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Preface 1
The use oi stratified dielectrics as spatial filters was originally suggested by

Dr. A. C. Schell.
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Analysis and Synthesis of Spatial Filters That
Have Chebyshev Characteristics

1. INTRODUCTION

Spatial filters, designed by a new Chebyshev synthesis technique recently de-

veloped at AFCRL, are being made of stratified dielectrics. These filters have

successfully suppressed wide-angle sidelobe structures, particularly in phased-

array antennas scanning a low sidelobe beam over a limited spatial sector. The

wide-angle sidelobes. which are in fact grating lobes that have been suppressed

to the -12 to -16 dB levels, are reduced to levels of approximately -20 dB with-

out degradation of the near-broadside radiation characteristics of the array.

Since the array face is flat, the optimal spatial filter consists of uniform layers

of dielectric material properly spaced, having dielectric constants suitable to the

required 3patial discrimination.

Such filters also have application in radomes, which usually require wide-

"angle scan. Although the subject has not been addressed directly in this work.

the equations and figures given here can also be applied to the design of filters

intended for radome purposes.

(Received for publication 13 September 1974)
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The principles of layered -dielectric frequency -domain filters and impedance

transformers are now well established, 1 - 5 and insofar as possible the techniques

for analysis and synthesis in this domain have been extended to the spatial domain.

The fundamental difference between synthesis in the f.'equency domain and syntf-

sis in the spatial domain arises because the transmission coefficients of layers

that have a high dielectric constant are strongly frequency-dependent but relatively

invariant with the spatial angle of incidence: if a wave from a medium of low di-

electric constant is incident on a medium of high dielectric constant, then for any

angle of incidence the wave propagation angle in the latter is almost perpendicular

to the interface.

This distinction suggested a fundamental change in filter design. The fre-

quency-domain transformers and filters synthesized by Collin and others1-5 con-

sisted of various dielectric layers sandwiched together. The spatial domain fil-

ters synthesized in the work reported here consist of quarter-wave sections of di-

electric separated by half-wave or full-wave air spaces. The methods that Collins

outlined in two basic studies 1 .6 were applied in their development.

2. PROPAGATION CHARACTERISTICS OF STRATIFIED DIELECTRICS
WITH PLANE-WAVE INCIDENCE AT ARBITRARY ANGLE

2.1 Gneral Fcwmuulation; Choice of Coordinate Systems

The end result of this analysis is a technique for synthesizing spatial filters

that control the radiation pattern of a phased array used for limited-sector scan.

For convenience, all propagation coordinates are referred to the basic reference

coordinates x.y, z of the array (Figure 1). which excites a spectrum of plane

waves a-d evanescent plane waves as described in Appendix A. For purposes of

this analysis, we need consider only a single wave radiating in the direction of the

vector

i = Rkx + kky + Ikz = kko, (1)

I. Collin, R. E. (1955) Theory and design of wideband multisection quarter-wave
transformers, Proc. IRE 43(No. 2):179-185. Feb. 1955.

2. Cohn, S. B. (1955) Optimum design of stepped transmission-line transformers.
IRE Tr. MTT MTT-3(No. 2):16-21, Apr. 1955.

3. Riblett, H. J. (1957) General synthesis of quarter-wave impedance trans-
formers. IRE Tr. MTT MTT-5(No. 0):36-43, Jan. 1957.

4. Young, L. (1959) Tables for cascaded homogeneous quarter-wave tra'is-
formers, IRE Tr, MTT MTT-7(No. 2):233-244, Apr. 1959.

5. Young, L. (1962) Stepped-impedance transformers and filter prototypes,
IRL I r. MTT MTT-10(No. 5):339-359. Sept. 1962.

6. Collin, R. E. (1960) Field Theory of Guided Waves. McGraw-Hill, pp. 79-93.
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where 2
9-€-- /

k = koU0 = k (sin 0o c.os 0),
y 0 0 sr0 0ky = koVO = ko (sin %0 sin0o),

kz = kocosOo

o =Figure 1. Array Geometry Showing
Array Coordinates 0,0 and Polari-

with u0 and the direction cosines0 zitiort Coordinates O.f
The aperture field of the phased array
is assumed to be polarized in the y direction, thus determining the polarization of
the incident plane waves. This radiation is best described by the E, 4, r coordi-
nates of Figure 1 because in the absence of the dielectric layers the farfield radi-
ation of the array contains only an E term. The I angle is measured in the yz
plane; the 0 angle, from the positive x axis. In general. the vector ýV in . *, r
space is obtained from the vector A in x, y, z space by the dyadic relation:

1' ; A' + 4Aý + ;A'r

= T A, (2)

where T is the nine-component dyad written:

T = E(-ksin0 + j cos cosO + sin * cos@) +

+ &( 0 -• sin4 + coso) +

+ ^(0 cos O+ cos * sin e + • sin 4 sine). (3)

This expression, a formalized way of describing the relationship between the
various components of the vectors along the unit vector directions, is equivalent

to the matrix representation:

A -sine4 cos #cooE) sin 4cose9 Axi
(Aý 0 -sin 6 Cosl A

A cose cososine sin.Islne AJ (4)

