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Preface ,

The use of stratified dielectrics as spatial filters was originally suggested by
Dr. A. C. Schell.
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Analysis and Synthesis of Spatial Filters That
Have Chebyshev Characteristics

1. INTRODUCTION

Spatial {ilters, designed by a new Chebyshev synthesis technique recently de-
veloped at AFCRI,, are being made of stratified dielectrics. These filters have
successfully suppressed wide-angle sideloLe structures, particularly in phased-
array antennas scanning a low sidelobe beam over a limited spatial sector. The
wide-angle sidelobes, which are in fact grating lobes that have been suppressed
to the -12 to -16 dB levels, are reduced to levels of approximately ~26 dB with-
out degradation of the near-broadside radiation characteristics of the array,
Since the array face is flat, the optimal spatial filter consists of uniform layers
of Jdielectric material properly spaced, having dielectric constants suitable to the
required spatial discrimination.

Such filters alsc have application in radomes, which usually require wide-
angle scan. Although the subject has not been addressed directly in this work,
the equations and figures given here can also be applied to the design of filters
intended for radome purposes.

(Received for publication 13 September 1974)
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The principles of layered-dielectric frequency-domain filters and impedance
transformers are now well establisshed.l'5 and insofar as possible the techniques .
for analysis and synthesis in this domain have been extended to the spatial domain. ‘
The fundamental difference between synthesis in the f..equency domain and synt® :-
8is in the spatial domain arises because the transmission coefficients of layers !
that have a high dielectric constant are stronzly frequency-dependent Lut relatively
invariant with the spatial angle of incidence: if a wave from a medium of low di-
electric constant is incident on a medium of high dielectric constant, then for any
angle of incidence the wave propagation angle in the latter 1s almost perpendicular
to the interface.

This distinction suggested a fundamental change in filter design. The fre- .
quency-domain transformers and filters synthesized by Collin and othersl'5 con- !
sisted of various dielectric layers sandwiched together. The spatial domain fil-
ters synthesized in the work reported here consist of quarter-wave sections of di- :
electric separated by half-wave or full-wave air spaces. The methods that Collins i

1,6

outlined in two basic studies were applied in their development.

2. PROPAGATION CHARACTERISTICS OF STRATIFIED DIELECTRICS
WITH PLANE-WAVE INCIDENCE AT ARBITRARY ANGLE

2.1 General Formulation; Choice of Coordinate Systems

The end result of this analysis is a technique for synthesizing spatial filters
that control the radiation pattern of a phased array used for limited-sector scan.
For convenience, all propagation coordinates are referred to the basic reference
coordinates X,y,Zz of the array (Figure 1), which excites a spectrum of plane
waves and evanescent plane waves as described in Appendix A, For purposes of
this analysis, we need consider only a single wave radiating in the direction of the
vector

ko= Rk, o+ §k + 2k, = Kk, (1

1. Collin, R.E. (1955) Theory and design of wideband muitisection quarter-wave
transformers, Proc.IRE 43(No. 2):179~185, Feb. 1955,

2. Cohn, S. B. (1955) Optimum design of stepped transmission-line transformers,
IRE Tr, MTT MTT-3(No, 2):16-21, Apr, 1955,

3. Riblett, H. J. (1957} General synthesis of quarter-wave impedance trans-
formers, IRE Tr. MTT MTT-5(No. 1):36-43, Jan. 1957.

4, Young, L. (1959) Tables for cascaded homogeneous quarter-wave trais-
formers, IRE Tr, MTT MTT-7(No. 2):233-244, Apr. 1959,

5. Young, L. (1962) Stepped-iinpedance transformers and filter prototypes,
IR 1r. MTT MTT-10(No. 5):339-359, Sept. 1962,

6. Collin, R.E. (1960) Field Theory of Guided Waves, McGraw-Hill, pp.79-93.
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kx = kouo = ko(sin 90 ¢os ¢°),
ky = kovo = ko(sin 90 sin ¢o).
k = k cos 9 » e
z ° ° Z // ~ //7 %
ko = 20/,

Figure 1. Array Geometry Showing
with u, and v the direction cosines. 2::{2{‘ Sggﬁ;g:::ﬁ g’.?b and Polari-
The aperture field of the phased array

is agsumed to be polarized in the y direction, thus determining the polarization of
the incident plane waves, This radiation is best described by the ©, &, r coordi-
nates of Figure 1 because in the absence of the dielectric layers the farfield radi-
ation of the array contains only an E<l> term. The ¢ angle is measured in the yz
plane; the © angle, from the positive x zxis. In general, the vector A’in ©, &,r
space i8 obtained from the vector A in X, Y, 2z space by the dyadic relation:

KI

2 al Al N
OAO + QAQ + rAr
=T-A, (2)
where T is the nine-component dyad written:
T = O(-2sin® + ¥ cos® cos© + £ sin & cos O) +

+®( 0 -§sind + 2 cos @) +

+ T(X co8©+ 5 cos dsin® + 2 sin ® sin O), (3)

This expression, a formalized way of describing the relationship between the
various components of the vectors along the unit vector directions, is equivalent
to the matrix representation:

