; hence LO2 starts. R3 is accessed for the first
time since TO.

At T4; Last usage of L30; Rl is loadad; hence L11 starts.

At T5: Both R2 and R3 are loaded by the same instruction. L21 and L31 start.

At T6: Last use of L11.

After T6: RO, R2 and R3 are live,

Quring stage 1:

At T1: LOO is detected and its data item output.

At T3: LO! is detected and its data item output.

At T4: L10 is detected and its data item output.

At T5: L20 and L30 are detected and their data items output in some order.

a aiaie | Al o e ihss b
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We denote the data items DLij etc. The data items on the intermediate file are now in the
order:
... DLOO DLO1 DL10 DL20 DL30. ..

The two last might be interchanged; we assume this order.

Ruring stage 2: (Listed in order of occurrence in stage 2, i.e. by decreasing s-time).

S-time > T6: The data items DLO2, DL21 and DL31 have been read and the last usages of
their lives processed. DLI11 has been read but its transitions have not vat
been processed.

S-time = T6: Last use of L11 is processed.

S-time = TS: First usages of L2]1 and L31 are processed, assume in that order. After L21
has been processed a data item is read. By the above assumptions this is
DL30. Hence it will be held over in temporary storage, and DL20 is read from
the file, and entered into the tables. Next the first usage of L31 is processed
and DL30 is fetched from the temporary store and entered in the tables.

S-time = T4: The first use of 1.11 is processed and DL10 is read from the file. The last use
of L30 is processed.

S-time = T3: The first use of LO2 is processed, and the data item DLO1 is read. The last use

~ of L10 is processed.

S-time = T2: The last uses of LO1 and L20 are processed.

S-time = T1: The first use of LOl is processed, the data item DLOO is read and its last use
immediately processed.

S-time = TO: The first use of L10 is processed, the data item for its previous life, if any, is
read.

Now assume R3 was dormant from TO to T3. This would be detected by stage 1 at time T3,
the data item for the first part of L30 (call it DL30’) would be output at this time. The data
item for the second part of L30 (i.e. DL30”) would be output at T5, as was DL30. During
stage 2, the data item DL30™ would be read at s-time T5, its usages processed at T4 and T3.
At T3 the cata DL30* would be read, its last usage would be processed at TQ, and so on as
before.

For each interval of time, the number of live registers is given at the bottom of the diagram.
In the latter case it would be reduced by 1 between TO and T3.

This concludes our discussion of Figure 4-18.
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FIGURE 4-18

5 A typical situation of Register usage.

Assume our ISP has four registers, RO, R, R2, R3. The successive lives of Ri are denoted
Li0, Lil, .. . The diagram has one horisontal line for each register, as labelled. This line is
solid when that register is live. It is broken when that register is dormant. The vertical bars
correspond to times of transistion, as marked on the time axis at the top.

1 T0 T1 2 T3 T 15 Ts  time
1 | l ] 1 ] ] -
1 | ] ¥ 1 T
LOO LO1 LO2
{ Ro: % Jl }
L10 L1l
R1: } ! F |
L20 L21
R2: { —
L30 L3l
| Rt ———— = = = m e e e - - —_——y I
| { [ L { 1 ] 1
] L] 1 1 1 T L
LIVE: 3 4(3) 4(3) 2(1) 2 2 4 3
| - } } } } }

. The uauge class of each R-life may be included in each data item on the intermediate file.
] Hence, if the result of an analysis as described in Section 45 should indicate that
specialization of the registers is desirable we may do this simultaneity determination for any
usage class we consider important, in addition to the set of all registers. The “"state” of each
physical register has to be augriented to include its class, and an encoding of this class into
the (probably much fewer) classes for which output is desired must be deviced. For each

output class a counter of live registers must be added.

We performed these analyses for the subclasses of R-lives defined in Section 4.5, as well as
for the class of all registers. A typical output from phase 2 is displayed in Figure 4-19. A
compressed form of the results from all the subject programs is given in figures 4-20
through 4-22.




;
N
I | 25221
2 7680
3 1163
4 1038
{ 5 551
| 6  43C
7 256
g 4l
9 47
10 14
1 0
12 0
13 0
TOTALS
13 36444
N
| 18172
2 6446
3 34
a 0
5 0
6 0
7 0
8 0
9 0
10 0
1 0
12 0
13 0
TOTALS

13 24652
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FIGURE 4-19

Distribution of number of live registers in the different classes.

0.693
0.211
0.032
0.029
0.015
0.012
0.007
0.001
0.001
0.000
0.000
0.000
0.000

0.499
0.177
0.001
0.000
0.000
0.000
0.0C0
0.000
0.000
0.000
0.000
0.000
0.000

NO ARITHMETIC

0.693
0.904
0.936
0.964
0.979
0.991
0.998
0.999
1.001
1.001
1.001
1.001
1.001

1.001

FLOATING POINT

0.499
C.676
0.677
0677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677
0.677

0.677

FIXPOINT ADD/SUB.

1960
23837
7460
198
24
134

OO0OO0OO0OOOWm

33848

28218
5853
350
426
718
515
335
45

—
O OO O 0

36478

0.054 0.054
0.655 0.709
0.205 0913
0.005 0.919
0.007 0.926
0.004 0.930
0.000 0.930
0.000 0.930
0.000 0.930
0.000 0.930
0.000 0.930
0.000 0.930
0.000 0.930
0.930
INDEXING
0.775 0.775
0.16! 0.936
0010 0945
0.012 0.957
0.026  0.977
0.014 0.99!
0.009 1.000
0.001 1001
0.000 1.002
0.000 1.002
0.000 1.002
0.000 1.002
0.000 1.002
1.002

410
215
14

OO0OO0OO0OO0OO0OO O OO

639

166
1104
3171

14985
15092

481

298

409

419

185

78
50
47

Output from simultaneously live register analysis for program FORTEN Havie.

FIXPOINT MUL/DIV.
0011 0.011
0.006 0.017
0.000 0.018
0.000 0.018
0.000 0.018
0.000 0.018
0.000 0018
0000 0.018
0.000 0.018
0.000 0018
0.000 0.018
0.000 0.018
0.000 0.018

0018

ANY USAGE

0.005 0.005
0.030 0.035
0.087 0.122
0.412 0534
0.415 0.948
0.013 0.961
0.008 0.969
0.011 0981
0.012 0.992
0.005 0.997
0.002 0.999
0.001 1.001
0.00i 1.002

1.002

36485

For each class, the first coloumn gives the instruction count when exactly N registers were
live. Coloumn 2 gives the fraction of the total instruction count for this state. Coloumn 3 is
a cumulation of coloumn 2, it gives the fraction of the instruction count when at most N
registers were live.
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FIGURE 4-20

Maximal number of sirultanevus R-lives
- Number of registers sufficient 987 of the tire
Number of registers sufficient 907 of the time

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN

Bairstow max 13 10 9 13 12

987 11 7 6 10 9

! 907 8 6 5 9 7

\ Crout max 13 7 7 13 12

I 98/ 11 7 7 12 8

| 907 10 6 6 10 7
]

! Treesort max 14 7 6 ] 12

987 4 7 5 4 5

907, 3 6 5 3 q

PERT max 14 10 7 1l 12

987 10 7 6 8

907 8 6 5 3 5

Havie max 14 10 9 10 13

987 11 6 6 6 9

907 9 5 5 5 5

Ising max 14 - 7 11 12

' 987 11 - 5 7 9

907 10 - 5 3 6

Secant max - - - 13 12

987 - - - 6 6

907 - - - 5 5

Aigorithm\Programmer £ B A G L

Aitken max 7 7/ s 7 e

98/ 7 7 7 7 7

907 7 6 6 6 7

Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN

Tr 2esort max 15 11 13 13 11

987 10 9 6 8 8

907 8 7 5 7 6




REGISTER STRUCTURE

Algorithm\langu.ge
Bairstow FLO
FIX
cou
Crout FLO
FIX
cou
Treesort FLO

. 1aURE 4-21

ALGOL
2
1
4

l
0
5

BASIC
L
0
2

Number of registers sufficient 907 of the time
for the arithmetic classes previously defined. Classes denoted by
FLO = Floating, FIX = Full fixpoint, COU = Fixpoint add subtract.

BLISS FORFOR FORTEN

2
0
2

D N —

2 2
l 0
l 2
3 2
4 2
3 3
0 0

| Ising FLO 0 - 0 0 0
FIX 0 - 0 0 0

Cou 5 - 4 1 3

Secant FLO - - - 2 1
FIX - - - | 1

cou - - - 2 )

Algorithm\Programmer E B A G L
Aitken FLO 2 2 2 2 2
FIX 0 0 0 0 1

cou 3 2 3 q 3

Source progr.\Compiler ALGOL BASIC  BLISS FORFOR FORTEN
Treesort FLO 0 0 0 0] 0
FIX 0 1 0 0 0]

cou 3 2 2 2 2
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FIGURE 4-22

Number of registers sufficient 907 of the time
for the no arithmetic class (NOA), the indexing class (IND)
and the total class (TOT).

Algorithm\language ALGOL BASIC BLISS FORFOR FORTEN
Bairstow NOA 4 4 3 7 5
IND 6 3 2 5 5
TOT 8 6 5 9 7
Crout NOA 6 q 2 3 5
IND 9 3 3 2 3
: TOT 10 6 6 10 7
Treesort NOA 2 4 2 2 2
IND 2 3 3 2 2
TOT 3 6 5 3 4
PERT NOA 4 4 2 2 3
IND 7 3 3 2 2
TOT 8 6 5 3 5
Havie NOA 5 3 2 2 2
IND 8 3 2 2 2
TOT 9 5 5 5 5
|
Ising NOA 6 - 2 2 4
IND 9 - 2 2 4
TOT 10 - 5 3 6
Secant NOA - - - 2 2
IND - - . - 2 2
TOT - - - 5 5
Algorithm\Programmer E B A G L
Aitken NOA 4 4 4 3 2
IND 4 3 3 2 5
TOT 7 6 6 6 7
Source progr.\Compiler ALGOL  BA“IC BLISS FORFOR FORTEN
Treesort NOA 6 5 4 6 4
IND q 4 2 4 2

TOoT 8 7 ® 7 6
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4.6.2 Cost of reducing the register block

The results just presented show clearly that, except for ALGOL programs and the ALGOL
compiler, at most 8 to 10 registers out of the 16 available are used simultaneouslyt, and that
many only for short intervals of time. If the processor were equipped with fewer registers
than this, a time and space cost would occur by having to store registers temporarily in
primary memory. Intuitively, it seems from the above results that for a moderate reduction
in the number of registers this cost would be low. We now describe an extension to our
algorithm which enables us to compute upper bounds for this time cost.

Assume we want to compute the additional time cost incurred by running the program on an
ISP with M registers but otherwise similar to the one we investigate. At some point in the
program we have N simultaneous l'ves, N > M. We select the N = M least useful lives as
described below, and assume that these can be interleaved with the remaining R-lives in the
registers used for the latter lives. That is: Each time an omitted register is referenced,
another register must be temporarily stored, and the desired value loaded into it. This value
is stored after use, and the original value reloaded. The associated time cost is two STORE
LOAD pairs per reference to the selected lives, i. e. 4 instructions per reference if the
instruction count is used. If an R-life L so selected for omission, is selected again at some
later time, but for the same M, the cost should not be added the second and later times.

This computation is done during the second stage described above, each time we process a
first use. It can be done simuitaneously for all desired M, and for many criteria of usefulness
of lives. Data space used by the algorithm is proportional to the number of criteria times the

number of registers, but with a low factor (at most 5 words). The amount of computation

t The structure of an ALGOL program is almost like two coroutines calling each other, viz. the
user pregram and the run time support routines. These operate on disjoint memory cells and
almost disjoin. zets of registers. Similarly the ALGOL compiler consists of a lexical analyser,
a syntax analyser and a code generator, each having its own set of registers allocated to it.
This probably acconts for the exceptional results obtained for ALGOL, and also indicates

how programs may L structured to use many registers effectively. Further explanation may

be the difficulty of de ecting multi-instructicn loads, as described on page 49.
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involved is small. Hence this is a relatively cheap measure to compute once we are doing the
simultaneity analysis.

Several criteria of usefulness can be used to select which R-lives to omit. The following
were tried:

The least used lives.

The least densely used lives (usages per lifelength).

The shortest lives.

The longest lives. (Might be better than omitting many short ones).

Of these, the "longest lives" never gave the lowest cost. The “"shortest lives" criterion rarely
gave good results. Almost all the lowest results were obtained using the "least used" or
“least densely used" criteria. Furthermore tnhe criterion giving the lowest cost often changed
with the number of available registers (i.e. M) even for the same program. It follows that, in
an analysis, several criteria should be used, including the 3 first ones above. The best cost
obtained in each ca: should then be used as an upper bound.

We present a typical output in Figure 4-23, and a summary of the results from the whole
subject set in Figure 4-24. As is seen, thr cost of reducing the number of registers in most
cases is low, less than a percent in som: cases, and less than 157 in most, but running very
high in a few cases (707 - 1007 increase in cost). We investigate this further below.

Note that 3 of the programs which give extremely high costs are ALGOL programs, and just
those which have many procedure calls and parameter transmissions. Hence the arguments
presented above about the coroutine like structure of ALGOL programs, and also the error
discussed on page 49 in connection with undetected loads, apply with force to these results.

4.6.3 Some sources of error
We now discuss some sources of errors associated with this method.
The most significant is probably that the lives omitted are selected on basis of their average

properties. A better selection might have been made, had the local properties of lives been
known. We discuss below how this can be done.
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FIGURE 4-23

s OF
REGS
12
11

—
o0 N0 WO

Cost of reducing number of available registers.

Lives with lowest utility are omitted, 4 utility criteria are used.
Sample output from program FORTEN Havie.

OMITTED
ACCESSES
33

98

155

227

409

659

1077

OMITTED
ACCESSES
33
122
206
356
700
1014
1342

RELATIVE
MAX COST
0.0036
0.0108
0.0170
0.0249
0.0449
0.0724
0.1183

UTILITY: LENGTH OF LIFE

RELATIVE
MAX COST
0.0038
0.0134
0.0226
0.0391
0.0769
0.1114
0.1474

UTILITY: REFERENCES IN LIFE

LIVES
OMITTED
17

42

66

92

167
256
361

LIVES
OMITTED
17
45
70
108
202
294
382

s OF
REGS
12
11
10

9

8
7
6

2 07
REGS
12
11
10

o 0 W

OMITTED
ACCESSES
7

27

58

2386
2500
2704
2883

OMITTED
ACCESSES
2410
2591
2713
2815
2888
3009
3170

RELATIVE
MAX COST
0.0008
0.0030
0.00€4
0.2621
0.2747
0.2971
0.3167

RELATIVE
MAX COST
0.2648
0.2847
0.2981
0.3093
0.3173
0.3306
0.3483

UTILITY: DENSITY OF REFERENCES

LIVES
OMITTED
2

6

12

19

29

39

51

UTILITY: SHORTNESS OF LIFE

LIVES
OMITTED
2

4

8

12

16

24

36
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FIGURE 4-24

Upper bound for time cost of reducing the register block
to 10, 8 or 7 registers respectively,
given as relative increase in instruction count.

77

Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 10rg 0.054 0 0 0013 0.005
8rg 0.228 0.001 0.000 0.132 0.091
7rg 0.368 0.002 0.004 0.250 0.180
Crout 10rg 0.076 0 0 0.440 0.000
8rg 0.384 0 0 0.757 0.006
7rg 0.772 0 0 1.046 0.081
Treesort 10rg 0.002 0 0 0 0.000
8rg 0.005 0 0 0 0.001
7rg 0.007 0 0 0 0.001
PERT 10 rg 0.016 0 0 0703 0.003
8rg 0.132 0.000 0 0.035 0.037
7rg 0.212 0.001] 0 0.052 0.066
Havie 10 rg 0.060 0 0 0 0.006
8rg 0575 0.001 0.001 0.004 0.045
7rg 0.734 0.003 0.006 0.017 0.072
Ising, 10 rg 0.067 - 0 0.000 0.004
8rg 0.437 - 0 0.008 0.051
7rg 0.997 - 0 0.029 0.105
Secant 10rg - - - 0.001 0.002
8rg - - - 0.009 0.014
7rg - - - 0.015 0.020
Algorithm\Programmer E B A G L
Aitken 10 rg 0 0 0 0 0
arg 0 0 0 0 0
7rg 0 0 0011 0 0.003
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 10rg 0018 0.001 0.000 0.003 0.001
8rg 0.068 0.037 0.002 0.062 0.009
7rg 0.121 0.082 0010 0.215 0.023
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Furthermore a program written for an ISP with few registers will be quite different in its
local structure from a program written with a large register block in mind. Hence this method
can not be used to estimate the cost of large reductions in register block size. One would
also, a priori, believe this argument to hold for reduction to a relatively small number of
registers even if the program did not use many in the first place. This belief, however, is not
vindicated by our results.

For the same reason we would expect the upper beunds found by this algorithm, and by its
modified version described below, to be considerably higher than the actual cost obtained by

average to careful recoding for the lower number of registers.

A third source of errors is that successive lives of the same register may overlap by one
instructiont, hence the simulation of two lives in one register may not be valid. We have
counted the number of such overlaps and found it mostly to be small (see Figure 4-25).
Hence this source of errors is insignificant.

Finally our simulation might be invalid because there were not enough registers available to

hold the necessary lives. Since at most 4 registers can be involved by any PDP-10
instruction, this error will not occur for M > 4. We never used M < 6.

4.6.4 Utilizing dormant periods

We now consider a way to take local behaviour of registers into account when computing the
cost of running with a smaller register block. This is done by assuming that a register is
dead whenever it has been dormant for some time K. If this assumption should be wrong, a
time cost of one STORE, LOAD pair applies for each R-life prematurely terminated based on
the assumption.

We can detect such dormant periods during the first stage of the analysis. Each time a

t As when loading a register using the same register in the address calculation

(MOVE RG,FLOP(RG)). If we had used a finer grain of time, as discussed in Section 4.2, this
problem could have been avoided.
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register is used, it 1s easily checked if its previous usage was more than K ago. If so, the

present usage is processed as a load, and a "prematurely killed” counter is updated.

The effect of this trick is tnat a register will appear to be dead whenever it has a long
dormant period. Hence during this apparently dead period, the number of live registers is
reduced by one. Non overiapping R-lives of other registers, occurring within this period, can
be accomodated in the apparently dead register at no cost beyond that of saving and
restoring the dorinant life once (i.e. one STORE LOAD pair). This cost is at most half of the
cost of interleaving any two lives, and independent of how many other lives are accomodated
in the dormant register. Since most R-lives are short, we would expect a considerable
decrease of cost to be obtained this way. However, since each choice of K requires a
separate intermediate file, at least logically, and the simuitaneity determination has to be
done for each of these, it is a more costly analysis to apply.

An alternative approach is t¢ use a hybrid method, - some reasonable K is chosen for phase
one, and the interleaving process is applied in phase 2. If the cost so obtained seems

unreasonably high, a new analysis can be run using a smaller K.

Fcr our experiments we used this hybrid method. Unless otherwise specified, K was chosen
to be 200 throughout all the experiments. The number of lives prematurely terminated by
this assumption is tabulated in Figure 4-26. Note that if the same life has several dormant

periods of length more than K, each non dormant period is counted as a life.

To see the effect of varying K, we performed some experiments with K=100, K=60, K=40 and
K=25. For this purpose we chose programs that gave particularly high cost with K=200, in
the hope that cost could be reduced this way. The programs chosen were the ALGOL
versions of Ising, Havie and Crout, and the FORFOR version of Crout. For comparison we also
included two programs where the analysis algorithm performed well, i. e. where the results
for K=200 were regular and the costs low. These were the FORTEN versions of Havie and
Crout. The results are displayed in Figure 4-27.

The overall trend of these results is that the upper bound of the cost can be reduced
considerably by using a small K. However, there is a point where the cost from storing and
restoring dormant lives becomes comparable to the cost of interleaving lives, and the total
cost rises. This point is higher (larger K) the lower the cost of interleaving. We have at
present no mechanical way of guessing what K will be optimal for a given program without

performing a series of experiments. By choosing K as low as 25, the cost of reducing the
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FIGURE 4-25

Fraction of lives overlapping their successor

Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 0.275 0.101 0.005 0.066 0.071
Crout 0.190 0.135 0.028 0.113 0.136
Treesort 0.155 0.103 0.050 0.002 0.097
PERT 0.199 0.030 0 0.066 0.341
Havie 0.110 0.020 0.009 0.132 0.010
Ising 0.106 - 0.022 0.074 0.013
Secant - - - 0.035 0.042
Algorithm\Programmer E B A G L
Aitken 0 0 0.004 0.001 0.002
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 0.038 0.020 0.002 0.044 0.003

Computed as: (number of overlaps)/(number of lives).

FIGURE 4-26
Lives prematurely terminated by 200 instructions dorrancy rule
Algorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 45 8 64 39 35
Crout 37 15 126 16 156
Treesort 14 1 579 2 461
PERT 35 3 5 11 8
] Havie 15 11 21 17 8
- Ising 54 = 66 24 13
3 Secant - - - 805 795
]
; Algorithm\Programmer E B A G L
Aitken 63 63 72 99 135
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 489 141 799 2819 1035
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register block was dramatically reduced for those programs where this cost previously was
high. The increase in instruction count for reducing to 7 registers was in all cases but one
brought below 207. We believe the cost for this program could be brought further down by
using even lower K,

The cost obtained by any of these methods is an upper bound, hence we may séfely assume
the smallest of them to be a valid upper bound.

4.65 Summary

The maximal number of registers used simultaneously by any of our 41 subject programs is
15. For 17 programs it is 10 or less. 10 registers would suffice 907 of the time (instruction
count) for all the programs, 987 of the time for 36 of them. 8 registers would suffice 907 of
the time for 36 programs, 987 of the time for 29 programs.

BLISS programs use the fewest registers, BASIC programs also use few. Hence time efiicient
programs do not necessarily use many registers. ALGOL programs use most registers, but
not more than maximally used by FORTRAN programs. The compilers use no more re3isters
than the small programs, and the reduction costs for the compilers are not significantly
higher than for the small programs. Hence the size and complexity of the program has little
influence on these results.

The results for the individual classes show that 907 ot the time 2 floating point accumulators
would be sufficient for all the programs, 1 register with full fixpoint abilities would be
sufficient except for the FORFOR versicn of Crout, and 5 registers with fixpoint addition and
subtraction would suffice for all programs. Similarly, 7 registers without arithmetic

capabilities and 9 indexing registers would be sufficient 907 of the time for all the programs.

All the above results are obtained on the assumption that a register is dead when it has
been dormant for 200 instructions. Ou. experiments using a reduced such period indicate
that lower results would be obtained that way.

If the register block were to be reduced to 8 registers, the increase in instruction count

would be less than 57 in 30 of the programs, less than 207 in 36 of them. Again the results
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FIGURE 4-27
Relative increase o instruction count by interleaving R-lives
as a function of £ and M, for selected subject programs.

Algorithm Maximal ALGOL ALGOL ALGOL FORFOR FORTEN FORTEN
dormancy Ising Havie Crout Crout Crout Havie
Lives added 200 54 15 37 16 156 8
by dormancy 100 417 65 320 224 324 29
saving 60 614 129 334 255 602 65
40 1055 1218 509 3692 611 108
25 5158 7663 5007 4931 2561 2299
Dormancy part 200 0.001 0.000 0.001 0.000 0.005 0.000
of relative 100 0.009 0.00! 0.006 0.004 0.010 0.002
increase 60 0.013 0.002 0.006 0.005 0.019 0.004
40 0.023 0.014 0.009 0.067 0.019 0.006
25 0.113 0.091 0.087 0.090 0.081 0.126
Total increase 200 0.068 0.060 0.077 0.440 0.005 0.006
for reduction 100 0.048 0.054 0.009 0.402 0.001 0.004
to 10 registers 60 0.041 0.054 0.008 0.403 0.019 0.004
40 0.023 0.015 0.009 0.082 0.019 0.006
25 0.113 0.091 0.087 0.090 0.081 0.126
Total increase 200 0438 0575 0385 0757 0011 0045
for reduction 100 0.410 0.558 0.270 0.731 0.012 0.026
to 8 registers 60 0.349 0.556 0.269 0.732 0.0!9 0011
40 0.316 0.269 0.254 0.277 0.019 0.010
25 0.121 0.294 0.088 0.179 0.081 0.126
Total increase 200 0.998 0.734 0.773 1.046 0.086 0.072
for reduction 100 0.627 0.714 0.411 0.999 0.046 0.042
to 7 registers 60 0577 0.710 0.410 1.000 0.041 0.030
40 0.522 0.674 0.377 0.494 0.041 0.016
25 0.190 0.149 0.144 0.269 0.082 0.127
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are based on maximal dormant periods of 200 instructions. Additional exper.ments, using 4
of the programs where reduction was most costly, show that by reducing this period to 25
instructions the costs were reducea from 447, 587, 387 and 767 to 127, 9.47, 97 and 187
respectively, for these 4 programs. We did not investigate if a further reduction to 20 or 15

would reduce the cost further.

The cost i1s particularly high for ALGOL programs. This is discussed in a footnote on page 74.
FORFOR Crout also has a high cost, and its cost was the hardest to reduce by decreasing the
maximal dormancy. For BLISS and BASIC programs the reduction was particularly cheap, less
than 17 for each program, including the two compilers written in BLISS. The correlation

between the two FORTRAN versions is not particularly good.

4.7 Utilities of values

The methods just described are aimed at esiabiishing the effect of reducing the register
block, and our experiments indicate that the registers on the whole are not used very
efficiently. However, there might be values in memory that could benefit by being kept in
registers if the programmer or compiler had realized it. Hence it would be desirable to have
a utility measure which indicates what values are most important, locally in time, at each
point in the computation. Those values should be kept in registers which have the highest
utility at that point in time. Further if values of high utility can not be held in registers, we
have an indication that more registers should ue included in the processor. The converse

holds if only a few values have high utility.

Such a measure must give greatest importance to values used by the current instruction, less
weight to values used further away in the instruction stream. The function w(s) below is
intended to express this. Furthermore to simplify computations, we might not want to
consider all accesses to a value, only those within some interval of time containing the

current instruction execution. This is expressed by the function i(s).

A class of such measures can be defined as foliows: Define the utility of a value V at time t

to be:
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[0
PVt) = [ w(T-t) « (T-t) & u(V,T) dT
0
where

w(s) is a weighting function

i(s) is 1 in the interval considered, O elsewhere

u'Vit)is 1 if V was used by an instruction executed at time t,

0 otherwise.

w(s) and i(s) can be chosen freely to obtain different measures of utility, whereas u(V,t) is a
formalization of the trace. In choosing w(s) and i(s) one must take care that values used by
the current instruction get a higher utility than any other, regardless of how much they are
used in the surrounding interval.

It is reasonable to use the instruction count as the tirae measure rather than the computed
time. Some tentative choices for interval functions can then be classified as:
[mym] : i(s) = 1 for the interval containing the last n and next m uses of the value,
0 otherwise.
(n,m) : i{s) = 1 for the 'ast n and next m instructions,

0 otherwise.

One such measure could be defined as follows:
Let k be the next time value V will be used, i.e.:
u(V,T) = O for T in [t,k>,
u(V,k) = 1 for T =k,
u(V,k) is irrelevant otherwise.
Now let
i(s) = 0 for s <O (T <t)
i(s) =1fork2s20
i(s) = 0 for s >k
and let
w(s) = 1/(|s| + 1)
Te. P(V,t) is inversely related to the time until the value will next be used. This interval
function is [0,1]. The same weighting function is naturally extended to any (n,m) or [n,m]
interval.

It is obviously impractical to perform such a calculation for all memory locations at all times.

|
F
;——_
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It is sufficient, however, to consider those locations that are "“live” or "active” at each point
in time. Detection of such active periods of memory locations (M-lives) can be done in a way
much similar to the detection of register lives. Sore number K must be selected as the
maximal dormant period permitted within an M-life. This corresponds roughly to an interval
function of type (K,K). Since every location must be referenced at least every Kth instruct..n
in order to stay live, at most K locations can be live simultaneously. A K chosen for this
purpose would hardly be larger than 256. Hence the data space required for detection of M-
lives is definitely manageable. A hashing scherme must be used to access the tables of M-life
data, rather thar the register address that was used for the R-life tables. Finally we must

keep track of values that migrate from memory to registers and back.

An appropriate weighting function would probably take into account only future usages of
the location. By using a lookahead of K instructions, the utilities of the live memory locations
could be calculated.

We did not do this, but propose it as a possible tool to use for assessing the utility of a
larger register block, or to assess the optimal size of a register block assuming a future more
intelligent compiler.

4.8 Register structure, Conclusions

We now conclude the presentation of our methods for register structures. We have shown
how to detect register lives, how to find the nuraber of simultaneous lives and how to find an
upper bound on the time cost incurred if the number of registers were to be reduced. Our
results are summarized in sections 4.4.1, 451 and 4.6.5. On the whole, our experimental
results seem {0 indicate that the time cost incurred by having oniy 8 genera: registers on the
PDP-10 would not be excessive. (This assumes that instruction word space was needed for

other purposes).

This number depends, of course, on other architectural properties of the ISP. If the
registers were specialized, or if base registers were introduced, a larger number of registers
would be neededa. This is clearly seen in the results of "lexander [AleW72}, 4 or more
registers in the IBM 360 were «ept busy as base registers. On the other hanc, if the
registers were removed from the address space and no register to register operations were

introduced, memory would have to be used for temporaries, and fewer registers would be

needed.




REGISTER STRUCTURE 86

It should also be noted that the results for a reduced register block, though they are upper
bounds in one sense, can not be attained unless the register allocation policy of the
compilers is sufficiertly clever. In particular, dormant periods should be recognized, and no
registers should be allocated to a fixed purpose.

Finally we point out that a reduction in the number of registers, or a specialization of them,
is likely to imply 8 higher programming cost, since the programmer will have to spend more
thought to how he allocates them.

On the whole, register usage is determined more by t' -~ .nguage and its implementation than
by the algorithm. This is not surprising, since the prog,ammer usually has no control over
register usage. The observation is particularly true for languages that use a run time
system, or otherwise impose a strorig regimen on the structure of their object code. Thus
our ALGOL and BASIC programs distinguish themselves in most of the results in this chapter,
whereas systematic register use by BLISS and FORTRAN is lacking.

We have also presented a method for classifying register lives with the object of assessing
the need for generality of registers. Again our results indicate that register generality is not
extremely beneficial to program efficiency, and that little would be lost if the PDP-10 had,
say, 2 floating point accumulators, 2 fixed point accumulators and 8 index registers.
However, the other motivations for general registers have not been invalidated.

W T LW Te e e— e cer T = ot 2.
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CHAPTER 5

DATA TYPES AND OPERATORS

We now turn to the data types of the processor, and the operators to manipulate data of
these types. We look at two problems:

a) How to detect types and operators that are in the ISP, but are not sufficiently used

to justify their inclusion. This is done by frequency counts and various derivatives
thereof, as described in Section 5.1.

b) How to detect data types and Gperators that are not in the ISP, but could be included
at a benefit. This problem may be approached by studying instruction sequences and
operand values. We discuss this in Section 5.2 through Section 5.5.

Again, we will be mostly concerned with the time cost. Most of the methods described in this
section also apply to contrel operators and in part to address calculation methods, as will be
further discussed in Chapter 6 and Chapter 7. As an introduction we give some general

comments on data types and the associated costs.

A data type is an interpretation rule which assigns meaning to the contents of one (or more)
word(s), or parts of words. A data type is present in a computer if there are instructions
that manipulate it. We list some commonly occuring data types and in some cases the
associated operations or other characteristics.

Word (LOAD, STORE)

Arithmetic (Test of magnitude or sign)

Integer (Single, multiple or variable length)

Floating point (Single, multiple or variable length)

Address (LOAD, STORE)

Bit (Test, set)

Bit vector (One word, logical and other operators)

Character (Including 8-bit bytes as in the 1BM 360 etc.)

Character string

Bvle (Variable-length bit string ur field)
byie string
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Byte pointer (Generalized address)
Word vector

Vector

Matrix

Array

List

Stack

Stack pointer

Instruction (Execution)

This list is not exhaustive, and the types listed are neither well defined nor disjoint. Some
exist only for transfer purposes, the data operations being subsumed under some other type.
Some are generalizations of others, ie. the PDP-10 byte and byte pointer types generalize
all partial word transfer operations (Address, bit, character, character string etc). The
variable length arithmetic types will usually only exist cn character or decimal based

machines, i.e. business oriented machines.

The cost of including a data type in an ISP has several components:

Consumption of space for the opcodes in the instruction word.

Cost of hardware to implement it.

Possibly longer time to decode the whole instruction set.
A data type included in the ISP should be used sufficiently to warrant these costs, as
discussed in Section 5.1.

On the other hand, a data type or some of its operators might not be present in the ISP
although it is much needed in applications. This usually means that the necessary data
structures and operators have to be implemented (interpreted) in terms of the existing data
types and their operators. The cost shows up as:

Increased execution time

Increased space for program

Increased time for programming

Possibly increased space for data

Less readable programs, implying an increased programming cost.
This is discussed further in Section 5.2 through Section 5.4.
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A missing but desirable data type might also be a variant of an existing type where the
existing type is used instead. Examples of such types might be short integerst or Booleans
(i.e. true/false valued). Since such types are simulated by existing ones', their desirability
does not manifest itself as an instruction sequence. The costs of not having such data types
are:

Space cost of unnecessarily occupied memory.

Time cost of usiag the slower instructions.
We dizcuss this further in Section 5.5.

5.1 Frequency counts

The obvious way to expose infrequently used data types and operators is to accumulate the
number of executions of each instruction. This table of execution counts, the instruction
frequency table or IFT, is another compact data base which may be stored and used at a
later time to obtain additional information. For a given ISP, the IFT has a constant size,
hardly more than 512 words for any ISP.

Once it is built, the IFT can be printed out sorted by opcode, frequency of execution, or time
spent executing each instruction. From this we can immediately see which operators are
little used and might be candidates for omission. Similarly, instructions and instruction groups
where the fraction of time spent is significantly larger than the fraction of instruction
executions, are possible candidates for improved implementation. A variant of the IFT (see
below) is presented in Appendix D. In Figure 5-1 we tabulate the number of different
opcodes used by each subject program, and in Figure 5-2 we tabuiate how many different
opcodes account for 757, 907 and 997 of the executed instructions for each subject program.

Clearly one can not omit instructions from the ISP on the strength of their non usage by one
program. Hence it is necessary to build IFTs that are the sum of IFTs for individual
programs. Summation can be over the whole subject set, or a subset thereof. When
computing such IFTs, the data for each program should probably be normalized to account
for the different program lengths, and also possibly weighed to account for the importance of
each subject program. We call such an IFT a SWIFT (Summed Weighed IFT).

t Partword loads and stores with fullword arithmetic is not in general sufficient because of

conventions for representing negative numbers, and overfiow warnings.

t* Fullword integers and bit vectors for short integers and Booleans.

-
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Another form of summed IFTs is the SNIFT (Summed Normalized IFT); A SNIFT is reproduced
in Appendix D, including the printouts corted by instruction count and computed time, as well
as the FGR function. It was computed by normalizing each subject program to one executed
instruction, summing the resuiting IFTs, and renormalizing to 1 million. This permitted the use
of our existing program, using integer arithmetic, but caused a few rounding errors in the
type conversions. Hence the total counts given by the program are sometimes a few
instructions off the exact million. By scaling to a round number, the individual results are
easily interpreted as fractions. The FGR function and other results from this total SNIFT, and
the SNIFTs for the compiler set and the numeric and nonnumeric sets, are given at the
bottom of the respective tables in this section. Since we did not weigh our programs, some
instructions, particularly unrounded arithmetic, which are frequent in some special contexts in

our short programs, received counts that seem unreasonably high.