I
9

f



This statement of equivalence to a matrix transformation indicates that the

process of taking the inverse of a dyad is th~e same as that for a ~atrix; and that
the transformation of a vector from one syatom to a second. and from that system
to a third, is obtained through matrix multiplication of the rows and columns of 0

I,

the matrix forms or, equivalently, through scalar multiplication of the dyad by the

second transforming dyad. As with the equivalent matrix operation, dyad multi-

plication is not commutative. Relating the two syptemstin general by

sinO E= 41- sin2 0 cos 2  .

cos@ = sin 0 cos b.

sin 4D = cos 0

1-sin20 cos20

cos4= sinn4G = (5)

1 - sin2 0 cos 2 •

and specifically restricting the 0. parameters to 00. 0o (the direction of the

main beam of the array), yields the dyad in the righthand rectangular coordinate

system e. 9 o0 ro, as follows:

T 6eo x _-Uo2 + Y0 + +-o •-
0) 0,2 2

,o( ~U Uo .U!O O
* i 0 (iu 0  i V j0v~ + z Cos 80) (6)

This choice of coordinates makes the unit vector 0 coincide with the direc-
tion of propagation. Thus, ro = L. Transformed by this dyadic operation into the

new coordinate system, the plane wave (see A-oendix A) is linearly polarized, and

has the following electric and magnetic fields:

io E# i _-jkro
•'~~ 0 io oC (00, 00).

0k2 - AkkfB r9B ()eo e0 = 0o\0)oa(7)
0
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where r is a distance measured in t ie direction of propagation, and C( 00, 0)

is a parameter (evaluated in Appendix A) for multiplying each wave.

Throughout this report the E90 '•0, re system is used for describing polari-

zation of the wave. For describing propagation in the dielectric layers, it is more

convenient to resolve the fields into components along the spherical coordinate

system e, 4, r. As before, the subscripted dyad oR0 is usea when ? coincides

with e" . These are the conventional definitions of perpendicular and parallel po-

larizations for arbitrary incidence of a plane wave on a dielectric slab.

In general 0, 0. r coordinates the vector A is related to A in the original

x, y, z coordinates by th- dyadic relation:

A T' (n

where

T' = B(icos 0 cos 0 + sin0 cos 0 - sin 0) +

+ j(-ýsinO + cos + 0) +

+ Hill +-* 1cos 0.

It is sometimes convenient to transform vectors from one system to the other.

Unit vectors in the 0, •, i" coordinate system are related to those in the 9. 41. r

system by a rotation -6 about the i, and so the vector AT in the first system is

written in terms of the vector A' in the second system by means of the dyadic

notation:

V =R A', (9)

where

a R = 0 (8 cos6 - 4 sin6) +

+ b• (sin + *cos 6) +

+ rr .

The required angle 6 is obtained by aligning the unit vector * parallel to the

plane of the dielectric layer. Then, when trartsformed by the dyad R • T into the

0, , r system, the unit vector • is perpendicular to •, and

•. R. T- = 0. (10)

11
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Solution of this equation yields values of 8 defined by the folloving equations:

sin8 = ain 0: cos6 -cos 0 cos B (11)

Equatio" (8) could also have been obtained by letting the rotation dyad R

operate on a vector in the e. 4b. r system, with the result:.

T',. = R .A. (12)

App!ying the transformation in Eq. (8) to the phased-array fields (see Appen-

dix A) leads to the following resolution into two sets of plane-wave fields as eval-

uated along the k path,

Parallel Polarization Perpendicular Polarization

S-CBo,•o) sino -jkoro -C(0 0 , 0)) cos 0oCos 0 o -jkorO

B0 o E0 o (ko/W) :B ~ o E 0 o(-k o/"a) ;

B = E =0. (13)
ro ro

000

As noted1 by Collin, 6 parallel- and perpendicular-polarized waves propagate

independenrtly through thpe air-dielectric slab interface, and can be recomnbined at
. the output of the layered region to form a set of plane waves in 4o'• space, but

0 0

the set will in general no longer be linearly polarized. The amplitude of the

cross-polarized signal induced by the dielectric slabs is crucial to the spatial

filter geometry, and is easily related to the scattering parameters of the filter.

Based on the plane-wave filter transmission and reflection coefficients, the plane

wave amplitudes at the output of the filter are given by:

Parallel Polarization Perpendicular Polarization

EOUT E T; EOUT E T0 0o Tpar; 0: = 0 E~ prp

B OUT B T B OUT T (14)
= B par; = 0 prp'

12
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where Tpar or Tprp are the filter transmission coefficients. The electric fields
reflected toward the array by the filter interface are r times the incident per-

prp
pendicular polarization and par times +he incident parallel polarized signal.

given by:

Parallel Polarization Perpendicular Polarization

E REF E r EREF E rprp;

B REF B ar B REF _B r (15)
o 0 par' 0 00p

The filter parameters rpar . Tpar and rrp, T prp are evaluated in Sec. 2.2.

The inverse of the rotation dy-• R is used to transform the scattered field

components back to the e, 1b, r coordinate system by changing any vector A" in

the o0 #o. ro coordinates to the vector A such that

A' R- A', (16)

where

R~I 4 •cos 8 + i sin 5) +

i(-B sin 8 + cos 8) +

Hence.