A'e -8in©® cos $cos © sin & cos O AL
ALl = 0 - A l.
& sin & cos & y
A'r 05O cos$sin® gindsin® A, 4)
9
\\‘ - { -
k-——l \-""6“ i

1




This statement of equivalence to a metrix transformation indicates ‘hat the
process of taking the inverse of a dyad is th.e same as that for a .atrix; and that
the transformation of a vector from one systim to a gecond, and from that system
to a third, is obtained through matrix multiplication of the rows and columns of
the matrix forms or, equivalently, through scalar multipiication of the dyad by the
second transforming dyad. As with the equivalent matrix operation, dyad multi-
plication i8 not commutative. Relating th= two syntems®in general by

gin® = J-sinzﬂ coszcb.

cos ® = gin 0 cos ¢,
gind = ..____9.&9__.__. R
#l - sin20 cosznp
cos @ = __sinfsing (5)

41 - sin26 cosz¢

and specifically restricting the 6, ¢ parameters to 00 N (the direction of the
main beam of the array), yields the dyad in the righthand rectangular coordinate
system 90 . Qo »T,. a8 follows:

. . uv ., u, cos©
=6 [5¢1-v® + =22 4 3 21+
=o = "o ° T T e
)-uo l-uo
- . cos © .V
+ ¢ 0 ~y 2 +2z 0 +
o
1-u? 1-u2
Yo Yo
+ ‘x‘-o(iuo + ¥v, + ‘icoseo). (6)

This choice of coordinates makes the unit vector i‘o coincide with the direc-
tion of propagation. Thus, ?‘0 = k. Transformed by this dyadic operation into the
new coordinate system, the plane wave (see Arvendix A) is linearly polarized, and
has the following electric and magnetic fields:

’ _ - _ -~ -jk!‘o
E = &,F, = §,Cl0,. 90" °,
2
k ~jkr
-2 _ 2 _ A 0 [e]
B = eoBeo = 90(?;5)C(9°. ¢o)e ’ (1
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where r is a distance measured in t1e direction of propagation, and C( 00 ’ ¢°)
is a parameter (evaluated in Appendix A) for multiplying each wave.

Throughout this report the 60 , 60 » Ty system is used for describing polari-
zation of the wave., For describing propagation in the dielectric layers, it is more
convenient to resolve the fields into components along the sphericz] coordinate
system 8,8,#. As before, the subscripted dyad Bo is usea when # coincides
with T 0" These are the conventional definitions of perpendicuiar and parallel po-
larizations for arbitrary incidence of a plane wave on a dielectric slab.

In general 8, ¢,r coordinates the vector A” is related to A in the origina’

x,y,z coordinates by th: dyadic relation:

A" = T4, (h
where
_T_'= flkcos ¢ cos @ + ysing cos 8 - % sin §) +
+ ¢(-Xsind + ycoso + 0) +
+ r{xn + yv + Zcos 0,

It is sometimes convenient to transform vectors from one system to the other.
Unit vectors in the #, 3, % coordinate system are related to those in the &, &, T
system by a rotation -§ about the T, anc so the vector A” in the first system is
written in terms of the vector A’ in the second system by means of the dyadic

notation:
A" = R A, (9)
where
R = 8 cosd - &sinb) +
+ 0(®sin, + $cosd) +
+ TP,
The required angle § is obtained by aligning the umt vector 6 parallel to the

plane of the dielectric layer. Then, when transformed by the dyad R - T into the
6, ¢, r system, the unit vector % is perpendicular to ¢, and

6R-T-2= 0. i (10)
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Solution of this equation yielcs values of § defined by the following equations:

sind = 308 . cogp - 059 c0SH (11
2 ‘Il —u?
1~-u
Equation (8) could also have been obtained by letting the rctation dyad R
operate on a vector in the 0, ®, r system, with the result:
A*=1.X=R-1-K. (12)

Applying the transformation in Eq.(8) to the phased-array fields (see Appen-
dix A) leads to the following resolution into two sets of plane-wave fields as eval-
uated along the k path,

Parallel Polarization
-C (90. (bo) sin éo -jkoro .

Perpendicular Polarization
-C(6, .¢o) cos ¢, cos 6, -jk.r, .

E = e ' = e
) > : ¢ :
[\] 2 o 2
l-uo l-uo
B, = E, (k fw): B, = E, (-k_/w);
9, 90 o ¢° 90 (4]
B =E_ =0, {(13)
To To

As noted by Collin.6 parallel- and perpendicuiar-polarized waves propagate
independently through the air-dielectric slab interface, and can be recombined at
the output of the layered region to form a set of plane waves in 60 . @o space, but
the set will in gereral no longer be linearly polarized. The amplitude of the
cross-poliarized signal induced by the dielectric slabs is crucial to the spatial
filter geometry, and 18 easily related to the scattering parameters of the filter.
Based on the plane-wave filter transmission and reflection coefficients, the plane
wave amplitudes at the output of the filter are given by:

Parallel Polarization

ouT

Perpendicular Polarization

OUT

Eg = Eg, Tpar’ Eg = Ey Torps
OUT _ p o . OUT _
By = By Tpars B Ba_ Torp" (14)
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where Tpa roF T rp 2T€ the filter transmission coefficients. The electric fields
reflected toward the array by the filter interface are rprp times the incideat per-

pendicular polarization and T r times the incident parallel polarized signal,

pa
given by:

Paraliel Polarization Perpendicular Polarization

REF _ ., ) + REF _ )
Eg = Eg l:'par’ L¢ - Etb r‘pr;:o :

0 o

REF REF ;
B =B, T H B =-B, T .