FIGURE 5-1

Number of different opcodes used by subject set.

Algorithm\language ALGOL BASIC  BLISS FORFOR FORTEN

Bairstow 112 126 838 151 154
Crout 104 109 52 87 94
Treesort 100 95 33 58 73
PERT 109 109 60 126 129
Havie 113 122 85 140 145
Ising 104 - 44 121 125
Secant - - - 149 152
Algorithm\Programmer £ B A G L
Aitken 49 51 50 52 52
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 158 129 130 153 162
Total subject set: 274 Compiler set: 227

Numeric set: 239 Nonnumeric set: 21l

3
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Algorithm\language
Bairstow

Treesort

Ising

Secant

FIGURE 5-2

Number of opcodes accounting for
757, 907 and 997 of the executed instructions

ALGOL
15
37
77

22
34
60

5
8
28

18
37
63

28
42
57

22
35
58

BASIC
14
19
49

13
19
39

14
19
30

13
18
39

19

34
55

BLISS FORFOR FORTEN

16
31
66

7
14
28

5
8
)\

2

9
18
41

18
26
61

8
15
33

25
55
112

11
21
47

5
8
21
9

19
66

18
23
74

9
19
6l

8
20
55

24
53
111

12
19
37

23
82

9
23
75

8
V7
56

Algorithm\Programmer
Aitken

B
12
22
40

A
10
18
38

G
8
14
35

L
7
12
34

Source progr.\Compiler
Treesort

BASIC
22
39
80

BLISS
15
30
63

FORFOR
20
40
8l

FORTEN
18
35
74

Total subject set:
Compiler set:
Numeric set:
Nonnumeric set:
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For some of the above results, as for the computed time in genera!, individual instruction
execution times are needed. They can be taken from the manual of the processor in question
or other avai.able sources. In some cases assumptions have to be made about the average
properties of the operands. These assumptions may have critical importance in the case of
variable length operands (including bytes) but should otherwise be of little consequence by
the law of large numbers. If variable length operands are common, this source of error may
be reduced by including in the trace sufficient information that the correct execution time
can be computed during analysis.

Except for the possible deperdence of instruction times on operands, tracing is too powerful
a too! to obtain the IFT. A counter in each straight line piece of code in the subject program
plus the necessary data on each such piece, or jump tracing, would be sufficient. Tracing
does, however, have the advantage of generzl applicability as discussed in Chapter 1.

We now discuss some further measures computed from the IFT.

5.1.1 Instruction classification - Mixes

In order to better see the relation of the instruction executions to the data types and other
programming structures, we may group our instructions into classes and print the
distributions of instruction counts or computed time over the classes. The classification may
be by data type, control function or other properties. In some cases several data types may
be grouped into one class; in other cases a data type may be split into several classes etc.,
depending on the questions to be asked. This may be viewed as mapping the instruction set
into a generalized and smaller instruction set.

Two such classes were used in our work. One of these was devised by Gibson [GibJ70] in
1959, and used to obtain the well known Gibson mix. It has later been modified to fit more
modern computers by Gonter [GonR69] and the present author. This classification was
intended mostly for comparison of the internal processing power of different central
processors. Another classification, The Program Structure classification (or PS classification),
was developed by the present author. 1t is intended to reflect the control operators of a
program in a better way than does the Gibson classification. The definitions of these
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classifications are given briefly in Figure 5-3 and Figure 5-4. For the full definition of

the Gibson classification we refer to the papers by Gibsun and Gonter.

We use the term distribution (Gibson distribution, PS distribution) to denote the observed
distributions for any (set of) program(s). By a mix we mean the observed distribution for a
set of programs believed to be representative ¢f some actual workload (i.e. the Gibson mix
[GibJ70], the UMASS mix [GonR69] etc.).

A classification is easily described by a table with one entry for each instruction in a
standard format, and with some further entries describing the number of classes etc., and
giving their print names. This table can be interpreted by the program computing (and
printing) the distribution over the classes and the same program can be used for all

distributions.

The original Gibson mix for the IBM 650 and 704, the UMASS mix for th> COC 3600, and the
Gibson distribution for our subject set from the PDP-10, are reprouuced in Figure 5-3.
Our program structure distribution for the subject set and its subsets is given in Figure
5-4. When studying such distributions one should keep in mind that the number of
instructions in each class is not the same. Hence a class of a few instructions averagely used

may have a low count compared to a class of maay instructions that are little used.

5.1.2 The FGR function and similar measures

The most striking observation from a quick glance at an IFT is that a small number of

instructions account for a large fraction of the executed instructions. An abbreviated form of
our results is displayed in Figure 5-1 and riyure 5-2. This suggests that one might reduce
the instruction set and set of data types at a low cost. Foster et. al. [FosC71a] have
propo.ed two measures related to this, they were both defined in Section 1 4, but we repeat

the definitions here.

One of their measures is the information-theoretic measure of information content:

T
1=-2% p, *log2(p)
12}

where
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pi is the probability of using the i'th opcode
T is the total number of different opcodes
log2 is the logarithm base 2

Their other measure is a function computed as follows: Order the operation codes by
frequency of occurrence. The i'th opcode in this ordering occurs C; times, i.e. Cj 2 Cis for 1
< i € P-1, where P is the total number of instructions in the sample. The FGR function is then

defined as:

N
FGRIN) =1 -1/P Z G (LsN<T)
is} '
FGR(N) is that fraction of the instructions which would have to be interpreted, were the

instruction set reduced to the N most frequent instructions. However, the function does not

guarantee that the implied recoding is possible or feasible.

Both of these measures are easily computed from the IFT. They may be computed based on
the iumber of executions of each instruction, i.e. using the instruction count, or based on the

time spent executing each instruction, i.e. using the computed time. The exact instructions
"removed"” depend, of course, upon this choice. In the latter case, C, should be the time used

by the i'th instruction when the instructions are ordered by the time spent executing them.
Both the information-theoretic measure and the FGR function may also be computed from

static data, and will then measure cost of represcntation rather than cost of execution.

We have computed the information-theoretic measure with respect to both instruction count
and computed time. Although the practical value of these measures is small, they give some
indication of the overall utilisation of the instruction set. The results are tabulated in Flgure

5-5.

A much better measure is the FGR function, which gives an estimate of the time cost incurred
by reducing the instruction set. We compute this based on instruction count, and with a
simple extension. Assuming that each of the omitted ‘nstructions can be recoded in terms of
K of the N remaining instructions, one may easily compute the relative increase in instruction
count. If the instructions used for the recoding are of average time, the relative increase in
computed time will be the same as that in instruction count. The increase in space cost has
to be found by static methods, the FGR function computed using static instruction counts

gives the fraction of written instructions that have to be rewritten.
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In Figure 5-6 we tabulate the extended FGR function for N=64, N=48 and N=32, assuming
a recoding factor (K) of 4, i.e. on the average 4 instructions needed to interpret each omitted
instruction. This factor is the most significant source of error and is very hard to estimate,
since many of the infrequently executed instructions are such that would require many other
instructions to mimic exactly, but they are used where minimal changes of a larger ccntext
would get the intended operation done at no or very little extra cost. Hence the choice of K
should be based on which instructions are candidates for omission. If, for instance, the

floating point instructions are in danger, a factor of 4 will certainly be too low.

Ideally one would want to compute these costs using actual recodings of each omitted
instruction. This might also give scme information on the possible increase in space cost for
data. This process is, however, not easily mechanized. Manual recoding is time consuming,
since for each N considered one must code the missing instructions in the most optimal way
using the N remaining instructions. Possibly the data representation must also be
reevaluated each time. The recoding may also depend on space and time constraints for the
particular application.

To properly see the costs of removing data types, results similar to those from the FGR
function should be computed by removing all instructions relevant to a data type rather than
the least frequently used ones. The results of such a calculation can usually be predicted
well by a glance at the Gibson or PS distribution in question. Also, we believe it may be
more relevant in many cases to omit certain of the operations of the data type rather than
the whole type.

5.1.3 Summary of frequency results

Our experimertal results indicate that a small number of instructions, at most 28, account for
757 of the executed instructions for any one of our subject programs, and that 112
instructions suffice for 997 of the instruction execulions for any one program. No program
used more than 162 instructions. Assuming a recoding factor of 4, 30 of the 41 programs
could be run on a processor with 64 instructions at an increase of less than 57 in the
number of instruction executions. For 18 of the programs this increase is less than 27, but
in 3 cases it runs as high as 207 to 307. (ALGOL, FORTEN Bairstow, FORFOR Bairstow).

The situation changes somewhat when we consider the need of the whole subject set. Based
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FIGURE 5-3

The modified Gibson classification.

Percentage of executed instructions in the Gibson classes.
Percentage of time included for our subject set.

Machine: 650/704 3600 | KA-10
Gibsons UMASS Our resuits

Class results results Icount Time
Load, store 31.2 30.0 424 35.6
Fixpoint add subtract 6.1 1.2 124 10.2
Compares 38 1.2 = 3
Branches 16.6 383 28.2 19.0
Floating add subtract 6.9 05 49 8.5
Floating multiply 3.8 05 2.6 8.7
Floating divide 1.5 0.2 1.1 4.9
Fixpoint multiply 0.6 0.1 1.1 3.2
Fixpoint divide 0.2 0.1 05 2.4
Shifting 4.4 2.2 3.9 5.3
Logical 1.6 05 1.0 0.6
Miscellaneous 5.3 0.0 15 1.7
Indexing 18.0 13.4 = =
Fullword - 6.9 = =
I/0 control - 0.0 0.1 0.0
Inter reg. transfer - 5.0 - =
Monitor communic. - - 0.0 0.0
User UUOs - - 03 c.o

The classes are not equally apf)licable to all ISPs, as indicated by dashes. This applies in
particular to index register instructions.

In Gibsons original classification, use of indexing was counted as an extra instruction in the
“Indexing” class; the "Compare" class consisted of the 3 way skips in the 704.

In the UMASS version of the Gibson classification, the "Compares” class consists of all the
vector search operations, "Indexing" is all the index register instructions, "Fullword" is all the
48 bit instructions. The "Inter register transfer” class also includes other instructions that
only manipulate processor state.

Gibsons results were obtained using mostly scientific programs, but some business data
processing programs, coded in unspecified languages.

The UMASS results were obtained using assembly and FORTRAN coded programs, including
* @ FORTRAN compiler and the assembler.
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FIGURE 5-4

The program structure distribution, part 1.

Percentage of instruction executions in each class
for the total subject set and its subsets.

Class Compilers Nonnumeric Numeric Total
Word to acc. 105 24.2 19.7 20.1
Word to memory 4.6 9.4 7.2 7.6
Immediate to acc. 3.4 45 4.1 4.1
Set to acc. 1.3 0.4 0.3 0.4
Set to memory 1.2 0.2 05 05
Partword to acc. 10.8 4.0 3.2 4.4
Acc. to partword 2.4 05 0.7 0.9
Block move 0.2 0.0 0.1 0.0
Set bits 0.9 0.6 0.8 0.7
Add or sub. ! 1.6 1.8 1.6 1.7
Fixp. add sub. 5.3 145 9.7 10.8
Fixp. mul. div. 0.4 1.2 2.1 1.6
Floating arith. 0.0 1.4 15.] 8.6
Shifls 1.0 4.6 4.1 3.9
Logic 2.1 0.7 0.9 1.0
[/0 transfer 0.0 0.1 0.1 0.1
I/O administr. 0.0 0.0 0.0 0.0
Other monitor comm. 0.0 0.0 0.0 0.0
User UUO 0 05 0.3 0.3
Subr. jumps 5.1 25 2.7 2.9
Subr. returns 3.9 2.2 2.2 2.4
Stackptr. manip. 5.5 3.3 4.9 4.4
Test acc. vs. immediate 7.7 1.7 1.0 2.1
Test ace. vs. 0 25 1.8 2.1 2.0
Test acc. vs. memory 3.0 4.9 45 45
Test memory vs. 0 2.3 1.7 0.9 1.3
Bit tests 7.4 1.2 1.4 2.0
Status tests 0.1 0.0 0.4 0.2
Loop jumps 3.9 3.3 3.6 2.6
Uncond. jumps 12.7 8.2 5.8 7.4
No-ops 0.0 0.0 0. 0.0
Executes 0.3 0.8 0.4 05
Miscellaneous 0.2 0.0 0.0 0.0

The "Set to acc.” and "Set to mem." classes load their destination with all zeroes or all ones.
The "Set bits" group set individual bits in a word.
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The program structure distribution, part 2.
Percentage of computed time in each class
for the total subject set and its subsets.
Class Compilers  Nonnumeric Numeric Total
Word te acc. 9.4 22.1 13.1 15.3
Word to memory 4.4 Q] 5.1 6.1
Immediate to acc. 1.8 25 N/ 1.9
Set to acc. 0.7 0.2 0.1 0.2
Set to memory Lal 0.2 0.3 0.3
Partword to acc. 17.2 4.7 2.8 4.8
Acc. to partword 5.4 0.8 0.8 1.3
Block move 2.9 05 0.6 0.8
Set bits 0.6 0.4 0.4 05
Add or sub. 1 1.7 1.9 1.1 1.4
Fixp. add sub. 5.1 144 6.8 8.8
Fixp. mul. div. 15 7.2 55 5.6
Floating arith. 0.1 34 345 22.1
5 Shifts 1.0 45 6.5 5.4
Logic 1.8 0.5 05 0.6
1/0 transfer 0.0 0.0 0.0 0.0
1/0 administr. 0.0 0.0 0.0 0.0
Other monitor comm. 0.0 0.0 0.0 0.0
User UUO 0 0.0 0.0 0.0
Subr. jumps 5.1 2.6 20 25
Subr. returns 4.6 2.6 1.9 24
Stackptr. manip. 8.2 5.1 5.4 5.6
Test acc. vs. immediate 5.0 1.1 05 1.1
Test acc. vs. 0 1.6 1.2 1.0 1.1
Test acc. vs. memory 3.0 5.0 3.4 38
Test memory vs. 0 2.2 1.6 0.6 1.1
Bit tests 5.3 0.1 0.8 1.3
Status tests 0.0 0.0 0.2 0.1
Loop jumps 2.9 2.4 1.8 2.1
Uncond. jumps 7.1 46 2.4 35
No-ops 0.0 0.0 0.0 0.0
Executes 0.1 0.4 0.2 0.2

Miscellaneous 0.2 0.0 0.0 0.0
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FIGURE 5-5

Information theoretical measure of opcode utilization.
Computed based on instruction count (IC) and computed time (CT)
Theoretical raaximum (all opcodes equally probable) is 8.7245

Algorithm\language ALGOL BASIC  BLISS FORFOR FORTEN
Bairstow IC 4.64 4.49 4.85 5.38 5.37
CcT 452 4.63 4.65 5.00 4.83

Crout IC 5.10 4.44 3.75 4.46 4.36
CT 5.15 451 3.67 4.46 439

Treesort IC 3.21 4.40 3.17 2.93 3.36
CT 3.03 451 3.16 294 2.95

PERT IC 4.91 4.39 3.93 4.13 4.14
CcT 4.89 4.46 3.98 421 4.24

Havie IC 5.46 4.89 4.94 4.86 491
Cc1 5.36 4.25 4.66 4.34 431

Ising IC 5.9 - 388 418 430
CT 5.9 - 377 429 442

: Secant IC - - - 408 404
; cT 2 5 - 408  3.9%
| Algorithm\Programmer £ B A G L
Aitken IC 426 427 409 376  3.66

CT 4.02 3.97 4.12 3.99 3.94

Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort IC 5.44 5.37 484 5.20 5.01
Gw 5.48 5.20 473 5.29 5.08

IC CcT
Tatal subject set: 5.48 5.63
Compiler set: 5.62 5.62
Numeric set: 5.50 5.44

Nonnumeric set: 4.51 492
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FIGURE 5-6

The extended FGR function.
Relative increase in instruction count by reducing the instruction
set to 64, 48 or 32 instructions, using a recoding factor of 4.

Aigorithm\language ALGOL  BASIC BLISS FORFOR FORTEN
Bairstow 64 0.092 0.021 0.043 0.294 0.2¢8
48 0.225 0.042 0.140 0.496 0.461
32 0.483 0.094 0.360 0.792 0.755

Crout 64 0.022 0.006 0 0.006 0.005
48 0.134 0016 0.001 0.032 0.017
32 0.447 0.081 0.023 0.174 0.093

1 Treesort 64 0003 0.0l 0 0  0.000
48 0006  0.004 0 0000 0.002
32 0026 0018 0000 0003  0.007

| PERT 64 0027  0.004 0 0042 0051
48 0.184 0.019 0.012 0.081 0103
32 0249 0069 0098 0.167  0.203

Havie 64 0.018 0.024 0.029 0.059 0.077
48 0.222 0.060 0.010 0.115 0.128
32 0.750 0.454 0.235 0.216 0.224

Ising 64 0.020 = 0] 0.035 0.078
48 0.100 B 0] 0.073 0.163
32 0.476 - 0.041 0.157 0.288
Secant 64 - 2 - 0.024 0.026
48 - - - 0.060 0.058
32 - - - 0.184 0.160
Algorithm\Programmer E B A G L
Aitken 64 0 0 0 0 0

48 0.000 0.000 0.000 0.000 0.000
32 0.128 0.162 0.109 0.052 0.050

; Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
! Treesort 64 0.210 0.109 0.036 0.101 0.073
48 0.406 0.253 0.121 0.273 0.197

; 32 0.779 0.565 0.341 0.579 0.463 i
! 128 64 48 32

Total subject set: 0.056 0.422 0.631 0.926

Compiler set: 0019 0.271 0.462 0.807

Numeric set: 0.040 0.352 0574 0.883

Nonnumeric set: 0.010 0.199 0.342 0.585
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on the SNIFT, the total number of instructions used is 274. 29 of these are sufficient to

account for 757 of the instruction executions, 133 of them cover 997 of the instruction

c executions. The increase in time cost for recoding in a 64 instruction set is 42.27. This

s recoding cost is well above the highest costs for individual subject programs. This shows
that altough each individual program uses only a small set of instructions, this set is not the

same for all the programs. Recoding into an 128 instruction set would increase the time by
4 5.67.

The results vary systematically with algorithm and language. BLISS programs generally use

fewest opcoder, and have the lowest recoding cost. This may in part be due to the total lack
of run time sysiem in BLISS (no 1/O initialization or timing unless explisitly requested). BLISS i
programs are also as fast as, or faster than, the other programs for the same algorithm. 1
Except for Bairstow, ALGOL programs have the highest recoding cost for a 32 instruction set '
but the FORTRAN programs, except for Crout, are the most expensive to recode in a 64

instruction set. The recoding cost of SEC is comparatively low, whereas it is consistently i

high for the compilers, though not higher than for several of the short programs. Treesort

has the lowest recoding cost in all languages, Bairstow has the highest, except in BASIC.

e

Hence there seems to be a correlation between the recoding cost and the size and ‘i
.! complexity of the program. This is as one would expect. The difference between the results

from the two FORTRAN versions seems significantly less than the difference between the

results for the different languages.

When removing an instruction from an existing ISP, one should not only consider its
t frequency of usage, but also the ease of coding it in the remaining instruction set, and the

degree of system in the allocation of opcodes. A break in such a system may cause

increased programming cost. This is particularly true for the PDP-10, which has a very
systematic instruction set. ‘

The restricted selection of our subject set, and our use of SNIFTs instead of SWIFTs, casts
some doubt on our conclusions about the necessity of individual instructions in the PDP-10.
In particular, since all programs weigh equally, instructions used in special contexts in one of
the small programs will get high representations in the SNIFT. Furthermore, the' omission of
1/0 from the small algorithms leaves a timeconsuming and specialized aspect of most

programs uninvestigated. We do, however, give some indications based on the SNIFT, which

intuitively seem relatively independent of these deficiencies.
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Large sections of the logic instructions (only 6 out of 64 are used significantly), the bit test
instructions (9 of 64) and the halfword instructions could be removed. The systematic
allocation of opcodes would not be unduly broken, and few instructions would need
interpretation. There are also unused sections of the loop control group and the arithmetic
group.

The UUOs are particularly little used. Their number could probably be reduced to 7 (3 user
+ 4 monitor) or 15 (3+12) by encoding information about function in the address field or in a
control block. UUOs are further discussed in Section 6.1, where the time cost of using

them is shown to be high relative to using routine call instructions.

Finally there are many no-ops and duplicate instructions. Removal of these would, however,
break the systematic allocation of operations.

These remarks indicate that these results depend more on the algorithms than did those for
registers. Hence a subject set should be chosen to cover the application area in the widest
possible way. It should further contain as wide as possible a range of programming
constructs. Commonly used languages should also be well represented. Finally ciie should
not put too much significance into the results from one or a few analyses, particularly not
from a small program,

We finally point out that the Gitson and program structure distributions (Figure 5-3 and
Figure 5-4) indicate that there is also a great deal of commonality between the results from
the different programs, and also between different ISPs.

5.2 Collection of instruction sequences

We now turn to the problem of detecting data types and operators that might be added to
the ISP with benefit, and which represent data operations genuinely different from the
existing ones. As previously noted, one way of detecting such operators may be by
observing frequently occurring sequences of instructions, viz. those sequences used 1o

perform the data operations, representing encodings of the missing instructions in terms of

the existing instruction set.

Sk
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65.2.1 The program

We first describe our method for detecting frequently occurring sequences of instructions.
The major problems are due to the need for space and time efficiency in the analysis
program. This is clearly demonstrated by a glance at the intermediate results of a large
analysis®: 1600 different pairs were found by our programt. If ull of these were to be
extended to triples, quadruples etc., data space and processing time requirements would soon
become prohibitive. Hence some methods are needed to detect and omit insignificant

sequences.

The data structure where the information is collected is essentially a forest of binary trees
[(KnuD69), each node represents a sequence, and each root corresponds to the first
instruction of the sequences represented in its tree. By a level (or level L) we mean all
nodes representing sequences of a given length L. The leader of a sequence of length L is
the L-1 first instructions in it. Its trailer is its L-1 last instructions. The descendants of each

node are:

a) The extension, i.e. the first of the nodes on the next higher level, representing an

extension of the sequence represented by this node.
b) The next, i.e. the next node on the same level having the same leader.

To facilitate pruning, as described below, we also chain all nodes on the same level, and in
orcder that we may reconstruct the sequence represented by a node, each node has a back
pointer to the ncde representing its leader. Finally each node contains the last opcode of
the sequence it represents, the occurrence count for that sequence, and its length (i.e. the

lovel number of the node).

For efficiency reasons we do not pack the nodes, hence 7 words are needed for eachttt.
2000 nodes were sufficient for the analysis of all the subject programs except FORTEN.
About 2100 nodes were needed for the first pass of that analysis, the 1600 mentioned on
page 103 plus 512 for leve! 1.

* FORTEN, 295 000 instructions traced.
t* Which were reduced to 61 after applying the pruning methods to be described.
4t Easily reduced to 4 words per node if using a language that makes the halfword load and

store instructions available.

R T e 1 e e el s v o g L oo o
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To keep the forest of limited acreage, we use a multi pass algorithm. The first pass
accumulates the pairs, each subsequent pass extends the sequences by one instruction, thus
adding one level to the forest. After each pass the forest is pruned. The pruning not only
discards insignificant sequences, but also attempts to recognize closed loops, several
representations of the same sequence, etc. If significant sequences remain after pruning, a
j new pass will be performed.

3 This continues until either all sequences on the top level are pruned or until a predetermined
level (read as data) is reached. In the latter case, the user of the program may decide after
[ each pass whether to continue. His decision is based on a few simple data typed as each
pass is completed. Furthermore the current version of our program saves status after each
pass and is easily restarted if inspection of the output indicates that longer sequences would
3 be of interest, or in case of machine breakdown.

Maximal program capacity is sequences of length 20. This limit was arbitrarily set since we
believed that sequences of this length neither would be found, nor would be of interest. This

turned out to be only partly true. Using the pruning algorithm outlined below, and cutting
each tree at the root when all its nodes at the top level are deleted, the algo_rithm is not

| prohibitively expensive!. Hence in the experiments we used a typed in limit of 20. About
half of the analyses reached this level, all of them reached level 10.

After about the tenth pass of our algorithm very few sequences remain, hence each could
probably be extended by 5 or more in each pass without undue consumption of space. This
would make the method significantly faster, and permit the analysis to run until all sequenc s

terminated "naturally”. It would, however, require some re programming

At the end of the run the counts of shorter sequences are reduced to account for the
extension of these sequences into longer significant sequences. That is: starting at the top
level we visit each sequence in turn: and generate all its subsequences. For each such
subsequence we reduce its count by the count of the main sequence. Hence the final count
for each sequence reflects the unextendable fraction of the total numbe- of occurrences of
this sequence. The computed time for zach occurence of the sequence is easily obtained, as
are the fractions of the total instruction count and computed time consumed by all
occurrences of the sequence.

t With approximately 100 0CO instructions traced, (subject program FORTEN Treesort), the
F run time was approximately 35 min. for sequences of length up to 20. Probably this could be
i reduced considerably by coding the tree lookup routine in assembly code.
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5.2.2 The pruning heuristics

The results presented in Section 5.3 were obtained using the following pruning algorithm:
After each level is built, each of the new nodes is examined in turn and the heuristics about
to be described are applied to it. Since some of the heuristics involve more nodes than the
one thus examined, no nodes are deleted until a second pass down the level chain. The first
pass merely marks the nodes to be deleted, using the extension field which is otherwise
unused :t the top level.

In the examples below, A, B, .. denote instructions, J denotes a jump instruction. A sequence
and its count (the latter often omitted) are given as: <A B C D E: 647>.

Rule K:

All sequences whose count is less than 107 of the maximum count at the same level are

marked for deletion.

Heuristic O:
All sequences that are not a "significant” extension of their leader or trailer are marked
for deletion. Exceptions are made for sequences of all the same instruction and for
sequences whose count is at least 1/50 of the number of instructions in the subject
program. The meaning of "significant” depends on the level. A factor is defined by the
following table:

Level: 2 3 4 >4

Factor: 1/8 1/4 1/2 3/4
All sequences whose count is not at least factor times the count of both its leader and its

trailer are marked. (If the trailer does not exist, its count is taken to be 0). The intent
of this heuristic is to isolate the common part of partly overlapping sequences as the
more important. Given the sequences <A B C:500>, <BCD: 150>, <C D E: 156> and
<D E F: 800>, <B C D> would not be marked, but <C D E> would be.

Heuris. . 1:
The intent of this heuristic is to detect loops. It is applied at levels 2 4. 1t is first
checked whether the first and last pairs of instructions in the sequence are the same. It

50, it is checked whether the sequence contains a jump instruction. If so, we assume we
have found a loop of length 2 less than the present level. Finally it is checked if the
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same loop is represented elsewhere in the forestt. Whenever such a representation is
detected, it is marked for removal. Thus <ABCDEF AB> and <ABCDJEF G> are
not loops by this heuristic, but <A BCD JE A B> is a loop.

Heuristic 2:
This heuristic is applied at levels > 4. It attempts to detect if there are several nodes
representing subsequences of the same longer sequence yet to be built. As the top level
nodes are examined, chains are built linking nodes that are believed to represent such
sequences. Let

Sl =<CDE...FG>
be the sequence of length L that is currently under examination. We ~ow examine all

sequences of form:
<XCDE...F>

for some X. Let 52 be one of these. $2 and its chain become the chain of S if:

a) Thei- count differ by at most 3.

b) S1 was not in this chain before.
a) will ensure that the sequences are equally significant; b) that we do not delete all
representations of a loop. Note that S1 occurred later in the instruction stream than S2,
but is before it in the chain. Hence the sequence occurring earliest in the instruction
stream is the one which will have a null link, and trerefore be kept. Thus for the
sequences of <ABCDE> <BCDEF> and <CD E F G>, the chain would go from
<CDEFG>to<BCDEF>to <A BCD E>, and the latter would be kept. In the previous
notation, if the chain consisted of Sl and S2, S1 would be deleted.

Heuristic 3:

This heuristic is applied at levels > 6, and is designed to detect and mark all but the most
frequent of those sequences at the level which overlap by a significant number of
instructions, - at least 2/3 of the level number. For each sequence at level L > 6 ( say
<A B C D E F G H>), we consider all extensions of its trailer to the level of L (such as
<B C D E F G H I>), and delete all but the one with the largest count. We then repeat the
process for the trailer of the trailer (ie. <C D E F G H>). extending to level L again and
? s0 on until we have reached the least overlap permitted.

Each of these heuristics is programmed as a routine, and caled from one place in 'he

t A loop of length L may be represented at L places in level L+2, each starting with a
different instructiun of the loop.
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program, inside a pruning control routine. Hence it is easy to change the heuristics and the
order in which they are applied, or to add new heuristics.

5.2.3 Sources of errors

There are some problems associated with this method. Some of these could be avoided by
adjusting the parameters to the heuristics, but this is not sufficient. We now present the
most significant of these problems, and propose some rewedies.

Sequence overlap

Because of the heuristic nature of the pruning algorithm, we have no guarantee that the
sequences at any level are really disjoint. Hence the final ri:duced counts are not completely
reliable. In particular the counts for subsequences common to two overlapping longer
sequences will be too low. This is clearly seen in all programs analyzed, several examples
are shown in Section 5.3.

To remove this problem, the heuristics for detecting overlaps must be improved. At first
sight, the obvious way is to shift each sequence completely out of the sequence detection
mechanism once it has been recorded, rather than trying to detect new sequences starting
with instructions in its trailer. This assumes, however, that the sequence just recorded is
more significant than those omitted as a consequence of the shift. Hence this technique can
not be used at low levels, since that would prevent us from detecting which sequences are
significant in the first place. Changing to this techrique at a higher level requires great care
lest we extend the wrong sequences of those now overlapping. Hence we reject this

approach, and we believe the way to go must be to improve our present heuristics and the
way they interact, and device new heuristics in the same spirit.

We believe that not even the best of heuristics can completely avoid this problem. Hence we
suggest two more ways to relieve it. Firstly, the counts at each level may be printed after
the level is built, inmmediately before pruning, as well as at the end of the analysis. These
original counts may then be compared with the final reduced counts. We did this, and found
it a help in detecting significant sequences in general during the manual analysis described in

Section 5.3. In Section 5.3 we present both original and reduced results.
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Secondly, one may decida from one run as outlined above, which sequences are important
enough or which results are wrong enough that exact counts are desirable. A second run
can then be done, with a slightly different program, collecting statistics on these sequences
only. This can be done in one pass since we know what to look for. Such a program should
be written to look for classes of sequences as, for instance, variants of a calling sequence,
possibly defined by a regular expression. We wrote nc program for this.

Dominating loops

Another problem is that of dominating loops. Our program tends to find long sequences,
sometimes representing whole loops of the subject program, rather than the shorter
sequences that are more frequent and which could reasonably be implemented as
instructions. This is particularly true for the short subject programs, where one or a few
loops dominate the results. The situation is improved when subject programs of a more
representative length and complexity are analyzed. Further improvement can most probably
be achieved by strengthening the definition of "significant” in heuristic 0. This can be done
either by increasing the “tactor", particularly for the higher levels, or we may introduce new
criteria of “significance”. One such could be to compare the total time consumed by the
sequences in question rather than their occurrence counts. Again a factor could be used in a
way similar to the present one.

Interacting heuristics

A third problem is the interaction of the heuristics, particularly heuristics 1 (loops) and 2
(subsequences of longer sequences). Probably the loop heuristic should be applied last, after
all deletions resulting from the other heuristics have been performed.

Semantics of sequences

Finally there is the problem of relating the sequences back to the subject program in
question. This may be difficult because the semantics of the sequences is not always
obvious, and can only be found after a careful and time consuming study of well commented
source and assembly listings. Also, the sequences found may not relate easily to intuitively
meaningful notions. This is related to the problem of dominating loops. The double length

arithmetic of Crout is a case in point. This occurs in a context such as

B e o e b b e e m‘,;.!,ukj
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for kx « low step 1 until high do sum « sum+A[Ix,kxJ#B[kx};
where sum is the double length variable. The double length addition is easily spotted by the
occurrence of the UFA? instruction, but it is embedded in a sequence of length 20 which also

involves array accessing and the enclosing loop.
More intuitive program elements can be brought out by:
Looking for more specific sequences as indicaied above.
Improving the heuristics, possibly to start and break sequences at jumps more easily than

now. However, an advantage of our present method is that it permils detection of
significant sequences, crossing transfers of control, that might not have been suspected

to be of importancett. This property should not be lost.

Generate sequences longer than 20, and try to keep the "earliest” one as described

under heuristic 2.

5.3 Results from the sequence progrim

Each result produced by our program consists of a sequence of operation cndes, together
with its occurrence count and timing data computed from this count. Hence the results need
quite a bit of manual analysis to yield useful data. This analysis involves comparing with
assembly listings (possibly using interactive debugging systems to locate sequences),
comparing counts obtained before and arter reduction or on different levels, etc. Good

knowledge of the subject program in question is an obvious advantage.

The deficiencies of our pruning heuristics and the way they interact, as described in Section
5.2.3, increase the difficulty of this analysis. We have, however, made an attempt, and
present the results below. Due to the manual processing, the selection of sequences

presented is necessarily subjective.

t Unnormalized floating add
t The BLISS calling sequences, the array access and UUO handling in BASIC programs, and
the thunk of ALGOL PERT are examples of this.
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The resuits are presented by algorithm. The characteristics of each algorithm, as described
in Figure 3-2, rarely occur frequently enough to show up, but when they do we comment on
it. For each program, the maximal sequence length reached during analysis is given. In some
cases all sequences on :lie highest level reached were deleted by the pruning mechanism. In
those cases the highest level with significant sequences wés one Or two lower than the
highest level reached, as is indicated in parentheses. In some cases the sequences at the top

level(s) were rejected during the manual scan. This is not explisitly indicated.

Since this method of sequences is applicable to address calculation and control structures as
well as to data types and their operators, we have made no distinction between sequences of
these 3 types in the lists of sequences. For the same reason ve present them with the bare
minimum of identifying comment. Evaluation is postponed until later sections in the relevant

chapters: 5.4, 6.1 and 7.1.1.

The sequences are presented in a standard format, giving the occurrence count of the
sequence, the percentage of the totai computed time consumed by it, and a single letter (B or
A) designating if the results are from before or atter count reduction. This is followed by
the sequence itself. Several versions of the same or largely overlapping sequences have
been included when it seemed to be of interest, either because of 2 much larger count for a
subsequence, because of a better correspondence with an intuitive program fragment, to
show the difference due to count reduction, or to show exampies of bad pruning. Since the

sequences overiap, the percentages of time sometimes add up to more than 100.

Note that an XCT instruction is immediately followed by its target instruction. User UUOs?
are given in numeric (octal) form, followed by the code for the UUO interpreter, starting at
location 41. Monitor UUOs are given in their cctal form, followed by the rext instruction of

the program itself (see Section 1.3).

* A user UUO is an instruction (octal 01 through 37) which causes a trap to location 41} in the
users memory. Since the subroutine thus called is user defined, the UUQs do not have
cOmmon mnemonic names. Monitor UUOs (octal 40 through 77) cause a trap to absolute

location 41 and are used for monitor calls.
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5.3.1 The compilers

Since these programs are large and complex, and little known to the present author, the
analysis of them is in some cases less thorough than desirable. This applies in particular to
the two FORTRAN compilers. In the other cases experts were available for consultation and
the results of th~ analys': are better.