~Cos 0Cos +;in'

+ $( sin0i* ~Cos 0Cos )+ (17)

Using this dyadic transformation, with ; taken along the direction of propagotion.

and using the definition of the parallel- and perpendicul-r-pol6rized incident fields

E0o and E#o, yields the following expressions for the transmitted E# and
crosa-polarized Eeo fields at the filter output:

13
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C 0.01e-"<".,.r [,, .,no 0 ., ,Cos o os,_,,. (T,,, T,=>
E C%.~~' 0 [A- Q oos 2oo (par Tprp) +/ 22 2

snCos 2,0Cos 20
+ -2 Topar + s2 o Tpr

0 o)
"-jkr°

C(0.0 0 ) e LK o+ K cross I (

where K and K are the filter transmission coefficients from the incidentcroSS

Ee -linearly polarized field into 9 0 - and cross-polarized %40 -polarized) fields.
The reflected fields for these two polarizations are given by the same expressions

as in Eq. (18), but with the transmission factors Tpar and Tprp replaced by the

filter reflection coefficients r and r .rp" These new filrer coupling coefficients
are defined as Y and Ycross" By means of these expressions it can be shown

that since energy is conserved f.-r the two polarizations separately

(T T +r r 1;and T T r 1). itisconservedpar par par par prp prp ' prp prp
within the system totally. Consequexntly.

KK* + Kcros Xcross :f + •cross cross o 1. (19

2.2 Wave Marices and Tra noi, au Thrao Stratified Diiertrit' Firten

Quarter-wave transformers with Cheoyshev behavior throughout . given fre-

quency passband were synthesized by Collin1 in 1955. The process has since

been refinaed. 2 -5 and there noxv exists an extensive tabutation of transformer

par.amcters for various Jesign specifications. Spatial filter design is similar in

concept to bandpass filter design, except for some differences that will be taken

up when filter design procedures are introduced.

Collin used the wave matrix formalism to derive convenient expressions for

the transmission properties of layered impedance sections, and to describe the

spatial properties of Rbutting dielectric layers. 6

The same formalism will be used here to derive

rroperties of the straL.fied dielectric filters.
Figure 2 represents two dielectric media. b2

showing incident and reflected waves a 1 and bI MEDIUM MEDIUM 2

in medium 1, and incfdent and reflected waves

b 2 and a 2 in medium 2. The incident waves are

assumed to be either parallel-polarized or per- Figure 2. Interface Between

pendicular-polarized. v ith no cross-polarized Two Dielectric Media

14
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components excited. In this case a purely algebraic relation exists between input

and output. By the wave matrix, parameters a1 and b1 of medium I are related

to parameters a 2 and b 2 of medium 2 in such a way that cascaded networks or

layers are co.veniently analyzed. The input-output parameters ?re thus related by:

(bal (All A 1 2\ /a2 \

) 2 ) (a 2 ) 
(20)1 A 21 A 2, b 2

CollinI gives the obvious relations between the parameters Amn of this
matrix in terms of those of the conventional scattering matrix (see Appendix B).

and shows that the wave matrix for a cascade of networks is the product 3f the

wave matrices of each network. The parameter

A1  a 2b 2 O (21)

the inverse of the filter transmission coefficient, is of particular importance in

filter design. The square of the absolute value of this parameter, the power loss

ratio, will be considered extensively in the next section.

The normalizations of signal parameters required to convert the electromag-

netic boundary value equations for parallel- and perpendicular-polarized waves

into the proper format for wave matrix application are given in Appendix B. These

result in the following equation for a junction between two dielec+ric materials:

b Ti r I ab2/

where

1 (1-+zi/z2)rl =1 0 z,/z.1

and

T1 = 1i

and where

15



zi k; Cos 0

for parallel polarization, and

cos 0zj-
= kzj

for perpendicular polarization, and where

kzj =koCEj -sin2

and

kEj =ko0 .

Here, r 1 is the reflection coefficient at terminal 1. and T is the transmission

coefficient from termirnal 1 into terminal 2. The parameter 0 is defined for the

incident medium air. Note that il the materials in sections 1 and 2 were reversed

in position, r1 in the matrix would be replaced by -r 1 .and T1 vould be replaced

by T2 = 1-
The wave matrix for a line of etectrical length kzj L iW:

e ikzLL (23) S4 Ib2

S

Thus, for a filter section (Figure 3) consisting of a .i

terminating air-dielectric interface between a dielectric , Ijbi
lay•r of thickness t. and an air space of thicmesaz S. the

wave matrix relating the paramneters a I. b1 Lelow theI Figure 3. Basic
air space to the signals at the out-put terminal (a 2 . b 2 ) Filter Section

can be written:

Jk 1,, 0jk, t 0 "! 1 -ll

TI A (24)

t4

0 e-Jkz 0 ,je 2 rlI

16
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which leads to

[A (S 0 (A11  A12\
*IA(S.,.t)l = IlA2

I -' \ 2 1 22)

kZ S k-" t jk S (jkzt -jkzt t)
e 0 (e e- Zft) -e zo I -e J (251T1T-- 2 -JkzoS/ Jkz t -"k ~ k kzt -k t

[re- e -E _Ikzt) e-kzOS(-re

This dielectric layer and an air space constitute the basic element of the

spatial filters considered in this report. The structure is more general than

those considered in the previous literature because the goal here is to study spa-

tial filtering, not frequency bandpass-filtering. It will be shown that without air

spaces it is difficult to get any pronounced spatial behavior over narrow angular

sectors.