¢ 9, par 6 6, Ppre (s)

prp
The inverse of the rotation dy--* R is used to transform the scattered field

components back to the ©, &, r coordinate system by changing any vector A" in
the 6 ,9,.r, coordinates to the vector A’ such that

The filter parameters rpar' Tpar and T, Tprp are evaluated in Sec. 2.2.

o’ o
A = r!.3", (16)
where
R - 8(hcoss+dreinb) +
. B(-0 sin6+$cosb)+
+ rr.
Hence,
A=16 _5cos¢coso+6 sing \
l~u2 1—u2
+ & [-§-8a¢ _geosgcos B) , zpl. 7Y, (17)
2 2
1-u 1-u

Using this dyadic transformation, with T taken along the direction of propagzotion,
and using the definition of the parallel- and perpendicul~r-polarized incident fields
Eg, and E¢° » yields the following expressions for the transmitted E"o and
crosa-polarized Eeo fields at the filter output:

13
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-jkry [. sin ¢, cos ¢ cos 6,
C(O,. ) e 18, — (Tpar - Tprp) + .
l - uo .
sin? 6o cos2 13 cos? 6 1 "
[+ [+} '
Y %\T Tear? ) Torp [
Yo Yo 3

-jkr, .
C (00‘ ¢o) € l_eo K+ ‘io xcross] , (18)

where K and Kcross are the filter transmission coefficients from the incident

Eeo-linearly polarized field into ©,- and cross-polarized ($,-polarized) fields.

-

The reflected fields for these two polarizations are given by the same expressions '

as in En.(18), but with the transmission factors T ar and T replaced by the

prp
filter reflection coefficients rpar and rprp' These new filer coupling coefficients

| p K
are defuned aus ¥ and “fcross'

that since energy is conserved for the two polarizations separately

i e * .
(Tpar Tpar + rpar rpar =1; and Tprp Tprp + rprp r:rp = 1), it is conserved
within the system totally. Consequerntly,

By means of these expressions it can be shown ,

A

* % - * _ .
KK + Kcross Kcross + F¥ 4+ 5cross Scross = 1. (S]]

2.2 Wave Matrices and Transmission Through Stratiiied Dieiertric Filters

Quarter-wave transformers with Chepyshev behavior throughout . given fre-

quency passband were synthesized by Collinl in 1955, The process has since
been refir.ed.z'b and there nowv exists an extensive tabuiation of transformer
parameters for various Jesign specifications, Spatial filter design is similar in

e - ant—— - .-

concept to bandpass filter design, except for some differences that will be taken

up when filter design procedures are introduced. ‘
Collin used the wave matrix formalism to derive convenient expressions for

the transmisgsion properties of layered impedance sections, and to describe the |

spatial properties of abutting dielectric layt’:rs.6 |

The same formalism. will be used here to derive o L P
rroperties of the strai:fied dielectric filters. b b
Figure 2 represents two dielectric media, -— -—
showing incident and reflected waves a,and b
1 MEDIUM | | MEDIUM 2
in medium 1, and incident and reflucted waves te) (eg)
b2 and ay in medium 2., The incident waves are

assumed to be either parallel-polarized or per- Figure 2. Interface Between
pendicular-polarized, with no cross-polarized Two Dielectric Media

14




components excited. In this case a purely algebraic relation exists between input
and output. By the wave matrix, parameters a; and bl of medium i are related
to parameters a, and b2 of medium 2 in such a way that cascaded networks or
layers are couveniently analyzed, The input-output parameters rve thus related by:

= . (20)

Collinl gives the obvious relations between the parameters Amn of this
matrix in terms of those of the conventional scattering matrix (see Appendix B),
and shows that the wave matrix for a cascade of networks is the product of the
wave matrices of each network, The parameter

Ay = o . (21)
b2=0

the inverse of the filter transmssion coefficient, is of particular importance in
filter design. The square of the absolute value of this parameter, the power loss
ratio, will be considered extensively in the next section.

The normalizations of signal parameters required to convert the electromag-
netic boundary value equations for parallel- and perpendicular-polarized waves
into the proper format for wave matrix application are given in Appendix B, These
resuit in the following equation for a junction between two dielectric materials:

a, . 1 'l"1 a2\
= 7o . (22)
b, 1\T, 1 b, /
where

(1-21/%,)

I =

1 (i + 21/22)
and

Tl = 1 !"l M
and where

15
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kzj
z, = ———
] ke- cos 0
)

for parallel polarization, and

cos @
2, = =Sgme—
b} ij

for perpendicular polarization, and where

- " —ain?
kzj- L € sin® @

and

Ky = koyG -

Here, I" is the reflection coefficient at terminal 1, and Tl is the transmission
coefficient from termir.ial 1 into terminal 2. The parameter 6 is defized for the
incident medium air. Note that i1 the materials in sections 1 and 2 were reversed
in position, I'l in the matrix would be replaced by -TI . and T, would be replaced
by Ty=1- I‘l .