ALGOL
Maximal sequence length: 11.
Seq. Count 7 Time B/A Sequence

(1) 170 29 A JRST  LDB MOVE CAIN CAIE  JRST  JSP
ILbB A0S MOVE  XCT

(2) 117 20 A LDB SKIPE MOVE IBP AQS POPJ  JRST
MOVEM MOVE MOVE MOVEM

(3) 115 20 A MOVE MOVElI XORS MOVEM MOVEM PUSHJ SKIPE

LOB SKIPE MOVE 18P

(8) 216 35 A CAME POPJ IMULI ADDI SOJG PUSHJ ILDB
AOS

(5) 295 28 A JRST  CAIN ILOB  AOS MOVE  JRST
(6) 333 35 B AJBIN LSHC ILDB  AOS SKIPL
(7) 541 56 A PUSHJ ILOB  AOS CAME POPJ
(8) 1641 93 B ILDB  AOS
A

(9) 176 24 PUSHJ ANDI MOVE HRRM MOVE MOVEM AOS
CAME JRST  HRLI MOVEM

(10) 109 22 A MOVE PUSHJ 13NN POPJ MOVE MOVE ADDI
ANDI  IDIVI  ADDI  TLNN

(11) 1442 25 B TLNE  JRST

(12) 1418 37 B MOVE  MOVEM

(13) 917 27 B A0S CAME

Sequences (1) to (8) represent various forins of input of characters. (9) and (10) are
concerned with outputting relocatable code. (11) shows the need for test bit(s) and jump,

(12) may be a memory to memory move, (13) is loop control.
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BASIC
Maximal sequence length: 17.
Seq. Count 7 Time £/A Cequence

(1) 1104 207 A SriPE ILDB JRST  CAIE  CAIN  CAIN  CAIE
CAIN CAIE CAIN CAIG CAJA CAIGE IDPB
SKIPE SOSLE AOJA

ILDB  CAIN IDPB  JRST

ILDB  HLL TRNE  TLNE  JRST
HLL TRNE  HRL TLNE  POPJ
ItDB  HLL TRNE TLNE  POPJ
PUSHJ ILDB  HLL

MOVEl PUSHJ MOVE ADD CAIE  SKIPA CAMLE
EXCH POPJ  MOVEM

(8) 677 35 A CAIGE JRST  MOVEI ADD ASH CAMLE

(1) Is a loop to move text lines from the TTY input butfer to the BASIC line butfer, character
by character. As the line is moved special characters, like VERTICAL TAB, LINE FEED,
RETURN. are removed or special action is taken on them. This loop could probably be
reduced to two instructions (ILDB JRST) at the space cost of a one word table antry per

(2) 990 8.0
(3) 456 2.9
(4) 402 2.1
(5) 517 5.7
(6) 521 2.9
(7) 314 3.3

> P @ > > P

character in the character set.

Sequence (2) represents the loop that moves a line from the line butfer into the program
text area, stopping at a return. Further sequences, (3) to (6), are associated with the routine
that reads the next character, sets appropriate flags depending on its properties, and ignores
blanks.

The main data structure of BASIC is the roll, which essentially is a contiguous but dynamically
relocatable memory area. The compiler has a fixed number of rolls, which are packed to
conserve space and occasionally have to be relocated in order to let one of them expand.
The sequences (7) and (8) relate to this data structure. The first of these adds a data item
to the end of a roll, first checking if there is room. The second loop performs binary search

in an ordered roll.
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BLISS

Maximal sequence length: 10 (8).

Seq. Count 7 Time B/A Seauence

(1) 15763 143 PUSH  PUSHJ JSP PUSH  HRRZ
(2) 10462 7.2 JRST  POP POPJ  SUB

(3) 3724 35 JRST  POP POP POPJ  SUB
(4) 4897 35 PUSH HRRZ  PUSH  JRST

(5) 4489 3.0 PUSH PUSH  PUSHJ

(6) 3264 24 PUSH PUSH  PUSH

(7) 18275 12.1 PUSHJ JSP PUSH  HRRZ

(8) 12256 69 B JSP PUSH HRRZ  JRST

All these represent the routine entry and exit mechanism, which probably accounts for at

@ rr r r P > P

least 257 of the compilation time. Note that these sequences have considerable overlap, and
that (7) and (8) are from before reduction.

FORFOR

Maximal sequence length: 10 (8).

Seq. Count 7 Time B/A Sequence

(1) 17484 113 A AOJA MOVE HLRZ TRNN  JRST

(2) 14555 99 A AOJA MOVE HLRZ TRNN TRZE

(3) 6390 59 A HLRZ TRNN TRZE JUMPN TRZE AOJA  MOVE

(4) 5750 70 A HLRZ  CAIN  ADD HRRZM HRRZ  ADD HRRZM
SOJE

(5) 4411 51 A PUSHJ LDB ANDI  MOVElI HLRZ  CAIG

(6) 5635 50 A SOJGE HLRZ  CAIN  ADD HRRZM HRRZ

(7) 26907 59 B TRNN  JRST

(8) 38569 108 B HLRZ  TRNN

This cempiler is highly interpretive, simulating a one or few register machine on the 16
register POP-10. Sequences (1) to (3) are associated with the "instruction fetch" cycle of
this interpreted machine.

(4) to (6) aie associated with roll maintenance. We believe that a roll in FORFOR is
approximately the same as in BASIC (see under BASIC above), but since no FORTRAN expert

is avaliable, and the assembly listing is poorly commented, we have not been able to verify
this.
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Some further short sequences, (7) and (8), with large counts and time were spotted in the
output from before count reduction. They clearly demonstrate the need for a test bit and

jump instruction.

FORTEN
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(1) 571 32 A CAIG POPJ CAIE JRST CAIE  JRST  MOVE
TRNE CAIE JRST CAIN  AOS CAMG JRST
PUSHJ MOVE CAMGE JRST  AOS MOVEM

(2 949 32 A CAIG POPJ JUMPE MOVE TRNN JRST  CAIE
JRST MOVE TRNN JRST  SETZ POPJ’

(3) 4960 47 B POP POPJ

(4) 2532 41 B PUSHJ JSP PUSH HRRZ  JRST

(5) 2403 47 B PUSHJ JSP PUSH HRRZ PUSH

(6) 1936 55 A PUSHJ SOSG CAIA ILDB  MOVElI CAIG  POPJ

(1) and (2) show the need for good testing instructions. (3) to (6) are from the BLISS routine
entry and exit sequences (FORTEN is written in BLISS). From these resuits it is reasonable to
assume that the routine call administration consumes at least 157 of the time in FORTEN. (6)

represents rea ling a character from input, with some additional administration.

53.2 SEC

Most of the sequences of this program represent loops of considerable length. Usually
several matrix accesses can be observed in each loop, but these are not brought out
separately after count reduction.

FORFOR SEC
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(1) 2987 119 A CAMGE AOJA MOVE MOVElI IMUL  MOVE ADD
MOVE ADD FMPR  MOVE ADD MOVE ADD
FMPR FADR MOVEM MOVE MOVEI IMUL
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(2) 2340 55 A CAMGE AOJA  MOVE! IMUL  ADD MOVE  MOVE
ADD FMPR MOVE ADD FADRM

MOVEM CAMGE AQJA MOVE MOVEI IMUL

MOVE ADD MOVE ADD FMPR

MOVEI IMUL  MOVE ADD MOVE

MOVEI IMUL  ADD MOVE

ADD MOVE ADD FMPR

(8) 12499 11.2 MOVE ADD FMPR  MOVE

(9) 20181 15.7 MOVE ADD FMPR

(10) 27.28 149 B MOVEI IMUL  ADD

(1) ard (2) are loops as mentioned, (3) to (5) are sections of such loops, with loop control and
matrix access showing. The original count for (2) was 2980, and 77 of the time was
consumed by it. The original time was 15.77 for (8), 10.77 for (5), 12.87 for (6). (6) is a load
of a matrix element. (7) to (10) are original results. The MOVE ADD OPERATE sequence is
access to formal vector, (10) is the matrix accessing sequence.

(3) 2987 3.0
(4) 9390 9.6
(5) 8777 8.0
(6) 11072 87
(7) 15364 14.0

oD > P

FORTEN SEC
Maximal sequence length: 20.
Seq. Count 7 Time B/A Seguence

(1) 2987 127 A ADD MOVN FMPR MOVE FMPR FADR MOVEM
MOVEI IMUL  ADD ADD MOVE MOVEM ADDI
AOJL  MOVEI IMUL MOVE ADD ADD

(2) 2980 73 A FADRM ADDI AQJL  MOVE ADD MOVE  ADD
MOVEl IMUL  ADD MOVE FMPR

(3) 4760 80 A MOVE FMPR FADR MOVEM MOVEI IMUL

(4) 5940 39 A MOVEM MOVE MOVEM MOVE MOVEM

(5) 21006 54 B MOVE  MOVEM

(6) 11523 6.1l A MOVE  ADD ADD MOVE

(7) 10562 9.0 A MOVEI IMUL  ADD MOVE

(8) 34831 202 B MOVEI  IMUL

(9) 26790 is4 B MOVEI IMUL  ADD

(10) 7758 84 A FMPR FADRM ADDI  AQJL

(11) 5134 57 A MOVE FMPR FADRM ADDI

(12) 12337 103 A ADD MOVE  FMPR

(13) 22689 157 B MOVE FMPR
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Sequence (1) here is obviously the same loop as (1) under SCCA40. (2) to (4) represent
similar structures. The lattar may indicate the need for a memory to memory move, as
illustrated further by (5). (6) contains vector access. (7) is matrix element load. The
importance of the matrix data structure is further illustrated by (8) and (9), from before
reduction. (10) to (12) are of doubtful origin. (10) and (11) might represent some inner
product like loop, (12) consumed 12.87 of the time using the values from before reduction.
(13) would be considerably more efficiently executed on a two address design. The MOVE
ADD OPERATE sequence reptesents the use of a formal vector and is present in several of

the sequences.

5.3.3 Aitken

This algorithm consists of two phases, first a search in the vector of abscissae to locate the
interval where interpolation is to take place, then the interpolation itself which is somewhat
similar to successive calculations of two by two determinants, controlled by two nested loops.
Depending on implementation the local data are a two dimensicnal array or some number of
vectors. Also some implementations work directly on the parameter vectors defining the
abscissae and ordinates, others move the values needed to local vectors thereby saving
accessing code. Two implementations perform arithmetic on the values while so moved. All

these variations show up clearly in the results to be presented.

The surrounding program, which sets up the vectors of function (logarithm) values, and calls
AITKEN with different parameters, does not show up in the results from the most time
consuming implementations of Aitken, but is very conspicuous in the results from the more

efficient versions.

Aitken - E
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(n 200 82 A FAD MOVE FAD FDV MOVE  FMP MOVE
FMP FAD FMP FAD

(2) 200 119 A MOVE FMP MOVE FMP FAD FMP FAD
FMP FAD MOVE FMPR JRST  POP POP
POP POP POP POPJ  SUB MOVEM
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(3) 198 6.1 A CAMG JRST AOJA CAILE MOVE MOVEM JUMPLE
MOVE CAML PUSH PUSHJ JSP PUSH HRRZ
PUSH PUSH PUSH PUSH JRST  MOVE

(4) 196 67 A MOVEM MOVE FADRB MOVE FMPRB GAMG JRST
MOVE CAMG JRST AOJA CAILE MOVE MOVEM
JUMPLE MOVE CAML PUSH PUSH  JSP

(5) 1485 49.4 A MOVE FMPR MOVE FMPR FSBR MOVE FSBR
FOVR  MOVEM SOJGE

(6) 405 87 A MOVE  SOJ JUMPL MOVE FMPR MOVE FMPR
FSBR

(7) 324 47 A MOVEM SOJGE SOJG MOVE SOJ JUMPL MOVE
FMPR

(8) 255 32 A ASH CAML JRST MOVE JRST MOVE AOJ
1 GAMG MOVE ADD

(9) 405 54 A MOVE MOVEM FSBR MOVEM MOVE MOVEM AOJ
AO0J SOJGE

Sequences (1) to (4) are from the contrclling program, and represent the internals of LOG, its

entry and exit, and the controlling loop. The two first and the two last overlap. As is seen,
the routine entry and exit sequences are dominant, particuiarly the saving ard restoring of
local registers. There is also some indication of use of Horners rule.

Sequences (5) to (7) represent the determinant like loop, with the first being the inner loop,
the next two the outer loop and partly overlapping the inner. Binary search in the abscissae
vector is represented by (8), and vector move by (9). The original result for (9) was 6.47 of
the computed time. Addresses of the vector elements are used directly in the code, to save
address caiculation.

Aitken - B
Maximal sequence length: 14 (12).
Seq. Count 7 Time B/A Sequence

(1 1485 538 A MOVE FSBR FMPR MOVE FSBR FMPR FSBR
MOVE FSBR FDVR MOVEM SOJGE

(2) 405 69 A MOVE  SOJ JUMPL MOVE FSBR FMPR MOVE
FSBR

! 3 324 34 A MOVEM SOJG SOJG MOVE SOJ JUMPL MOVE
FSBR

(4) 630 64 A MOVE SUB CAIG MOQOVE ADD ASH MOVE
- E CAML

(5) 405 33 A AQJ AO0J SOJGE MOVE MOVEM MOVE MOVEM
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(6) 282 39 A POP POP POP POP POP POPJ  SUu

(7) 444 37 A PUSH PUSH PUSH PUSH

(8) 400 64 A FMP FAD FivP FAD

The routine uses the addresses of the formal vectors directly, hence there is no extra
accessing code. The determinant loop, and the partly overlapping sequences from its
enclosing loop are almost as in the E version, as seen in (1) to (3). The binary search shows
up as (4). The vector move of formal to local is (5), its original time was 3.87. Procedure
entry and exit is shown by (6) and (7). From the initialization we have (8), which is Horners
rule in unrounded arithmetic.

Aitken - A
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(D 1320 384 A CAMLE MOVE FMPR MOVE FMPR FSBR  MOVE
FSBR FDVR MOVEM AOJA

(2) 432 33 A MOVE  AOJ MOVE  SOJ MOVEM CAMLE MOVE

3) 288 110 A CAMLE JRST  AOJA CAMLE MOVE AOJ MOVE
SoJ MOVEM CAMLE MOVE FMPR MOVE FMPR
FSBR MOVE FSBR FDVR MOVEM AOQJA

(4) 1920 86 A MOVE MOVEM AOJA  CAMLE

(5) 261 53 A MOVE CAMLE SKIPA MOVE ADD ASH MOVE
JRST  MOVE suB CAIG MOVE ADD MOVE
CAME JRST MOVE ADD

(6) 540 74 A MOVE SuUB CAIG MOVE ADD MOVE CAME
JRST  MOVE ADD MOVE CAMLE

(7) 360 72 A CAMLE AOJ MOVE  ADD MOVE MOVEM MOVE
ADD MOVE MOVEM MOVE ADD MOVE FSBR
MOVEM AOQJA

(8) 282 36 A POP POP POP POP POP  POPJ SUB
(9) 400 72 A FMP FAD FMP  FAD
| E (10) 3433 73 B AOJA CAMLE
' (11) 3078 76 B  MOVE ADD

(12) 2538 9.1 B MOVE ADD MOVE

The determinant loop is represented by (1) to (3j; the two latter represent the outer loop
and also overlap the first, which is the inner loop. (8) is own to own vector move in the
outer loop. From the binary search we have (5) and (6). The formal to local vector move is
(7). The initialization phase shows up as rcutine exit and Horners rule, as shown by (8) and

(9). (10) to (12) show the original results for loop control and access to formal vectors.
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Aitken - G
Maximal sequence length: 14 (12).
Seq. Count 7 Time B/A Sequence

(1) 6336 419 A MOVE ADD MOVE MOVEI CAML MOVE MOVEI
CAMG AND TRNN  AOS JRST

MOVE  ADD MOVE MOVE ADD FMPR
MOVE ADD
MOVE ADD MOVE

(2) 2970 17.0
(3) 18837 235
(4) 11439 20.9
(5) 2970 115 MOVE ADD FMPR

(5) 1971 3.7 MOVE ADD MOVEM

(7) 1485 39 B MOVE ADD FSBR

The search in the vector is linear, and represented by (1). The determinant loop is not

o @ @©® @ >

represented significantly except for a short section which occurs twice in the loop and hence
overrides the accumulation of longer sequences. This is (2), which represents multiplication
of two vector elements. Other fractions of this loop are present but not significantly. The
access to a local vector is of the format MOVE, ADD, OPERATE. This is shown in (3) to (7),
| from before reduction.

Aitken - L
Maximal sequence length: 18.
Seq. Count 7 Time B/A Sequence

(1) 1485 310 A MOVE  SOJ IMULI  ADD MOVE FSBR  FMPR
MOVE FSBR  ADD FMPR FSBR MOVE FSBR
FOVR MOVEM AOJA CAMLE

(2) 1485 1720 A MOVE IMULI MOVE ADD MOVE  SOJ IMULI
ADD MOVE FSBR  FMPR

: (3) 6264 405 A  CAMLE MOVE ADD MOVE CAME JRST  MOVE
r ADD  MOVE CAMGE JRST  AQJA
' (4) 9127 95 B AOJA CAMLE
(5) 15219 181 B  MOVE ADD
(6) 14247 248 B  MOVE ADD  MOVE

(7) 1971 7.1 B MOVE IMULI MOVE ADD

The sequences (1) and (2) represent the determinant loop. The vector search (linear) is
. shown by (3). The original results representing loop control and vector access are shown in
g 1 sequences (4) to (6). (7) represents access to a matrix.
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5.3.4 The CALGO algorithms, initial remarks

Before presenting the result for the CALGO algorithms, we make some general remarks about
the languages and their peculiarities: For matrix access the present ALGOL implementation
uses lliffe vectors, whereas the other systems use multiplicative methods.

In ALGOL programs a complicated run time system is used to implement the parameter
mechanism (call by name), space allocation and block structure, and to check the legality of
operations. This is particularly noticeable in routine calls and parameter access. The run
time system sequences are easily detectable by the bit manipulating instructions they
contain.

BASIC uses a similar run time system. User UUOs are used to call the routines of this
system, this even holds for routines to do vector and matrix access. Furthermore all
arithmetic is in floating point, so the indexes must be truncated to integers. The routine to
do this also checks the result against the upper bound. The code to felch and store vectors
is the same except for one MOVEI at the beginning which loads a register with a MOVE,
MOVEM or MOVNM instruction. This is XCT'd from that register at the end of the access

routine. The code for matrix access overlaps that of vector access to a large extent.

5.35 Bairstow

ALGOL Bairstow
Maximal sequence length: 11 (10).
Seq. Count 7 Time B/A Sequence

(1) 345 96 A JRST  AOS CAMLE MOVE ADD 'MOVE MOVE
ADD MOVE FMPR

MOVE  ADD MOVE FMPR FSBR MOVE ADD
MOVE  ADD MOVE MOVE ADD MOVE FMPR
MOVE ADD MOVE JRST  AOS CAMLE

ADD MOVEM MOVE ADD MOVE MOVE

FSBR MOVE ADD MOVEM

MOVE ADD MOVE

MOVE ADD MOVEM

(2) 1001 245
(3) 535 117
(4) 516 6.4
(5) 470 6.0
(8) 518 5.8
(7) 3085 195
@& 1025 6.6
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(9) 4710 203 B MOVE ADD

(10) 637 38 B JRST A0S  CAMLE

Sequence (1) to (6) show mainly vector access (MOVE ADD OPERATE) and loop control (JRST
AOS CAMLE) with some other operations intermixed. ‘The results for the vector access and
loop control before reduction are given as (7) to (10).

BASIC Bairstow
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(1) 3488 357 A MOVE! MOVE HRRZ TRNN JRST  PUSHJ MOVE
A0S MOVE FAD TLZ CAMGE POPJ  ADC
ADD XCT MOVE POPJ

(2) 1138 102 A MOVEI MOVE HRRZ TRNN JRST  PUSHJ MOVE
AOS MOVE FAD TLZ CAMGE POPJ  ADD
ADD  XCT

(3) 1171 49 A JSR JRST PUSH LDB JRST  JRST

(4) 4626 97 B MOVE FAD TLZ

Sequence (1) gives all of the code for vector fetch, except the initial MCVEL (2) gives the
same for vector store, but truncated at the XCT instruction. The counis are correct, as can
be checked against the count for the appropriate UUOs. (3) is the general UUO handler. Its
original count was 4659, representing 19.57% of the time. (4) represents the conversion of
indices to fixed point.

BLISS Bairstow
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(1 90 51 A TRNN JRST  SKIPE PUSn PUSHJ JSP PUSH
HRRZ JRST 05l SETZ JRST  POP POPJ
suB JRST  MOVEI suB JRST  POP

(2) 452 224 A MOVE FMPR MOVE FSBR MOVE FMPR FSBR
MOVEM

(3) 370 9.1 A MOVE FMPR FADR MOVEM

(4) 329 7.8 A MOVEM AOJA CAMLE MOVE FMPR

(5) 263 66 A FSBR MOVEM MOVE FMPR

(6) 263 66 A FMPR FSBR MOVEM MOVE

(7) 276 53 B PUSH PUSHJ JSP PUSH HRRZ  JRST

(8) 376 44 B POP POPJ  SUB
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(9) 819 43 B AOJA CAMLE

Sequence (1) and several overlapping sequences not listed represent output to TTY. (2) is
synthetic division of a polynomial with a quadratic term. (3) is an expression of form D[j] «
D[j]+R+*D[j-1]. (4) to (6) are various parts of the important loops. (7) and (8) represent
routine calling overhead. (9) is loop control.

FORFOR Bairstow
Maximal sequence lergth: 18 (16).
Seq. Count 7 Time B/A Sequence

(D 181 184 A FMPR FADR MOVNM MOVE FMPR FSBR  MOVE
FMPR FADR MOVNM CAMGE AOJA MOVE FMPR

FSBR  MOVE
(2) 181 9.7 A FADR MOVNM CAMGE AOJA MOVE FMPR FSBR
MOVE FMPR

(3) 226 109 A MOVE FMPR FS3R MOVE FMPR FADR  MOVNM

(4) 148 83 A FMPR FADR MOVEM MOVE FMPR FADR MOVEM
CAMGE AOJA  MOVE

(5) 492 26 B CAMGE AOQJA

(6) 859 192 B MOVE FMPR FADR

(7) 581 131 B MOVE FMPR  FSBR

Sequence (1) is the full loop of the synthetic division. (2) and (3) are probably. sections of
this loop which remain thanks to bad pruning. (4) is the same as (3) in BLISS Bairstow, but
the full loop. (5) is loop control, (6) and (7) are timeconsuming combinations of arithmetic
operations.

FORTEN Bairstow
Maximal sequence length: 20.
Seq. Count 7ZTime B/A Sequence

(D 44 44 A MOVEM MOVEI PUSHJ CAIA  MOVE JUMPG CAMN
ASHC ADDI MOVSM MOVSI FADM  ASH TLC
FAD MOVE FAD FOV MOVEM FMP

(2) 148 89 A FADR MOVEM MOVE FMPR FADR MOVEM ADDI
AOJL MOVE FMPR

MOVE FMPR FADR MOVEM

MOVN FMPR FADR MOVN FMPR FADR MCVEM
ADDI  AOJL MOVN FMPR FADR  MOVN

FMPR FADR MOVEM ADDI  AQJL

(3) 222 6.1
(4) 452 23.7
(5) 181 5.9
(6) 226 6.6

!
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BASIC Crout
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(1) 2811 36.7 A FAD TLZ CAMGE POPJ HRRZ IMUL  HRRZ
PUSHJ) MOVE AOQS MOVE FAD TLZ CAMGE
POPJ  ADD ADD XCT MOVE  POPJ

(2) 2811 365 A JSR JRST PUSH LDB JRST  JRST  MOVSI
MOVE HLRZ PUSHJ MOVE AOS MOVE FAD
TLZ CAMGE POPJ HRRZ IMUL  HRRZ

(3) 1001 137 A MOVE POPJ FMPR FADR MOVEM MOVEI MOVE
FADR JRST CAMLE MOVEM MOVEI MOVE MOVEM
006 JSR JRST PUSH LDB JRST

MOVEI MOVE FADR JRST  CAMLE MOVEM
JSR JRST PUSH LDB JRST  JRST
MOVE FAD TLZ

PUSHJ MOVE A0S MOVE FAD TLZ CAMGE
POPJ

Sequences (1) and (2) are largely overlapping parts of the array accessing code. (3) contains

(4) 1239 4.1
(5) 918 35
(6) 7126 13.7
(7) 7126 34.7

@ © > >

most of the general UUO handler in the context of one of the inner product loops, with
access to a matrix and some arithmetic. (4) is loop control. Its original time was 5.17 of the
total. (5) is the general UUO handler. Its original time was 15.37. (6) is the abbreviated
truncation of indices to integer, (7) shows this in the context of the routine that also checks
for index overflow.

BLISS Crout
Maximal sequence length: 20.
Seq. Count 7ZTime B/A Sequence

(1) 2109 479 A CAMLE MOVE IMULI ADD ADD MOVE  IMULI
ADD ADD MOVE FMPR FADRB AOJA

(2) 361 110 A CAMLE MOVE IMULI ADD ADD MOVE  IMULI
ADD ADD MOVE FMPR FADRB AOJA CAMLE
JRST  MOVE SuB JRST  POP POP

(3) 2451 398 A ADD MOVE FMPRB FADRB AQJA CAMLE MOVE
IMULT  ADD

PUSH PUSH PUSH
PUSH PUSH PUSH PUSH
MOVE IMULI ADD ADD

(4) 865 4.2
(5) 424 2.8
(6) 6010 38.8
(7) 5530 41.1
(8) 400 3.0

MOVE IMULI  ADD ADD MOVE
MOVE IMULl ADD ADD MOVN

(oo I o o I o o I 0 I _ 3
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Sequence (1) is the call of ALOG in the beginning of the program, with some environment. (2)
is the same as (3) in BLISS Bairstow. (3) is part of the same and reflects bad pruning. (4) to
(6) are from the synthetic division and again reflect bad pruning.

5.3.6 Crout

ALGOL Crout
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(1) 1282 196 A AORJ® MOVE MOVE ADDI HLLZ  SETZB ROTC
EXCH ROTC  ROT ANDI HLRZ HRRZ  ANDI
LSH AND. LSH CAIN JRST  HLRZ

(2) 1001 213 A ADD FMPR MOVE JSP MOVEI JRST  MOVEI
PUSHJ UFA FADI  UFA FADI POPJ  MOVEM
MOVEM JRST  AOS CAMLE MOVE ADD

(3) 819 143 A MOVEM JRST  AOS CAMLE MOVE ADD MOVE
ADD MOVE MOVE ADD MOVE ADD FMPR
MOVE  JSP MOVEI JRST  MOVEI PUSHJ

JRST  AOS CAMLE

MOVE ADD

MOVE ADD FMPR

(7) 3532 115 MOVE ADD MOVE ADD

(8) 1646 6.6 MOVE  ADD MOVE ADD MOVE
\9) 1015 68 A MOVE ADD MOVE ADD FMPR
The run time system shows up prominently, as in sequence (1) and others. The double
precision add or conversion is (2), part of an innerproduct loop with a call to a double
precision routine is shown in (3). (8) is loop control, (5) to (9) are various representations of
the matrix and vector access code: {5) is the basic vector access, (7) the basic matrix access,
using lliffe vectors. (6), (8) and (9) are common contexts for these accesses.

(4) 1585 3.6
(5) 7351 12.0
(6) 1225 6.2
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(9) 3460 63 B AOJA CAMLE

: Sequence (1) shows the inner product loop (two matrixes). (2) shows the same loop with its
3 exit, and exit from the routine. (3) is unknown, maybe part of both inner product loops. (4)
and (5) show parts of routine entry, (6) to (8) are forms of the matrix access, (9) is loop
control.

FORFOR Crout
Maximal sequence length: 20.

Seq. Count 7 Time B/A Sequence

(1) 1225 242 A JFCL  FMPR JFCL  UFA JFICL  FMPI XFCL
UFA FADI  POP POP POPJ  MOVEM MOVEM
MOVEI PUSHJ PUSH PUSH UFA FADI

(2) 1015 1563 A MOVE MOVEl MOVEM MOVE IMUL  MOVE IMUL
ADD MOVE ADD MOVN  ADD MOVE  MOVEI
MOVE] MOVEM MOVEM MOVEM PUSHJ PUSH

(3) 2466 187 B MOVE IMUL MOVE IMUL  ADD MOVE ADD
The double precision arithmetic is shown in (1), the inner product loop in (2). (3)is access to

a formal matrix.

FORTEN Crout
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

() 819 294 A ADDI AOJL MOVE IMUL  ADD ADD MOVE
IMUL  ADD ADD MOVE FMPR  MOVEl MOVEIL
PUSHJ PUSH PUSH PUSH  UFA FADI

MOVE MOVE MOVE MOVE MOVE MOVE

MOVEM MOVEM MOVEM MOVEM MOVEM MOVEM

(4) 735 4.9 MOVEM MOVE MOVEM MOVE MOVEM MOVE

(5) 2390 21.2 MOVE IMUL  ADD ADD MOVE

(6) 2796 218 B MOVE IMUL ADD  ADD

(7) 1345 21 B ADDI  AQJL

(1) is an innerproduct loop with loop control, access to two matrixes and entry to the double

(2) 511 3.3
(3) 256 1.7
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precision routine. (2) to (4) indicate the need for a vider variety of muves. (2) and (3) are
from routine entry and exit sequences. (5) and (6) are matrix access. (7) is loop control.
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5.3.7 Treesort

This algorithm was chosen because it contains packed data and linked structures. It is the
shortest of our subject programs, and the WHILE loop dominates all the resuits. The only
intersting feature is the different way the five s,stems use to pack information into words.
In each case we tried to write the program in a way that the system in question was known
to handle efficiently. In the case of FORFOR, therefore, we used division by an octal constant
that is a power of 2 to unpack, since this was known to generate a shift. Similarly in the
BLISS version we used the bytepointer construct, which generates halfword instructions.

The BASIC result is not compatible with the others for two reasons: A shorter vector was
sorted, to reduce execution time, and the vector fetch is very different from in the other
systems, as stated eisewhere.

The results were:
ALGOL Treesort:
(1) 8574 1823 B MOVE IDIVI

BASIC Treesort:
(2) 2514 65 B FDVR

BLISS Treesort:
(3) 8174 75 B HLRZ

FORFOR Treesort:
(4) 8974 160 B MOVE LSH

FORTEN Treesort:
(5) 8174 450 B MOVE IDlV
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5.3.8 PERT

ALGOL PERT
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(1) 555 200 A XCT PUSHJ PUSHJ MOVE PUSH MOVEI MOVE
PUSH HLRZ PUSHJ MOVE ADD MOVE  POPJ
POP POP TLNE POPJ  MOVE POPJ

(2) 411 136 A MOVE POPJ  POP POP TLNE POPJ  MOVE
POPJ MOVE MOVE ADD CAME JRST  JRST
SOS CAIGE XCT PUSHJ PUSHJ MOVE

) 487 67 B JRST  AOS CAMLE MOVE ADD MOVE ADD
MOVE CAIG

(4) 1461 95 P MOVE ADD MOVE ADD

(5) 3415 163 B MOVE ADD MOVE

(6) 622 28 B JRST  AQCS CAMLE

Sequence (1) is the complete thunk for the parameter to SCAN, including its call by XCT in
SCAN, its excursions into the run time support routines, and its return to SCAN. (2) is the

loop in SCAN, when the test in the enclosed conditional is false. It overlaps the thunk in (1),
l but not completely. (3) is the beginning of the loop enclosing the first case statement
| (switch usage), including loop control. (4) is access code for two level indexing, (5) is the

access code for one level indexing in vectors. (6) is loop control.

BASIC PERT
Maximal sequence length: 20.
Seq. Count 7 Time B/A Sequence

(1) 874 105 A JRST  CAMLE MOVEM MOVEI 005 JSR JRST
PUSH LDB JRST  JRST  MOVSI MOVElI MOVE
HRRZ TRNN JRST  PUSHJ MOVE AOS

(2) 3989 448 A MOVEI MOVE HRRZ TRNN JRST  PUSHJ MOVE
AOS MOVE FAD TLZ CAMGE POPJ  ADD
ADD  XCT MOVE  POPJ

¢c)] 874 86 A MOVEI MOVE HRRZ TRNN JRST  PUSHJ MOVE
AOS MOVE FAD TLZ CAMGE POPJ  ADD
ADD  XCT

(4) 3989 357 A PUSH LDB JRST  JRST  MOVSI MOVEI MOVE
HRRZ TRNN JRST  PUSHJ MOVE AQOS MOVE




(5) 3115
(6) 1002
(7) 926

17.2
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A

A
B

005

MOVSI

JSR
MOVE

JSR

JRST
FADR

JRST

PUSH

JRST

PUSH

LDB
CAMLE MOVEM

LoB

JRST

JRST

JRST  JRST

(1) is probably the SCAN loop, showing loop control and entry into the vector fetch UUO. (2)
is the body of the vector fetch UUO. (3) overlaps (2) and represents the vector store

operations. (4) and (5) are included as examples of bad pruning. (4) overlaps the general

UUO mechanism but does not complete the vector fetch sequence of which it is a part. The

same holds for (5}, which contains the complete UUO mechanism but continues into the fetch.

(6) is the UUD mechanism as it should be with good pruning. Its original count was 4991,

with 22.97 of the time consumed by it. (7) is loop control.

Maximal sequence length: 13 (12).

BLISS PERT

Seq. Count
(1) 437
(2) 487
(3) 399
(4) 527
(5) 202
(6) 1716
(7 996

7 Time
12.1

12.8
6.2
8.2
3.1

19.6
6.8

B/A Sequence

A

@ o @0 >» >

B

ADD
MOVE

AQJA
MOVE
MOVE
MOVE
MOVE
AQJA

MOVE

CAMLE
ADD
ADD
ADD
ADD
CAMLE

CAME

MOVE
MOVE
MOVE
MOVE
MOVE

JRST  SOJG MOVE MOVE
ADD MOVE  ADD SKIPG
ADD

CAME

MOVEM

(1) is the loop in SCAN, when the test is not equal. (2) is the loop control and test of the

loop enclosing the first CASE statement.

(3) is addition of vector element, or two level

indexing. It consumed 14.57 of the time before reduction. (4) to (6) show further variants of

vector access, with one or two level indexing. (7) is loop control.
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FORFOR PERT
Maximal sequence length: 14 (12).
Seq. Count 7 Time B/A Sequence

(1) 411 146 A ADD CAME JRST CAMGE AOJA  MOVEM MOVEI
ADD SuB MOVEM MOVE MOVE

(2) 227 68 A MOVL  JUMPLE MOVE CAMGE AOJA  MOVEM MOVE
MOVE ADD  ADD

ADD ADD MOVEI HRRM  JSA MOVM  JRA
MOVElI HRRM  JSA MOVM  JRA

MOVEM MOVE MOVE ADD ADD

MOVE MOVE ADD ADD

(3) 536 125
(4) 625 10.3
(5) 545 8.8
(6) 1170 15.1
(7) 1725 16.4 MOVE MOVE ADD

(8) 481 7.2 MOVE CAMGE AOJA  MOVEM MOVE

(9) 1228 109 B CAMGE AOJA MOVEM

(1) is the loop in SCAN, (2) is the beginning of the loop surrounding the first case (computed
GO TO). (3) shows a rather inefficient way of obtaining absolute values, it is shown in its full

> ©® @ >» @ >

glory as (8). (5) indicates that vector access with two level indexing may be of importance,
this is verified by (6) and (7). (8) shows loop control in context, (9) on its own.