Equation (25) can be rewritten in terms of the scattering parameters S1 1 and

S 1 2 for the special case of broadside incidence on a quarter-w tve slab thickness.

as follows:

jkzo S Jkz S where
e _ 1-S e o

A = •| . S0 S 2kOS)"* (26)1l2 S -ejkzoS .- JkzoS S1 2 = •El

The wave matrix of a filter comprised of a number of such sections is ob-

tained simply by multiplying the filter-section waves in the sequential order of the

positions of their matrices A (S. c. 0 in the filter (omitting the input section of line

where appropriate). For example.

r ~ N
[AIFILTER = 1 A(Sn.6n. tn). (07)

n=l

Such generalized filter wave matrices are used here in two ways: % 0 in the

Chebyshev synthesis procedure, they are used for computing the filter power loss

ratio, (2) with Eq. (B3) they are used for deriving the filter spattering parameters

(r . Tpar; .prp" and T ) for the parallel and perpendicular polarizations.
prpar prp r

These parameters are then used in Eq. (18) to define the desired and cross-

polarized signals at the output of the filter.

17

/

S°"9



3. CHEBYShIIV FILTER SYNTIESIS

3.1 General Procedures

Collin'sI procedure for transformer synthesis depends on the demonstrated

propertieR of the polynomial expression for the power loss ratio, defined by Collin

as the power ratio associated with the inverse of the filter transmission coefficient-

P = A11A11* (28)

Using filter elements consisting of sections of transmission line, each quarter-

wavelength long at the design frequency, Collin proved that the power loss ratio was

an even polynomial of cos kzt of degree 2n, where n is the number of sections in

the filter. He also showed that the power loss pclynomial could be written as unity

plus a positive constant times the square of Chebyshev polynomial Tn(.).} and that

n characteristic impedance values are sufficient to define the Chebyshev trans-

former, with the ripple level given by the value of the positive constant.
The fundamental difference between the present study and the transformer

studies of Collin's and others is that the devic* studied here is a spatial filter

rather than a frequency filter. If the air spaces Sj were set equal to zero, this

analysis-like Collin's-would also lead to power loss ratios that are even powers

of cos kzjt. The difference is that in the case of a frequency filter the ko = 2r/)o

varies directly with the frequency; in the case of a spatial filter, with Ej large

compared with unity. kzj varies very little over a wide range. Logically. there-

fore, procedures for designing a spatial filter ae not directly analogous to those

established for designing quarter-wave transformers.

To consider the spatial domaiii--assume dielectric constants of the filter

media large enough for the 9-dependence of the kzj in the various layers to be

neglected; also assume that the air-dielectric junction characteristics are con-

stant with 0. If the thickness of each dielectric layer is a quarter-wavelength at

the design frequency and the air-space distance S between layers is fixed, then
a the power loss ratios will be even powers of cos(k S cos 9) or even powers of

sin (k0 S cos 0). In such case, the dielectric slab is considered a lumped reactive

component; filter synthesis consists in choosing the magnitude of this reactance.

3.2 The Mathenuatics of Fidter Synthesis

The first five Chebyshev polynomials are:

To(x) = 1I

T1(x) =x

18
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T 2 W = 2x-Io

T3(xW= 4x 3 -3x.

T4 (xW = 8x 4 -8x 2+1. (29)

The optimal properties of these polynomials are well known, as are their root

locations and in-band and out-of-band characteristics. The functions oscillate

with amplitude unity throughout the range and all have the value unit at I xl= 1.

The polynomial Tm (xW has all of its m zeros within this passband range.

An alternative way of expressing the general polynomial T (x) is:

Tn(x) = cosh(im cosh'Ix). (30)

This exmpression is valid for all x, but is particularly useful for calculating

the stopband polynomial values. Synthesis cf spatial filters based on Chebyshev

polynomials follows conventional procedure, which begins with the recognition

that the power loss ratio is a polynomial in cen powers of the sine or cosite of
(k0 S cos 0). The further specification that the polynomial be one that has m

double aeris within the passband is also common to the theory of filter synthesis.

and has the result that the power loss polynomial oan be set equal to the expression.

A 1 AI 1+ A 2 T• ( si (31)

in ere

"cos 0.

and • I is the value of C at the passband edge.

This exp~ression is unity plus a polynomi.l of order 2m, with double zeros

within the region sin C < sin C I. and with the maximum ripple A2 within that band.

The express-on Al AII has the minimum value unity at the polynomial zeros.