The wave matrix for a line of eiectrical length ksz is:

J’ksz 0 021 lbz ‘
e
-k, L (23) 7777 '
0 e 1 t
S
Thus, for a filter section (Figure 3) consisting of & ——— _i_ —_
terminating air-dielectric interface between a dielectriv o ? lb
layar of thickness t, and an air space of thickness S, the ' ‘

wave matrix relating the parameters 2y b1 bLelow the
Figures 3. Basic

air space to the signals ai thz output terminal (a,, by} Filter Section
can be written:
jk, S 0 t 0\ .
e, 1 T / jk"e 1 -T ]
e 3 \We 1 1 ! 24)
~'I’— . T Y
-k, SfI 1 r, 1 -jkzet 2 T, 1
0 e ° j 0 e L J
18
7

i
{
i



which leads to

A A
[A(S.f.t)]= 1 2
Ay Aap
jky S/ jk, t -jk, t ik, S Kt -ik, t)
o(ee_r';’e e_eorlee_e €
=T‘]'f‘ . (25)

172 -jk, S{ ik, ¢ -5kzt) -jk, S jky t  -jkg ¢
[rle % le € -¢ ‘] e °-l"fez€+e €

e

This dielectric layer and an air space constitute the basic element of the
spatial filters considered in this report. The structure is more general than
those cornsidered in the previous literature because the goal here is to study spa-
tial filtering, not frequency bandpass-filtering. It will be shown that without air
spaces it is difficult to get any pronounced spatial tehavior over narrow angular
sectors.

Equation (25) can be rewritten in terms of the scattering parameters S11 and

512 for the special case of broadside incidence on a quarter-w :ve slab thickness,
as follows:

ijOS jkzoS where
i 1€ Sne s., = &1
A=z . 1oesl (26)
12 . . .
L = —2VE
S e W _ % Si2 ® Tt -

11

The wave matrix of a filter comprised of a number of such sections is ob-
tained simply by multiplying the filter-section waves in the sequential order of the
positions of their matrices A (S,¢, t) in the filter (omitting the input section of line
where appropriate). For example,

N
[A]FILTER = nU! AlSpe€qety) - e

Such generalized filter wave matrices are used here in two ways: i) in the
Chebyshev synthesis procedure, they are used for computing the filter power loss
ratio; (2) with Eq. (B3) they are used for deriving the filter srattering parameters
r .T . T ., 1 ions.

( par’ Tpar® ‘prp and Tprp) for the parallel and perpendicular polarizations
These parameters are then used in Eq. (18) to define the desired and cross-

polarized signals at the output of the filter.

17
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3. CHEBYShiV FILTER SYNTHESIS

3.1 General Procedures

Collin's1 procedure for transformer synthesis depends on the demonstiated
properties of the polynomial expression for the power loss ratio, defined by Collin
as the power ratio associated with the inverse of the filter transmission coefficient:

P=A_ A .. (28)

Using filter elements consisting of sections of transmisgsion line, each quarter-
wavelength long at the design frequency, Collin proved that the power loss ratio was
an even polynomial of cos kzt of degree 2n, where n is the number of sections in
the filter. He also showed that the power loss pclynomial could be written as unity
plus a positive constant times the square of Chebyshev polynowial T n(?')’ and that
n characteristic impedance values are sufficient to define the Chebyshev trans-
former, with the ripple level given by the value of the positive constant.

The fundamental diffexrence between the present study and the transformer
studies of Collin's and others is that the devic: studied here is a spatial filter
rather than a frequency filter. If the air spaces Sj were set equal to zero, this
analysis—like Collin's—would also lead toc power loss ratios that are even powers
of cos kz t. The difference is that in the case of a frequency filter the kg, = 2a/x,
varies directly with the frequency; in the case of a spatial filter, with Ej large
compared with unity, k,. varies very little over a wide range. Logically, there-
fore, procedures for designing a spatial filter are not directly analogous to those
established for designing quarter-wave transformers.

To consider the spatial domaui--assume dielectric constants of the filter
media large enough for the #-dependence of the k,. in the various layers to be
veglected; also agssume that the air-dielectric junction characteristics are con-
stant with 6. If the thickness of each dielectric layer is a quarter-wavelength at
the design frequency and the air-space distance S between layers is fixed, then
the power logs ratios will be even powers of cos(kos cos #) or even powers of
sin (koS cos f). In such case, the dielectric slab is considered a lumped reactive
component; filter synthesis consists in choosing the magnitude of this reactance.

32 The Mathematics of Filter Synthesis
The first five Chebyshev polynomials are:

To(x) =1,
Tl(x) = X,

18
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To{x) = 2x2-l. i

2
Tox) = 4x°-3x, .
e \
T 00 = 8x*-ax’e1. (29)
’
The optimal properties of these polynomials are well known, as are their root {

locations and in-band and out-of-band characteristics. The functions oscillate ¢
with amplitude unity throughout the range and all have the value unit at |x|= 1. .
The polynomial T m(x\ has all of its m zeros within this passband range.