FORTEN PERT
Maximal sequence length: 13 (12).
Seq. Count 7 Time B/A Sequence

(D 268 11.8 A ADD SKIPG SKIPLE CAILE JRST  MOVE ADD
MOVE ADD MOVE  ADD MOVM

(2) 227 6.1 A ADD SKIPG JRST  ADDI AOJL  MOVE ADD
MOVE

(3) 487 121 A ADDI ACJL MOVE ADD MOVE ADD SKIPG

(4) 411 163 A  MOVE CAME JRST A0S  AOSGE JRST  MOVEI
ADD SUB  MOVEM ADD
J (5) 477 74 A MOVE ADD MOVE ADD
: (6) 1986 226 B  MOVE ADD  MOVE
7 268 40 A MOVE MOVEM MOVE MOVEM

(8) 913 49 B ADDI  AQJL

(1) is the body of the CASE statement (computed GO TQ), including the preceeding test and
the computation of absolute value. (2) is the loop enclosing (1), as seen when the initial test
is false. (3) is the same when the test is true and calculation is to proceed as in (1). (4) is
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the loop in SCAN. (5) and (6) show the vector accessing code, (7) indicates the need for
memory to memory move, (8) is loop control.

5.3.9 Havie

All the results from this algorithm are dominated by the loop which calls on the integrand,

and by the computation of the integrand. The only interesting feature is the use of
{ unrounded an other urusual arithmetic in the mathematical library routines computing SQRT
l and EXP. We give a few examples of this.

ALGOL Havie:

Normal arithmetic used.

BASIC Havie:

(1) 1024 116 B FAD MOVE FDV FAD FSC
(2) 1024 99 B FOV FADR XCT FSC

BLISS Havie:

&) 512 134 B FSC MOVEM FMP  FAD MOVE
(4) 512 21.2 FDOV FAD FSC FOV FADR
(5) 512 105 B FSC JRST  POP POP POP

@

These are believed to be conesecutive sequences during execution.

FORFOR Havie:
(6) 1024 215 B FAD MOVE FDV FAD FSC
(7) 1024 208 B FOV FADR FSC SKIPA  JRA

These are believed to be consecutive. The BLISS mathematical routines were "borrowed"
from the FORTRAN library, this explains the similarity of results for these two languages.

FORTEN Havie:
(8) 1024 177 B MOVE FDV FAD FsC MOVE
(9) 1024 223 B MOVE FDV FADR FSC POPJ
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5.3.10 Ising

| ALGOL Ising
Maximal sequence length: 17.
Seq. Count 7 Time B/A Sequence

(1) 983 189 A AOBJP MOVE MOVE ADDI HLLZ SETZB ROTC
EXCH ROTC ROT ANDI  HLRZ  HRRZ  ANDI
LSH ANDI  LSH

(2) 438 7.8 A LSH JUMPN  AND JFFO  SKIPN PUSH  HRRZ
ADDI MOVE CAIG MOVEI SuB HRLI MOVN
HRLZI HRRI  ADDI

(3) 438 84 A SOJL  PUSH HLRZ ANDI  LSH HRLZ  HLRZ
ANDI  LSH JUMPN  AND JFFO  SKIPN  PUSH
HRRZ  ADDI  MOVE

(4) 414 83 A MOVE HRRZ ADDM HRRZ  XCT CAIE  PUSH
PUSH HLLZ PUSH MOVEI EXCH HLRZ SOJL
PUSH AOJA SO

(5) 381 7.2 A EXCH HLRZ SOJ PUSH AOJA SOJL  PUSH
AOJA  SOJL PUSH HLRZ ANDI  LSH HRLZ
HLRZ  ANDI  LSH

(6) 360 7.1 A HRRZ  TLNE JUMPN MOVE MOVE MOVEM MOVEM
AOJA AOBJP MOVE MOVE ADDI  HLLZ SETZB
ROTC EXCH ROTC

(7) 396 55 A CAIN HLRZ ANDI  ADD ADD HRRZ  TLNE
JUMPN MOVE MOVE MOVEM MOVEM AOJA  AOBJP

(8) 381 66 A PUSH PUSH HLLZ PUSH MOVElI EXCH HLRZ
SOJL PUSH AOJA SOJL PUSH AOJA  SOJL

(9) 1044 93 A CAMLE MOVE MOVE ADD MOVE  MOVEM JRST
AQOS

(10) 574 51 A JRST  AOS MOVE CAMLE MOVE MOVE ADD
MOVE

Sequences (1) through (8) all represent parts of the run time support routines, particularly

those used at routine calls and name parameter access. These functions probably account
for around 507 of the execution time. (9) and (10) represent parts of some some program
loop or loops, possibly the assignment to nonlocal vectors in SORT.
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BLISS Ising
Maximal sequence length: 14 (13).
Seq. Count 7 Time B/A Sequence

(1) 184 84 A AOJA  CAMLE JRST MOVE ADD
AOJ MOVEM AOS JRST

(2) 784 19.3 CAMLE MOVE MOVE MOVEM ACJA
(3) 296 6.9 MOVE MOVEM CAMLE ADD

(4) 381 13.6 PUSHJ PUSH PUSH SUBI  PUSH
(5) 378 5.7 POP POPJ  SUB

(6) 281 5.4 suB POP POPJ

(7) 1163 8.0 AOJA  CAMLE

(8) 1999 156 B MOVE ADD

Here (1) is a piece of the SORT routine, containing the end of one loop, an assignment

statement involving a formal vector, and a test ending an outer loop. (2) is from the loops
that initialize formal vectors. (3) is probably the initialization of one of these loops and some
of the loop. The function entry and exit sequences are represented by (4) through (6), loop
control by (7) and formal vector access by (8).

FORFOR Ising
Maximal sequence length: 14.
Seq. Count 7 Time B/A Sequence

99) 112 172 A suB MOVEM MOVNI MOVE ADD ADD
MOVEM MOVE MOVEM MOVEM CAMGE

(2) 184 106 A MOVEM CAMGE MOVEI MOVE ADD ADD
MOVEM AOQS MOVE JRST

(3) 860 15.9 MOVE MOVEM CAMGE

(4) 245 103 JSA MOVEM MOVEM PUSH PUSH PUSH
(5) 248 53 JRST  MOVE MOVE JRA

(6) 414 6.5 JSA MOVEM MOVEM

(7) 657 66 B MOVE ADD

The sequence (1) was not identified. (2) is the same loop as (1) for BLISS Ising, (3) is the
vector initialize loops, the vectore in the FORTRAN version being held in COMMON. (4) to (6)
represent the calling and exit sequences, (7) gives an idea of the cost of formal vector
access.
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FORTEN Ising
Maximal sequence length: 16 (15).
Seq. Count 7 Time B/A Sequence

(1) 184 134 A MOVE ADD MOVNI  ADD ADD MOVEM MOVNI
ADD sus MOVE MOVE MOVEM ADDI  AOJL

MOVE

(2) 184 9.2 A MOVE ADD MOVEI ADD ADD MOVEM AQS
CAMG JRST  MOVE

(3} 860 152 A MOVE MOVEM ADDI  AQOL

(4) 360 60 A MOVEI MOVEM MOVEI MOVEM

(5) 657 70 B MOVE ADD

(6) 381 44 B MOVE  POPJ

(7) 414 6.1 B MOVEl PUSHJ MOVEM

(8) 381 55 B JRST  MOVE POPJ

(9) 1144 84 B ADDI  AQJL

(1) is unknown, but probably in SORT. (2) is the same sequence as (1) in BLISS Ising, (3) is
the initialization of the COMMON vectors in SORT, (4) is unknown, (5) is at least in part formal
vector access, (6) to (8) is routine entry and exit, and (9) is loop control.

5.4 Sequences applied to data types

Sequences (1) to (6) of the BASIC compiler consume about 307 of the total time of
compilation. Much of this could be saved by recoding (1), as previously described. An even
larger gain in time would be achieved, however, if the PDP-10 had an instruction to move
text (byte strings), with the action to be taken on each byte defined by a table. By a
suitable set of options defined by each table entry, this instruction could replace all of the
constructs pointed to by sequences (1) to (6). Such an instruction would also reduce space
cost compared to the recoded form of (1), and programming cost in any case.

Character handling also shows up in the results from ALGOL, sequences (1) to (8), where it
may be assumed to consume well above 107 of the time, and in FORTEN, sequence (6), where
it consumes at least 557 of the time. We know that all compilers have to perform this kind
of processing, the reason it does not show up in the others may be that it is more
distributed over the program, and that text lines are not processed as an entity. If an
instruction as indicated were provided, compilers would be written to make use of it at a
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benefit. It can further be safely assumed that it would find application in 1/O routines, the
importance of such routines is vindicated by our introductory experiments as related on page
37. .The need for this type of instruction was also pointed out by Alexander [AleW72]

Another observation we can make from this material is that vector operations are important
in many different contexts, and occur to a significant degree in many of our programs: Vector
moves consume 47 to 147 of the time in Aitken, 67 to 207 in Ising. Searches in ordered
vectors consume 37 to 407 in Aitken, innerproduct consumes 207 to 607 of the time in Crout.
Access to vector elements consumes from 57 to 507 in many programs, most in the BASIC
programs where they are done through run time system routines.

Hence instructions for vector operators could be introduced to advantage. The least that can
be done is to make the vector move operation already existing In the hardware easily
available in higher level languages. This is only a first step, however. We propose a vector

type along the following lines:

The concept of vectors with a compile time determined address should be unified with
that of dynamically located vectors. They should be given a common formal descriptor

and representation.

The descriptor should allow for vectors stored in non consecutive but equidistant
locations. Zero should be a legal value for this distance. This would facilitate operations
on both coloumns and rows of matrixes; vector moves would perform initialization of a
vector with a single value, vector addition would compute the sum of a vector, and so on.

Further, the vectors should be easily combineable into matrixes and access to individual
elaments of vectors and matrixes should be no more difficult than in common

implementations in present systems.

The operators could include moves, searches (possibly binary), vector addition, and inner

product, the latter accumulated in double precision.

Possibly this vector type could further be unified with the character string type discussed

above.

Other data instructions that might be useful are memory to memory move, and conversion
between fixed and floating point numbers. Both of these contribute significantly to the
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execution time in more than one of our programs. The type conversions have in fact been
included in the KI10 processor for the DECsystem 10. This saves 4 to 5 instuctions on each
use in a general context, 1 or 2 in the restricted context of BASIC matrix access. For some
BASIC programs, this could amount to 37 or 47 of the execution time.

Finally we remark that instructions for packing can save considerable time where they exist
in the ISP and are made available by the compiler used. The language PASCAL [WirN71)
shows how this can be integrated into a rigid type mechanism.

Two objections against some of these instructions are that they do not easily fit into the
PDP-10 instruction format, and the difficulty of accessing them from current higher level
languages. The latter problem can, in part ai least, be solved by giving them the syntactic
status of subroutines. This is already commonly done for operations like negate and absolute
value.

5.4.1 Summary

In the previous section we proposed several data types and instructions for inclusion in the
PDP-10. For each of these, evidence of its usefulness was found in several algoritms and
across most languages. The sequences used to perform these operations were different from
language to language, but the underlying operations were the same. This convinced us that
our results are valid descriptions of the needs of algorithms. For subject set selection it
indicates that the intended area of application should be covered reasonably well, but that
the choice of language is less important.

8.5 Properties of operands

As mentioned in the introduction to this chapter, data types desirable for inclusion in the ISP
are not only such that are expensive to simulate using existing operators. Other data types
might be desirable in order to reduce the space cost of data storage, and to some extent the
time cost of the operators.

Examples are given by Wortman [WorD72] and Alexander [AleW72). They have observed the
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distribution of written constants in source programs, and found that a large fraction of the
integer constants can be held in very few bits. (937 and 567 respectively in 4 bits. The
discrepancy may be caused by Wortman’s use of student programs, whereas Alexander used
larger programs). One would expect a similar observation to hold for dynamic occurrences of

integers.

If the operands of each instruction are written on the trace, this dynamic distribution can
easily be observed. To relate these observations back to specific storage locations and
variables, and to find the maximum space needed for each variable, would require an array
equal to the whole data area of the subject program, hence this is a relatively expensive
analysis. Furthermore several variables might share the same physical storage location,
adding further complication. Hence the utility of a hardware subrange type is not easily
determined exactly, although a good indication could be found. We do not do this at present.

To o a similar analysis for floating point types i1s even harder, since there is no way of
telling how much of the accuracy provided is really necessary. This must be left to numerical
analysts. A weak indication is provided by observing the usage of immediate type floating

point instructions.

Non-uniform distribution of values is not a phenomenon restricted to written integer
constants. It has been observed, as reported by Hamming [HamR70] and Pinkham [PinR61]},
that "naturally occurring numbers" do not have uniformly distributed mantissae. Rather, the

mantissae seem to be distributed according to the density function:
rix) = 1/(x *In(b)) (1/bsxs])

where b is the base of the number system. For a binary computer with mantissae in [0.5, 1>,
this seems to imply that about 587 of the mantissae would be in [05, 0.75>. The essential
property of this distribution seems to be its invariance to scale ti ansformations.

Tracing methods can be used to obtain more =.perimental verification of this, and to evaluate
methods designed to exploit it. Other observations of operand values could have relevance
for:

Variable length data types

Representation of control and addressing information

Rounding procedures in floating arithmetic
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5.6 Data types, Conciusions

In this chapter we have presented various methods for detecting unnecessary cata types and
operators in existing ISPs, and for detecting non existing but desirable ones.

The former methods are based on frequency counts of instructions, and most of them have
also been presented by other workers in the field. Our conclusions about these methods
were presented in Section 5.1.3. We pointed out that the results are sensitive to changes
both in programming language and algorithm, and hence that a subject set should be well
distributed over the area of application and over the languages used.

For the latter problem, we presented a heuristic algorithm for detecting significant dynamic
sequences of instructions. This algorithm, including the heuristics, is our work. The algorithm
is structured so that the heuristics are easily changed, and new heuristics may be easily
added. This method is also applicable to control operators and address calculation.

The results were presented in Section 5.4. They are less dependent on language and
algorithms than the frequency results, and properties common to the programs are brought
out strongly. This led us to propose several types and operators for inclusion in the ISP
that we worked on. A subject set for this method need not represent many languages, but
should cover most concepts of the intended area of application.

Finally we propose that desirable data types may also be suggested by a study of the
operand values from existing data types. No experimental results from this method are
presented.
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CHAPTER 6

CONTROL OPERATORS

Our major methods for studying control operators are the same as for data operators, i. e.
frequency counts in its various disguises, and instruction siquences. The results of the
sequence studies are presented in Section 6.1. We give no comments on the frequency
results above those given in Section 5.1.3. We also propose some new methods for use in
particular situations. These are discussed in Section 6.2.

Frequency counts indicate that control operators, as defined below, account for a large
fraction of the total number of instructions executed (337 by our SNIFT, Figure 5-4).
Furthermore, control structures are among the most important means of structuring
programs. It follows that efficient implementation of control operators contributes to
reduced programming cost as well as time and space cost.

Further motivation for studying control structures and operators is found in the difficulties of
compiler writing, particularly in code optimization. A great deal of effort at both compile and
run time goes into maintaining (setting and restoring) state information. This applies on
subroutine and coroutine calls as well as in more local control contexts where several
program branches merge. The inability of compilers to cope with this problem is one of the
major reasons for generation of inefficient code. An alternative approach to the problem
would be to design ISPs such that the amount of state to be maintained is less, or where it
can be saved and restored more efficiently.

Control operators are primarily those which may change the contents of the program counter
to a value different from the default value (Old value + 1, n+1’th address etc). Since almost
all programs are written in higher level languages, it is reasonable to extend this definition to

include instructions used for implementing higher level control structures. Such control

structures may be grouped as:
Statement level:
Unconditional jumps
Conditionals
Case selection

Loops

T
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Program level:
Subroutines
Coroutines
Parallel processes (tasks)
On the program level, program context changes and program communication are most
important. Communication ranges from parameter and result passing for subroutines to
synchronization for processes.

Our methods are not suited to analysis of programs with processes, since such programs, and
certainly the most important ones, have to execute at full speed in order to adequately
handle the real time situation they are designed for. The slowdowr caused by the tracing
interpreter would therefore perturb the results.

There may also be more or less control associated with the ope-ators of the language, ie. the

programmer may or may not have to supply explicitly the control necessary for, say, matrix
operations, depending on the language (FORTRAN vs. APL). If the control is supplied with the
operator, the compiler can in general generate more efficient code, since the context is
better defined.

The most important classes of con’ ators on the ISP level may now be described as:
Unconditional jumps
Simple tests (implying jumps or skips)
Loop jumps (count, test and jump)
Subroutine and return jumps
Stack manipulating instructions
Execute instructions
Some monitor calls
Other instructions in special contexts

6.1 Sequences applied to control

In this section we discuss those sequences from Section 0.3 that are relevant to control
operators.

Most noticeable is the cost of the run-time system for ALGOL programs. This consumes 507
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of the execution time for Ising, 207 for Crout. To achieve a reasonable efficiency for ALGOL
programs with many routine calls and name parameters, special instructions and descriptor
formats should be introduced. This observation is not new; it has influenced several ISP

designs, in particular those of the Burroughs B5000 and its descendants and siblings.

A related feature, more common to all the languages, is the cost of subroutine calls. This is
most easily spotted in BLISS programs, since the BLISS calling sequences include stack
instructions that are never used in other contexts. In the BLISS compiler calling sequeces

‘consume at least 257 of the time, in the FORTEN compiler at least 157. Both of these

compilers were written in BLISS!. In the other programs where we have observations, the
time consumed varies between 57 and 207 of the total; 57 in FORTEN Crout, 127 in FORTEN
Ising, and over 167 in FORFOR Ising.

The functions performed by these sequences are transmission of parameters and result,
manipulation of return linkage, and state setting. The latier includes setting up system
registers as well as saving and restoring user registers. The exact constructs needed

depend heavily on the language. We present one example:

BLISS programs would execute considerably more efficiently if the PUSHJ and POPJ
instructions could manipulate the F registertt, and remove the parameters from the stack
after exit. The address field of the POPJ instruction, presently unused, could be used to hold
the number of parameters, so there would be no space cost at the call site, and the change
would fit cleanly into the existing structure. This would reduce the instruction count by 4in
each call, more in some cases. For the BLISS compiler 1/8 of the instruction count would be
saved this way; this is about half ~f 'he instructions executed in calling sequences. If one
were able to specify which registers to save on entry and restore on exit, two further
instructions could be saved on each call for each such register. There is, however, no room
in the instruction word to specify this. This is a problem common to ali calling sequences.

A variant of the subroutine call is the UUO. In our material this is used almost only to call
the BASIC run time system. Since this includes vector and array accessing, UUOs are
frequently used by BASIC programs, and the central UUO handler of BASIC contributes 157
to 237 of the total execution time. This UUO handler, which consists of 6 instructions,

t Two reasons for the difference may be that parameters of FORTEN are passed in registers,
or that there are fewer small routines.

tt The F register points to the activation record of the most recently entered routine.




dhos

CONTROL OPERATORS 141

1 processes the return linkage and selects the right run time routine. Parameters and state

. are processed at the call site and in the individual routines. Hence the cost of UUQs -is
extremely high compared to using one of the subroutine call instructions. An exception is
when only one UUO is used. In that case the central UUO handler reduces to one instruction.
The advantage of UUOs over other subroutine calls is that they allow a memory address
(subjected to the standard effective address calculation) and an accumulator address to be
transmitted to the routine at no extra cost in space or time at the call site. It also permits
linkage to subroutines through a table defined at load time and with no name
correspondence. This is of small importance, however. From this we conclude that UUOs
should be used only in very special circumstances where the extra time cost is justified.
UUOs are also discussed in Section 5.1.3.

Another common construct is loop control. This often consumes no more than 27. to 57 of the
execution time, but may consume as much as 97 (Aitken-L) or 107 (FORFOR PERT). It
appeared in at least 16 programs, consuming at least 27 of the time in each. In spite of the

looping instructions provid-d in the PDP-10, most loop control sequences consist of two or

more instructions. This is primarily due to the fact that most loops count upward to a non
zero limit, hence loop control nceds to address both the limit and the branch target (assuming
the counter to be in a register and the increment to be 1). Contributing are the facts that
languages often require ihe test to be performed at the beginning of the loop bul the

stepping of the counter at its end, and the need to store the loop counter in memory.

Results reported by Knuth {KnuD70], Shaw [ShaM71]}, and Alexander [AleW72], for FORTRAN,
ALGOL and XPL, show that 937 to 957 of all wri'ten counting loops have an increment of one.
This form of !oop could be done more efficiently in the PDP-10 if the ADBJN (Add one to
both, jump if negative) were used. This instruction keeps the loop counter in the right half
of a register, the left half is initialized to the negative of the desired number of traversals of

O S

the loop. f.ach tire the AOBJN is executed, both halves of the register are incremented by
one, and the jump is taken if the result (i.e. the left half) is negative.

This instruction is rarely used in our subject set: 709 times in our 1 million instruction SNIFT.
The reason is that extra tests must be performed to make sure that the bound and counter
will not overflow the halfword allocated to them. This suggests that two registers should be
used, one to hold the upper bound and one for the counter. Our results in Chapter 4 show

that there are sufficiently many registers to permit this. Downwards count to a nonzero limit

1
E

can be handled by a similar instruction.




il i B _ e

P e e ——

e

CONTROL OPERATORS 142

Commonly used sequences for loop control consist of a AQJXX CAMXX pair. Our instruction
will execute in less time than the CAMXX, since no memory operand is needed. Hence these
instructions would reduce the time cost of loop control by 407 to 507, or up to 57 of the
execution time of some programs. For very short loops, such as initialization of vectors, this
saving could be a significant fraction of the time of the loop. The prologue may imply a
larger space cost than for most present loop controls. The hardware cost is that of adding
the new instruction(s). The instructions integrate reasonably well into the PDP-10 ISP
structure, hence the programming cost will probably be reduced.

We finally draw attention to various forms of testing that are prominent in some of our
subject programs. This is seen in the ALGOL run time system and in the compilers, and
consumes 27 to 117 of the time. The ALGOL run time system also does a great deal of bit
manipulation. We can not suggest any improvements on these operations without further
knowledge of their semantics.

6.2 Some special problems

In this section we discuss some problems associated with control operators in general, or
with special control operators, which are not easily solved using the more general methods.

6.2.1 Control information

An important aspect of control operations is the control information, i.e. that information
which is processed by the normal data operators, but whose main raison d'etre is its use for
control purposes. This includes loop counters, stack pointers, returr. addresses and other
addresses, parameter descriptors, displays, etc. ldeas for improved control operators might
come from studying how such information is processed.

We make the simplifying assumption that we may disregard information stored in primary
memory, and consider only register contents. The information in a register is used for
control purposes at the control points, i.e. whenever the register is addressed by a control
operator. We are interested in the history of control information accumulated at control
points.

T T T T T T T MRy
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The sequences of sections 5.2 and 6.1 tell us something about this, but they have several
deficiencies: They are not accumulated at control points, they contain instructione irrelevant

to the control information, and they cover a too short span of time.

Another form of history which we already have is the register usage classes of Section 4.5,
These classes are also inadequate for the present purpose, since only the kinds of events in

the life of the register are known, their order and number is unknown.

A third form of history is the sequence of instructions that operated on the specific register
before the control point was reached. Such register sequences can be collected by a
process somewhat similar to that described in Section 5.2, but in many ways simpler. lIts
main properties are:

a) Sequences are accumulated separately for each register, and only instructions

affecting iat register are included.

b) Each sequence is restricted to one R-life of that register. (R-life defined in Section
4.2). This might cause some sequences (particularly those representing the history of
a loop counter) to become very long. A Kleene star kind of concept would be useful

in such cases, or the sequences may be truncated at the old end.
c) Sequences are tabulated each time the register is used for a control purpose.

d) The collection takes place in one pass. If space is scarce, some kind of pruning might
be riecessary.

In such histories, the time order of the events is preserved, but only events affecting the
particular register is recorded. If parts of the computation have taken place in other
registers, this information is lost. We do not believe this to be a serious problem, however.
If it is, one may build the expression trees for the information instead of the sequences.
Techniques for doing this are constantly used in compilers, though with the opposite goal. In
such trees the exact order of operations is lost, and only those aspects of it are preserved

which are relevant to the arithmetic value of the result.

We propose register sequences as the method for study of control information, most likely to
give useful results at a reasonable cost. We have, however, not programmed this method,

and hence have no experimental results to support this contention.
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6.2.2 Test instructions

To perform a test, 3 addresses are needed: two for the values to compare and one for the

instruction that is to be executed if the test succeeds. On the other hand, most ISPs have at

most 2 addresses in each instruction (memory address and register or 2 memory addresses).

Three techniques are commonly in use to solve this problem:

a)

b)

c)

An implicit operand, usually 0, is used for the test. This method is adequa_te when the
value tested either does not have to be computed, or is used for other purposes than
testing. This can be studied by register sequences, possibly extended beyond the

control point.

An implicit change (SKIP), usually 1, 2 or 3, is made in the value of PC depending on
the result of the test (succeeds or fails; >, = or <). This may require another 1 or 2
jump instructions to follow the skip instruction, but at most one of these is executed,
often none. This method is adequate when the false path is exactly one instruction
long, and continues into the true path. Sequences may be used to study the relative
frequencies of SKIP JUMP and SKIP NO-JUMP pairs. This requires a modification to
the sequence program so that these combinations are always printed before they are
pruned. Many SKIP NO-JUMP pairs indicate that this construct is used to advantage.

A condition code (CC) is used to store the result of the test. This is subsequently
tested by an instruction which specifies the conditional new value of PC in its address
field and the desired state of CC in its opcode or register address field. If CC is set
by the arithmetic instructions, the first instruction of this pair is not always
necessary and thic scheme may or may not be more economical in space and time
costs than the ones previously described. This method is adequate if the value
tested is that most recently computed and it is also used for other purposes.

If the ISP under study does not use CC's, a few lines of code in the program that
accumulates IFT's will simulate a CC. The tables that describe the instructions in
terms of the program structure distribution must be available. In this way w? may
estimate how frequently the introduction of condition codes would have simplified the

program.

None of the above methods were implemented; some of the other results, however, have

some bearing on these problems.

i a
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The program structure distribution, presented in Figure 5-4, indicates that the accumulator is
most often tested against memory. The compilers form an exception; here the bit tests and
the tests against an immediate operand are more used. The importance of testing against
memory may in part be due to the use of these instructions in the loop control. Bit testing
and testing apainst immediate operands are second in importance; tests against O are least
important. However, testing memory against O is as important as the analogous test for the
accumulators. Taken together, the tests against zero are almost as important as the
accumulator versus memory tests. These results refer to instruction count. In computed

time, the tests involving mamory incraase in relative importance.

We conclude that programmers prefer b) to a), and that they rarely need to test values
genuinely for zero, at least not recently computed ones. The memory against zero tests are
most common in compilers, this may indicate tests of long lasting status indicators, table
entries, etc..

6.3 Control operators, Conclusions

This concludes our discussion of control operators. We have presented the resuits from the
sequence method as applied to control structures, and also suggested some other methods
for obtaining additional information. The latter methods, however, have not been
implemented.

The detailed implementatior of control varies more from language to language than does the
use of data operators. This is particularly so for Ianéuages that use a run time system for
their space allocation and parameter transmission. There is also some variation from
algorithm to algorithm due to the different degrees to which the algorithms use certain
control structures, and in particular those that involve the run time system. Differences are
also inherent in the forms of processing that the algorithms do, as is evident from the
program structure distributions in Figure 5-4. We also found significant similarities across
languages and algorithms. This is clearly seen in the program structure distribution, and
even more clearly in the sequences. In the latter case, though the sequences differ in detail,
they reflect common underlying control concepts, and can in many cases be unified. This led
us to propose a modification of an existing instruction foi' loop control, and to point out a
basic flaw of the routine call instructions. We also pointed out the inefficiency of the UUO
concept of the PDP-10.

e

- a e




CONTROL OPERATORS 146

It the goal is to detect which control structures are common, the subject set need not
represent many languages, but it should be well distributed over all control concepts used in
the area of application. However, the detailed implementation of these control concepts is
highly language dependent, particularly where a run time system is used. Hence a thorough
analysis of programs from the particular language should be done if detailed implementation
is the goal.

Our results do in fact suggest that the ISP should have separate control operators, possibly
microprogrammed, for each commonly used language.

For the same reasons as when we discussed data types, the generality and consistency of
our results lead us to believe in our methods. Our remark in the introduction to this chapter
about compilers and state maintenance correlates well with our findings about routine calls.

Finallly we remark that our results agree well with experience, intuition and afterthought.
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CHAPTER 7

ADDRESS CALCULATION

By address calculation (in a wide sense) we mean the calculation of an effective address to
operands or instructions in physical memory, based on information provided in the instruction
word, in memories addressed by the instruction word, and on other information held in the
processor state. Within the problem area so outlined, there are 3 subproblems:

a) Address calculation for data structuring and control operations, which is discussed in
Section 7.1. Some «f our sequence results are relevant to this problem. These
are discussed in Section 7.1.1. We also propose some other methods for special
problems in Section 7.1.3. Some of these are closely related to those proposed
for control operators in Section 6.2.

b) The problem of mapping a large virtual memory into a small real one. This problem
has been addressed by many authors, hence we do not discuss it here, but refer the
reader to work mentioned in Section 1.4. The basic idea of these methods is to study
the stream of effective addresses, and observe how locality in time implies locality in
space.

¢) Uniting the need for a large name space with a short address field. We propose no
method for this problem; it can be studied by methods similar to those used for b).

7.1 Data structuring

The most common tools in address calculation are indexing, indirection, and base registers.
We discuss our methods and results for indirection and indexing. The use of base registers
is closely tied to problem c) above. Since we present no methods for this problem, we only
mention base registers in passing.

Following a terminology proposed by Foster [FosC70] we will mean by pominator a cell
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containing an (indirect) address, and by nominee the cell thus addressed. Our other
terminology is standard.

7.1.1 Sequences applied to addressing

In this section we discuss those of the sequences in Section 5.2 which are relevant to data
structuring, and which indicate the need for more specialized address calculating techniques.

Our results reveal two related such structures, namely vectors and matrices.

Vector access consumes 57 or more of the time of at least 14 of our programs, much more in
two special cases: 537 in BASIC PERT, and 467 in ALGOL PERT which has a vector element as
a name parameter. It consumes more than 107 of the time in Aitken-G, Aitken-L, ALGOL
Bairstow, BLISS PERT, FORFOR PERT, FORTEN PERT and BLISS Ising, where more conventional
accessing methods are used. In many accesses in PERT the index is itself an ind2xed

variable, a fact which contributes to the cost for that algorithm.

Vector access is particularly time consuming when the base address of the vector is not
known to the compiler, that is when the vector is passed as a parameter or when dynamic
space allocation is used. The problem could be reduced by addressing vector elements
indirectly through a nominator whose written address is the base of the vector. This would
require that the same index register was used for all accesses to the vector. The compilers
that we used do not seem willing to accept this restriction.

In Section 5.4 we proposed the introduction of a vector type to handle vector operations as
well as access. Alternatively some other solution, such as the introduction of base registers,
should be found to reduce the accessing cost.

| The other data structure giving rise to significant sequences is matrices. Matrices are used
in Crout, SEC, and Aitken-L. The time cost of accessing was 77 of the total computed time in
Aitken-L, and 157 to 207 in SEC. The costs for the versions of Crout are not comparable, |
due to the special use of UUOs in BASIC, and the non-uniform use of double precision
arithmeti- which consumes much of the time where used. They were: 11.57 for ALGOL Crout,
607 for BASIC Crout, 397 for BLISS Crout and approximately 207 for the FORTRAN versions.

The time advantage of using lliffe vectors is clearly seen in the ALGOL Crout result.
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In many algorithms, such as Crout, the matrix elements are accessed in a systematic manner
. as row or coloumn vectors. Hence this cost could be reduced by introducing the vector type
proposed in Section 5.4 or by adequate language constructs. To speed up genuine random
access to matrices, a matrix type with special descriptors and operators could be devised.
This should be integrated with the vector type. A step in this direction has been taken in
the Burroughs B5000 and related computers. A vector is described by a one word
descriptor, the vector so described may itself consist of vector descriptors (i.e. it is an lliffe
vector) and so on.

7.1.2 Indexing and indirection

By observing the frequencies of use of indirection and indexing, we may assess the utility of
those features. Thinking the utility of indexing to be above doubt, we did not actually count
the number of instructions using it. We did, however, count the number of register lives
used for indexing, and we also observed what other kinds of operations those lives were
subject to. These are the register usage classes of Section 4.5. Our observations are
reported in Figure 4-17 and Section 4.5.

We did observe the frequency of use of indirection, and also to how many levels indirection
was carried, whether the nominator was in a register, and whether pre indexing or post
indexing or both were used*.

Two level indirection was observed in all the ALGOL programs, and in FORTEN Crout and
FORTEN Ising, the level 2 nominators comprising from about 1/10 to 2/3 of the total number
of nominators in these cases. Indirection off byte pointers was found in FORFOR, FORFOR
Bairstow, FORFOR PERT and FORFOR SEC, probably associated with 1/0, and comprising about
2.67 of the total number of indirect accesses.

Post indexing, was found in the ALGOL programs and in the ALGOL, BASIC and FORFOR
compilers. In FORFOR 6.77 of the nominators were indexed, in ALGOL PERT 63.87. For the
other programs the percentage ranged beiween 20 and 50. Our other results are displayed
in figures 7-1 through 7-3.

t By pre indexing we mean indexing used in the instruction word to access the (first)

nominator. By post indexing we mean indexing in the nominator to access the data or the

next nominator.
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The low number of indirections through registers indicates that indirection could not be
replaced by indexing except at the cost of extra LOAD instructions.

The results for the ALGOL programs indicate that two level indexing may be useful in certain
circumsﬁnces, for instance where the access path is computed and has a relatively long
lifetime, or where it depends on more than one index. Indirection to one level is justified by
being used in most programs; one instruction execution is saved on each indirection not
through a register. The instruction count of FORTEN Crout would increase by over 77 if
indirection were removed, and by 37 or more for 14 of the 41 subject programs.

7.1.3 Addressing information

By addressing information we mean computed information used in address calculation, such as
indexes or nominators. The analogy with control information is obvious, and information
about them may be collected in the same way, except that addressing information is
collected at addressing points, defined by analogy to conirol points. The reader is referred
to Section 6.2.1, which applies mutatis mutandis to addressing information.

A study of addressing information might reveal important manipulation of such information,
that could lead to new address calculation algorithms in the ISP. Analysis of addressing
information should be correlated well with that of conirol information, particularly loop
counts and case selectors, which from other experience might be expected to play a double
role.