3.2.1 TWO-LAYER FILTERS

The coefficient A of the wave matrix for a filter made of two identical di-

electric slabs of dielectric constant f and thickness t set to a quarter wavelength

(in 0). computed from Eq. (28), is

A1 $_1_ (ej _S -I e-jC) (32)

21
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and S and S 2 1 are computed from Eq. (26). Since S is real, the power loss

ratio is:

A11 A1 1  1 S 11 ( 14S 2 sin 2~ (33)

To synthesize a two-layer filter, this ratio is set equal to the expression

""A A I+4T2 si (34)

Defining a constant

G (35)

then leads to the following equation for the dcielctric-layer reflection coefficient

S* _ , E (36)

Solving for L :z.ieans of Eq. (36) and selecting the quarter-wave filter thick-
ness for the given , completes the synthesis procedure for given &2 and sin i

3.2.2 THREE-LAYER FILTERS

Consider three layers, each a quarter-wave thick at broadside and arranged

symmetrically so that the dielectric constant of the central layer is (2 and that of

the two outer layers is (I . with all layers again separated by the spacing S. The

A 11 coefficient of the resulting wave matrix, viewed at the filter input, is

where the parenthetical (1) and (2) dis inguish the parameters for the dielectric
layer 1 from those of layer c2 .

After some manipulation, the power '-%ss ratio can be put into the form:

A1 1 A1  I1+ I S1 (2)+S2M (2+

-2 S1 1 (1) +4 S11 (1) sin2 ýJ2 (38)

20
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j d

Equating this to

IA2 1+2

1 +42 1 + 2 sin2  (3911
sin2

1 /

yields the following equation for S 1 (1):

- - ~ 4osS4 ,1iS2i

and then

S11(2) = 2S 1 (1) Cos (40)

3.2.3 FOUR-LAYER FILTERS

The coefficient An 1 of the wave matrix for a four-lz-yer filter in which the

dielectric constant of the two central layers is ( 2 and that of the two outer layers

is f 1 is:

A1  = S 1 (S 1 (2) eJ (2J -SM1(1)Sl 1 (2)-S 2(2)+ S0 1 (l)S 1 1 (2)e-2JC)+

-S 1,(D e-jCS,(~2) I2' MS1 I(IS(2) -S 11(2)+S S11(V) e 2i). (41)

After substantial manipulation this becomes the following expression for the

power loss ratio:

A A* 1+ s2 C 8Sl (1) sin3 C +11 1 S21(1M14 IS1()1 1

+ sn C2S 1 I)Sl ()+2S 11 (1)SII (2) + 2S 1 (2Q) - 6S 110)I ,(42)

which, upon equating to

k~si~(sin

yields the following equations for defining S 1 (1) and S1 (2)
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2S 1 1 () A 0

=-[2 S2 1 (l) +2] S2 ý[2 Ij 1l) + 2] + 48S 2 (1) Cos 2  0

S11(2) 4S11(l) (44)

3.3 Filter Desin

The equations in Sec. 3.2 were derived in terms of sin C. Since • (21Ii)S cos 0,

sin C is zero at (S/I)= n(0.5), with n = 0 excluded as trivial. In principle, there-

fore. there are a number of different spacings that wilt allow proper spatial filter

synthesis. In practice, the only reasonable spacings for most applications are

S/I = 0.5-sometimes S/X - 1.0-because larger spacings have a multitude of

spatial pass- and stopbands that do not generally suit the given requirements.

For S = 0.5X , there is a passband (sinC = 0) centered at cos 0 = I (broad-

side). and also at cos 0 = 0 (endfire). For S =X there are passbands at broad-

side, at 600. and at endfire. The 600 passband begins just beyond 40*. Thus.

the basic filter can be made so as to have synthesized filtering properties from

nroadside to somewhat beyond 40', a spacing that is appropriate if the antenna

radiation neels no further reduction for large 0 angles.

Filter synthesis procedure begins with determining the value of • 1 at the end

of the passband and the value of some spatial angle variable C at which a given

rejection level is required. Equations (30) and (31) give the out-of-band rejection

for Chebyshev filters of the general type. Figures 4 through 6 show the rejec-

tion ratios (in decibels) for two-, three-, and four-layer filters for various

values of A consistent with rejection ratios of up to 30dB for values of

sin ý I -in < 1 0. From these curves it is possible to choose the value of the

passband ripple amplitude A2 that will provide a given rejection ratio for a specif-

ic value of sin C/sin ,l . Since the minimum passband transmission coefficient is

1/0 +A 2, the constant A2 must be kept moderately small if excessive ripple is

to be avoided in the passband.

Figures 4 through 6 must be used n conjunction with Figures 7 through 9.

In these latter figures, the required ref~ection coefficients S 1 1 (1) and S1 I(2)

[computed for two-, three-, and four-layer filters in Eqs. (36). (40). and (44),

respectively) are plotted versus the values of sin CI at the end of the passband;
the various A2 values that were used were chosen to cover a range that would

give reasonable ripple \ alues while maintaining good filter rejection.

Some interpretation of these figures is necessary to prevent misconceptions.

Equation (31) and Figures 4 through 6 are for filtek i that are synthesized exactly

22

/



5t

14'

2
A*025

x

1-
'<: I0•

4+ 010

o 8; Figure 4. Two-Layer

005 Chebyshev Filter Rejection

zo

0-00cc 321 )0

0'1 2 3 4 5 6 7 8 9 10

s0o - - -- -~

2.