An alternative way of expressing the general polynomial Tm(x) isy

T, (X) = coshim cosh™1x) . (30)

This expression is vaiid for all x, but is particularly useful for calculating
the stophand polynomial values. Synthesis cf spatial filters based on Chebyshev
polynomials follows conventional procedure, which begins with the recognition .
that the power loss ratio is a polynomial in cven powers of the sine or coswie of

T RTS

(kOS cos ). The further specification that the polynomial be one that has m
doubie zerus within the passband 1s also common to the theory of filter synthesis,
and has the result that the power loss polynomial van be set equal to the expressicn, P

* 2.2 | sin
Al:A!l 1+4A Tm{_ST#I) 31D

wnhere

u

g
n

g:_S. cosf.
and §1 is the value of { at the passband edge.

This expyression is unity plus a polynomizl of order 2m, with double zeros
within the region sin{ < sin { 1 and with the maximum ripple A2 within that band.

The expression AHA:! has the minimum value unity at the polynomial zeros.

3.2.1 TWO-LAYER FILTERS

The coefficient A“ of the wave matrix for a filter made of two identical di-
electric slabs of dielectric constant ¢ and thickness t set to a quarter wavelength

. {in €), computed from Eq.(28), is
I W c) '
Ay = . (el sZ e ¥). {32)
21
-

t <

-\

1




and 511 and 521 are computed from Eq.(26), Since S11 is real, the power loss
ratio is:

- 1 2 .2
A AL = 1+ - (4511 sin c). (33)
21

To synthesize a two-layer filter, this ratio is set equal to the expression

o 2.2 sin¢
A Ay = 1+4 TI(ET?:T,')‘ (34)
Defining a constant

A

then leads to the following equation for the dielectric-layer reflection coefficiem

- 2
S . = _1_1_35_:9.—_ (36)

| S 4 °

Solving for v . :neans of Eq.(36) and selecting the quarter-wave filter thick~
ness for the given ¢, completes the synthesis procedure for given Al and sin{ P

3.2.2 THREE-LAYER FILTERS

Consider three layers, each a quarter-wave thick at broadside and arranged
symmetrically so that the dielectric constant of the central layer is € and that of
the two outer layers is € with all layers again separated by the spacing S. The
A” coefficient of the resulting wave matrix, viewed at the filter input, is

Ay = ——— [ej';(ejc -5, ,(11S, (2) e‘3§)+
sZ. (s, @

. -iC i -.ic)
Syy(De (s”(z) e s (e , (37

where the parenthetical (1) and (2) dis inguish the parameters for the dielectric
layer € from those of layer €y
After some manipulation, the power '~ss ratio can be put into the form:

* 1 2

A LA = 14 S,,(2) +S,,(1)S, . (2) +

11°°11 4 2 [ll 11 11
|szlm| |521‘2’,

2
-25,,(1)+45,,(1) ginZ ;] . (38)
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Equating this to

c2,\2
1+ 4% _l+_________2312n (\ (39}
gin Cl/

yields the following equation for Sl l(1):

2 ]
25, (1) sin®¢ | - A[I-S“ -

and then
2
28“(1) cos (1

S,,(2) =
11
1+ Su(l)

(40}

3.2.3 FOUR-LAYER FILTERS

The coefficient A, of the wave matrix for a four-layer filter in which the
dielectric constant of the two central layers is €9 and that of the two outer layers

is 13 is:
- 1 (258 . g2 =28
A11 = [e (e 511(1)511(2) 511(2)+ Su(l)Su(Z)e )+
521(1)521(2)

- 2 3 -2jc]
-5, e (s @ s msh @) -5 @45 (e . w@n

After substantial manipulation this becomes the following expression for the
power loss ratio:

2
* sin” § ‘ . 3
ALJA . = 1+ —- 18S..(1)8in" { +
11°°11 4 4 11

|Sz1‘”| |521(2)| |

2
2 2 1
+ sint (2511(1) S,4(2) + 28, ,(1)S7,(2) + 28 () - ssun)J ,(42)

which, upon equating to

. 3 . 2
2 sin sin
1+A [4(sm l) - 3(s ™ l)] . (43)

yields the following equations for defining S, 1(l) and Sn(2)
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254D A
‘ 2” 2] i3
821(1) 521(2‘0 ] sin §l

3
[es?y+ ]+ J[zsflm + 2] + 48520 cos’ 1|
Sl = FEREY

. (44)

3.3 Filter Desien

The equations in Sec. 3.2 were derived in terms of sin {. Since {=(20/A)S ccs 6,
sin{ is zero at (S/A)= n(0.5), with n = 0 excluded as trivial. In principle, there-
fore, there are a number of different spacings that wili allow proper spatial fiiter
synthesis. In practice, the only reasonable spacings for most applications are
S/A = 0.5—sometimes S/A = 1,0—because larger spacings have a multitude of
spatial pass- and stopbands that do not generally suit the given requirements.

For S = 0.51, there 1s a passband (sin { = 0} centered at cos 8 = 1 (broad-
side), and also at cos 0 = 0 (endfire). YFor 5 =X there are passbands at broad-
side, at 60°, and at endfire. The 60° passband begins just beyond 40°, Thus,
the basic filter can be made so as to have synthesized filtering properties from
proadside to somewhat bevond 40°, a spacing that is appropriate if the antenna
radiation needs no further reduction for large 8 angles.

