- Best
Available
Copy

AD/A-003 599

THE BCPL REFERENCE MANUAL
Martin Richards, et al

Massachusetts Institute of Technology

Prepared for:
Office of Naval Research

Advanced Research Projects Agency

December 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

BIBLIOGRAPHIC DATA |1- Report No. 2 3. Recipient’s Accesn]

i SHEET {AC TR-141 AD/A - (9573’; 7
E 4. Tule and Subtiele S. Rendrt Dare s Tssucd
' The BCPL Reference Manual 6'December 1974
! 7. Awhor(s) 8. Purtorming O anaza [-)
No, pues
Richards, Martin, A, Evans, Jr., and R. F. Mabee MAC TR-141
9. Performing Organization Name and Address 10 Provt Tack Work Toe N

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY : Twr

11, Contract Grant Na.

545 Technology Square, Cambridge, Massachusetts 02139
N00014-70-A-0362-0006

12, Sponsormyg Organization Name and Address 13 Type of Roport & et
Office of Naval Research : “.”“ 1nt.enm
Department of the Navy SEUTIEL.IT (e
Information Systems Program 14.

, ' Arlington, Va 22217

|28 sz slemeniasy. Nates

. éCPL is a language which is readable and easy to learn, as well as admitting of
; an efficient compiler capable of generating efficient code. It is made self
consistent and easy to define accurately by an underlying structure based on a simple
idealized object machine. The treatment of data types is unusual and it allows the
power and convenience of a language with dynamically varying types and yet the
efficiency of FORTRAN. BCPL has been used successfully to implement a number of
languages and has proved to be a useful tool for complier writing. The BCPL compiler

itself is written in BCPL and has been designed to be easy to transfer to other

machines; it has already been transferred to more than ten different systems.

TNt doras and Document Analvsis. 1700 Descriptors i
f

f
U (T |

175, rrers Oren-baded Terms q§ JAM o1 ‘:_‘_5 ‘i
{ | ‘ ’ I |

IS GEATIRE
Raproduced b D 1

NATIONAL TECHNICAL
INFORMATION SERVICE

17e. COSATI Field/Group P e, T PRICFSSUBJECI TO (HANGE

18. Availabnhity Statement 19. l\‘- uriey Class (Ths 200 N\ U of e
Leport
proved for Public Release; _ UNCLASSIFIED.
a Y - 5 20. Sccurity Class (This T .
Distribution Unlimited Bl g"y(s_,
LN T ASSIELED 4 2 j !

THIS FORM MAY BE REPRODUCED orarfi € avag

j

The BCPL Reference Manual
by
Martin Richards
revised by

Arthur Evans, Jr.
Robert F. Mabee

11/26/74

nnmwwMmmH!-r-gﬂﬂ'!ﬂ"ﬂ-ﬁﬂmﬂ-ﬁﬂr'--F-!--.H-I-Fuﬂﬂ----.--;ﬂl------

e

This research was supported in part by the Advanced Research Projects
Agency of the Depar tment of Defense under ARPA Order No. 2895 which
was monitored by ONkK Contract No. NGBU14-70-A-0362-0006.

\ Ji e

e — e T

The BCPL Reference Manual

The BCPL Reference Manual
by
Martin Richardes
revised by

Arthur Evans, Jr.
Robert F. Mabee

11/26/74

Abstract

BCPL is a language which is readable and easy to learn, as well
as admitting of an efficient compiier capable of generating efficient
code. It is made self consistent and easy to define accurately by an
underlying structure based on a simple idealized object machine. The
treatment of data types ‘1&g unusual and it allows the power and
convenience of a languuge with dynamically varying types and yet the
efficiency of FORTRAN. BCPL has been used successfully to impl.asent a
number of languages and has proved to be a useful tool for compiler
L Wols IR The BCPL conpiler 1itself is written in BCPL and has been
jesigned to be easy to transfer to other machines; it has already been
rransferred to more than ten different systems.

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. NO0¥14-70-A-0362-0006.