0 . . . 00525- Z001

/04005'
+ 20.

2• Figure 5. Three-Layer
S0001 Chebyshev Filter Rejection

z

0 0 1 3 4 5 - ? 3 9 0-

23

/

p



Sc0 2.1 0 0010

00000
25 0

000005

2-

L J~oo
'-o D 0!

is Figure 6. Four-Layer

Chebyshev Filter Rejection

2 ,o

o '0

0 0 2 3 4 5 6 7 6 9 00
K- *sin C /san{;,

10

L0

15 2H 7a9

10o, 5

05 A2 0 25 Figure 7. Reflection

4 Coefficients for Two-
0100 Layer Chebyshev Filter

03

005
02

001
0I

01 02 03 04 05 06 0? 0o 0o 10

S$ll C1

24

/



10- &A2 .0.1

20 09. 0.01 9E1
10005

0 7L

06 -

S05

a 0 C ,0 
0 0 0 0

100
02 - 0 01

00005 0
o. 000017

~05 \ ..-- .

0 01 0 2 0 3 0 4 0 5 0 6 0 7 08 09 10

Asin

S~Figure 8. Reflection Coefficients for Three-Layer

Chebyshev Filter

So 02-oooo -

- .0000

00000

.000I-0.. .. .. .. ;

C' 10 0 8 a0 00005 3cEccS

000000010L._o 7 41.. . .... •

06-

05 Sl03 00 00

Fr--. sf(F)---L

025

C) 00.

o02 000

, • O0

Of 0 2 0 3 04 0 5 0 6 07 0 8 09 10

Figure 9. Reflection Coefficients for Four-Layer
Chebyshev Filter

25

/

-IJ

p



like Chebyshev filters, a -esult not possible in the spatial domain because the

reflection and transmission properties of each dielectric slab do vary with 0.
Under this restriction the filters are not strictly Chebyshev-like in their be-

havior yet are very nearly so for large e. These equations and curves thus "ep-

resent the idealized Chebyshev filter that has constant slab properties. wit), val-

ues at all angles of 0 the same as at broadside. They aid in synthesis, but the

properties of the actual dielectric filter must be evaluated by considering the ex-

act wave propagation in the structure [using Eq. (18) and the filter scattering pa-

rameters obtained from the filter wave matrix, Eq. (27), for each polarization).

Such an analysis is carried out in Sec. 3.4. Similarly, the valies of the reflection

coefficients plotted in Figures 7 through 9 are for an idealized filter slab with all

parameters constant. The horizontal lines indicate these reflection coefficients

converted to the values of e for quarter-wave slabs at broad :de.

The values of the reflection coefficients and those of the dielectric constants

of the filter layers are functions of A2 and sir C I ' and are not direct functions of

S/A. These figures are thus useful for all S. since they can easily show how the

required dielectric constants depend on the choice of spacing.

3.4 Resits Obtained With Two Filters

The synthesis procedure described in Sec. 3.3 has been used to derive a num-

ber of two-. three-, and four-element filters. The contour plots in Figures 10

and 11 summarize the transmission characteristics of several four-element

filters for transmitted and crossed polarizations in generalized u. v space. These

show four-layer filters synthesized subject to the parameters A2 = 0.0004 and

sir Cl = 0.15, for S= 0.5 A and S= A. Since C is unchanged. this choice of pa-

rameters leads to filters having identical layers (e1 = 3.08; C2 = 15.14), but yield-

ing a differen, scan performance for each S value.

The filter transmission factors whose contour plots are represented here are

given by 20 logl 0 (K) for the transmitted polarization, and 20 logl 0 (Xcross) for

the cross polarization, where the parameters (K) and (Kcross) are obtained di-
rectly from Eq. (18). The circular contours around the origin in u.v space indi-

u_ u' within the passband at least, the filter properties do not depend strongly

on the angle 0. 7or larger 0 values. 0-dependence becomes more pronounced

and filter behavior is noticeably different, with somewhat more rejection in the

H plane (v= 0) than in the E plane (u= 0). The filter behavior for large scan

angles (@ > 600) is not plotted for the S = 0.5 X case because of the complexity of

the contour plots and the generally unsatisfactory filter performance at such

angles.
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The comparison of the two cases does illustrate that for given dielectric

layers, much sharper filter skirts are possible with A spacing than with 0.5 A

spacing. This can be an enormous advantage-if the filter properties beyond about
- = 500 are not important-because the availability, machining properties, and

uniformity of materials of lower dielectric constant (less than 15) are far greater

than those of materials of higher dielectric constant.

The cross- polarized signal components in rigures 10(bI and I 1(b) indicate

that these signals are zero in both principal planes, and maximum near 0=45°;

and they are :n all -eases reduced at least 13 dB by the S = 0.5 X filter, and 18 dB

by the S = A filter. For the specific application considered here, this amount of

filtering is more than adequate, but for some other application the cross-polarized

trAnsmission may be excessive.