Filter synthesis procedure begins with determining the value of §1 at the end
of the passband and the value of some spatial angle variable { at which a given
rejection level 1s required. Equations (30) and (31) give the out-of-band rejection
for Chebyshev filters of the general type. Figures 4 through 6 show the rejec-
tion ratios (in decibels) for two-, three-, and four-layer filters for various
values of A2 consistent with rejection ratios of up to 30dB for values of
sin §/=in §1 < 10. From these curves it is possible to choose the value of the
passband ripple amplitude A2 that will provide a given rejection ratio for a specif-
ic value of sin {/sin Cl . Since the minimum passband transmission coefficient is
1/(1 +A2). the constant A2 must be kept mederately small if excessive ripple is
to be avoided 1n the passband.

Figures 4 through 6 must be used a conjunction with Figures 7 through 9.

In these latter figures, the required refiection coefficients S, (1) and 5,12
fcomputed for two-, three-, and four-layer filters in Eqs.(36), (40), and (44),
respectively] are plotted versus the values of sin { 1 at the end of the passband;
the various A2 vilues that were used were chosen to cover a range that wouid
give reasonable ripple \alues while maintaining good filter rejection,

Some interpretaticn of thege figures is necessary to prevent misconceptions.
Equation (31) and Figures 4 through 6 are for filte: = that are synthesized exactly

22

!
)
1
i
1

S~y




. . = o= b oy - P 0 e o ]‘ T - 24
5
=
[} o]
e o @
o >
O 5
S e - %
© o
=g oo \
1 Q rn
OH.. - Z
5 = B b
(SR .W
.2 -
<+ o o0
o e >
P =4
348 &g
e =0
! O

”
. I o
0
% (o] (]
- (»]
| o g
2.
<
> w
Y £
: -
Z ~
N -
e c
m L ]
. L]
- =
»
R Y « —' /
(-]
1 Y I S
N S G - < -+ S
n_ﬂ‘”ii.wl —z 2 @ ~ @ v e g g

o - -
~N
mﬂccm_» ~m+ao_oo_ 01=(@P) NOILIIF3IY [0 21,0 +1] ©'80101+(89) NOILO3 3




Figure 6. Four-Layer
Chebyshev Filter Rejection
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Figure 8. Reflection Coefficients for Three-Layer
Chebyshev Filter
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like Chebyshev filters, a .~esult not possible in the spatial domain because the

|
U
t
|
i

reflection and transmission properties of each dielectric slab do vary with 9.
Under this restriction the filters are not strictly Chebyshev-like in their be-

havior yet are very nearly so for large €. These equations and curves thus "ep- N
resent the idealized Chebyshev filter that has constant slab properties, with val- !

ues at all angies of 6 the same as at broadside. They aid in synthesis, but the

4
/
‘ properties of the actual dielectric filter must be evaluated by considering the ex- k
act wave propagation in the structure [using Eq. (18) and the filter scattering pa- A

rameters obtained from the filter wave matrix, Eq.(27), for each polarization].
Such an analysis is carried out in Sec.3.4. Similarly, the values of the reflection
coefficients plotted in Figures 7 through 9 are for an idealized filter slab with all

parameters constant. The horizontal lines indicate these reflection coefficients

converted to the values of ¢ for quarter-wave slabs at broad: .de.

—~n

The values of the reflection coefficients and those of the dielectric constants

J of the filter layers are functions of A2 and sir { 1+ and are not direct functions of
S/A. These figures are thus useful for all S, since they can easily show how the !
i requirea dielectric constants depend on the choice of spacing. ]

3.4 Results Otained With Two Filters

) The synthesis procedure described in Sec. 3.3 has been used to derive a num-
ber of two-, three-, and four-element filters. The contour plots in Figures 10 ;
and 11 summarize the transmission characteristics of several four-element l
filters for transmitted and crossed polarizations in generalized u,v space. These
show four-layer filters synthesized subject to the parameters A2 = 0,0004 and
sin Cl = 0,15, for S= 0.5A and S= A, Since { is unchanged, this choice of pa-
rameters leads to filters having identical layers (ts1 = 3.08; €y = 15.14), but yield-
ing a differen. scan performance for each S value.
The filter transmission factors whose contour plots are represented here are
given by 20 logm( K) for the transmitted polarization, and 20 logw( K ) for

cross
the cross polarization, where the parameters (X) and (K ) are obtained di-

rectly from Eq.(18). The circular contours around the g:(i,gsi; in u,v space indi-
2% tne! within the pagsband at least, the filter properties do not depend strongly
on the angle ¢. Ior larger 6 values, ¢-dependence becomes more pronounced
and filter behavior is noticeably different, with somewhat more rejection in the
H plane (v=0) than in the E plane (u=0). The filter behavior for large scan

. angles (@ > 60°) is not plotted for the S = 0.5A case because of the complexity of
the contour plots and the generally unsatisfactory filter performance at such

| . angles.
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Figure 10. Transmission Characteristics of Four-
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The comparison of the two cases does illustrate that for given dielectric
layers, much sharper filter skirts are possible with A spacing than with 0.5
spacing, This can be an enormous advantage—if the filter properties beyond about
9 = 50° are not important—because the availability, machining properties, and
uniformity of materials of lower dielectric constant (less than 15) are far greater
than thosc of materials of higher dielectric constant.