It may also be of interest to study the context of indexed data accesses. Indexing may be
used in several contexts, and the following can probably be distinguished mechanically:
Record access, with constant offset and computed base.
Array access, with computed offset and constant base.
Array access, with computed base and computed offset.
Immediate operands.
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FIGURE 7-1

Fraction of instructions using indirection

1561

Algorithm\language ALGOL  BASIC  BLISS FORFOR FORTEN
Bairstow 0.006 0.030 0 0.024 0.010
Crout 0017 0.047 0 0.040 0.073
Treesort 0.000 0.031 0 0.000 0.000
PERT 0.025 0.034 0 0.048 0.034
Havie 0.019 0.036 0 0.060 0.060
Ising 0.018 - 0 0.032 0.053
Secant - - - 0.034 0.022
Algorithm\Programmer E B A G L
Aitken 0 0 0 0 0
Source progr.\Compiler ALGOL BASIC  BLISS FORFOR FORTEN
Treesort 0.026 0.015 0.000 0.003 0.000
FIGURE 7-2
Fraction of nominators in a register
Algorithm\language ALGOL  BASIC  BLISS FORFOR FORTEN
Bairstow 0.021 0.007 0 0.024 0.005
Crout 0 0.001 0 0 0.000
Treesort 0 0.001 0 0 0.167
PERT 0.002 0.003 0 0.003 0.001
Havie 0.001 0.003 0 0.001 0.000
Ising 0.001 - 0 0.048 0.001
Secant - - - 0.171 0.000
Algorithm\Programme- £ B A G L
Aitken 0 0 0 0 0
Source progr.\Compiler ALGOL  BASIC  BLISS FORFOR FORTEN
Treesort 0.127 0.999  0.059 0.069 0
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FIGURE 7-3

Fraction of indirections pre inde:

Algorithm\language ALGOL  BASIC  BLISS FORFOR FORTEN
Bairstow 0.359 0.985 0 0.953 0.990
Crout 0.854 0.933 0 1.000 1.000
Treesort 0.600 0.999 0 0.500 0.667
PERT 0.719 0.951 0 0.993 0.998
Havie 0.661 0.435 0 0.534 0526
Ising 0.690 - 0 0.737 0.875
Secant - - - 0.828 1.000
Algorithm\Programmer E B A G L
Aitken 0 0 0 0 0
Source progr.\Compiler ALGOL  BASIC BLISS FORFOR FORTEN
Treesort 0.615 0.001 0.937 0.008 0.175

7.1.4 Operand and result modes

Related to addresss calculation is the choice of destination for the result of data operations,
and of the order of the operand for non-commutative operators (Examples: Add accumulator
to memory, result to memory; Subtract accumulator from memory; etc.). These variants of the
operators may be expressed as part of the op.ode, or by special addressing modes. If such
modes exist on the ISP in question, their utility can be assessed by frequency counts. If
such modes do not exist, sequences do not suffice to establish the need for them, since
information about the identity of operands is needed. The "result to memory" mode is
indicated by the occurrence of OPERATE STORE pairs with the same address. If the
accumulator contents is used after such a pair, the indication is for a "result to both” mode.
The “inverse order of operand” mode is needed if a iarge number of LOAD OPERATE pairs
exist, where both specify the same accumulator, and the OPERATE is noncommutative and
addresses a register for its memory operand.

We did not implement detection of such sequences, and hence have no indications for or
against the need for "inverse order of operand” instructions in the PDP-10. The frequsncy
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counts in the SNIFT indicate that both the "result to memory” and the "result to both" modes
are used, particularly for the commutative operators. Thus FADRB represents 147, and
FADRM 217 of all the occurrences of FADRX instructionst in our SNIFT, ¢ “MPRB
represents 2.47 of all the FMPRXs. Similarly the immediate mode for floating arithmetic point
is justified, with 6.47 of the FADRXs and 5.47. of the FMPRXs.

7.2 Addressing, Conclusions

The most important part of this chapter discussed those results of our sequence method
which applied to address calculation. These results indicated a need for improved accessing
methods fo- matrices, and for vectors with a dynamically determined base address, such as
vectors passed as parameters.

We further presented some results from our SNIFT, throwing light on the use of different
result destinations for arithmetic operators. Due to our restricted subject set, these latter
results are considered inconclusive, but they do suggest a need for the "result to memory"”
and the "result to both" modes on the PDP-10.

There is nothing in these results to contradict our earlier conclusions about the validity of
our methods. We refer the reader to the conclusion sections of chapters 5 and 6, which also
apply here, but with some less weight on the dependency of operator implementation on
language.

Finally we presented some results on the use of indirection. These show that one level of
indirection is certainly useful for our subject set, possibly two. Both pre and post indexing
was used.

t FADR is floating add with rounding, FMPR is floating multiply with rounding. The suffix X

indicates the special mode: Both, Memory or Immediate.

1
1
I
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CHAPTER 8

CONCLUSION

In this thesis we have developed some methods for evaluation cf the architecture of
instruction set processors. The methods are based on analyzing traces of program execution,
the traces contain information about every instruction executed by the program. The traces
are written as the program is executed on an interpreter for the ISP under investigation. A
set of programs, the subject set, is used to represent the workload of the ISP.

The main advantages of these methods are:

a) The level of detail to which they permit us to go. In general every instruction
executed, as well as any desirable information from the processor state between
instructions, is easily recorded on the trace. If desired, parts of the instruction
interpretation may be simulated, and information from this traced. In our case we
recorded the instruction word, effective address, program counter, indirect chaixs,

byte pointers and final operands.

b) The generai applicability of the methods. The subject set can usually be chosen
among any programs that can be compiled into the standard relocatable format used
on the processor. The methods are not restricted to a single language or set of

lansuages.

¢) The ease of programming of the methods. Other methods could conceiveably provide
some of the same information, but wculd imply a cons'derable analysis of relocatable

programs or core images to reconstruct instruction sequences and register usage.

The subject programs have to be brought into a format acceptabic to the interpreter.
Usually the standard relocatable format is convenient. For an ISP under design it may
therefore be difficult or impossible to obtain a representative subject set. However, in these
days of microprogramming, it is not improbable that compilers may be written for an ISP
before the ISP itself is frozen. For existing ISPs, as in our experimental work, the
interpreter may run on its own ISP. In such cases the relocatable form of the subject

programs may be used, and no restrictions are posed on the selection of the subj2ct set.

e o o ol
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8.1 Overview of the methods

In chapters 4 through 7 we presented various issues of ISP architecture, viz. register

structure, data types and operators, control operators and address calculation. In each
chapter we presented methods to deal with these issues, together with experimental results
ubtained using our subject set.

Some of the methods were the same, or analogous, for several ISP problems. We now review

the methods in a methodologically systematic manner. They fall in five categories:

Instruction sequences, with the variant register sequences. Sequences are used to
assess the need for new data types and data operators, ccntrol operators, and
addressing modes. Register sequences (i.e. instruction scquences restricted to
instructions affecting one register) can be .sed for studying control and addressing
information in more detail and with greater accuracy than is permitted by the general
sejuences.

Frequency counts of instruction usage. The instruction frequency table can be displayed
in different formats, sorted by execution frequency or by time consumed, grouped into
distributions/mixes, or output in the form of the FGR function. From these results we can
see which operators were not used, and can be omitted. We can also estimate the cost
incurred by having to recode some of the instructions if the instruction set iv reduc.d,

and we can see which instructions are candidates for improved implementation.

Register life classification. We showed how to detect register lives (R-lives), and how
they could be classified according to the use made of the registers during the lives. This
information can be used to assess the need for generality of registers.

Simultaneity of register lives. We presented algorithms to detect how many registers are
used simultaneously, and to calculate upper bounds for the time cost incurred if the
number of registers were to be reduced while preserving the rest of the ISP structure.
These calculations may be done for each of a number of classes of registers, as defined

above, as well as for the total set of registers.

Miscellaneous methods. We proposed several special methods for special problems.
These can be used to investigate indirection, the utility of condition codes and other

solutions to the addressing problem for test instructions, distribution of operand values
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with partword operands in mind, and so on. One may also implement methods for special

properties of the ISP, such as byte pointers on the PDP-10.

The methods have different needs for data space and tables of descriptions. They also use
different parts of the trace input. These factors, and also the forms of analysis performed,

have some implications for the programming of the methods:

The instruction sequence algorithm makes many passes Over the trace, and needs a large
data space, but only the instruction word is needed from the trace, and no tables of
descriptors are needed. Hence this program should be preceeded by a program that
condenses the trace. This latter program can also accumulate the IFT and print its various
forms. This latter process requires several tables of descriptors but a moderate amount of
data space.

The algorithm for simultaneity of register lives has two phases, the former writing a special
file for use by the latter. Neither phase uses much data space, but the first needs some
table space. These tables are the same as are used for R-life classification. The latter
algorithm needs some data space, but not overly much. Hence it may be programmed with

the first phase of the simultaneity algorithm.

In this first phase all register usage, including indexing and indirection through registers,
must be detected. For this the effective address is needed. Hence the indirection statistics
is best accumulated in this program, and also the special sequences for operand and result
modes, if space permits.

To accumulate register sequences we need information about the addresses, to see which
registers are used, so that the instruction can be associated with the proper register(s).
Also, some data space is needed to store the sequences. These sequences can furthermore
be collected in one pass. Hence this algorithm does not blend as well with the general
sequence algorithm as might be believed at first sight. Many of the same routines and
structures can be used, but the main control is different. Hence this method is best

programmed separately.

The same holds for operand analysis. For this methods the tables of descriptions used for
the Gibson or Program Structure distributions are needed. From the trace, we need the

instruction word and the operand words.
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8.2 \Validity of the methods

In Section 1.2.1 we discussed various methods for collecting dynamic data. It is at this point
evident that we could not have obtained our major results without using traces. Both the
methods for register structure and the sequence method require the exact sequence of
instructions executed. The register results also require the indirect chains and bytepointers
as well as the effective rather than the written address of most instructions. This amount of
detail, and the preservation of sequentiality which is inherent in tracing, could not be
obtained by any of the other methods discussed in Section 1.2.1. Jump tracing could not be

used, since we could not have recorded indirect chains or effective addresses that way.

Many of the methods are exact. This applies in particular to the instruction frequency
results, the register results up to simuitaneity, the register classification results, and the
miscellaneous small methods. Hence for these methods the validity of the results depend
mostly on the selection of the subject set.

| The sequence method is particularly inexact, due to its use of heuristic methods, and to the
l need for manual analysis. However, the results from this method showed very general
results, and many of the sequences found represented general concepts rot particular to the

language or algorithm where they were found. This supports our contention that these
results are valid and useful.

The cost of reducing the number of registers is also inexact, being an upper bound. Our
intention was to check these results for some of our BLISS programs. In theory and rmanuals
the BLISS compiler permits the programmer to reserve a number of registers, so that they
are not used by the object program except where explicitly named in the source program.

However, the compiler refused to generate code for such unwholesome conditions, and the
verification could not be done.

Our experimental results show good internal consistency. Many of the results are in general
trend independent of both thz algorithm and the programming language in which it was
coded, and the details often show systematic variation with language and with algorithm.
Examples are the register results for ALGOL and BASIC prograins, and the use of floating
point arit imetic in Bairstow, Crout and Havie. This is a strong support for their validity.

S—

Some of the results also agree well with previous knowledge - the state maintenance
problem for compilers as discussed in Chapter 6 is one example, another is the good
agreement of our Gibson distribution with those of Gibson and Gonter.
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The dependence on language is most important for those languages that use a run time
system for significant parts of their control and accessing functions. In the case of ALGOL,
both the sequence results and the register lives were clearly influenced by this. BASIC also
influenced the results more than did FORTRAN and BLISS. This is because BASIC uses only
one type, because no information is kept in registers between statements, and because a run
time system is frequently used. Hence languages with such special properties should be
represented in the subject set if they are used. Also, register usage in general depends on
language.

Our Aitken results show that the variation due to programmer habits can be large. Analysis
of the source programs show that the variation is due mostly to the selection of strategies
for subproblems, but that application of coding tricks also plays a part. Our sample is too
small to show more than this. The variation is mostly in the sequence results, less in register
usage. This suggests that register usage is riore a functior. of the language and compiler
used than of the programmer or algorithm.

The register results are not particularly dependent on algorithm. This is natural, since higher
level languages hide register usage from the programmer. The choice of algorithm has a
strong influence on the use of data operators and data structures.

The results from the FORTRAN programs show good correlation between the two compilers,
This may indicate that language has more influence on the object program structure than do
compilers. The observation may be peculiar to FORTRAN, which is a well understood
language.

l A deficiency of the methods in general is that to a large extent they depend on the compilers
available for the machine analyzed. A particularly bad or unusual implementation of a
commonly used language may flavour a whole analysis, and in no case do the results of an
analysis reflect usage of ISP features beyond those that can be made available to programs
within the state of the art of compiler writing. On the other hand, the results do indicate
what is needed to generate good code for existing languéges using existing compiler
techniques.

Similarly, if an analysis indicates the need for a new overator or other feature in the ISP, it
is not sufficient to implement it in the processor. It must also be made available to the users

through the languages they use. This may cause compiler-technical and linguistic problems.
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When selecting a subject set for a full scale analysis, care should be taken so trat the area

of applications is we.! represented. In parﬁicular, all important data structuring methods and
special operations should be included. The matrix access of Crout, and the unnormalized
arithmetic in certain contexts clearly show this; they are significant where they occur. The
individual subject programs should be large enough that the problem of dominating loops is
reduced to its right proportions. Good representation of languages is important for register
analysis, and particularly for details of control strﬁctures and access methods for data
structures.. It is less important for data operators.

Another problem occurs when analyzing large programns. How can one represent all aspects
of the program within a trace of at most about one million instructions? The obvious solution
is a slight modification to the tracer, and possibly the operating system, so that the tracer
can be "turned on" for maybe 5000 instructions!, then off for a period of time in which the
program executes at full speed, and then on again. Each time the tracer is turned on
computation in the subject program has progressed significantly, and different sections of it
will be traced. We do not, with this method, have any guarantee that the resulting trace
represents a cross section of the program, but our hope is better than by tracing a
consecutive tape-full.

8.3 Specific resdults

We now repeal some of the specific results obtained using our subject set on the PDP-10.
We believe most of them generalize to similar ISPs.

Register utilization was low. The average number of live registers was 7 or less for all
programs, the number of registers used was 10 or less 907 of the time for all programs,
and 8 or less 987 of the time for 29 of the 41 programs. Time here is the instruction
count. If the ISP had only 8 registers, the instruction count of the programs would
increase by less than 207 for all programs.

The instruction count of calling sequences can be as hiéh as 257 of the total instruction
count. This is particularly noteworthy in view of the common assumption that well
structured programs will have many subroutines.

t 1t should be long enough that transients caused by the endpoints are insignificant
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The utilization of the opcodes was low. Our subject set used only 27the 4 out of 421
different user instructions. One set of 128 instructions would sutfice for 98.87 of the
computed time, and a slightly different set of 128 instructions would suffice for 98.67 of
the executed instructions. We note in passing that an instruction set of 128 instructions
is twice the size of that of the CDC 6000 Central Processor ISP, and about the same size
as tnat of the IBM 360.

Much time was consumed by vector operations or in operations that could be subsumed
under a general vector type. This is also true for programe that do not use the
mathematical concepts of vectors or matrices. A vector type with sufficiently general
operators could be used to advantage by most of our programs. Possibly as much as 307
to 407 of the execution time could be saved in some cases.

We also mention the need for character string operations, and the high cost of using
UUOs.

The PDP-10 has a very spacious instruction word, hence both a rich instruction set and a
large addressing space. Several of the results above indicate a reduction of the functions in
a capability, thus freeing instruction word space. Our suggestions for addition of functions
do not nearly consume this space. In fact, the additions indicated could probably be done
using the instruction word space which already is available. For an ISP where space is
scarce, microprogrammirg could provide one way of using it ciliciently for a given class of
applications (See our discussion of the Burroughs B17Q0, page 15).

8.4 Improvements to the methods

Our present programs could be improved in several ways:

The pruning heuristics used for the sequence collection are not adequate, as discussed in
Section 5.2.2. We would expect improved heuristics to significantly reduce the amount of

insignificant output from this algorithm, with correspondingly simplified manual analysis.

The results of Figure 4-27 show that we would have achieved a lower cost for reduction of
the number of registers if we had pronounced the registers to be dead after a dormancy of
only 100 or 60 instructions, instead of 200. An even lower number should be used if the
cost is high when using 60.
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All of our analysis programs are fairly slow. We believe worthwile reductions in the cost of
2 analysis could be achieved by coding critical routines in machine code, and by cleaning up
certain inefficiencies causing extra parameter transmissions.

What is most needed, however, is to try the methods out in a large scale analysis using a
significantly larger subject set, where the individual programs also are larger. Only when
such an analysis has been successfully completed can we claim that our methods have really
proved their worth.

8.4.1 New methods

Some new methods could be implemented. These include the operand analysis, register

sequences and other methods outlined in previous chapters, but also one more general one:

Each instruction could be mapped into its generalization in the Program Structure
classification, and sequences of such general instructions accumulated. This would bring
certain control operations out more clearly, as for example SKIP JUMP sequences, since the
conditions on the tests would be suppressed. Also, we could hope to obtain information on

common expression forms, generalized calling sequences and loop control, etc.

If the results of such analyses show that the number of sequences found in each analysis is
low, and that commonality between algorithms is significant, results of such analyses might be
combined to represent the whole subject set, in a way analogous to our present SNIFT.
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HPPENDIX B

The regisier usese classification

EACH INSTRUCTION IS DESCPIBEQ BY A TWO HOPO THBLE ENTRY.

THE VALUES OF THESE ENTRIES APE DEFINEQ BY COMBINGTIONS OF THE FOLLOWING SYMBOL St

s OFFSETS FOR FIELDS. WOPD |.

ACCOFF==]}

INXOFF ==ACCOFF 28
MADFF = =INXOFF 33
AAPOFF ==NAOFFe 183
HARDFF s sAGROFFe10)

LAST
LnsT
LAST
LAST
LAST

[:38)
81
811
811
el

3 OFFSETS FOR FIELDS, WORPQ 2.

PCOFF=s];
NCOFF==100003

3 REFEPENCE ATTRIBUTES

3 ACCUMULATOR FIELD

ACCNUS=0SHCCOFF »
ACCNZL =1 *HCCDFF 3
ACCLOD=2°ACCOFF s
ACCHOD =3+4CCOFF )
ACCMMZ=4oACCDFF 5
ACCUSE =SeACCOFF
ACCULZ Sen” ZOFF 3
ACCUND=?+ACCOFF 3
ACCUL2210°4CCOFF 3
HCCML2= 11eACCOFF 3

LAST
LAST

SUB-0P

811 DF
OF SUB-0P

811

DE
DE!

ACCUNULATOR NDT USED
ACCUMULATOR PELDHDED IF NOT ACC 9.
#CCUMULATOR ALHAYS RELOWDED
ACCUMULATOP MODIFIED.
ACC. ACC+) BOTH MODIFIED
ACC VALUE USED. NOT CHMNGED.
HCC. ACC+] BOTH USED.
UNDEF INED (RS IN CALL. CALLI ETC.)
#CC USED, ACC+] LOADED

ACC MODIFIED, ACC+l LOADED

+ EFFECTIVE MEMORY ADDRESS FIELD

MNUSED=0eM-OFF 3
MUSEDs | *MROFF )

MLOAD=2 e MADFF 5

MPMODIF s 4« MAOFF 3
MSPECL»S*NAOFF
W JLOR=6*MHOFF )
MNZAUS = 7eMKOF F 5

1 ACCESS ATTRIBUTES:

+ INDEX REGISTER USAGE

INYNUS=0® INXOFF
INXDAT =] e INXOFF 3
INXJMP =20 [NXOFF 3
INXTHM=4 0 [NXOFF )

M NOT USEQ

OF ACCUMULATOP USARGE FIELD.
OF INDEX USHGE FIELD.

OF E£FF.ACOP. USAGE FIELO
OF ACC-APITHMETIC FIELO.
OF M-ARITHMETIC COOE.

SCP FDP PEGISTER.
SCP FOR NEMORY.

M USED BUT NDT CHWNGED
M LDHDEQ W. NEW VALUE

M MOOIFIED

M NEEDS SPECINL TPEHTHENT.
M USED FOR FILE DESCPIRTOR.
M USED IF #CC NOT ACC 9.

INOEX NDT USED

INDEX USEQ FOP DATH INDEXING

INOEX USEQ FOP JUMR INDEXING, INCL. XCT.

INOEX USEQ FOP IMMEDIATE OPEPHND.

s ARTTHMETIC WHEN PESULT 10 ACCUMULATOR

AAPNONE s 0e6aPOFF )
RAPCOU= 1 vA:POFF 3
AHPF N =2erwiPOFF 3
PARFLO=490RPOFF 3

ND APTTHMETIC

FIxP. ADD/SUB (COUNTEP PEGISTER)

FlaP. HUL/OIV

FLOWYING POINT OPEPRTIONS.

5 WRITHMETIC WHEN RESWLT TO PERORY

MAPNON = MAPOFF 3
MARCOU=14MAPOFF 3
MAPF | X220 MAPOFF 3
MAPF LD =4 *MAPOFF ;

ND PITHMETIC PESULT TD MEMORY
COUNTER OPEPRTIONS (FIXP. ¢-)
FIWPOINT OPEPATIONS
FLOATING OPEPATIONS

3 NON-@PTTHNETIC ACCUNULATOP OPEPHTIONS

PCNONE =0 ePCOFF )
PCSTOP=1vPCOFF 3
PCHUND = 2oRCOFF 3
RCBYTE=4+PCOFF 3
PCLOG] = 10¢PCOFF 3
RCSHIF 2 209PCOFF 3
RCSTér =4QePCOFF 3
PCADDR = [ 00 *RCOFF 3
RCTEST=200*RCOFF

NOT USED

UALUE IN 2 0 BT

ONE HALFWGD 1Dk

BYTE LOWDED/DLOGHITT

LOGICAL OPEPRTIUNS
ACC. SHIFTED

JATHEP UNCHANGED.

aCC. USED wS STAC POINTER
#CC USEQ FOR ADDPESS (RS IN BLT).

ACC. TESTED UPON



The register ussge clas aficution

¢ NON wPITHMETIC MEMORY DPEPHTIONS

FCNDNE =09eiCDFT
HCSTOP=1eMLOFF
PMCHUND =2 s MCOFF ¢
NCBYTE<4sMCOFF;
NCLOGI = 1nsMCOFF
NCTEST=20AsNCOFF 3
PCPON = 4000 1C0F F :
HCBPTR =] 00eMLOF F §
ACINDR=ZAOASMEOFF ¢
MCE XEC=40MWeMCOFF ¢

m
271
Py
Mu
Mot
Firs

NOT USED.

1S STOPED (PUSHED) .

Hel FOPD MODIF 1€D.

ATE NMCDIFIED.

ROOTH 1ED BY 1 DGICHL OPEPHTION.

T1£S1C0

USED FOP MONITCP PrPulib 1P, PDSSIBLY MODIM1ED
us.0 FOP BYTE PDINIEP

USED FORP INDIPECT wWDDPESS.

EXECUTED vaunP DR EXECH.

SAMPLE INSTRUCTION DESCPIPTIONS

FOUB:1  (FLOATING DIVIOL. PESULT 10 ACCUMULATOP &ND MEMORY)
WOPD 11 ACCMDOD« INXDAT ¢MHGDTE ¢ PFLD *MRFLD

WOPD 2: PCSTOP

MAT:t (MULTIPLY IMMEDIATED:
WOPD 1: ACCHLY ¢ INXTHMeHNUSE D+ AHPF X

WOPD 2/ @

ADJIXs  (ADD DNE 1D ACCUMULATOR, JumP IF X )
WOPD 1: ACCHOD¢ INXJMPsMUSED+HAPCOU

WOPD 21 MCEXEC+RCTEST
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WPENDLX C

Output from reqister classification program

Fexpoint sddition and subtraction are referced to as cnunter cperations.

The non ebvious encodings of the usaae parameters are:

COF 1x Counter and fi.posnt arithmetic A0nlh Inder1na data access

FxFLO Fised and floatina point PRL, N0 Indes ing 1mmediate and jumps

COFLO Counter and floatina paint XOnJtt Index inq data sccess and jumps

CFuFL Counter, fixed and floating 041N Indexing dala sccesses. jumps and immediate
XDATA Indevina dats accesses

xJune Indexing jumps
X 1M Indeving 1mmediste operands

MASK refers 1o the class definition given tn the output procedure.

1 UNION CLASS 1s the union of all classes listed atove 1t.

THE FULL WCT
4 MHSk AND 175 COMPLEMENT
ety CFxFL aDJIN STDPE MALFW BYTDP LOGIC SHIFT STACK ADDPS TESTS MONLT BYIPT INDPr EXECT
000000

FRAC- CUMUL. wWUPGE
CLASS  COUNY  TIDN FPNCT. LENGTH  INTEPPPS TRTION

4 AN0104 1349 0.200 N.2In 6,85 LMD STOPE

s 00MIN4 212 0.116 N.336  3.63 FLowl
N ing 618 0.101 0.43° 1.31
000019 S51 0.090 0.527  3.06 XOHTA
00100 S4S 0.089 0.616 790 SIOPE
[ 487 0.079 0.695 2.46 1L518
0wl 30 20 0.M6 0.741 9.7 XOnJH STOPE
[OLaD | 182 0,030 0.770 10.59 COUN! T1ES1S
w2 150 0.02¢ 0.795 257 FL¢P1 xDuIn
LUOGTR 126 0.021 w.B1S ¢ 49 COUNT sdnln
[(WOTRRY 118 9.819 n.835 53.51 COUNT XDATA STOPE 1£51S
omn] 109 0.018 0.857 4.70 COUNT STOPE
aT153 108 0.018 Q.80 (1.0 S10PE By 108 €515

i MiN420 84 0.014 0.BAY "o he arvigp

001490 60 ©.010 0.993 9.En BYIOP LOGIC 1ESTS
22161 S6 0.9 Q.90 .71 COUNT STOPE SHIFT 1€515
401000 39 A 0.919 S L0GIC EXECY
20101 32 2.6 0915 400 COUNT STOPE 1E51S
000119 36 0.6u6 9T 14,44 AOHTRA STOPE
OUAN0 22 9.00 A9+ 6R.13 STt

3 ASNIne D 0.3 N.IC8 T6 W FLOWT S10PE TE48TS
as1401 18 0.003 0.921 |51 COUNT BYTOP LOGIF TESTS
8m411 18 9.003 0,951 4.00 COUNT «DHTR aytor
az 1600 16 0.3 0.936 .94 LOGIC 1ES1S

h AZN400 16 0.a83 0.933  §.7 ay1op 1£S15
021093 1S 0.002 ©.941 16.60 €O 1X 1ESTS
020100 1S 0.6002  0.944 29 40 STUPE TESTS
HAO0N20 13 0.002 0.946 .46 une
oS00 13 0.000 0.948 20.54 S10PE gripe
021142 12 0.007 0.9%0 11.00 F [P XM LOGIC 1ES1S
023194 12 9.002 @952 ?9.83 FLOmi STUPE LOGIC SKIFT TESTS
O] 12 0.0 0,954 [2.80 COF 1 SIDRE
022103 2 .00 A9 6.5 COFla S10PE SHIFT 1615
GOZ104 12 0.0n° 0.958 19.33 fL001 ST0PE SHIET

1 aNCns 12 8.600 0.960 10.) (0FLD L Fi
LRGIES 12 0,002 0.96C §2.47 COUNT X1MDn STGPE 1E515
0192 11 0602 0.963 .00 FPT STORE
020192 9 0.0 0.965 14 11 FLxPT TESTS
023100 8 0.0 0,966 2w ST0PE LOGIC SHIFT 1ES1S
GRGUIT 8 0.¢01 0.9 .05 Ol [$313
34100 8 3.1 096t 38 M STOME STACE
ANNGH3I 7 8,001 a.970 B.00 COtix Hd b BTI0P
010000 ? 0.001 0.970 .00 wr s
010309 7 0.001 0.977  72.00 STOPE HWLFW “DO- S
000430 ? 6.001 0.9°3 900 pYiaP
021330 2 0001 0.974 930w STOPE WL F W LOGIT 16515
260401 7 8.001 0.976  B.oi COUNT Bylgp 1€S1S
6300 ? 0.041 0.9°7 23.86 STOPE ML 7 W
002610 7 0wl 0.9'8 18 14 Nl HLF BYTDP SHIFT
0c1170 ? 0.001 ©.979 FRE.9 ADJIR STOPE LOGIC 1£S1S
019991 /0,001 0,980 3.0 COUNI HDDRS -
[ ? 0.001 0,981 .43 Flyel
022021 6 Q.00 N.99° 1300 COUNY Cune SHIFT kSIS
320350 6 0.001 @.983 6. D STOPE Mg Fld 1E51S BYTPT INDPK
021500 B 0.enl 99 14 nn S10PF Ar10P LOGIC 1E515
ongza3 6 f.a8 0985 3% COFIx e f 166:C
401200 6 0.001 0.906 5.00 How FW 1UG1C EYECt

1 000112 B .M (1,987 2. FLPT Do STONE

‘ 220031 6 N.a0l 0.988 8. COUNT 16515 INORK
ar2121 6 0.901 6.909 62.¢wt COUNT xJUtW STOPE SHIFT 1515
actlia? 6 6.0 &.99 172.0 CFxfL STOPF LOGIC SHLET 1£515
90430 6 M.001 0.99]1 4.0 Y] grige
021100 6 0.8601 9.99° 6.00 ST10PE LOGIC 1E51S
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Output from register classificalion proarem

004010
021220
923106
23102
9601
004001
0201}
0M111
NAJ0
@20013
2600
000070
000200
004110
onnze3
62191
AIANSH
[GED T
0151
20011
010200
400000
400600

-t e - e s e e e e e e e NN PN WYY

0,993
0.994
. 995
4. 996
0.99¢
0.99/
n.99?
€.997
0.998
n.99p
0.998
9. 990
0.998
€0.999
0.999
0.999
9.999
0.999
€.999
1.009
1.000
1.000
1.000

6133 LIFETINES,

11.17
14.17
14.00
29.%
10,67
3.0
83.s50
14.50
6 00
6.
31.00
15.00
28.00
4.
13.00
5.00
6.M
SP.
16.00
Q.

9.00
19.00
12.00

UNION CIASS AND 1TS COMPLEMENT

237?277
040009

CLASSES USED FORP INDEXING

NASK. *ND 1715 COMPLEMENT

(Lo L)
2727797

CLASS

000010
0091139
nun12
Lodult)
[0 R B
000420
enny1e
00411
20N020
021042
Q2151
010
002610
ec117e
922021
20359
0112
822121
600430
04010
0212290
022011
o1l
00130
920013
29070
004110
009950
900151
020011

- -—-—*
—— e g NNNOROADATNNNDBNIICD

FPaC- CUMR.
TION FPRCT.

0. 090
©.04€
9.024
0.621
@.019
9.014
0.006
0.003
0.007
a.an?
Q.2
0.001
0.001
8.091
0.0}
0.0601
0.00]
0.m)]
Q.o
@.00]
0.0a1
0.0
9.000
6. e
0.099
0,000
n.000
Q. 0na
0.000
8.000

0.090
0.135
0.169
9.109
Q.2
n2i3
".219
0.222
0.02

oy

Py

he L]
<3
bt
233
234
235
236
237
238
239
239
239
249
240

1477 LIFETIMES,

AVPGE
LENGTH

3.6
9.1
2.52
4.49
$3.51
2.00
14.44
4.00
2.46
11.00
52.42
?.35
18. 14
66.29
13.00
76.00
52.M
6C.00
4.00
1117
14.17
83.5%
14.59
6.0
6.0
45. v
44 00
6.0
16.60
42.00

UNION CLASS AND [TS COMPLEMENT

327773
450004

FAFLO
F1VPT
COUNT
COUNT
CDUNT
COUNT

COF1x

COF Ix
COUNT

COUNT

CDUNT
COUNT

CFXFL

xDJ
CFuFL

XDATA
xJure

STORE

DHTH
ADATA STORE
xDaJN
aDAla

0N

XDveTh STCPE
S0
S10PL
K1MDA
ST0PE
A1MOA STOPE
ADATH

86 DIFFEPENT CLASSES.

x0J1n STOPE

in
STORE

INTEPPPETATION

F1aP1
COUNT
COUNT
COUNT

F1apT
COUNT

COUNT

Fl1xp1
COUNT

COUNT
COuNT

CDF X

CuNT
COUNT

ADHTH
DN STORE
xDAtA
ADnTn
ADHTH STOPE
xJune
XONTH STOPE
XDATA
Lune
XIMME
XIN0A STOPE
DHTA
1DATH
XDJIN STOPE
xjune
XIMDft STDPE
ADAT# STDPE
xJunP STOPE
XD
DHTH
KJunp
XDHTH
XDHTH STOPE
LULNL)
X0DATH
XDJIM
xDnTH STOPE
X [MDA
X1MDA STORE
XKDATH

30 01 "EPENT CLASSES.