Several filter designs that have spacings between 0.5 A and A have been in-

vestigated. Des~gning sin C so that it varies uactween -sin 1 at broadside to
+ sin C1 at the end of the desired radiation sector yields higher sin C /sin C1 ratios
and thus greater rejection for given stopband angles. Unfortunately, this choice

of • 1 leads to a requirement for excessively high dielectric constants; but when

the A2 value is reduced to one that results in more reasonable d&electric constants

the overall filter rejection is increased only slightly over that obtaintd with the

original 0).5 A spacing. In such cases there is apparently little to gain by resorting

to spacinigs that are not 0.5 A or A.

3.5 Results Obtained With an Array of Parlel-Plane Waveguides

The numerical results of Figures 10 and 1I. computed by means of the basic

formulas derived in this report, imply incident fieids consisting of one or several

uncoupled plane waves. The phased array is a more complex distribution. For an

infinitely large array, the field is rigorously described in tei ms of a spectrum of

plane waves, some propagating and some cut off (Appendix A). If a stratified

filter is used over the array aperture, then the waves reflected by the filter are

cross-coupled by the array face. This intercoupled nature of the fields implies

that the freespace properties of the filter may be modified by its proximity to

the array. Figure 12. however, shows that the dielectric-layer filter can be

used for suppressing sidelobas and grating lobes, and so long as the main beam

radiation is kept w i*hin the filter passband there is relatively little disruption of

the basic array properties. It also shows how the two filters of Figilres 10 and
11 reduce the residual grating lobes of a special array that incorporates an aper-

ture control technique7 to eliminate the dominant grating lobe. Arrays of this
7. Mailloux. R. J. . and Forbes. G. R. (1973) An array technique with grating-

lobe suppression for limited-scan application, IEEE Tr. AP AP2l(No. 5):
597-602, Sept. 1973.
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type cannot eliminate all of the grating lobes. The lobes that remain grow with

array scan angle, and sometimes get to the -12 d8 level at maximum scan. The

grating-lobe amplitude loci of an array of parallel-plane waveguides whose inter-

element spacings and aperture width are both 3.17 A are given by the solid curves

o1 Figure 12. The maximum scan point II.5* is denoted by a circle at each of

the grating lobe loci. The broken and dashed curves are for the filters of Figures

10 and 11, respectively.

A comparison of these curves shows that even in the presence of mutual coup -

ling of the elements in the array. the rejection ratios for the filters placed directly

"on the actual array are almost identical wi,'i those of the isolated filter. The re-

jection properties of the S= A filter are particularly appropriate to the gixen array-,

all of the near grating lobes are reduced by substantial factors. The remaining

grating lobe. near 60* at maximum scan, appears approximately at the second

Ailter passband and so is relatively unaltered by the filter. In practice. this lobe

is further reduced by the projection factor of the finite array, and would appear

at about the -18 dB level with or without the filter. Thus, the filter of Figure 11

reduces all grating lobes to approximately -18 dB, and reduces all but the 60*

grating lobe to about -20 dB. This is accomplished with a four-layer Chebyshev

design using materials of moderate dielectric constant.
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4. CONCLUSIONS

The practicality of a new technique for Chebyshev synthesis of spatial filters

has been demonstrated. The filters designed to test the th .- ry have given good

control of sidelobes, especially in phased-at ray antennas. where they can be used

"as radomes as well. They are particularly valuable in the limited-scan arrays of

precis ion- approach radar (PAR) systems.

F

References

1. Collin. o. E. (1955) Theory and design of wideband multisection quarter-wave
transformers, Proc. IRE 4.3(No. 2):179-185. Feb. 1955.

2. Cohn. S. B. (1955) Optimut design of stepped transmission- line transformers,
IRE Tr. MTT NIT3(No. 2):16-21, Apr. 1955.

3. Ribletts H.J . (1957) General synthesis of quarter-wave impedance trans-
formers. IRE Tr. MTT MT!T-5(No. 1)-36-43. Jan. 1957.

4. Young, L. (1959) Tables for cascaded homogeneous quarter-wave trans-
formers, IRE Tr. MTT 437(No. 2):233-244. Apr. 1959.

5. Young, L. (1962) Stepped -impedance transformers and filter prototypes,
IRE Tr. MTT MTT-0(No. 5):339-359, Sept. 1962.

6. Collin, R. E. (1960) Field Theory of Guided Waves. McGraw-Hill pp.t79-93.

7. Mailloux, R.J., and Forbes, G. R. (1973) An array technique with grating-
lobe suppression for limited-scan application, IEEE Tr. AP AP-21(No. 5):
597-602. Sept. 1973.p

31

._MIA



4 4

I,

II

Appendix A

Radiatel Field of Infinite Array

The radiated field of an infinite array of the linearly polarized rectangular

apertures shown in Figure I is given in Eq. (Al) in terms of a single-component

hertzian potential. The main beam of the array is steerpd to tWe angles 00 -100

E -r = - j WV [X 1,(. y. z1.

i(T = V[V 71(x.yz)]+k 2 ¶(xY. z): tA1)

where

'f(x.yz) = NT.l(x y.z).