The cross-polarized signal components in Figures 10(b) and 11(b) indicate
that these signals are zero in both principal planes, and maximum near ¢=45°;
and they are in al' cases reduced at least 13 dB by the S = 0.5 filter, and 18 dB
by the S = A filter. For the specific application considered here, this amount of
filtering 18 more than zdequate, hut for some other application the cross-polarized
tranamission may be excessive,

Several filter designs that have spacings between 0,5 and A have been in-
vestigated, Des:gning sin { so that it varies uvctween -sin Cl at broadside to
+sin T, at the end of the desired radiation sector yields higher sin{ /sin £ } ratios
and thus greater rejection for given stopband angles. Unfortunately, this choice
of 1 leads to a requirement for excessively high dielectric constants; but when
the A2 value is reduced to one that results in more reascnable d:electric constants
the overall filter rejection 18 increased only slightly over that obtained with the
original 9.5\ spacing. In such cases there is apparently little to gain by resorting
to spacings that are not 0.5A or A.

3.5 Results Obtained With an Array of Parallel-Plane Waveguides

The numerical results of Figurcs 10 and 11, computed by mesns of the basic
formulas derived in thie report, imply incident fietds consisting of one or several
uncoupled plane waves. The phased array is a more complex distribution. For an
infinitely large array, the field is rigorously described in teims of a spectrum of
plane waves, some propagating and some cut off (Appendix A). If a stratified
filter is used over the array aperiure, then the waves reflected by the filter are
cross-coupled by the array face, This intercoupled nature of the fields implies
that the freespace properties of the filter may be modified by its proximity to
the array. Figure 12, however, shows that the dielectric-layer filter can be
used fer suppressing sidelobes and grating lobes, and so long as the main beam
radiation is kept within the filter passband there is relatively little disruption of
the basic array properties. It also shows how the two filters of Figvres 10 and
11 reduce the residual grating lobes of a special array that incorporates an aper-
‘ure control technique7 to eliminate the dominant grating lobe, Arrays of this

7. Mailloux, R.J., and Forbes, G. R, (1973) An array technique with grating-

lobe suppression for limited-scan application, IEEE Tr. AP AP-21(No. 3):
597-602, Sept. 1973.
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Figure 12, Limited-Scan Arrsy Grating Lobe Amplitude Locus
i odd-mode scanning no f'liter; ~-«--- odd-mode scannirg
with four-layer Chebyshev {iiier (S=0,51); — —— odd-mode
scanning with four-layer Chebyshev filter (S= )]

type cannot eliminate all of the grating lobes. The lobes that remain grow with
array scan angle, and sometimes get to the -12d8 level at maximum scan. The
grating-lobe amplitude loci of an array of parallel-plane waveguides whose inter-
element spacings and aperture width are both 3,772 are given by the solid curves
ot Figure 12. The maximum scan point 11.5° is denoted by a circle at each of
the grating lobe loci. The broken and dashed curves are jor the filters of Figures
10 and 11, respectively,

A comparison of these curves shows that even in the presence of mutual coup-
ling of the elements in the array, the rejection ratios for the filters placed directly
an the actual array are almost identical wi' those of the isolated filter. The re-

jection properties of the S= A filter are particularly appropriate to the given array:

all of the near grating lobes are reduced by substantial factors. The remaining
grating lobe, near §0° at maximum scan, appears approximately at the second
lilter passband and so i3 relatively unaltered by the filter. In practice, this lobe
is further reduced by the projection factor of the finite array, and would appear
at about the -18dB level with or without the filter. Thus, the filter of Figure 11
reduces all grating lobes to approximately -18 dB, and reduces all but the 60°
grating lobe to about -20 dB. This is accomplished with a four-layer Chebyshev
design using materials of moderate dielectric constant.
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4. CONCLUSIONS

The practicality of a new technique for Chebyshev synthesis of spatial filters

has been demonstrated. The filters designed to test the t~_ory have given good
control of sidelobes, especially in phased-array antennas, where they can be used
as radomes as well. They are particularly valuable in the limited-scan arrays of
precision-approach radar {PAR) systems.

(’)
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Appendix A

Radiated Field of infinite Array

The radiated field of an infinite array of the linearly polarized rectangular
apertures shown in Figure 1 is given in Eq.(A1) in terms of a single-component
hertzian potential. The main beam of the array is steered to the angles 00. %

- ]wVX[ﬁ(ng.Z)] »

ol]
3
"

V[VX ﬁ(x.y.z)]'tkzﬁ(x.y.z’; tA1)

wi
1l
n

where

Mix,y.2) = % 0_tx,y.2).

The potential function Hx is given by:

1 g e-jk '—mn’?dx'dy' (A2)
ﬂx(x. Yy, 2) = -(:’-ﬁ—f\_. mzz:-o n:z-w -——‘z——— S [Zx E (x y ’
x"y mn g

where D x and Dy are the interelement spacings in the x and y directions,

K
A - - ‘mn
mn ko(xum+yvn+z ko ).

and

A

Ix+ yy +

T =

Preceding page blank
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and where E(x’, y') is the aperture field, linearly polarized in the y direction; T
is a position vector in x,y, z coordinates, and 7 is measured in the aperture
(z'=0).