S$TACK
HALFH L0OGIC
LOGIC SHIFT
LOGIC SHIFTY

slm
SHIFY

HALFW BYTOP SHIFT
HALFW
STACK
HALFW BYTOP
SHIFT

sYioP

HALFH HODPS
HaLFW BYTOP

HALFW BYTOP LOGIC SHIFT STACK ADORS

HALFW BYTOP LDGIC SHIFT STACK ADOPS

BYTOP
syioP
LOGIC

HALFW BYTOP SHIFT

SHIFT
HALFW

SHIFT
8Y10P
STACK.
HALFW LOGIC
SHIFT

STHCK

COF. ' X0JIN STOPE HALFW BYTOP LOGIC SHIFT STRCK

FLOA

ADDRS

TESTS
TESTS
1ES7S

1ESTS

1ES1S

TESTS
TESTS

TES!S

BYTPT INOPA

MONIT

ExeCT
EXECT

EXECT

TESTS MONIT BYTPT INOPK EXECT

TESTS

TESTS
1ES1S
TESTS
TESTS
TESTS
TESTS
TESTS

TES1S
TESTS

TESTS

TESTS

TESTS

HONT

BYTPT INDPK

BYTPT INOPK
T

EXECT




Output from register classification prosram '

THE APITHMETIC CLASSES

CLASS) NO ARITHMETIC 95 5 00 5 DO 5 55 5 S0 D S0 8 S0 6 S0 5 40 8 00 0 8¢ 0 00 0 80 0 00 B SN 0 B0 DGR S AN BN

MASK RND 175 COMPLEMENT
061007

CFXFL

222220 XDJ1M STOPE HALFW BYTOP LOGIC SHIFT STACA ADORS TESTS MONL1 BYTPT INDRK EXECT
FPRC- CUMUL. RVPGE

CLASS COUNT  TION FPRCT. LENGTH INTEPPRETATION

[Tl 618 0.101 ©.191 1.3l

B09011 561 0.09) 0.191 3.6 ADATA

AMN100 S45 9.989 0.279 7.98 STORE

020000 437 0.079 0.359 2.46 TESTS

060130 280 0.046 0.405 9.1 aDAJH STOPE

820500 108 0.018 ©0.452 12.0¢ STOPE BvIpe €575

600420 B4 0.014 ©0.436 2.00 XJune 8y10P

0l 1400 60 0.010 0.446 9.60 BY10P LOGIC TESTS

491000 39 0.006 0.452 4.05 LOGIC EXECT

Hoan11e 36 0.006 0.458 14.44 XDATA STOPE

004008 22 9.904 @.461 68.03 STACK

021990 16 0.3 9.464 7.94 1061C TESTS

220400 16 0.M3 0.467 5.75 BYTOP TE5TS

029190 1S 0.002 @.469 29.40 STOPE €515

00020 13 0.e07 0.471 2.46 xJune

000500 13 0.007 0.473 00.54 ST0PF 3vToP

023190 B 0.001 0.475 272.00 STO%E LOGIC SHIFT TESTS

A20010 B 0.001 0.476 7.0 XDATA €515

004100 B 90.001 0.477 36.00 STOPE STACK

010000 7 0.001 0.478 2.0 +DORS

010309 ? 0.001 8.48) 72.00 STORE HALFHW AODRS

0M1409 ? 0.901 8.481 9M.00 BYTOP

021309 ? 0.001 0.487 93.00 STOPL HALFH LOGIC TESTS

209300 ? 0.0n1 0.483 [3.86 SI0PE HALFW

002610 ? 0.80] 2.484 10.14 XpnTA HALFH BYTOP SHIFT

21170 ? 0.001 0.485 66 XQJIM 51 . LoGIc 1€515

320350 6 0.001 0.486 76.0n KIHDR STLE HALFW TESTS BYTPT INDRK

021509 6 0.001 0.487 l4.0 SI0PE BYTOP LOGIC 1E5TS

401200 6 0.001 0.488 S. 0 HALFW L0GIC EXECT

000430 6 0.00]1 0.489 4.00 XORJM syToP

el1100 6 0.901 0.4 §.60 STOPE LOGIC TESTS

0904010 6 ©.601 0.491 11.17 xonlA STHCK

821229 6 0.001 @.497 14.17 JuMP HALF W L0GIC TESTS

001039 2 0.600 0.490 6.00 XpaJH

202609 1 ©.000 0.493 31.00 HALFW BYTOP SHIFT

0010720 1 0.800 0.493 45.1M 0JIn

000200 1 0.000 9.493 28.00 HaLF W

004110 1 0.000 0.493 44.00 XDATA STOPE 5 ‘ACK

640050 1 0.000 0.493 6.00 X1MOw

010200 1 €.000 0.493 9.00 HALFW ADDPS

460060 1 0.200 0.494¢ [9.00 EXECT

400600 1 0.008 0.49¢ 12.00 HALFW BYTOP ErECT

3028 LIFETIMES.

UNION CLASS AND 1TS COMPLEMENT

232220
0406007

42 OIFFEPENT CLASSES.

CFXFL

ADJIM STORE

HALFW BYTOP LOGIC SMIFT STACK ADORS TESTS

BYTPT LNOPK EXECY
1




Output from register classification
CLASS:  FIXPOINT ADD AND SUBTPACT

MASY AND 115 COMPLCMENT
006001

27777
FPAC- CUMUL. AWGC
CLASS  COUNT  TION FPACT. LCNGTH
LRl 182 0.032 0.030 10.59
Goeon | 126 0.021 0.050 4.49
20111 118 0.019 0.069 53.51
w19 109 0.018 0.087 4.7
022101 S6 0.6n9 0.096 6.0)
029101 37 0.6 0.10°0 4.0
021491 18 90.003 0.105 15.00
Hn0e 18 9.003 0.108 4.00
a2nn3 1S 0.60T 0.111 16.69
0103 12 6.002 0.113 22.50
o103 12 0.002 0,115 6.9
N85 2 0.000 0.117 10.00
MUY ¢ 0,007 0.119 S2.42
000603 7 0.001 ©.120 8.00
020401 2 0.0m 0.171 8.
01003 ? 0.001 0.122 3.0
022921 6 0.001 ¥.123 13.w
691203 6 0.00] 0.12¢ 39.0
22009 6 0.091 @.125 8.M
022121 6 0.M01 0,176 62.00
az3le? 6 A.001 0127 12.00
600001 3 0.0m0 (127 10.67
004001 2 9.600 0.120 I
022011 2 D.000 0.170 83.50
000111 < 0.0u9 €.128 14.5)
,2uN13 2 0.0M 0129 6.0
091703 1 oW 2.129 13.m
anziel 1 0o 0129 5.00
020501 1 0,000 0,179 §2.00
002151 1 0.000 0.129 16.00
020911 1 0.0% 0.129 42.00

294 LIFCTINGS.

UNION CLASS AND 1TS COMPLEMENT
2372772
540000

3

CLASS:  FULL FIXPOINT ARITHMETIC

MASK AND 1TS COMPLCHENT
990nNN2

227?75

FPRC- CUMUL. AYPGE
CLASS  COUNT  TION FPRCT. LCNGTH
000012 1S9 0.001 0,004 2.50
29003 1S 0.002 0.02? 16.60
021042 2 Mg 0.009 1.
000163 12 0.062 0.031 22.50
922193 12 0.m2 0,033 6.50
faon1a2 11 00nT D035 .00
aZAnAg 9 M) ARG 14.1)
200693 7 0.w0] 0037 8.00
QAGHAZ 72 Q.00 a.038 .43
on1203 6 0.00] ¢.039 39.40
000112 6 0.001 0.040 &2 00
03107 6 0.0 D.04] 7.0
N23106 6 0.0 0.042 14.00
0c31W2 S N D043 29.00
0213 2 9.000 0.047  6.09
8a0703 1 6.0 0,044 13.00

67 LIFETIMES. 16
UNION CLASS AND
023757
754020

175 COMPLEMENT

Program

COUNT

;"LO XDJIN STORE HALFW BYTOP LOGIC SHIFT STACK ADOPS TESTS MONIT BYTPT INORY EXECT

INTCPPRETATION

COUNT

COUNT 1DR1A

COUNT xDWTn STOPC

COUNT STOPE

COUNT ST0PE

COuNT ST0PE

Count 8Y10P LOGIC
COUNT XDATA avioe
COFlIx

COFlx ST0PE

COF 14 STORE

COFLO HALFN
COUNT X1MDA STORC

COF Iy HXLFW BYTOP
CouNT eavioe
COUNT

COUNT xJuie

COF 1 HALFW LOGIC
COLNT

COUNT XJUMP STORE

CFaFL S10PC LOGIC
COuN?

COUNT

COUNT »DATH

COUNT ¥DRTA STORE

COF IX \OWTh

COF I STOPE HelFW BYTOP
COUNT ST0PC

COUNT ST0RPC syiop
COUNT X IMDw STORC

COUNT XDATA

DIFFEPCNT CLASSCS.

CFXFL XDJIM STORE MALFW BYTOP LOGIC

F1xP1

COFLD 4DJIM STOPE MALFW BYTOP LOGIC
INTEPPPETHTION

FI¥PT XDATA

COf 1&

FIXPT x1mMC LOGIC
COF Ix STOPC

COFIx ST1CPE

F1xpT S10PT

F1¥P1

COF I HAaLFW BY10P

FlP]

COFIx HiLFW LoGIC
FI'PT xDuin STOPE

CFYFi S10PE LOGIC
FXFLD S10PE LoGIC
FlaP1 S10°E LOGIC
COFIX ADRTA

COF1x STOPL HALFuW BYiyP

OIFFCPLNT CLRSSES.

CFXFL AIMOn STOPC
XJune

HelFW 8YT0P LOGIC

SHIFY

SHIFT

SHIF1

SHIF1
SHIFT
SHIFT

SHIFT

SHIFT

STACK

STACK ADORS

SHIFT

SHIFT

SHIFT
SHIF T
SHIFT

SHIFT

STACK RODRS

1C51S
STACK 6DDPS

1C515
1C575
1CS1S
16515
TESTS
TESTS
1CSTS
TESTS
TCSTS
1C515
TESTS

TESTS
1CS15

INORK

¢SS
1CS18

(434
1C57S

€515

INDPK
HONIT gYTPT CXECY

TESIS MONIT BYTPT INOPK CXECT

16518
€815

TESTS
1ES1S

TES1S
1C815
16518
1C51S

MONIT BYTPT INOPK EXCCY




Output from register clessificetion prosrem c-%
CLASS: FLOATING ARTTHMET IC S8 9 50 8 90 © 00 0 C0 ¢ S0 U 00 0 00 0 00 0 G0 0 U0 H G0 U S0 5 G0 0 00 B NC B 00 0 B

MASY. AND 11S COMPLEMENT
000084 FLOWY
773 COFIX X0J1M STORE HALFM BYTOP LOGIC SHIFT STACK HDDRS TESTS MONIT BYTPT INORK EXECY

FRAC- CUMLL. AUPGE
CLASS COUNT  T1ON PRACT. LENGTH INTEPPRETATION

0001 a4 1349 @.220 0.220 5.5 fLOAI S10PE

000004 212 0.116 @.336 3.63 fLDA!

020104 20 0.003 0.338 26.00 FLOW S10RE 1ES15
023104 12 0.002 ©.3¢] ?79.83 FLOW! S10PE LOGIC SHIFTY 1ESTS
002104 12 0.002 0.3¢3 19.33 FLOAT S10PE SHIFT

000206 12 0.002 0.345 10.60 COFLO HALFW

02312 6 0.001 0.3 17.80 CFXFL STOPE LOGIC SHIFT 1E515
023106 6 0.001 9.347 14.00 FXFLO STORE LOGIC SHIFT 16815

2129 LIFETIMES. 8 DIFFERENT CLRSSES.

UNTON CLASS AND 115 COMPLEMENT
023307 CFXFL STORE MALFHW LOGIC SHIFT
XDJIN eyioP

1E515
754470 STACK ADDPS MONIT BYTPT INORK EXECT

CUMUALATIVE STATISTICS FOR THE PHYSICAL REGISTERS

T01AL 101AL FRACTION ARG USES PR. USES PR. USES PR.
REG LIVES LI USES LIVE LENGTH LIFE  LIVE INSTR TOTAL INSTR
[ 0882 §299. 3004. 0.254 6.01 3.50 8.50 0.15
o1 283 6630. 163¢. 0.318 23.43 §.7? 0.25 0.00
(24 221? 11598. 7940, 0.556 5.2 3.58 0.68 0.38
a3 1368 5092. 4199, 0.244 3.7 o 0.82 0.20
(4] 298 1362, 783. 0.060 4.23 2.63 0.6 0.04
05 21 40858. 231. 0.233 <31.3 11.80 0.0s 0.01
o6 L]} 684. 2. 0.033 14.25 1.9 0.11 0.00
0? [ $958. 369. 0.242 83C.25 46.12 0.0? 0.00
1@ [ 0. 8. 0,000 0.00 0.0 0.0 0.00
11 [} S691. 812, 0.2723 7.3 64.62 9.09 0.02
12 [ 0. 0. 0.000 0.00 0.0 0. 0 0.00
13 12 3462. 348. 0.166 268.50 29.00 a.10 0.02
14 12 1044. 48. 0.050 87.00 4.00 0.05 o.M
15 316 11376, Sta2d. 0.545 36.00 16.21 v.45 0.25
16 626 9346, 2705. 0.448 14.93 .32 0.29 0.13
1? kol 22, 1168. 9.356 218.44 3.5 0.16 0.6
SUM OR AVERAGES:
6133 3.9 12.85 4.60 0.36 0.03 1.38
UNION OF USAGE CLASSES FOR THE PHYSICAL PEGISIERS:
00 637707 CFFL STOPE HALFW BYTOP LOGIC SHIFT SIRCK ADDPS TESTS INORK EXECY
o1 033757 CFXFL xInDv STOPE WALFN BYTOP LOGIC SHIFT ADDRS 1ESTS
02 023537 CFXFL XDAJM STOPE 8YT0P LOGIC SHIFT 1ES1S
93 023537 CFXFL «DMJn ST0PE 8YTOP LOGIC SHIFT 1€81S
04 921557 CFXFL XIMDA STOPE 8Y10P LOGIC 1€STS
e5 ocl3le ADATA STOPE HaLFW LoGIC 1€51S
06 020100 S10PE 1ES15
e? 2610 XDATH HALFW BY10P SHIFT
10 009000
11 621329 AJUNP STORE HALFW LoGIC 1ESTS
12 209990
13 329358 XIMDA STORE HALFW 1ES1S BYTPT INORK
14 026001 COUNT 1ESTS
1S 029351 COUNT Xx1MDA STORE HALFN 1ES1S
16 021170 XDJIN STOPE LoGIC 1€515
1?7 014110 XDATA ST0PE STACK RDDPS
UNION OF CLRSSES AND COMPLEMENT
237?77 ' CFXFL XDJIn STORE WALFN BYTOP LOGIC SHIFT STACK ADOPS TESTS BYTPT INORY EXECT
940000 MONIT

.




#PPENDIX D
The total SNIFT

TDTAL EXECUTED INSTRUCTIONS ®ND I1nE:  JoswwWS 3711889.59 USEC.
274 DIFFEPENT INSTPUCTIOAS USED

THE SNIFT OPDEPED 8Y NUMERIC OPCOOE .
KITH INSTPUCTIDN COUNT nhD COMPUTED TINME.

00 e e Ml (LIS 1 R X o B ms 1868 b 28 00?7 149

. 9.60 a0 e ann e 0.« D.O0 o am . a.0p o« 0.00

8] @019 56 011 83 o1 E LU UK [ L] e DIS 4 Qb 2 o1 11

. .00 o 0.00 o 0.00 o [ O ] 0.00 o 0.00 o 0.00 o 0. 00

82 020 3 &) . 02 [ s 0 04 e 025 0 02 n e a

. 0.00 = D.o e 0.00 o 0.00 o 0.00 o 0.0 o 0.0O o o.M

83 030 I ) [CIE N o 03 [LI\> 1) [ 2 93% 0 032 )]

. 9.00 o 0.0n 0 0. e .00 e 9N . 0.00 2.00 o 0.9

94 040 6 04] 4 092 8 043 (UL L] O 045 0 06 9 @4? 13?

. e.00 o .00 . 0. e 9.0 o 0.00 o e o 0.00 o 6.00

' 05 050 -4 0S] 576 N o 053 (U 0 uss 0 05 2 08?7 1
. Q.00 o [ U (LN U 0.0 e 08.00 o D.OO o 0.00 * 0.090

86 960 o 061 3 2 PR\ X ] 3 064 3 065 3 066 S 067 40

. 0.00 . 0.00 o [N am e 0.y o 0. e 0.00 o 0.00

l 87 079 15 a7l 14 A2 K073 90N 0D e 9 A% 2 e ]
. 9.00 . 9.60 o 0.0 » 0.00 e 0.00 0.00 » .00 o 0.00

10 100 0 101 0 1ol 0 1M 0 104 0 105 0 166 e a0 L]

. 0.1y o 0.00 o [N U 0.00 o D.00 000 o 0.00 o 0.00

11 110 0 1 [ P 0 113 0 114 0 1S e 116 Noal? D

. 0.00 o o.M . 0.0 e 0.00 o 0.0 e 0.00 o 0.00 o 0.0(W

12 129 0 12l 0 122 DI P& ] D 124 0 135 0 126 0 127 0

. 0.00 e 0.00 o .00 o o.n e a.nn . e.0n o 9.A v 9.69

13 UFR 2558 OFN 3 FsC 7686 lup 41 1008 36N LDB 6212 10P8 1914 NP8 8C1

. 12764.42 o 10.62 * B5641.96 ¢ 730.23 o L8519.90 o 47521.80 16958.04 @ 6976.59

14 FaD 10796  FxDl 27286  FrDN 646 FwDB B6  FHOP 11353 FAOR! 250 FADPN 3982  FADPB 2022

. 54043.68 ¢ 13555.98 ¢ 3303.30 e 623.30 o 61987.38 o 5737.60 o 256M4.76 @ 17502. 46

1S FSe 28?7  FsS8l 0 FsSen o Fsbn o FSOR 12876 F58P1 460  FSBPNM 236 FSOP8 -]

. 1509.60 » 8.0 o D60 o 0.00 e 7206X0.64 8 2203.74 ¢ 1559.96 ¢ 0.60

16 FnP 4173 EWP] <7 Fren (U, < 0 FrPR 19386 FnPPi 1143 FHPPH 1S6  FnPPg S12

. 43658.23 ¢ 3789.9C ¢ A e 000 o J13067.14 o 10229.85 o 1809.66 » 6123.52

17 FOV SN 34 Fov) 1 FOVM B6 FO\8 o FOWw 5533 FOVPl 321 foven S fhvPe 33

L4 T1986.20 o 15.80 o 1315.80 o o = 912190 o 4301.4¢ o 76.50 ¢ 504,99

20 MOVE 191789 MOVEL 3GATS O MOVEM 0093 MOVES g navs 949 HOVSI 309 nOVSH 5§96  MOUSS 12

. 466042.27 L] SIMIN.S e 186515.94 ¢ nay e 23IG.07 o 4836.3v 1434.48 . 34.44

21 hOWN SN9?  MOUNL P13 HOUNN 1130 MOUNS 407 HOVM <S19  MouMl 0 novn a  novns 31s

. 13303.17 o 3371.45 o 3140.08 » 1241.35 o 6574.59 * a.m e 000 e 961. 75

22 1L 6513  ImuLl 3983  1pwn RO L VR 25 Ml 1T Ll 7S muLn @  hue 0

. 63890.53 ¢ 37660.60 o c321.60 o 69.50 o 1265.97 » I5C0.05 @ a.60 e 0.09

23 101V 2182 101Vl <581 101vm o 101v8 [ Y [ Y] 0 0OIwm 9 DIve -]

. 36439.40 o 40779.80 ¢ g.m e 0.0 o (LA B Q.00 e .00 e 0.00

29 ASH 15239 PDT 3345 LSH 63 JFFD 1208 RGHC 70 ROTC 1752 LSHC 1 NLL 9

3 . 36552.00) = 8038.00 » 18312.¢0 4211.20 o 9956.70 o 842712 o 5343.91 ¢ 9.0
: 25 ENCH 1737 8 S0 wOBJP 1277 HOBUN 9 JRST 180 JFOL S3IM XY 5168 NULL 0

. 6226.37 » 26455.20 o 7785.83 o 1269.11 * 103169.606 ¢ 3513.30  » 7596.96 ¢ 0.00

26 PUSH)  182CH  PUSH 0236 POP 13954 POPJ 21050 JSP P61 JSP 4799 JSA 812 JPA 836

i o . S6004.15 »  123060.52 o 57909.10 o 66939.00 Sut0.29 6995.73 o 8239.16 ¢ 895, ue
I; 2? RDD 299  KDDI 11394 wOON 1180 #DOB 287 SUD 11346 SuBl 437 SuBn 11 Sup8 )
L . 218147.50 e 20395.26 ¢ 3764 e 915.53 » kIO IS B ] 763.23 o 35.99 o Q.0m
39 Cal 24 (AL by ChIE 4246 C(AILE 825 CAlA 1504 CAIGE 1817 CwIN 7186 CwlG 3706

. 132.46 o 1299.54¢ o 76MW.34 . 50%6.75 692.16 ¢ 3743.48 ¢ 1C862.9¢ @ 6633.74

31 ChAn 0 Camt 6669  CWME 4607 CAMLE 14966 CuMi A CWMGE 11240 CWMN 1516 CanG 5703
. 000 o 18944.75 o 12724.05 0 39781.50 o [CA LS 30910.60 o 4169.00 o 15903.2%

-y




The total SNIFT
32 Jumwe 14
. 25.06
33 Skip Q
. 8.90
3+ A 2434
[ 4356.86
35 A0S 10531
. 32119.55
36 S0 2293
. 4104.47
3?7 S0S 1279
. 3900. 95
4@ SET2 3773
. §546.31
41 ANDCA 19
. 55.48
42 ANDCH 55
. 141.35
43 YOR 137
9 352.09
44  ANDCO 3
. 8.76
45 SETCA 3
. 4.83
46 SECH 2%
. 656. 10
47 0PCO [}
. 8.99)
50 H.L 238
. 1896.66
S1 WLL2 1486
. 3610.98
§2 HWLLD 19
. 24.30
$3 HLLE [}
. 9.00
S4 HAR 49
. 1924.93
S5 HRRZ 12307
. 29906. 01
S HRPD 16
. 38.80
57 HRRE 23
. 55.089
60 TRN 0
. 0.08
61 TON [}
. 8.00
62 1RZ Jee
. 564.40
63 102 9
. 26.20
64 TRC 289
. 540.00
65 710C 0
. 0.89
66 TRO 2
. 54.80
67 100 [}
. 9.09

June
.

SkiPL
.

ROJL
[]

AOSL

XOR}

L]
ANDCBI
L]
SETCAL
L]
SETCHI
L]
(ol }]
L]

WLl

[ ]
HLLZ1

Lot

HLES
.

HPR]

.
HRRZ)
.
HPRO)
.
HPRE |
.

LN

.

TSN

.

we

.

182

[

nc

.

15C

.

no

150
.

22

6841.30

1222
3189.42

5356

9507. 24

0
.00

906
1764.94

S
15.25

66
97.02

140.07

19.

g g k)
25 8- 3o ¥8

h » -
2 8- 25

o
2
25

0
0.00

210
1940.10

1004
1693.48

564
829.00

13
19.11

0
.90
0
6.0

4344
8514.24

0
0.00

1539
2998.09

97
203. 24
20
1411.20
-

<
5.04

JUPE 5618
. 10414.22
S IPE 2704
. 8744
+HOJE 15
. 223.7S
AOSE 15
. 45.75
S0J€ 26!
. 467 19
SOSE 8
. 4.9
SET2M c440
. 5953.61
ANDCAM 49
. 122.87
ANDCHH [
. 0.
xoPr 4
J 12.04
RNDCBH 0
. 0.00
SETCHM 41
. 105.7

SETCHM S
. 14.35
OoRCBNM o
. 0.M
HLLM 33
. 99.33
HLL2M 14
. 36.12
HLLON 9
. 0.00
HLLEM 0
. 0.00
HPPM 4190
. 12635.98
HPRZN el
. 017,56
HPROM S
. 12.90
HPREM 4
. 10.32
TRNE 124
. 2432.36
TONE 129
. 376.68
P2E 1492
. 272.32
102€ 0
. ©.00
TPCE 9
. n.M
TOCE 0
. 0.00
TPOE 0
. 0.00
TDOE 0
. .00

JUWPLE 4178
] 7478.62
SKIPLE 538
. 1404.18
ROJLE 21
. 37.59
HOSLE 121
. S71.55
SOJLE 22

. 399.17
SOSLE 610
L 186v. 50
SET28 1761
. 4294.40
FNDCAB 0
. 0.00
HNDCMO 0
. 9.00
10P8 2
L 216.2¢
#NDCBB 0
. 0.00
SETCRE 0
. 0.00
SETCHE 1
. 2.87
(1] 0
L] 0.00
HLLS 0
. 0.%0
HLL2ZS 20
. 7.40
HLLOS 3
. 0.00
HLLES 0
. [UR LAl
HPPS 0
. 0.00
HPPZS %7
. 1053.29
HPPOS 3
. 8.61
HRRES S
. 14.35
TLNE 5440
. 19662. 40
TSNE 0
. .00
T2e 10"
L 364.56
152€ 0
. 0.00
TLCE 6
. 11.7%
TSCE ]
. 0.60
TLOE ?
. 22.82
150€ 0
. 0.00

JUHPR

SKIPA

HOJA

HOSH

S0JR
.

0
0.00

1764
4604.04

18297
30751.63

me

180414

174
447.10

a0

$8. 40

173
444.61

319
468.93

24?
218104

1494
3639. 42

0
9.00
[}
0.00

21
61.32
971
22508.93
0

0.00

36?
891.81

(]
9.90

(]
0.09

JUMPGE

S IRGE

»
ROJGE
.

HOSGE

SO0JGE
.

1431
2561.49

an
8119.71
!

1.79

949
209¢.45

2850
5101.50

44
134.20

4990
7901.088

]
0.00

0
0.00

16
74.06

[
0.00

0
.00

1n.2?

14
20.58

2181
4274.76

12°9
1860.13

141.

—
~

g e o g
8- 80 25 3o

>
3'3 SO 8’9

—
~
a
- 0

-

a2

9.00

JUNPN 3703
. 6620.3?
St IPN 3108
L 8312.85
#OUN 41
. 73.39
HOSN 6
L 10. 3
SON 158
L 282.082
SOSN 456
. 139).80)
ANDN 13
. 39.13
SETMR 0
. 0.00
SETHAN (]
L] 0.00
0Pt 11?
. 382.1?
EQum ]
L] 0.80
OPCAM %]
. 0.00
oRCHn ]
. 0.00
SETOM 395
. 244.20
HRLM 581
L] 1748.01
HPLZM b
. 196.08
HPLOM (]
] 0.00
HPLEM 0
L 0.60
HLPH il
. 3.1l
HL.R2H 20
L] 51.69
HLRON (]
] 9.00
HLPEM 1
. 2.58
TPNN 42
. 14586.32
TONN 9
. $6.20
TPEN 59
L] 115.64
TO2N 0
. .00
TRCN 0
. 9.00
TOCN 8
L 0. 00
TPON (]
. 0.00
TOON C}
. 0.00

JUPG

SHIPG

ACJG
.

0-2
1147
2053.13
2301
6005.61

29
51.91

236
?19.80

1841
295 . 39

425
1296.25

4
6.02

29.28

40.79

-
4

91.84

17.22

2965
5811.49
8.00
21?
425.32
0

9.00
48
94.00
8.8@
13
25.48

0.09




e

The total SNIFT

THE G1BSON DISTPIBUTION

CLASS COUNT FPRCT. 10TAL TIME

1 L0oST 23764 0.4230 1142426 42
e Flxs- 124300 0.1244 32660414
3  CoMPR

4 @PANC 8181+ @ 2318 609964, 51
§  FLT+- 49443 0,049 273721 06
6 FLML 25644  B3.A756 TTBI43.34
?  FLOWV 11013 8.A310 157322.50
8 FxmM 11033 6.0110 101980, 92
9 FYOIV 4763 (. (40 1900
106 SHIFT 3902 0¢.0390 170061.69
11 L0GIC 96?73  0.0097 2RITN.SS
< MISCL 16351  0.015¢ 528°C.61
13 INDCY

14 FULWD

15 1/0.. M v.00? 9.00
16 CPU..

1?2 hONIT 143 0.0m] 0.00
18 UWUO0. 3256 0.0033 0.0

THE PPOGPH STPUCTUPE 01STPIBUTION

CLASS COUNT FPHCT. ToTAL TIHE

1 Hion NIgg  0.0011 49047, 82
2 WD -k G AN 3 19°991.55
3 11104 41378 D04 61168,
4 SCia 4172 0047 613C.84
S st 4517 NL0W4e5 1101.40
6 PWIOR 43973 0.439 154781 . 45
2?2  AaToPu Bi6n  0,000S a0N.03
8 BUMY S (.wWih 2643500
9 S1BIT 298 0007 14407 7
10 UNUSO
11 UNUSO
12 =SONE 16537 0.0165 44481.83
13 Flve- 107845  0.1070 2812231
14 Flxe/ 15796 0.NIS8 1795w\ 12

1S FLOWT 861 0,861 0909 00
16 SHIFT 3g0Ce 0,039 122261.69

1?2 LOGIC 9673  (.0N97 20170.5S
18 UNUSO
19 UNUSO
< 10%FP 624 0.0v0G ¢
2) 10101 45 0Ll D00
e UUOTH 143 Q, W] o, 40
< Uuuo 3256 9.3 LA
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25  UNUGD
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2 SKInP 29987 N.079) 81109.33
P SPPET 23186 (.0.039 S IENE]
b STHPT 449190 00442 18:4969.62
30 HUSIn U f.0705 3669 9
3t nyso 299 dootal 3597001
2 WISHE 445¢1 0. 0445 1224309
33 HCUSY 1361 ®.013l 34109. 71
34 BLr1s
3% 8118t JH417 0.0004 42491332
36 SIATS 2473 MnCe 3513.30
D L00PJ 35459 ©.0355 67315.67
38 UNCJUP 24379 (L0044 113147 64
39  NOOPS 80  ©.0001 165760
40 (T S160  0.0052 7596.96
41 MISCL 241 0.0000 3033
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1/0 INSTPUCTIONS

FINITOP CALLS
USER LUOS

MOVE MEMORY T0 WOC.
MOVC ACC. 10 MENDPY
HOVE IMHEDIWEE TO wCC.
SEY WP -1 T0 WCC.
SET 0 0P -1 TO St MOPY
MOVE PRPTWOPD 16 mCC.
hOVE wCC. TO PAPTHOPD
aLocy MoVt

SCT 811s

#00 OP SUDTPHLT ONE
FIXED WDD SUBTPUCT
FIVED MULTIPLY DIVIOE
fLOHTING AP THME TIC
SHIFTS

LOGICHL OPEPHTIONS

1/0 TPuNSFEPS

1/0 HDHINISTPRTIDN
QIHEP MONITOP LUOS
USEP WUOS

SUAPOUTINE JUNPS
SUBPOUT INE PETUPNS
STHCIPOINTER OPFPHIIONS
16T WL VLPSUS IMAEDIHTE
TEST WEC. VEPSUS ZEPD
TEST wCC. VEPSUS MEMOPY
1€51 MEMDPY VLPSUS ZEPd

A11 T1E515

S1nTus TLSTS

LOOP JUMPS

UNCONDITIONRL JUNPS

NO OPEPHTIONS

EXECUTE LFFECTIVC HDDPESS
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F |
The totsl SNIFT D-4
MOST TIMECONSUMING INSTPUCTIONS EXCLUDING MONITOR CALLS
1 Relstive execution time 13 with respect to the eversge instruction for this proaram.
NANME USED FRACTION CuMk . PELATIVE wTIHES FRACTION
* USEC. OF T0T. TIME FPACTION EXEC. TIME  EXECUTED O EMECNS.
1 NOVE 466047.27 0.1451 0.1451 0. 7566 191789 0.1918 .
2 ADD 216147.50 Q.0679 0.2139 0.8562 79590 0.0793
3 FMPR 213052, 14 0.90663 0.2793 3.4217 19306 0.0194
4+ NOVEM 186515.94 0.0501 0.3374 9.8133 2093 0.0723
S PUSH 123060. 52 0.0383 0.375? 1.267¢ 30236 0.0307
6 JPST 103164.60 0.037) 0.4078 (.45 20180 Q.00
? FSC 05641.96 0.0267 0.4345 3.3012 7806 0.0079 *
8 FOWR 79121.90 0.0246 0.4591 4.4502 5513 Q.(1155
9 FSBR 22620.64 €.022 0.4017 1.7569 12876 Q.u1l9
19 FOV 71986.20 n.A22 0. 54 4.4522 5034 9. 0050
11 POPJ 66939.060 0.6°08 0.525) 0. 990 10 00210
12 1Mo 63892.53 0.2199 0.5449 3.0543 6513 9. 0065
13 FaDR 61987.38 0.n193 n.5642 1.6999 11353 0.0114
14 POP 57909.10 0.0181 0.58°2 1.29C1 1395¢ 0.0140
1S PUSHJ 656811415 0.0177 0.5999 0.968' 10765 @.0183
16 FaD §4843.68 0.017 0.617¢ 1.5016 10796 0.0108
1?7 MOVEIL §3030.35 0.0165 0.6335 0.4577 6075 ©.0361
18 LDB 47521.80 0.0146 0.6483 2.3818 6212 0.062
19 fP 43858.23 0.0137 0.6619 3.2 1M 0.0042
20 101Vl 403779.80 0.M2?7 n.6746 4.9192 7581 Q.M6
21 CAMLE 39781.50 0.0124 0.6870 0.8562 14466 0.0145
22 ASH 3IG552. 90 0.9114 0.6984 0.7472 15230 3.0162
23 101v 36439.40 0.0113 0. 7092 5.1995 182 n.M22
24 ADJR 32751.62 0.0102 0.7199 0.5573 1879? 0.0183
<S  Iml 32660.60 n.0102 Q.73 2.5530 3983 Q.0040
26 A0S 32119.55% 0.0100 @ M0 0.9496 10531 0.0105
2?7 sSuB 31201.50 Q.0097 ©.7498 0.8562 11346 0.0113
28 CAMGE 31910.00 Q.0096 0.7594 0.8562 11240 0.0112
29 HPP2 29906. 41 0.93 9.7608 0. 7566 12307 0.0123
3 1LD8 28519.92 0.0089 0.777 2. 4659 36 0.61136
31 eur 26425.29 0.0082 0. 7859 14.4339 5™ 0. 06
32 FADRN 25604. 26 1. BN 0.7938 2.9 3982 0.0040
33 HP2 <2528.53 00070 A.8rnQ 0. 7566 e 0.0193
34 @DDI 20198, 2| 0. 0063 0612 0.5573 11394 0.0114
35 CAML 18944.75 0. (059 0.Ai31 0.8562 6069 @.0u6%
36 LSH 18312. 00 0.0057 0.8180 Q.74 7630 0.0076
37 Fu0PB 17602.46 0.0054 &.0742 2.0019 ey 0.000?
e 1oPe 169%8. 04 0.0053 00795 2.7585 1914 Q.49
l 39 06 15903.25 0. (050 0.8345 (1. 8562 5783 0,158
40 TPNN 14586. 32 . (45 0.8390 0.6100 442 0.0n74
41 FADI 13555.98 0.0042 0.9432 1.8463 ooob 0.0073
42 NOW 13303.17 0.004] N.B474 0.8176 500> 0. 5]
43 CRIN 12862.94 0,0040 N.B514 8.5573 186 0.2
44 UFA 12764.42 @8.0040 0. 8554 1.5536 SLh8 0.0026
45 CaME 12724.25 0. 0040 0.8%93 0.0562 4607 0.6
46 HPPM 17635 98 .0039 0.8633 0.9371 4198 0.196042
47 TUNE 1066J. 40 Q.0u33 Q. 0666 0.6107 5440 0n.M54
. 48  JUMPE 10414.22 0.0032 0.86% 0.5573 %818 [N T ]
49 FnPR] 10229.85 0.0032 1.8730 2.7865 1143 0.0011
50 HSHC 9956. 20 0.0031 8.0761 1.4976 RGN 0.00C1
t S1  ADJL 958°.24 Q. (03 w.8791 0.5573 5356 0. 0154
62 J5P g™, 29 .78 0.0819 0.068? 261 0.M33
l §3 JRR 8915. 04 0.00°8 n.8M? 0.9776 7836 DRLIN
5¢ T2 8514.2¢ fa.00°7 n.0073 e.610° 4344 0,43
§s POIC 8427.17 0.0076 0.89%m 1.4976 1750 LNEUT:]
§6 SVIPN 831c2.685 0.0026 0,895 0.8126 3185 [N
) §? JSR 8239.16 @.00C6 0.8951 0.91°2 2810 0.8
i s8 SrIPGE e119.7 n.ens 0.8976 0.816 3l 0. 0113]
59 RO anzg. ou 00008 LA | a.M72 3345 v.133
| 60 HNOI 7901.80 [N Y 0.9026 0,943 4018 0.0049
61 SuBl 7763.23 ([ 0. 9060 0.5573 4337 0.0043
62 H~ND 7661.17 0.002¢ N.9u 08w 891 0.3
63 CwlE 760, Y 0.M0¢ 0.9 0.5573 1046 0L (04
64 xCV 7596. 96 0.0004 [125: T} 0. 4577 5168 3,52
65 JUMPLE 7478.67 0.en73 0.9148 0.5573 4176 0.0042
66 SKIPE 7057 44 0.0002 n.9167 0.81.6 o 0.2
67 5P 6995.73 0.00N22 0.9180 0.4577 4759 €.0048
68 0P8 6978.50 0.0022 0.9C10 2.6464 a2t Q.08
69 JunPL 6041.38 0.0001 09731 0.5573 kL:hey 0.0030
70 CAIG 6633. 74 0.0l 0 9.2 0.55™3 ING .37
21 JUNPN 66837 7007} 0.927 0.5573 37M 0.0037
2 nove 6574.59 0. o029 0.9293 0.8126 519 00075
73 FnePe 6123.52 0119 H.9312 3.7 51C n.oms
74 Se1PG 6M5.61 0.0019 M 9331 0.81.6 01} 0.3
75 Sein 5953.60 0.9 2.9349 0.7597 2440 .04
76 TLNN 5811.40 a.0018 0.9368 0.610 2965 0.4m3n
??7 FaDP] 5737.50 .08 0.9385 1.4291 1250 (.0012
8 SeN2 5546.31 0.001? 0.9403 0.4577 373 0.0038 A
79 LSHC 5§343.91 @.0017 0.9419 1.4976 il 0.0011
PO EXCH 228.37 7.0016 0.9436 0.9371 1737 0.0017
81 SOJGE 5101.50 0.0016 0. 9451 0.5573 2050 0.0028
82 CRILE 5056. 75 0.0016 8.9467 0.5573 825 0.0028
83 nMOVsl 4836.39) 0.0015 0.9480 0.4577 M 0.0933
8¢ JFFO 4711.20 0.0015 0.9492 1714 1200 0.0012
3 8s SKIPA 464 .04 6.0014 @.9511 0.8126 1764 9.M18
86 ROJ 4356.86 0.0014 0.95" 8.5573 24! 0.0024
87 FOVR] 4301 .40 .00 0.9538 417220 32 0.000
88 Strie 429¢. 40 Q.00¢13 0.9552 0.759? 1760 0.0018
89 HPLI 4274.76 0.0013 9. 9565 0.6102 <18l 0.0022

90 CAMN 4169.00 ©.9013 0.9578 9.6562 1516 0 0015
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The totel SNIFT

189 TLOE 72.52
190 HWLR 61.3C
191 ORCA 58.10
192 HM.L2ZS 57.40
193 HPPE §5.89
194 ANDCA 55.48
195 1RO 54.88
196 TDOA SC.56
19?2 RDJG S1.91
198 HLRZM S1.60
199 HALS 9.7
290 XOR} 48. 30
201  ADSE 45.75
ez L0R 43.12
203 ANDH 39.13
204  HPROD 38.88
205  AHOULE 372.59
206 HLL2M 3¥6.12
20?7 SUBM 35.09
208 hOUSS 34.14
209 HLPH 33.11
219 SET08 29.2
211 102 26. 21
212 TDNN 26.3
213 TLON 25.18
214 Jump Z5.06
215 SOSE 4.4
216 HLLOD 4.
21? SETO! o). 58
218 HPPEL 19.11
219 RAOSN 18.3
220 TL2n 17.64
221 HWLPIS 12.22
22 FOVI 15.89
73 SOSL 16.0
224 SETCHM 14.35
25 HPPES 14.35
226 HPPOM 2,90
227 S0SA 12.20
228 XORM 12.04
¢29 TCE 11.76
230 HPLZS 11.48
231 OPCHY 11.2?
232 DFN 19.62
233 HPPEN 19.32
234 ANDCB 8.76
235  HPPOS 8.61
e ANDE 6.02
23?7 150 5.84
238 . SETCA .83
239 1POA 3.9
240 SEICMB .87
241 HLREM 2.58
242 RDJGE 1.79

0. 0000
0.0
Q.00
0. 0000
0.0000
0. 000
0. 00
0,00
Q. 0Ty
0., 00
0.0W)
0. ey
Q. 0O
0.0000
0. ()
0. (e
0. 0000
[AVE
000
0.0000)
0. MW
DNV )]
0.00m
2. 00
Q. 0000
0. 0000
0,00
0. 0009
. (i)
0.9
0. 00Mm
.00
Q. (O
0. 0000
. 000)
0.0000
Q. 000g
0. 000
Q. 0
0. (oW
0. 0md
[s N0
0. 0000
0.00M
0. 00GQ
[ U]
0. 0000
0. 0000
[(RCTN
0.t
0. oM
9. 00
0. 800
0. 0u00

MEAN EXECUTION TIME  3.21 MICRDSEC.
WHICH MEANS  0.3113 MIPS.
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0. 94996
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1. 0000
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1. ()
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1.0udo
1. (W
1. wnny
1.
1. 0000
1. 000
1. 0w
1. 0000
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Q. 9191
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9.8033
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0. 7566
0.5573
0.8233
0.9932
9.8936
0.9371
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©. 9091
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0.9496
0. 566
0.4577
0.45°7
0.949%
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The total SNIFTY 0-?