The potential function 11x is given by-,

Mff *r ' r ,A2
1 N. ( e'r). n N x y emn dxdy'. (A 2)

X XDym=-Wo n=.o mn X

where D and Dy are the interelement spacings in the x and y directions.

kmn =ko(X um + i Vn + '" KTn)
S = k° i0

and

rF= ix + 'y + z;
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and where • (x#. y") is the aperture field, linearly polarized in the y direction; r

is a position vector in x. y, z coordinates, and ?4 is measured in the aperture

(z'= 0).

The direction cosines u and v for the specified grating lobe positions um , vn

for a main beam at uO = sin 0 cos 0o and vO = cos 00 sin 00 are defined by-

um = uo + m/Dx,

vn = vo . n/D . (A31

The values m and n define propagating waves for all integers for which the

parameter

Kmn =k 0  (A4)

is real. Thus, a set of waves i.s defined, some propagating and some cut off. The

propagating waves travel in the direction of the allowed k Tin values and are plane;

for these. Kmn reduces to ko cos 0 The potential fun, tion 11x can thus be

written as the spectrum:

x (x,y,z) = E U (x.y.z), (A5)X mon mn

and the field components of this plane wave spectrum for the wave at u . V are:

B ymn '-= (1- )Um)n = -m0.

By =-k 2u vn Um E w aK nI
0 nmn' EYmn mn mn'

Bz -k um K mn Ezmn =akovniltm. (A6)
0

In conventional phased arrays the spacings Dx and Dy are specified to exclude

all but the wave associated with the main beam (00. * 0). but certain special-

purpose arrays intended for limited sector-scanning allow a small number of

grating lobes to propagate. The spatial filters described in this report reduce

and control such lobes.

The magnitude of the electric field for the m, n mode is given by

ko .r l . u2 U

and since this parameter multiplies each wave it will now be defined as C(Wan. Orn).
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Appendix B

Wave Mstrx Defnhoim for Palld ad Pwpandikaar Polariaton

Figure 2 schematically shows the signal parameters that are related by the

wave matrix. Conventionally'. the incident electric field is chosen as the refe--

ence signal, with the wave matr.' expressing the linear relation between input

and output parameters as:

bl A21I A 2 2  b2)

The coefficients in A are related to the conventional scattering matrix co-

efficients by the following definitions:

1- T" 2 1 T

r, ~~ rlrl
A , -rr (B2)12 T- A22 2 T-

for the scattering parameters defined:

I
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r b a2 1
S b2 =0O. - 10a r2 7 0

2=1'

T a T 2  b
a1  a. 2 0.

When the transmission lines tor ports 1 and 2 have the same characteristic

impedance. then T = r 2 (reciprocity). Otherwise, this relationship does not
1 2 6hold unless, as Collin shows, the signal amplitudes are normalized so that the

power in a wave of amplitude a. is given by a a. Throughout the following anal-

ysis. these amplitudes are defined to be the E field parallel to the dielectric junc-

tion, and thus T4 T 2 except when the two po:ts are located in layers of the same c.

Incident fields for both polarizations are given in Eq. (13). Since the projection

of 0 onto the plane of the junction involves the factor kzo/ko in the incident medium

(air) and is kzj/ki in a material of dielectric constant Ei. where

ki = ko •

and

kzi = koV - s(BO8nc si 2 6.*(B4)

then this projection factor is used to multiply the field vea-tor that lies in the plane

of incidence in order to find the tangential component at the interface. For paral-

lel polarization the incident B is (ko and the incident tangential EF is

(kzo/ko) E0. For perpendicular polarization the E. is the tangential E field and

the tangential 1 field is (-ko/w) E*.

Similar projections apply within any dielectric layer. For parallel polarization

the equations for continuity of tangential E and B fields at the interface between
t two media of dielectric constants eI and c2 for incident and reflected wave ampli-

tudes (EI=E0) and E 2 in medium I. and E 3 and E 4 in medium 2. are:

(kz VAk)(E I + E 2) = (kz2/&2)(E 3 + E 4 ).

-cI( E2 ) = c2 (E3 -E 4 ). MB)

II
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Then, defining signal amplitudes a 1 , bI. a 2 . b 2 as (kzi ki) times the E-field

amplitudes E 1 through E4 yields the following equations relating the tangential '

E fields at the boundary,

(a1+b1) (a 2 +b 2 )

and

( a I b ) z Iz z 2)( a 2 b2) (BO6

where

z (kzi/kF cos j)

(The cos 0inc is included to remove the angle dependence of zj for the trivial
(2=1 case where kz.= cos inc.

Following a similar procedure for perpendicular polarization yields the tan-

gential E and B equations

E + E 2  = E 3 + E4 ,

k( E I - E2)= k 2 (E 3 -E 4). (717

Then, defining aI I b 1 . a 2 , and b 2 to be equal to E, through E4 yields the same

equation as for parallel polariza+ion, but with

cos 0.n

z inc (138)j = z j

For either case, Eq. (BI), when transformed into wave matrix form, becomet.

=1 2) (B9)
bI • r I b2

where

~Z21/- l/2)

and

T1 = +rI.
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where r and T are the junction reflection and transmission coefficients. The

junction reflection coefficient r2, seen from medium 2. is the negative of r,

and T= 2 14+ = 1-r2.
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