The direction cosines u and v for the specified grating lobe positions Up eV
for a main beam at u, = sin 00 cos ¢, and v, = co8 6, sin ¢° are defined by:

n

u u_+ mIDx.

m [+]

v - D . A3)
v n/ y (

n o

The values m and n define propagating waves for all integers for which the
parameter

K = k_ V1~ uL v (A4)
is real. Thus, a set of waves i3 defined, some propagating and some cut off. The
propagating waves travel in the direction of the allowed k nn values and are plane;
for these, Kmn reduces to ko cos 6\’ The potential fun sion ﬂx can thus be

written as the spectrum:

L (x,y,2) = nz:.n 1 xy.2), (A5)

and the field components of this plane wave spectrum for the wave at UV, are:

= k% 2 =
By, = Ko (l-um) LI By . = O
= -k% = -
Bymn =¥ Ym¥n "mn’ Eymn = "“Kmn -~
K
_ _p@ mn -
Bimn = "% Ym Tk, Benn- Exmn = ©%oV Tmon- (A8)

In conventional phased arrays the spacings Dx and D v are specified to exclude
all but the wave associated with the main beam (00. ¢°). but certain special-
purpose arrays intended for limited sector-scanning allow a small number of
grating lobes to propagate. The spatial filters described in this report reduce
and control such lobes.

The magnitude of the electric field for the m,n mode is given by

" 2
k ow 1- \lm n mn*
and since this parameter multiplies each wave it will now be defined as C(Gmn. ‘mn)'
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Appendix B
Wave Matrix Definitions for Paraliel and Perpendicular Polarization

Figure 2 schematically shows the signal parameters that are related by the
wave matrix. Conventionally, the incident electric field is chosen as the refe--
ence signal, with the wave matrix expressing the linear relation between input
and output parameters as:

12\ /22
- . (B1)

The coefficients in A are related to the coaventional scattering matrix co-
efficients by the following definitions:

It A -5
11 Tl 21 Tl
rx rlrz
[‘12 = -T; . A22 = T, -—-,Fl—; (B2)

for the scattering parameters defined:
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‘ b a o
- = 2
rl - a, l..2 - b2 :
b2=0, a1=0.
a b
- 2 —1
Tl - a, T2 = bz
b2=0. al=0. (B3)

When the transmission lines {or ports | and 2 have the same characteristic
impedance, then T1 = I‘z {reciprocity). Otherwise, this relationship does not

L hold unless, as Collin shows, the signal amplitudes are normalized so that the ’
power in a wave of amplitude a, ig given by a, a: . Throughout the following anal-

ysis, these amplitudes are defined to be the E field parallel to the dielectric junc-
tion, and thus Tl # T2 except when the two porois are located in lavers of the same €.

Incident fields for both polarizations are given in Eq. (13). Since the projection
of 8 onto the plane of the junction involves the factor kz, /ko in the incident medium
(air) and is kzi/ki in a material of dielectric constant ¢,, where

ki = kOJ-e—l

and
Ky = Kk Je - sin® @ (B4)
Zj o¥ i inc '

then this projection factor is used to multiply the field vector that lies in the plane
of incidence in order %o find the tangential component at the interface. For paral-
lel polarization the incident B° is (ko/w) E, and the incident tangential E is
(kg /ko) E,. F_or perpendicular polarization the Ey is the tangential E field and
the tangential R field is (-k, w)E¢.

Similar projections apply within any dielectric layer. For parallel polarization
the equations for continuity of tangential E and B fields at the interface between
4 two media of dielectric constants € and €y for incident and reflected wave ampli-

tudes (§‘=E9) and E2 in medium 1, and E3 and E4 in medium 2, are:

eyt )= (s =)

“e,(El - Ez) = k52(E3 - E,). (B5)
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Then, defining signal amplitudes a;. b1 s 3y, b2 as (kzi k,) times the E-field
amplitudes E‘ through E 4 yields the following equations relating the tangential
E fields at the boundary:

(al + bl) = (az+ b2)
and
(a1 - bl) = (zl 22)(a2 - bz) . (B6)
where
z. = (k,. [k cos 6,
i zi/ 3 mncj°*
(The cos 6;,. 18 included to remove the angle dependence of zj for the trivial

€, = €, case where k,_ =k, cos 6;,..>
Following a similar procedure for perpendicular polarization yields the tan-
gential E and B equations

o]

+

m
N
1

= E3+E4o

kzl(E1 - E2)= kzz(E3 - E,,). (B7)

Then, defining a,. bl . 2g, and b2 to be equal to E, through E; yields the same
equation as for parallel polarization, but with

cos 0.
inc (B8)

%

For either case, Eq.(B1), when transformed into wave matrix form, become:

a; . 1 1"1 ag
= 7 . (B9)
bl 1 l"l 1 by
where
L 1z
j'1 1-2,"
(- 2y %)
and
T, = 1+ r,.
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where l"1 and T1 are the junction reflection and transmission coefficients. The

junction reflection coefficient l"z » seen fromi medium 2, is the negative of I'l :

and T2=1+I‘2=1-I‘1.
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