RMOST “XECUTED INSTPUCTIDNS:

NAME, u TIMES EXECUTED. FRACTION. CUMUL. FRACTION !
1 novE 191789 @.1918 0.1918
2 DD 79290 6.0793 0.271
3 nMOVEM 2229 0.0723 0.3434
4 JPSY 0180 0.0702 0.4135

. S hovEl 36075 0.0361 0. 4496
6 PUSH 30236 .03 0.4799
? POPJ C11S9 8.9210 9.5m9
8 FMPR 19386 0.019¢ 0.5203
9 ADJA 18287 0.0183 9.5386
! 10 PUSHJ 18265 0.0183 0.5569

11 ASH 15230 0.0152 0.5
12 CamE 14466 0.0115 0.5866
13 POP 13954 0.0140 0.610S
14 FSBP 12876 0.0129 0.613¢
15 WPP2 1237 0.0123 0.8257
16 #DD1 11394 9.611¢ 0.6371
17 FRDR 11353 8.0114 0.6484
18 Sue 11346 n.0113 9.6598
13 CANGE 11240 0.0112 0.6710
20 FAD 10796 0.0108 0.68(0
21 R0S 10531 0.0105 0.6971
22 HLPZ Ao 0. 0093 0.7016
23 FSC 7886 0.0078 0.7095
2¢ LSH 7630 ¢.0076 0.7171
25 TPNN 7442 0.0074 0.7248

H 26 CwIN 2186 0.0072 0.7318
g 2?7 Cam 6809 0. W69 0.7307

28 1ML 6513 0. 0N6S 0. 7482

29 LDB 6212 0.00§2 0.7514
5818 0.0058 0.7570
5783 0.0058 0.7637
5533 0.0055 0.7685
S440 0.005¢ 0.2740
5356 0.0054 06.7793
5168 0.0052 0.7845
519? 0.805) 0.789
5034 9.0050 0.7946
4908 A.004Y 9,799%
4759 0.P348 0.6043
4627 9. 00M8§ 0.8089
4344 6.0043 0.8130
4337 0.0043 0.8178
4246 0.0042 0.8218
4198 0.0042 0.8260
417 0.0042 .83
41723 0.0042 0.8344
3983 9. 0n4) 0.8304
3982 0.6040 0.8423

Ay n. 8 0.846° |
33 0.0038 0.8499
3706 0.003? 0.8536
3703 0.6037 0.8573
360 0.038 0.8609
3345 Q.0033 0.8643
3299 0.M33 0.8676
3251 0.033 0.670D
3185 9.w32 0.870
3 0,003] 0.8
2901 0.0030 0.689M
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_?v 169 114 3813 0.0038 Q0.0076 0.0153 0.0305 0.0610
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RAPPENDIX E

Listing of the short subject algorithes

IF COFLJ1 w 8.0
THEN SCL » LN1AISCCOF (J1114SCL

ENOs
SCL + EXPISCL/INOEG*1)):

ALGOL PROGPANS
FOP J + © STEP I UNTIL NDEG DD COF1J) « COF(J)/SCL:
BAIPSTOR IF #BSICOF[)1/COF(N)1 ¢ AOSICOF [NDEG-) ) /COF NDEGI)
! P THEN PEVEPSE :

BEGIN COMMENT WHILE TRUE 0D ! FINO LIN OR QUAD FACTOR
COMMENT THIS 1S ALGOPITHRM 30 FPOM THE CHCM WLGORITHNG SECTION QEGIN
TYPE-IN HND CHLLING PPOGPHM BY W. LUNDE: PEVSED:

1F QS W D.D THEN
APPHY COCFFSIN:121.PPERL(1:12]1 . RIMGIL: 121, CONCONT1: 1210 BEGIN
INTEGEP 10EG.)TEP.NOIGS. )X, ISET: PePS: Qe QS;

£ND ELSE
PPOCEOUPE PUTOUT(10); BEGIN

VRLUE 103 INTEGEP 10: \F CDFINOEG-Z] = 0.0 THEN
BEGIN OEGIN 9 « 1.0: P+ -Z.0 END
WPITE("(2C1DATA SET =)1: PPINTI]0.3.00: ELSE
FOP IX « [ STEP 1 UNTIL IOEG 00 BEGIN

BEGIN
WPITEL®(C1" ),

Q « COF(NOEG1/COF [NDEG-211
P « (COF (NDEG-1)-QUsCDF (NOEG-3)) /COF {NDEG-2)

PRINTIPPEWL(1¥1.6.7); PRINTIRPIMAGIIX].6.7): END:
PRPINTICONCONIX1.13.2¢1 JF NOEG = 2 THEN GO TO GROPTIC:
END: ' DUTPUT LOOP. P+ 0.0:
PETUPN: ENO:
END: ' PPOCEOUPE PUTOUT:
- | COMMENT WHILE TPUE 0D ! LOOP FOP LINERR FACTOR:
PPOCEOUPE POOTPOL {NDEG. X TCOF L 1 TEP.NF)GS.PPE.PIM.CONVI 1 BEGIN
| VHLUE NOEG.LITER.NF 1G5 JTERNTE
INTEGe R LITER .NFIGS.NDEGH FOP ) « [ STEP 1 UNTIL LITEP 00
APPHY XTCOF .PRE .PIM.CONV: BEGIN

BEGIN
INTEGEP 1.J.M
APPAY CDF.B.C.0.E(-2:NOEG1:
PEAL TST.ACCUP.PS.US.PT.QT.SCL.P.PEV.P.Q:

PPOCEDURPE PEVERSE
BEGIN
18T « =T8T
M+ ENTIEPITNOEG-11/203
FOP J « 0 ST:P [ UNIIL M 00
BEGIN
SCL « COF(J1s COF(J) » COFINOEG-J1:
COF (NDEG-J1 « SCL:
END: ! SURPPING LDOP:

BAIPSTOW:
BE

GIN
FOP J + A STEP 1 UNTIL NOEG 00
BroinN
B{J) + COFLJ)-PeBLJ-])-QeBIJ-2):
ClJ1 » BLIL-PoC1J-11-QsCLI-2)1

END:
)F COF(NDEG-11 » 0.0 THEN

BEGIN
IF BINDEG- 1] w 0.0 THEN
BEGIN
IF ABSCOF [NDEG-11/BINOEG- 11) < ACCUR
THEN GO 10 NEWTON:
BINDEG) « COF (NOEGI-QeBINOEG-2))

;! ENO1 ! PEVEPSE: END:
| END:
INTEGEP PPOCEOUPE L INEAP: BNTEST:
IN )F BINDEG) = 0.0 THEN GD TO QROPTIC
IF 1ST « D.D THEN P + [.Q/R; IF ABSICOF (NOEG) /BINDEG)) > ACCUR
i PPEINOEG]) + R PIMINDEG] « 0.04 THEN GO 10 QuOPTIC:
CONVINOEG] » WCCUR; ENDs
F NOEG « NDEG-1:
FOP J « 0 STEP | UNTIL NJEG 00 NEWTON:
)F aRSICOF(J)/0041) < ACCUR THEN COFLJ) + O1J) FOP J « 0 STEP 1 UNTIL NDEG 0D
i ELSE CDF(J1 » B.0: BEGIN
1 LINCHP « NDEG: DIJ] + COF(J)+PeDIU-1)
ENO: ! PPOCEOURE LINEAP: sz « DIJISPIELJ-11s
END:
Bl-11 « B(-21 » Cl-1] » C[-21 « O(-1] « EL-1] «
E COF{-1) + 0. M JF OINOEG] = 0.0 THEN GO T0 LIN:
b FOP J « ¢ STEP ) UNTIL NDEG 00 COF[J) - XTCOF[J): )F HCCUP ¢ ROS(COF[NDEG)/DINDEG)) THEN
3 1ST « 1.0: WCCUP « 10.DINFIGS: 8EGIN
LIN:

COMMENT WHILE COF(NOEG) = ».0 DD:

JF LINCAR = O THEN GO 10 PETUPN

) 2POTES!: ELSE GO 10 JTEPATE
JF COF[NOEG) = 8.0 THEN ENO:
BEGIN

PPLINDEG) ~ 0.0:  PIMINOEG) + 0.03 CONVINDEG) + RCCUR:
NOEG + NOEG-I:
GO 10 2ROTEST:

ENO}
COMMCNT UNTIL NOEG = D DOy

CINOLG-11 « -PsC[NOEG-21-G*CINDEG-3)!
SCL » CINDEG-219C(NDEG-21-CINDEG-I18CINOEG-31)
IF SCL = .0 THEN
BEGIN P+ P-2.0:
ELSE
BEGIN
P+ Pe{RINDEG-119CINOEG-2)-BINOEGI*CINDEG-3))/5CL

[+ QuiQ+).0Y: END

BEGIN
INIT: D+ G+(-BINDEG-119CINOEG- 1 1+BINDEG 1°CINDEG~2))/SCL
IF NOEG = @ THEN GO 10 PETUPN: ENOD:
¥ PS + A.01 QS « 0.8: PT + 0.00 QT + 0.0:
SCL « 0.0: \F EINDLG-10 = 0.O THEN P « P-)
; PEV « 1.0:  ACCUR « [0.0 t NFIGS: ELSL P « P-DINDEG(/EINOEG-1)4

IF NDCG = 1 THEN

END [TEPRIE LODP:
END LINEHP FHCTDP LOGP:

1 BEGIN
P+ -COF(11/COF{0®): PS + Pl: Q5+« 4Ty PT«P1 QU@
LINEWP: \F PEV ¢ 0.0 THEN ACCUP « ACCUR/10.D:
GO T0 PETUPN: PEV « -PEV:
ENDY PEVEPSE :

FOP J + @ STEP ] UNTIL NDEG DO
BEGIN

i i Bt L i e e

I T

GO 10 PEYSEO:
ENO FRCTOP FOUND:

Reproduced from
dest available copy.
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Listing of the short subject elgorithms

QHOPTIC:
IF 1ST < 9.0 THEN
BEGIN P+ P/Q: R+ 1/Q:  END:
IF (Q=(P/2.010(P/2.0)) ™ 0.0 THEN
BEGIN
PPEINDEG) + PPEINOEG-11 » -P/C.0:
SCL + SUPT(Q-tP/2.0Ve(P/2.01):
PIMINDEG]! + SCL:
PININDEG-T1 + ~SCL:
ENO ELSE
BEGIN
SCL « SAPTI(P/2.0V0IP/2.0)-Q):
IF P ¢ 0.0 THEN PREINOFG] + -P/2.0¢SCL
ELSE PPEINDEGI + -P/2.0-SCL3
PPEINDEG-1T » RQ/PPEINDEG:
PIMINDEGI + PIMINDEG-il « 0.0:
END:
CONYINDEG) « WCCUP:  CONVINOEG-T1 » HCCUP:
NOEG « NDEG-2:
FCP J « O STEP | UNTIL NOEG 0O
BEGIN
IF BIJI = 0.0 THEN COFLJT » D.0
ELSE IF ABS(COFIJI/BIJ]) ¢ ACCUP THEN COFLJL » OLJI
ELSE COFiJ] + B.0:
ENO:
GO 10 INIT
END: ! UNTIL NDEG = 0 00 LOOP:
PETUPN:
ENO) ! PROCEDUPT FOOTPOL:

ISET « 13

106G » 4: ITEP « 1@;  NOIGS « ™

COEFFSINL « IMDADMWN.G:  COEFFSITT » -9B9(30.0:
COEFFSIZT » -109900. 05 COEFFSIIL » 10000004
COEFFSi4l « 1.0:

POOTPO:. (10EG.COEFFS. ITER.NOIGS.RPEHAL (P 1MAG. CONCONY ;
PUTOUTHISET 1

ISET « &:

IDEG » 4: 1TEP + (3: NDIGS « 73
COEFFSIN) « 1.0 COCFESEL) » -3.0¢
COLFFSI2] « 20.0; COEFFSI3] « 44.0:
COEFFSi4] « S4.0:

PODTPOL (1DEG COEFFS. TTER NDIGS, PPEHL »RINNG .CONCON) :
PUTCUTCISET N

ISET » 3

10C6 » 6:  TTEP « 40, NDIGS « ™
COEFFSIAT « 1.01 COCFFS(LL » 2.0
COEFFSI21 « Z.06: COCFFSIAN « T.0¢
COEFFSI4( « 6.6: COEFESISI « -6.1):
COLFFSIB) « B.M

POOTPOL( 10CG,COEFFS. 11ER . NOIGS ,RPLHL ,RTHIG . CONCON)
PUTOUTIISET )

ISET « 41

IDEG » S1 ITEP « 403 NOIGS » 73
COEFFSIAL » 1.0: COEFFSIL] « 1.0
COEFFSi2( « -B.0: COEFFSI3T - ~16.0s
COEFFSI41 « 72.0; COEFFSISI « 15.0:

POOTPOL ( 10EG.COEFFS. TTEP .NDIGS . PPERL . PTHiG . CONCON) &
PUTOUTLISET)

ISET « S

106G ~ 4. 1TEP « 19:  NDIGS « 7:
COEFFSIAL » 1.0¢ COEFFS(i} + S5.0:
COLFFS (21 +» 3.9Q:  COEFFSI3L » -5.0¢
COLFFSI4T » -9.0:

POOTPOL ( 10EG.COEFFS. 1 TEP,NOIGS \PPEAL .RIMHG .CONCON'
PUTOUTC(ISET )

ISET « 6)

10EG « 3: ITER » (0:  NDIGS « 7%
COEFFSIN] « 1.0:  COEFFSEL. » -B
COEFFS 120 « 17,04 COEFFSI3T » -10.0:

POCTPOL ( J0EG.COEFFS. TTEP,NDIGS.PREAL ,R1MG, CONCONY )
PUTOUTCISET D

END

E-2

CPBUT

BEGIN

COMMENL 11(S 15 CRLGO ALGOP1THM 43, CPOUT LINEWR EQUNS.
AWLGOPTTHM BY HUNPY €. THHCHCR JP. .
NEW INAEPPPODUCT POUTINE AND OTHEP OPESSINGS BY A. LUNDE
C-Mu 19724

WPPAE LGUITIT11S- T:1S1.PIGUTIL:15(,50LE T+ 1513

INTLGEP 5PPHY LOIAGETIIST

P(i DTPHN:

FOPWPO LHBEL SINGULAR:

INILGEP [.J3

PEwt, PROCEQUPE INPPRI{AL AR LIN,LOW.HHX) ¢
Uil Ut LIN.LOW.MAX:
INTEGEP LIN.LOH. 100
BPPHY L .AP:
BEGIN
LONG PEvL SUM:
INTEGER ks

SUM « Q.0
FOP bX « LOW STEP T UNTIL MaX DO
SUM » SUMAALILIN,I XTehRILALS
INPPR] » SUM:
END:

PEAL PROCEDUPE (NPPP)L1PPY L IN.H OL .LON.1AX D)
Vil UF LINGROL LD RAY S
INTOGEP LEN.S O L DK
FPPAT PR
BEGIN
LONG PEWRE SUM:
INTLGEP (X3

SUM « .38
FOP b o+ LOW STEP 1 UNTIL Miix DO
SUM « SUMAAPRYILIN.F XTeAPPYIEX,LOL D
INPPPT o SUM:
END:

PPICEOURE. CPOUTY 1 #PP . PHS ,NBYN.PES . IVOTP.OE T, PEPEAT )3
Vil UE NBYN.PEPENTS
ubPut 1PPPHSPES:
INTEGEP NOYH:
IMTEGEP uPPHY 1VOTP:
POl OF T
PUOLERN PEPERT:
0EGIN
INTEGEP IX.JA.LX, THAX . IP:
PLui TEMP.QUOT:

DET » (.G
IF PEPENT THEN GO 10 LABLG:
FUP b4 » 1 STEP 1 UNTIL NN OU
BLGIN
feHp . 0.0
FiP 1% o b4 STEP [ UNTIL NN DO
BLGIN
WPPLIN,L KL » APPLIX,FAT-INPPPCIAPP, DX KX T.0A-T0:
10 w0SAPREIX.EXEY > TEMP [HEN
OtGIN
1LHP o HBSIAPRETX KX
THeX = 1%
LND:
[N
niptext - THid:

[F ItieX u b & THEN

BECIN
DL - DKl
FOP J< « 1 STEP 1 UNTIL NBYN 00
OLG/N

AP - HPPEEXIX L
WO HLIXT o RPPETMIG IX TS
et DM XL o TEMP:

END:

Hic

PHS(XT o PHSLIMAXD)

PHSI IMAXT » TCHP
hD:

IF HPPLRX.KXT = 0.O TiEN GO TO SINGULIR:

QUOT o T.O/WPPEY X b AL
FUR Ix » 14+l STEP 1 UNIL NBYN 00
WPPLINI K] o QUOT®PPIIA ]S
FDP Jx « Kx¢l STEP | UNTIL NBYN DO
AOPIMGJAT o« APPINXLJXT - INPPPZIAPP KX JX. T.KX-1)3
PHSIMAL « PHSIAX [ = INPPPIIAPR . PHS.IX. T.KX-T)3
END:
GO 10 LBL?:




List:ng of the short subject slgorithes

T e

LABLG: COMMENT NEW PIGHT SIDE ONLY. ¢

FGR KX » 1 STEP 1 UNTIL NBYN DO

BEGIN
TEMP o PHSIIVOTRIKXITL:
RHSUIVOTPIKXIT » PHSIKXI:
PHSIKX] « TEMP:

EN;HS]KXI » RHSIKX] ~ INRPPIIARP,RHS KX, 1,KX-1)4

'

L2
FOR ¥X « NBYN STEP -1 UNTIL I DO
BEGIN
1F NOT REPEAT THEN DET « ARRIKX.KXJeDET:
RESIKX] « (RHSIKX]
N ~ INPPRI(ARR.RES. KX, KX+ . NIYN) ) /HRPIKX. KX
]

ENOs ! THAT WAS CROUT 2.1

FOR I » I STEP I UNTIL 15 DO
BEGIN
FOR J « 1 STEP 1 UNTIL 15 DO
EQUATIT.JI « (14J)/2.03
RPIGHTIII « LN(]/3.9);
EQUATLI.II » EQUAT().13415-11
END:

CROUTZ(EQUAT ,RIGHT, 15.,50L .1 DIAG.DTRHN,.FHLSE)

GO 1O EXIT:
WPITE(*(CI® )4
PRINT(DTPNN.10.6)1
WPITEC"(CI® Yy
FOP 1 « 1 STEP 1 UNTIL IS DO
BEGIN
WRITE(®(C)I®)
FOP J « | STEP 1 UNTIL 1S5 DO
PRINT(EQUATIT,JI.10.6)s

ENO;
HRETE( ICI® )
FOR | « | STEP ] UNTIL IS DO
PRINT(LOIRG(I1.10.0):
WPITE: (CI°):

FOR 1 « | STEP | UNTIL IS DO
PPINT(RIGHTI]1.10.6):
WPITEC®ICI®):

FOP | « 1 STEP | UNTIL 15 DO
PRINT(SOL(I1,10.6):

GO TO EXIT:

SINGULAR:
WRITE(® [CISINGULARICI® )

EXITy
END:! END OF MAIN PPOGPRM. :

TPEESOPT

BEGIN
COMMENT ALGORITHM 113 FPOM THE COLLECTED ALGORITHMS COLOUMN
OF THE CwCM. ALGORITHM AUTHOR 15 ROBEPT W FLOYD.
MiIN PPOGRAM W. CALLING SEQUENCE SUPPLIED BY A. LUNDE!

APRAY BEFOPE(114011.AFIER 154001
INTEGEP INFINITY.K3

PPOCEDUPE TREESOPT(UNSORTED.':.SORTED.K) ¢
VALUE N.K:
INTEGER N3
#PPAY UNSORIED.SOPIED:
DEGIN
INTEGEP 1.J4
INTEGER APPAY ML1:2oN-113

FOP 1 « 1 STEP 1 UNTIL N DD HIN+I-11 « 1u10000+N+1-1:
FOP 1 ~ N~1 STEP -1 UNTIL 1 DD
M{)) » IF UNSDRTEDIMIZel) DIV 10000)
< UNSDPTEDIMIZ2®+11 DIV 18000) TUEN N(2w]]
ELSE M(2ele1):

FOP J « 1 STEP 1 UNTIL X DD
BEGIN

SDPTEQIJ) « UNSDPTEDIMIL) DIV 1000614

1 « BUL-(HIL) DIV 10000) #0008

MUTT « INFINITY ® 13000:

FOR 1+ 1DIVZWHILE ] > @ D0

MlI1 « IF UNSDRTEDLM(2¢)1 DIV 1D0DOI
< UNSDPTEDIN(2e]+11 DIV 100DOI THEN MiZel]
ELSE ni2eletls

END J LDOP:
END TREESDPT:

INFINITY « 401y
FOP + + ) STEP 1 UNTIL 400 OD BEFOREIK] «~ 401.0-K:
BEFOPE[401] » [0N0D.0s

TPEESDPT (BEF DRE » 400, AF TEP, 400G 13

FOR & « | STEP ] UNTIL 399 DD
IF WwFTER(LT » AFTERIK+1] THEN
BEGIN
WPITEL"(CI" s
PPINTLE 6.0V
WRITEL® OUT DF ORODERICI"}:
END:

END MAIN PRDGPAM:

S S e b T3R5 ik o B

il - il i o MR e B

E
T ;J




Listing of the short subject algorithms

PERT

BEGIN

INTEGER NEVNTS. IX:

INTEGER APPAY INIT,LAST.LINKI1:3001:
HPPAY ESTIMEERRLYS.LATEFI1:13001:

£ PEAL TSTART)

PPOCEDURE PERT(NMAX, 1BEG, JEND. TE, ST EMAX.LNL .ES,RT)S
INTEGER NMAX.ERAN:

PEAL ST:

INTEGEP ARPAY 1BEG.JEND.LNK:

REM. APPAY TE,ES.ATY

VALUE NMAX.ST:

BEGIN

INTEGEP 11
INTEGER NX, IEX, ISX. ITX.KX:
REAL AXX,XXNX3
SWITCH SW2 » GI.G2:

PPDCEOUPE SCANITOBJ):
INTEGER T0BJ:

BEGIN
INTEGEP. KX:
IF 1EX w | THEN
BEGIN
FOP KX « IEX-1 STEP ~1 UNTIL 1 DD
IF T08J = LNKIMX] THEN
BEGIN TDBJ » KX: GD TD RETURN: END

INTEGER ARPIY LK
APPRY ERS NLF S
BEGIN

WPITE("ICI")s PPINT(NEV,4.0)¢ WPITE(® EVENTSICI®Y
GD TD PETUPN:
FDP IX » 1 STEP 1 UNTIL NEV 0O
BEGIN
WPITE(®(CL®): PPINTAL¥ 1IN, 4,003
PPINTIERSLIX1,10.4): PRINTINLFIIN],10.4)1
113 “DSt FERSEIXI-NLFIIXIN) < 9.001
THEN WPITE(® CPITICAL™):
END:
WRITE("IC]")
RLTUPN:
END:

PPDCEDUPE WOPK(NACTS):
VALUE NuCTSs  INTEGER NACTS!

BEGIN
INIT(LL - I LRSTILE & 28 ESTIMELL) » 2,51
INITIZ) o T3 LASTIZE +» 3 ESTIMEI2] » 1.8

. . .
* > L

INLTE3L « 1 LKSTI3] « 4 ESTIMEI3] » 3.0:
INITIAL < 13 LASTI4] ¢ 105 ESTIMEI4] « [B. 4
INITIS « 2) LKSTIS) « St ESTIMELS) » 4.28
INITIBL » 28 LnSTI61 ¢ B3 ESTIMEIG) ~ 3.8
INLTITL « 21 LRSTIT) » 74 ESTIMEI?] » 6.7
INITIBL « 38 LuSTIBL » 63 ESTIMEIBL « 1.1
INITIOL « 38 1RGTI9) « 71 ESTIMEIDL » 1.3
INITLIND » 45 LASTIION » 73 ESTIMELLO) ~ 0.24
INITI{LD o B4 LASTLELD » i ESTIME(IT] » 6.B:

END
LNKIIEX] « TDBJ:  T0BJ « 1€X:  IEX « [EN+}s
RETUPN:
END SCAN:

1EX » I
FDR NX « 1 STEP I UNTIL NMAX DD
BEGIN  SCAN(JENDINX1):  SCANUIBEGINXI)s ENDs

EMAN o TIEX-15 ISX » 13 RXX o STy
WHILETRUEDD:

KX « EMAX:

FOP IEX « 1 STEP I UNTIL EMAX DO ATLIEX] » AXXS

S2.
FOP NX « 1 STEP 1 UNTIL NHRX DD

BEGIN
IF LNKIIBEGINXI] > O THEN
BEGIN
SHITCH SWI « B1,BC1
GD TD SWIIISXI:

81:
XXX » ABS(ATIIBEGINX11Y ¢ TEINXI:

INITEIC) « B

LASTIIZ) + B3

ESTIMELICE « 2.28
ESTIME(13] « 4.9s

INITII3) o 71 LASTLI3) » B:

INITIIHL » 73 LASTII4L « 92 ESTIMELI4) » 3. 28
INITIIS) « 73 LASTLIS] « 1G: ESTIMELIS] « 1,14
INIT(1B) » S LASTIIE) o 113 ESTINELIG] + 6.0:
INITUI?E » B LWSTUIVE « 108 ESTIMEL1?) ~ 6.0:
INITIIB] » S LASTIIBL » 11 ESTIMELIB] « B. 1}
INITIIOL » 1% LeSTLE9L » 113 ESTIMELIOT » ©. 74
INITITAL o 1 LASTIZN] « 103 ESTIMEIZOT » 4.B:
INITIZIL » B, LASTI2IL « 123 ESTIMEIZI) » 0.74
INITIZOL « Bs LASTIZCY - 14 LSTIMEI22] » 6.41
INITIZ3L » 195 LASTICAL » 14 ESTINEL231 » 3.84
INITIZAL « 105 LASTIZH] « 13y ESTIME(241 » 0. 23
INITIZ6! « 115 LASTIDSL « 13s ESTIMELSS) + 2,54
INITUZBE » 115 LASTIZB) « 143 ESTIMEI26E » 0.88
INITIZ?1 « B+ LASHEZVL » 134 ESTHEL271 » 11. 14
INITIZRI « 7: LASTIZBI » S¥ ESTIMEICB] ~ 6.03
INITIZ91 o 111 LWSTIZOE » 120 ESTIMEI291 « 7.3
INITE30 » 9 LRSTINL » 1T1 ESTINCI3D] » 3.B3

INETIALD « 14
INITIZZ] ¢ 4

LASTIIEL » 134
LASTI3Z) « 19

ESTIMEISI) + B.7i
ESTINEL32] « 12.6¢

IF XNX > ABS(ATIJENDINX]) THEN ATIJENDINXT) & =XM3
GD TD ESACI:

¥NX o ABSIATIIBEGINK]I)I-TEINX1S
IF XXX ¢ ABSIATLJENDINXI D) THEN ATIJENDINXT] & =XXN3
ESACT:
END¢
END
FDR IEX « 1 STEP 1 UNTIL EMAX DD

82:

BEGIN
IF LNKIJEX]C O THEN
BEGIN
IF ATIIEX] < O THEN

BEGIN
1 LNVIIEX] » ABSILNKIIEXT)S KX o RXel
i } ATIIEXN] « ABSIATIIEXI)S
B | END:
: END EL

SE
IF ATIIEX) >= @ THEN
BEGIN LNKIIEXI » -LNVLIEXI: KX o ¥X-11 END
ELSE ATIIEN] » ABSEATIIEX]):
END:

IF kX » @ THEN GDTD S2:
GOTD SW21ISN1s

Gl:
1SN = 2
FOR NX + 1 STEP I UNTIL NMAX DD
BEGIN
ITX « IBEGINXis  IBEGINX1 o JENDINXI: JENDINXT « TN
END:
XX - O3
FOP IEX « I STEP 1 UNTIL EMAX DD
BEGIN
ESIIENT » ATLIEXD: LNKTIEXL » ABSILNKIIEX1):
IF ATIIEXT > AXX THEN AXX ATLIEX D
END
GO T0 WHILETRUEDO:
G

I4]
FOP 1EX « 1 STEP I UNTIL EMAX 0O LMCIIEX] + ABSILNKLIEXNT) S
END PERT:

PPOV.EDURE PUTOUTINEV LK .ERS.XLF )
VALLE NEVS
INTEGER NEV:

TSTPT +» 0.08

PCRTINACTS, INIT LHST.ESTINE . T1STHPT LNEUNTS .LINK EARLYS LATEF) $

PUTDUT{NEWNTS.LINK ,EARLYS LRATEF ¢
END:
WOPK132):
WDRK(27)4
END:

T T g T =

.



Listing of the short subject algorithms

HAAVIE

BEGIN

COMMENT THIS 15 CALGO PLGOP[THM NO. 257, HARVIE [ <TEGRATION.
ALGOPITHM BY POBEPT N. KUBIF, PUBLISHED CrCM 1365,
TYPED 8Y A. LUNDE. C-MU (972.:

REVL A,B.EPS,MHSK .Y\ ANSHER

REAL PROCEDURE HAVIEIA.B.EPS.GRAND.M);
VALUE A.B.EPS.M:
INTEIER M3
REAL A .B,CPS)
REAL PROCEDURE GPRND:

BEGIN
REAL H.FHOPTS, SUMT ,SUMU.0. X3
INTEGER 1.J.K.N:
APPAY TIT:I21.ULL: 121, TPREVIT: IZ1.UPREVIT: 1218

ENDPTS » GPRANDIA)Y:

ENOPTS « 0.5#(GRAND:BI+ENDPTS):
SUMT - 0.0:

1 « Nt

H + B-A3

ESTIMATE:

TI11 « HSIENDPTS+SUNT)
SUMU - 0.9

X » A-H/Z.93
FOP J » 1 STEP 1 UNTIL N OC
BEGIN

K o XeH:

SUMU « SUNU¢GRAND(X)}

IF ABS(TIKI-UIKI) <« EPS THEN
BEGIN
HAVIE « 0.Se(TIKI+UIKD):
GO TD EXIT:
ENO:

IF K w ] THEN
BCGIN
0+«D 1 128Ky
TIFeIl « 10eTIKI-TPREVIKII/10-1.0):
TPPEVIK+11 » TIKD:
Ulk+11 « (DeUIKI-UPREVIKI)/(D-1.0);
UPREVIK] « UIK]
K e K41
IF K = N THEN
BEGIN
HAVIE « MASK)
GO 10 EXIT:

END;
GO TO TEST:
ENO;

H e« H/Z2.0:

SUMT « SUMT + SUMU;
TPREVIK] « TIK13
UPPEVIKI » UIK1:
T« 101

N « 23N;

GO TD ESTIMATE:

EXIT:

END: ! ENO OF HRAVIE INTEGPATOR.:

PEAL PPOCEOUPE EXPZIX)}
VALUE X,
REAL X:
EXPZ « EXP(-X*X);

A+ 0.0s

8+ 1.0:

EPS « 0,00005;

MASK « 9.99;

ANSKWER » HAVIE(A.B.EPS,.SART.I2):

WPITE(®IC1"): PPINTIANSHER.4.100; WRITECTICIT]:
EPS « 1.900901;

A 0.0

8+ 43

HNSWER » HAVIEIA.B.EPS.EXP2,12):

WRITE("(C1"): PPRINTIANSWER. 4,100 WRITE(TIC)®):
ENO3 ! END OF MRIN PPOGPAM.

ISING

BEGIN
COMMENT THIS 1S wiGOP1THM 35S OF IHE CACM ALGORITHM SECTION.
PUBL (SHED IN CHCM 12,10 (OCT 19691 P.S62.
DUTER BLOCI WITH 1/0 »ND OIHEP STATEMENTS INTPODUCED
#ND YHLUE PHPTS AND PEMRINOEP OPEPATOR RDDED BY A. LUNDE.
CHPNEGIE-MELLUN UNIVERSLTY. JULY 1972.3

INTEGEP APPAY SEHUIT 1001
INTEGER MwiX.ONES.SHIF 15.1,UPPEP . MaXNT, INT 3

PROCEOUPE [SINGIN.X,T.5): VHLUE N.X, T3
INTEGER N.X.T1 INTEGEP APPHY S
BEGIN
INTEGER .3
INTEGEP APPAY L.MIT:T DIV 24113

PROCFDUPE SOPTiL.M.2)1 VALUE 2;
INTEGEP nRPAY L.M: INTEGER 23
BEGIN
INTEGEP P.1.J.M..28:
FOP ML « 1 STEP 1 UNTIL N DO SIMT + 23
Pelels 28+ 1-23
J e PoL{TI-1
FOR ML « P STEP 1 UNTIL J DO SIMLI » 283
IF 141 <= & THEN
BEGIN R « Jenl11els 1 + 1413 GO TO AR END:
G0 10 EXIT;
HWPLTES®IC)®)
FOP ML - 1 STEP 1 UNTIL N 00
BEGIN
IF (ML PEM C1) = 0 THEN WRITE(®ICI---")3
PPINT(SINL].2.0);
END:

T
ENDO SOPT:

PPOCEDUPE BISORTIL.Mis INTEGER ARRAY L,M:

BEGIN
SOPTIL.M.0)

END BISOPT:

SORTiM.L. 1)

PPGLFOUPE COMPOSE (X.h.L.P3: VALUE X.K; INTEGER X.K:
INTEGER APRAY L; PPROCEDUPE P
BEGIN
INTEGEP 1.h:
.7 X <} THEN GD TO CCs
LULL & X=bels
FOP 142 STEP 1 UNTIL K 00 LIII « 1t

P
IF ¥ <= 1 THEN GO 10 CC:
Ael;
IF LiAs > 1 THEN
BCGIN
LIAY « LIA)-11  LIAsL) o LLAeIlels P
IF A m k-1 THEN A « A¢],
G0 10 BB
END: COMMENT LIAL > 1 LOOP:
LAYl o LiAsI]:  LIAIY = 1 A e AL
IF A *= | THEN GO T0 BB

END COMPOSE :

K e TOIV 2413
IF (T PEM 23 = 1 THEN
BEGIN
PPQCEDUPE P1: BISOPTIL M)
PPOCEOUPE PZ: COMPNSEIN-X.K.H.PI):

COMPOSE $ X,k ,L.PT)

ENO

ELSE

BEGIN
PPOLEOUPE P3: SOPT(L,M.CV;
PROCEDUPE P4:  COMPOSE sN-X.K-1,M.P31:
PPOCEOUPE PS: SOPTIM,L.11:
PROCEOURE PG  COMPOSESN-X.K.M.PS):

COMPOSES &, F.L.P4):
COMPOSE 1 X, % =1.L.7G)
END:

END ISING:




Listing of the short subject algorithas

WRITEC"{CITYPE UPPER BOUND FOR MAX{Cle®))
READI(UPPER) ) WRITE(®ICI®) BASIC VERSION OF PERT
FOR MAX « 3 STEP 1 UNTIL UPPER DO 0
BEGIN
HAXMT » MAX-11 300  DIM 1¢30(1.L(3001,H(300)
FOP ONES « 1 STEP 1 UNTIL naxHi DO 400 DIM E1300),F(300),X(300)
BEGIN 410
IM] « IMINCONES,HAX-ONES)) 420
FOR SHIFTS « 1 STEP ) UNTIL INI DO 430
1SING(MAY , UNES , SHIFT5.5EQU) 440
END) 450 510
ENO! 200 REM SUBROUTINE WORK
goo It =)
END MAINPROGRAM: 900 <
100 ELD
1100 12
1200 L)
1300 E)
1400 1(3)
1500 Lt
1600 Ei3)
1700 1
18w L(4)
1900 E(4)
cung 1S
21 L%y
2cn0 EIS)Y
<3N 1B
2400 LB
2500 Ei6Y
e 1)
2mn L)
280 E()
AV (1 1)
3y LIB)
3100 EB)
T 119
330 LD
3900 E(9) =
3510 1ty
36 Leim
00 E11O)
e 101D =
3900 LU
4000 EUID)
4100 TOI2)
20 LU
4300 EHLD)
400 1113
450 L3
460 E113)
4700 1U19)
4800 LtIY)
4900 E(IV)
Se00  101S)
5100 LUIS)
5200 E(1S)
53 1t16)
S4ne  LUIG)
SSan ELIB)
560 1617)
570y LU
8800 Ef17)
S 1118)
BONG  LLG)
6100 ELIBY
6000 1019
6300 LUD
e E(191
65O  1120)
66O L(ZM
67N EL20)
680 T
69N LD
o060 E(2D)
7100 12D
2200 L22)
30 E122)
200 123
%00 Li23)
w00 E123)
Mo 1Y)
7800 LI7Y)
7900 E(ZH)
800G 1(25)
BI00 1L(2S)
8200 ELZS)
83 1(26)
8400 LI2B)
85w E(Z6}
B 11N
B2W LE?)
Benn E(Z7)
BUN 1(28)
9000 L(28)
9100 E(28)
9200 129
9300 LD
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Listing of the short subject slsorithms

9400 E(ZD
9509 1(30)
9600 L(30)
9700 E(IN
9800 1(31)
9960 L(31)
16009 €(31)
10109 1(32)
18200 L(32)
19389 £(32)
10509 7] = 0.0

19700 PEH CALL PERTI(NI.11.L.E1.T1,N2.L2.E2.X])
18800 GOSUB 13300

10805 PEM CALL PUTOUT

16810 GOSUB 10919

10830 RETURN

10900

10918 REH SUBROUTINE PUTOUT

11000 PRINT WZ.® EVENTS®

11100 RETUPN

11209 FOR 12 = | TO NZ STEP 1

11309 IF 9.801 > ABSIIFLI2)-X(12))) THEN 11700
11400 PPLNT HO12).FO12),X012)

11600 GO T0 11909

11700 PRINT M(12),F(12),X(12)," CRITICAL®
11900 NEXT 12

11990 PETURY

11998 PEH

11999 REH

12009 REM SCANC1Z.14.L2)

PEM
1F 12 = 1 THEN 13000
FOR k1 = 12-1 10 1 STEP -1
1F 14 = M(K1) THEN 12700
GO TO 12900
14 = K1
PETUPN
NEXT K1
MO1Z) = 14
14 = 12
12 = 1241
PETURN
PEH
PEH
PEM PEPT(N1.11.L.E1,T1,N2,L2.E2,X1)
RENM
121
FOR N3 = 1 TO N1 STEP 1
14 = LIN3)
GOSUB 12000
PER CALL SCAN(12,LIN3).L2)
LIN3) = 14
14 = 1IN3)
GOSUB 12809
REH CALL SCAN(I2,1(N3),L2)
1(IN3) = 14
NEXT N3
N2 = 12-1
15 = |
N Al = T]
A REM (WHILE TPUE DO
K2 = N2
FOR |3 = 1 TO N2 STEP |
X(13) = A1
NEXT 13
PEM 0O «B00Y> HHILE K2 X< ©
FOP N3 = | TO NI STEP |
1F 0 .= H(]JIN3)) THEN 6900
A PEM CAGE 15 OF
ON IS GO TO 16200.16600
X2 = ABSIXTIINI))ISEINID)
IF ABSIXILIND)) >3 X2 THEN 16900
X(LIN3)) = X2
GO TO 16900
%2 = ANS(X(]INI)I}-E(ND)
1F X2 >» ABSIX(LINI))) THEN 16900
& X(LINI)) = ~X2
NEXT N3
FOP 13 = | TO N2 STEP |
1F H(13) = @ THEN 17809
IF X113) »= 0.0 THEN 18308
M(13) = ABSIMII3))
N KT = kT4l
0 X(13) = ABS(X(]3))
GO 1D 18300
IF 8.0 > ¥(]13) THEN 18200
M1 = -HI1D)
k2 = ¥2-1
GO TO 183M
X0]3) = ABSIX(IIN)
NEXT 13
If K2 = 0.0 THEN 18700
GO TO 15200
6N 15 GO TO 19000.20500
PEH CASE 1
1900) IS = 2
19100 FOR N3 = 1 TO N1 STEP |
19200 16 = 11N3)

1900 LN = LINI)

19909 LIND) = 1§

19590 NEXT N3

19600 A} = 0.0

19700 FOP 13 » | TO NZ STEP 1
1960 F(13) = X(13)

1995 ML13) = ABSIHC1IN)
2nony 1F Al >= X(13) THEN 20100
2050 A = Xt13)

20100 NEXT 13

IO GO TQ 20900

0400 REM CnsE 2

20500 FOP 13 = | TO N2 STEP 1
20600 H(13) = ABSIHII3))
20650 NEXT 13

20700 PETURN

<0990 GO TO 14508

21000 ENO
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Listing of the short subject aloorithes
BLISS VERSION OF PERY

HODllJLE BLINI9(STACK(1000)) =

BEGIN

HMACPO AOSIX) = (IF (X) GEQ 0.8 THEN (X) ELSE FNEG 0X))$:
MACRO 1RBS(X) = (IF (X) GEQ O THEN 1X) ELSE -(X1)$:

EXTEPNAL OUTMSG.DECOUT FLOUT:
FOPWAPD PUTOUT:

OWN NEVUNTS:
DWN INIT13001,LASTI300).LINKI 300
OWN ESTIME]3001,EARLYSI3001,LATEF (30011

STRUCTURE VECTI111 = (.VECTIe.1-11¢0.364
MiP VECTT INIT:LASTILINK:ESTIMEIEARLYS:LATEF

glcl'éCHON PERT (NAX, 1BEG. JENO. TE .ST.ENAX.LNK ,ES.ATT) =
iN

STPUCTUPE PAPVECITL = (@.PAPVECS.1-1)¢B,36>3
MAP PAPVEC 1BEGI JENDILNK: TETES1ATTS

LOCAL TEX,ISX.ITX.KX:
LOCAL AXX.XXX3

FUNCTION SCAN(T0BJ) =
BEGIN
IF L 1EX NEQ ) THEN

BEGIN

DECR KX FROM .1EX-1 TO 1 8Y [ DD
IF @.700J EQL .LNK1.KEX) THEN

s BEGIN (.T08JY<0,36> + .kX3 PETURN END

ENO:

LNK1.JEX] » @.708J:
ENO:  !SCAN:

(.100J)<0,36> » .JEX:

1EX » 13
INCP NX FPOM | TO .NMax BY 1 DO

BEGIN  SCANCJENDL.N{1<O.0)¢
EMAX)<0,36> « L JEX-14

WHILE 1 00
€ KX o @ EMAX:
INCR 1EX2 FPOM 1 TO @.EMAX BY 1 00 WTTI.IEXZL « RXXS

SCANCIBEGL . NX 1.0, 11
18X « Q3 AXX » ,ST:

! WHILE TPUE 0O

00 ! D0 <BOOY> WHILE .KX NEQ 9.

( INCR NX FROM 1 10 .Nrax 8Y ) 00
BEGIN

IF .LNK1.1BEGI.NX1) GTR 0 THEN

BEGIN

! CASE 1

BEGIN
XXX o AQS!. ATTL. 1BEGE.NX11) FRDR LTE(.NX1s
IF . XXX GTP ABS(.ATTL.JENDL.NOI]Y

o THEN RTTL,JENDL.NX]1 » FNEGU.XXX)}

ENO:

! CASE 2
BEGIN
XXX « ABS(.MTTL.1BEGI.NX11) FSOR .TEL.NX1:
IF . XxX LSS rDS(.ATTL. JENOL.NXTT)
THEN ATTL.JENOL.NX]T o FNEGL. XXX}t

ENO:
TES:
ENO:
ENO:
INCR 1EX2 FPOM ) TO e.EMaX BY 1 00
BEGIN
IF LNk[.1EX2] LS5 O THEN
BEGIN
IF .ATTL.IEX2] LSS @ THEN
BEGIN
LNVL.IEX2) » TPBSU.LNELLDEXZD): KX = KXo (s
ATTL.IEX2E « ADSC.ATTL.IEXZ))
ENO:
END ELSE

IF .ATT(.1EX2] GEQ O THEN
BEGIN LNKL.IEX2) » ~.LNLL.IEXZ)s KX o .EX-11 END
ELSE ATTL.IEX21 « HBSC.ATTL.IEXZIH;

ENO:
) WHILE .KX NEQ O:

CASE . 15X OF
SET

! CASE 1
BEGIN
1SX *» }1
ILCP NX FROM [ TO .NMAX BY 1 DD
BLGIN
17X « .IBEGL.NX} 1
JENOL.NX1 « . 1TX:

1BEGI.NXT « . JENO[.NX1;

1EX » (JEX#)s

END:

e ~ Sl R il ot il 2 '
E-B
END:
(33
INCR 1EX2 FROH 1 10 e.EMAX BY 1 00
BEGIN

ES(.1EXZ) » .ATTLLIEXZDS
LNK(.JEX2] « JADSC.LNKL.JEX2]1)4
IF LATTL,IEXZ) GTRP .AXX THEN AXX o .ATTL.IEX2IS

END:
END: ! OF CASE |

! [WSE
BEGIN
INCR 1EX2 FPOM | 10 e.EMax BY 1 00

LNVLLIEX2) » 1ABS(.LNKL. IEX21)3
PETURN

ENO; ! OF CASE 2
TES:

) ! END OF WHILE TPUE DO LOOP.

ENO: ! PEPTy

FUNCTION WOPK(NAHCTS) =
BEGIN
LOCAL TSTART:

INITULD ¢ 1 LASTL]) « &3 ESTIMELLL « 2.5¢
INITIZD o D3 LASTIZ) « 38 ESTIME(21 » 1.8
INITLD) « 1 LASTI3L » 43 LSTIHE(3] » 3.9:
INIT(AL = 13 LAST(4] » 18;  ESTIMEL4) « 18.43
INLTIS) » 21 LKSTIS] » 51 ESTIHEIS) « 4.2
INITIB) » 2: LASIIB) « B ESTIMEIB] « 3.B:
INITI?L » & LASTI?D » 7 ESTIMEL?) » 6.7:
INLTIO) « 3¢ LASTIOB) ~ B ESTIHE(B) « 1.0
INULTIO) & 3 LASTIO) + 7 ESTINELY) » 1.3:
INOLIQL » 41 LASTLI00 « 25 ESTINEL(O] « 0.28
INITEIDD » Bs  LASTIL() » S5 ESTIMELIL) « B.6¢
INITDIZ) » B3 LASTLI2) « @1 ESTINEL12] & 2.2
INITII30 » 21 LRSTLI3] « D5 ESTIMEL(3) « 4.9:
INITL(4] » 75 LASTL14) « 9;  ESTIME(14) & 3.2
INIT,(15) » 75 LWSTLIS1 » 10s  LSTIME(1IS) « 1.1
INLTLIG] » 55 LASTLIG] » 11 ESTIME(1G) + 6.0s
INITLI? « B0 LASTLE?) » 115 ESTIMELLD) - 6.8:
INITUIB) « B1  LASTUID) « 113 ESTIME((B) « B.)3
INLTUIOT » (0 LRSTLI9T « 113 ESTIME[19) ~ 0.7
INITIZOT » Si LASTI200 « 12:  ESTIMELZOL « 4.B:
INITI2(1 » B LASTI211 « 12 ESTIMEL211 « 0.7
INITI2Z0 » B:  LASTIZZL « 143 ESTINEI2Z] + 6.4
INITIZ3E » 10: LRST(231 « 14;  ESTINELZIL « 3.81
INITIZ4] « 122 LASTIZAD « 13 ESTIME(C4) « 0.2
INITI2SE « 105 LASTIZS] » 135 ESTIME(2S) - 2.S4
INIT(?B) « 10 LASTIZE) « 14;  ESTIMELZG) « 0.9
INITIZT) » B3 LRSTIZ?T » 131 ESTIMEL2?) « 1).)4
INITI2B) » 75 LASTIZRl » S5 ESTIMELZB] ~ 6.2:
INITIZ9) » (13 LASTI291 « (23 ESTIHE(29) « 7.3
INITEAGL « 91 LASTL30] » 12;  ESTIMEL3IN) - 3.8;
INITU310 » (4 LWSTIAL) « 13;  ESTHEL3)) « B.7)
INITI32] « 45 LASTI32) « 10:  ESTINEL321 « 12.6!

1S1ART « 0.0

PERTI.NUCTS, IN1T<O.0Y.LAST<0.0> . ESTIHECQ.0>, . TSTAPT,
NEUNTS: 0.0 L INFCO,02 ERPLYS. 0,02, LATEFCO.03) 4
PUTOUTE, NEUNIS,LINFCO,0 1. EAPLYS 0,02, LRTEFCB.0>)3

END: ! POUVINE WOPH,

POUTINE PUTOUTINEV, LK ERS.XLF) =

BEGIN
STPUGTUPE PAPVECET] = (@ .PHPVEC*.1-1120.36)1
MWP PHPVEL LK :LASIXLF

QUTHSGIQ.PLLT *TM™J* 31 DLCOUTIO, 4. . NEV I

OUTHSG(O.PLEY * EVINISPHTY® L
PETUPN:

INCP 1x FPOM [ TO .NEV BY ) Du
BEGIN

GUIHSGIOLPLIT *?M7J° ) QECOUTIN, 4, . LKE.IX1):
FLOUTT®, .EASL. (X (. 10.4): FLOUTIO, XLFD. 1X1.10.4)3
IF KRSIC.ERSL.IX) FSBR .X(FL.121)) L55 0.801
YHEN OUTHSG!0.PLIT * CRITICAL®):
END:
QUTHSGIQ.PLIT "*17J' )
END: ' POUTINE PUTOUT

HOPE 130 )
WOPLIZPH:

END
ELUOOM




Listing of the short subject algorithms

FOPTRAN VEPSION OF PEPT INIT(3 = 9
ST = 12
(STIHE(3) « 3.8
CALL WOPY(32) INIT(31 0 = 14
CHLL WOPK(2?) LKST3n - i3
ENO ESTINEI2]1) = 0.7
SUBPOUTINE WOPKINNCTS) INITI327 = 4
INITIALIZE DATA AND CALL THE PPOPER STUFF. LASTI3ZY = )0
OIMENSION INIT(303) ,LAST (3081 .LINK(30M ESTINE(3Z) = 12.6
OIMENSION ESTINE(30Q) ,EARPL YS{ION) . XLRTEF (30M
1START = 0.0
CaLl PEPTINMCTS.INTT.LAST.ESTIHE.TSTART,
1 NEUNTS.LINt .EAPLYS XLATEF )
CALL PUTOUT(NEVN IS L INF (ERRLYS XLATEF)
RLTUPN

INITIT) =

LAST(}) = 2

ESTIME(]) =

INIT(2) = ]

LAST(2) = 3

ESTINE12) = ENO

INIT(3) = | SURPOUTINE PUTOUT(NEV.LY .EAS, XLF)
LASTE3Y = 4 DIMUNSION LA (1) ERSUIIINLF(]
ESTINE(D) =

INIT(4) =

LAST(4( =

ESTINE(4) =

INIT(S) = 2

LHST(S) = §

| TYPE 1000 NEV
10 1000 FOPHAT (1%, 14. 70 EVENTS)
2

18.4 PETUPN

00 1 1x = 1.NEV.]

. IF (ABSUEAS! DO=ALF (X)) LT, 8.001) GO 10 2

ESTINE(S) = 4.2 TYPE 16901 LD EASEDX XLF LX)
INITIB) = 1001 FOPHAT (1X,14.2F14.4)
LASTIE) = 6 60 10 1
ESTINE(E) = 3.8 2 TYPE 1002 A.KETX) ERSITX )  XLF11X)
INIT(?) = 2 1002 FOPMAT (1X.14,2F14.4.9H CRITICAL)
LASTI?) = ? 1 CONTINUE
ESIIMEI?) = PETUPN
INIT() = 3 END
LHSTI8) = 6 SUBPOUTINE SCANCIEX.1T08J.LNK)
ESTIME(B) = OIMENSION LNV (1)
INIT(9) = 3 IF ¢1Ex .EG. 1) GO TO 1
LASTI9) = 7 LUCY = 1EX-1
ESTINE(S) = DO 2 K¥2 = §.LUCY.1
INITI10) = 1X = LUCY=IX2¢]
LAST(I®) = IF (1T0BJ .NE. LNK(KY1) GO 10 2
ESTINE(10) 11084 = kX
INIT(1D) = PETUPN
LHST(11) = CONT INUE
ESTINE(IT) LNCCTEX) = 1T0BY
INITOID) = 1100Y = 16X
LHST(12) = 1EX = TE¥-1
ESTIMENID) ENO
INIT(1D) = SUBPOUTINE PEPTINMiX. IBEG,JENO. TE ST, HAXE LN .ES,AT)
LASTI13) = DIMENSION 1826110, JENOCI).LNC(1) TECT ), ES(T).ATLD)
ESTINE(13)
INITI14) =
LAST(14) =
ESTIME(IY)
INIT(1S) =
LHST(15) =
ESTINE(1S)
INIT(16) =
LAST(16) =
ESTINE(16)
INITU1?) =
LASTI1?) =
ESTINE(I?)
INITO1E) =
LASTI18) =
ESTinE(18)
INIT(19) =
LAST(18) =
ESTINE(18)
INIT1I29) = CONTINUE
LASTIZO) = 00 4 NX = I.Nt.1
ESTINE(20) ' IF (ULNY CTHEGINX)) (LE. ©) GO TO 4
INIT(21) =
LAST(21) = CASE 15X OF
ESTIME(2])
INIT(Z22) = GO TO (181,1021,15x
LASTIZ2) =
ESTINE(22) XXX = 485t AT1BEGINY) 114 TEINX)
INITIZ3) = ) IF txXX .GT. ABSIATCJENOINX)))) ATCJENDINX)) = -XXX
LASTI23) = GO 10 4
ESTIMEI2D)
INIT(Z4) = XXX = ABSIATIIBEGINAY () -TEINX)
LHSTI24) = IF (XXX .LT. ABSCAT(JENOINX1))) AT(JENDINX)) = -XXX
ESTINE(24)
INIT(2S) = CONTINUE
LASTI2S) =
ESTINE125) D0 7 1EXZ = 1.HXE.]
INIT(Z6) = IF tLNFOIEX2) LGE. 0) GO TO @
LASTI7E) = IF (AT(1EAD) .GE. © M) GO 10 ?
ESTIME(26) LN C1IEX2) = 1ABSIHLNY CLIEXT)
INITE2?) = Py o= bXe]
LASTIZ?) = ATLIEXT) = ABSIATUIEX2Y)
ESTIME(Z?) G0 10 7
INIT(28) = IF (HTUIEX2) (LT, ¢.0) GO TO 8
LAST(28) = LNRCIEX2) = -LNKCIEXZ)
ESTINECA) X s hX-1
INITI"S) = G0 70 ?
LAST:29) = 9 ATEIEXD) = ABSIATIIEXZ))
ESTINE(2S) CONTINUE

-
wn

1EX = |}

00 1 NX = I.NHRX.]
CuLl SCANTTEX.JENOINKI.LNEY
CALL SCHNCIEX. IBEGINX).LN®)

CONTINUE

HAXE = 1EX-1

15 = 1

AXX

—_—u N ON A DU DD N ND L S
l
~

=3
-
o

ST

o
=

WHILE TPUE 00

!_ﬂ—
D

CONTINUE
kX = HAXE
00 3 1EX? = 1.HuE]
HICIEXD) = AXX

—0 WD N oYW

— "
@

DO <000¢> WHILE )X .NE. O
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IF (KX .NE. ©) GO 10 B

[ END OF DO <BOOY> WHILE kX = 9.
GO 10 (201.:021.15%

[ CASE |

201 15X = 2

DO 12 NX = 1,NMAX.1
17X = IBEGINX)
IBEG(NX) = JEND(NX)
JENDINX) = 1TX
12 CONTINUE

202 00 18 IEX2 = 1,MeXE.]

i 10 LNV CIEX2) = 1ABSCLNKCIEX2 1)
s RETURN

209 CONT INUE

i GO T0 2

ks C ENO OF WHILE TRUE DO LOOP.

i END

AXX = 8.0
3 DO 11 1EX2 = 1.MXE.1
i ES(IEX2) = AT(IEX2)
§ LNKCIEXZ) = [ABSILNK(IEX2))
b IF (ATCIEX2) .GT. AXXY QXY = ATIIEXZ)
. 11 CONTINUE

60 10 200

€ CHSE 2

THE S VEPSIONS OF AITHEN. ALL IN ONE PROGPAN.
VERSION SELECTED BY CASE INOEX.

HOOULC INTEPPOL(STACK  TIHEP=EXTEPNHLISINIZ)) =

BEGIN
GLOBHL ! WWPTHBLES INITIALIZED 8Y DDT
HXC. ! UPPEP LIMIT FOR LOOP
HATEP. ! STEP LENGTH OURING INTEPPOLATION LOOP
TPICECASE ! SELECTS POUTINE TO BE TPACED
B8INC
NHnX = 18, ! HAXIMAL NUMBEP OF POINIS.
wisSI2 = 20D ! SIZE OF FUNCTION TRBLE.
OWN
X,
HWASCISITHNSIZ T, 'ABSC1SSHE OF FUNCTION THBLE
OPOINI THESIZ ) 'FUNCTION VRLUES.
EXTEPNHL
LOG
LS I A I R R R R R LR ORET
VERSION #
....................... - - - - -(

ROUTINE ARTTEENCXT. YT XXGNLL) =
BEGIN
PEGISIER HI, LO. 1

OhiN
NINHHY ], ! MBSCISSHE
DRINMAKD, 0 ABSCISSAE DIFCEPENCE .
YINMN ], ' DLO FUNCTION vaLlCS.
ZINMA) ! NEW FUNCTION VALUES.

STPUCTUPL PRPVECILT = (8.PHRVECS . 110,367
MuP PIPVEC XTaYTy

IF X0 EGL XTL.LT THEN PETUPN .YTL.L1)
! PREPHPE ANO PERFOPM BINAPY SEHPCH FOR RIGHT INTERVAL.
Lo 0 Hl - L1 1 .L/2:

WHILE t.Hi-.LOY GIP 1 00
€ ' LOOP [NUAPIANT ]S:
tOUXTELLOT LEf XX LSS JXT[.HD)

IF .x%x EQL .AT).LOT THEN PETUPN YT1.L0D
IF XX LSS .XT).1] THEN H1 « .1 ELSE LO « .1
I« GHILOV/Z

4
! NOW .XT]1.LOD LEQ .XX LSS .xT)1.L0+11

IF L0 « .LO-.N/241) LSS © THCN LO « O:
IF .L0 + N - [ GIP .L THEN LO ¢ .L-.N*1}

! NOW PEADY 10 INTEPPOLATE .
t USING POINTS .LOs .LO+1......LO%.N-1.
! FIPSI INITIALIZE LOCAL YRBLE.

L0 « .10-11
INCP J FROM O 10 .N-1 00
€ X1.J1 ¢ XTILO « .LO%13;

Yi. 1« JYTL.L0D:

0X).J41 « .XT).LO) FSBP .¥Xy

TQUTINT L. J) i 'OUTINT L0 P JUTFLOC XL AT
TOUTFLOC.YE.J1as 101191 . 0X1. 3010 'CRLFL))
i1

! NDW COMPUTE SUCCESSIVE APPROKIMATIONS
! USING SUCCESSIVELY MOPE POINTS

INCR J FPOR O TD .N 2 DO
( INCP + FPOM .J¢1 10O .N-1 0O
2041 ¢ (0.Y).J]) FHPP 0N K13 FSBP (.YL.K1 FMPR .OXL.JIN
FOVR (.X1.1) FSBR .X[.J])s
TOUTFLOC.21.¥ s CPLFO):
1}
INCP 1 FPOM .J41 10 .N-1 00 Y(.21 « .20.k]
1t

! NOW PEROY 10 DELIVER VALUE:

.2[.N-11
END1 ! POUTINE RATTKEN.

bbb A

BT LoeT v Ty

2 oo« iann

s

i

o

e My <




Listing of the short subject algoritbms

L R B R B R B R
ULPSION L
---------------------------- %
POUTINE INDEX(XTRB.L.N.X) =
BEGIN
L ¥

FIND THE INDEX OF THE ELEMENT IN XTAB WHICH IS THE FIRST
tﬁ THE N ELEMENTS CLOSEST 10 X
<

STRUCTUPE TVECITT = (@.IVEC+.11¢0.36):
HAP IVEC XxThBs

LOCAL K.S.Ts
t FINO K S.T. .XTAB[.k1 LEQ .XTABL.h¢1l
INCP 1 FPOM 1 70 .L DO
CIF X EQL .XTAB{.1) THEN (b « .1: EXITLOOPI:
IF X LEQ .XTABL.T) THEN (K » .1-11 EXITLOOPY:
"
! FIND START AND FINISH ELEMENTS OISPEGHROING XTHB WPPRY BOUNOS.
S o K= N/2eD3 T e KN/
IF (LN HOD ) EQL 1 THIN
IF (.X FSBP .XTABL.# 1) LSS (.XTROL.K¢]) FSBP .X)
THEN G » .5-1 ELSE T » .Tel:
! 40JUST START ELEMENT TO CONFORM 10 #PRAY BOUNDS.
IF .S LSS O THEN S« O ELSE IF .7 GTR .L THEN S+ .5-.T4.L4
RETURN .S
END: ! POUTINE INDEX.
POUTINE LAITEENIXTAB.YTAB.X.N.L) =
BEGIN
! N POINT INTEPROLATION.

STPUCTUPE IVECIT] = (e.IVEC*. 11¢0.36>3
STRUCTUPE MATPIX{1,J) = {leJ] (.MATRIX+.JsJe. 11<0.36>3

HMACPO OETIR.B.C.0) = 1¢A FHPP 0) FSOR (B FIWR CHIS:

OWN HATRIX INI19.10),
OWN XCI11D):

LOCAL Jv

MAP TVEC XTAB1YTHBI

J « INDEX(.XTAB,. L. .N.. X33

t INITIALIZE XCIO:.N-1) TO .XTAOi.J:.Je.N-1)
INCR | FROM @ TO .N-1 00 XCI.i1 « XTRBL.1e.J0s

U INITIALIZE INIQ: . N-1.01 TO YTABI . Js.Je.N-1])
INCR 1 FROM @ 10 .N-1 00 INi.1.01 « .YTAB[.1e.J1:

' 60
INCP J FROM 1 TO .N-1 DO
INCR ¥. FROM 1 10 .J 00
INC.JG KD ¢ OETHCL NG hed o K= (1Y XCT.K-1] FSOR )0,
SN D k=T 1V, GNCELJ) FSOR XD
FOVR (.XCl.J1 FSBP .XCI.K-11h

RETURN . IN{.N-1.,.N-11
END: ! ROUTINE LRITKEN.

VERSION G
............................ (t
FUNCTION GAITRENI XTRO.YTAB.X.N.L) =
BEGIN LOCOL dX:7ri10).LB ¢ BINO Ni=.N-T .
' %% WILL HOLO X(13-% FOR THE DATA POINTS CHOSEN. AND
' YY THE INTEPCOLATED VALUES.
BIND XT=.XTAD . YT=.YTHB 3 MAR XT.YT 3
LB+ LOCHL T.h
Tety &
WHILE .x GTR .XTI.11 #NO .1 LSS .L 00 Te. 141 3
!} NOH HOLOS THE INDEX OF THE FIPST X(..)
! THAT [5 GCA X.
ke - N/T
IF ¥ LSS 0 THEN O
ELSE IF .K GIR .L-.N+1 THEN .L-.N¢I

ELSE .b 3]

' L0 NOM HDLOS THE INDEX OF OUP SMALLEST BASE POINT.

tOINITIHLIZE XX ANO YY.
INCR 1 FPDM U 10 N1 DO

€ yxt I1e.XT1.LBe. 10 FSBP X

VWi (e vt iBe 11 )

+ INTEPPOLATION EXACTLY ACCOROING 10

! SCHEME OF GIVEN REFERENCE.

' EHCH 1-1TERKTION GIVES VHLUES OF I-7H DEGREE.
INCR 1 FPOM 1 70 NI 00

(MCPO 11=.1-18 1

INCP J FROM .1 10 NI 00

Wil ( YYETTL FHPR L XX{.J1
FSBR .YY.J] FHPR .XXITIT )
FOVR (.XXi.J) FSBR .XX(I1 T} 1
YYIND)
ENO: ! GAITHEN
LS IR
VCRSION B
---------------------------- 2

ROUTINL HATTLENIXTHB.YTAB. X.N.LY =
OEGIN

STPUCTUP {VECTTT = te. QVCCe. 13¢P.36:
MAP {VEC aTRB:YTRO:

DWN VLCIDP CP101.XX11013

PEGISTER B.E}

B« 2lABIOY, B ¢ XTHOI.L-D1:
WHILE 1.E-.81 GIP { 0O
IF @ (.B¢.E$/2) GTR .X THEN [ » (.B+.E1/2 ELSE B + (.8¢.€1/2;
1

1F (B + .B-.N/2+1) LSS XTHDID) HEN B « XTA0IA]
CLSC {F .0 GIR XTAB[.L-.N¢1) TECN B « NTABT L~ Nel D
E « YIAR[.B-XTuBIN1):

DCCP 1 FROM .N-1 10 0@ 00
C ux(.11 « @.B1 Ci.1) » @.E1 B+ .Belr E B4V

DECR 1 FROM .N-1 1D 1 DO
OECR J FROM .[-1 TO » DO
Ci.J1 » (1.Ci.1) FMPR 3.Xxi.J) FSBR .X)) FSBR
(.Ci.J1 FHPR (.XX{.11 FSBR .X}}) FOVP
Caxl.J1 FSOR . XMi. 11}

Cio1
ENO: ! POUTINE BAITLEN

W NIRRT

e
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Listing of the short subject elgorithes

VERSION L
............................ Y
ROUTINE ERITKEN(XTAB.YTAB.XP.N.L) =
BEGIN

OWN VECTOR CLIOT.XX[101.XNX[101:

BEGIN ! TH1S BLOCK SAVES ONE INSTR. IN THE ENTRY CODE &ND ONE
! IN THE EXIT CODE SINCE WE NOW ONLY USE ¢ PEGISTERS.

REGISTER B.E. X

B~ .NTAB: € « .XTABSZs.L-.Ns X « .XP:
WHILE .E GIR (.Bs+]) 00
IF 9((.B*.€)/2) GTR .X THEN E + (.B+.E)/2 ELSE B « (.D+.E}/T:

IF (B « .B-.N/2+1) LSS .XTRD THEN B + .XTwB:
E ¢ .YTAB+.B- . XTRAB:

DECR I FRDM .N-1 10 © DO
C XXX ID « (NX[. 15 « @.8) FSBR X3 CI.11 «~ 0.E3
B« .Beli E » .ES

)
END: ! OF THE BLOCK THAT SAVES US ENTRY/EXIT CODE.

DECR 1 FROM .N-1 T0 1 DO
DECR J FROM .1-1 10 0 D)
Cl.JI « (C.CL.11 FHPP . xxX[.JI) FSBP
(.CI.J1 FMPR XXX[.1))) FOUR
(. XX[.J1 FSER .XXL.11):

.C

ol
END: | ROUTINE ERITKEN

POUTINE TEST(IRO.HO) =
BEGIN

LOCAL
J.
H. HMAX, HHIN,
X
Y.
oY,
FACT:

H e .HOt FACT » 1,055 X « .
HMAX - HO FMPP 3.0:  HMIN « .HO Fi¥R 0.2

INCR | FROM © TD TABSIZ-) BY 1 00
ABSCISI. 1) « )i
IF .1 GTR @ THEN ( IF .ABSCIS[.1} LEQ .ABSCISL.1-11 THEN ):
OROINL. I} « LOGE. X3
X « .X FADP K1 H « .H FMPP .FACT:
IF .H GTR .HMAX THEN (X « X FHOP .H FOVP 3.0:
FACT « 0.95);
IF .H LSS .HMIN THEN FACT » }.0S:
)

-

INCR COUNT FPOM 1 TO .MAXC DO
(X » 1.0: H e+ HSTEP:

WHILE .X LEQ .ABSCISITRBSIZ-11 00

( INCP | FROM 2 TO NMAX 00

(. 1P} (ABSCIS A,0°. OPOINC@. 0>, . X, 1, THBSIZ-1):
X & X FADR .H

)
)i # END OF TIMING LOOP
ENO: ! OF ROUTINE TEST.

CASE . TRACECASE OF

SET

%0% TEST(AAITREN<D.0>.03.1):
%1% TESTILRITFEN<0.0>.0.11:
2% TEST(GAITFEN’0.0:.0.1):
23% TEST(BAITLEN<O.0>.0.]1):
4%  TEST(EAITKEN<O.©>,0.1):
TES:

END
ELUOON