=il -

The BCPL Reference Manual

TABLE OF CONTENTS

| Section Page
1,0 Introduction 1
1.1 Implementation Guides 1
2.0 Hardware Representations and Syntax 3
2.1 Canonical BCPL 3 N
2.2 PFormal Syntax 5
2.2.) Syntagtic Notation 5
2.2.,2 The Canonical Syntag of BCPL 5
2.3 Hardware Representations 7
g 2.3.1 Names and System Words y
2.3.2 Section Brackets %
2.3.3 Eguivalent Representations of Canonical Symbols 8
2.4 Preprocessor Conventions 8
2.4.]1 Section Brackets 8
2.4.2 Automatic Insertion of SEMICOLON 8
2.9.3 Automatic Insertion of DO 9
Z.a.4 Jomments 9
2:4.3 The Get Directive 19
3.8 Fundamental Concepts of BCPL 11
‘ 3.1 The Object Machine 1%
3.2 Variables, Manifest Constants, and Address Constants 12
1.3 Lvalues and Modes of Evaluation 1
3.4 Simple Assignment 13
3.5 The Lv Operator 14
3.6 The Rv Operator 15
3.7 The Vector Operator 16
3.8 Data Types 18
4.0 Expressions 21
4,1 Primary Expressions 22
4.1.1 Names 22
4.1.2 Numbers 23
4.,1.3 String Constants 23
4.1.4 Character Constants 24
4.1.5 Truth Values 24
d51.6 Nil 2%
4.1.7 Bracketted Expressions 25
4,1.8 Result Blocks 25
4.1.9 Lv Expressions 26
4.1.10 Rv Expressions 26
4.1.11 Vector Expressions 26
4.1.12 Table and List Expressions 27
:1.13 Veckor Applications 28
4.1.14 Function Applications 28
4.2 Arithmetic Expressions 28
4.3 Relational Expressions 30
4.4 Shift Expressions 31

= Bid =

The BCPL Reference Manual

TABLE OF CONTENTS

§9ction Page

4.5 Logical Expressions 31
4.6 Conditional Expressions 32
4.7 Constant Expressions 33
4.3 Expression lists 33

5.¢ Commands 35
5.1 Simple Assignment Commands 33
5.2 Assignment Commands 35
£.3 Routine Commands 36
5.4 Labelled Commands 36
5.5 Goto Commands 37
5.6 If Commands 37
5.7 While Commands 38
5.8 Test Commands 38
5.9 Repeat Commands 39
5.18 For Commands 39
5.11 Loop, Break, and Endcase Commands 40
5.12 Finish Commands 41
5.13 Return Commands 41
5.14 Resultis Commands 42
5.15 Switchon Commands 4
5.16 Call Commands 43
5.17 Blocks 43

6.0 Definitions and Declarations 45
6.1 Scope and Scope Rules 45
5.2 Extent and Space Allocation 45
.3 Let Declarations 47
f.3.1 Simple Variable Definitions 47
6.2.2 Function and Routine Definitions 58
6.4 Manifest Declarations Sl
6.5 ©Static Declarations Sl
6.6 Global Declarations 51
6.7 External Declarations 52

References

The BCPIL Reference Manual

1.4 Introduction

BCPL (Basic CPL) is a general purpose programming language which
is particularly suitable for large nonnumerical problems in which
machine independence is important. It was originally designed as a
tool for compiler writing and has, so far, been used in at least three
compilers. BCPL is currently implemented and running on the Honeywell
¢35 under GECOS III, on the Honeywell 645 and 6189 under Multics, on

S 368 under OS and CP/CMS, on the TX-2 at Lincoln Laboratory, on
CCC 640V, on the Univac 1168, and on the DEC PDP-9. There are
sCPL compilers on the KDF 9 at Oxford ana on Atias 2z at
oridge. Other implementations are under construction.

T

ir -

= om G
(@]
Cy

(VIS SV A |
U

w

BCPL is related to CPL (Combined Programming Language [l, Z]) and
was ceveloped using experience gained from work on a CPL compiler.

The BCPL compiler is written in BCPL and is designed for fairly
easy transfer to any other machine. Where possible the implementation
dependent parts of the compiler have been separated out, so only a
small proportion (about 1/5th) of the compiler needs to be rewritten
for a new implementation. This part consists mostly of the code
generator, which is entirely object-machine dependent. There is also
the command interface, which is entirely operating-system dependent.
In adaition to modifying the compiler, it is necessary to design and
write the interface with the new operating system; this usuall-
includes several hundred lines of assembly language and tea or twency
BCPL routines.

The cost of transferring BCPL to a new machine is usually between
2 and 5 man months.

1.1 Implementation Guides

This reference manual describes the BCPL language abstracted from
any particular implementation. For each implementation there should
be a specific implementation guide (possibly several documents) to
describe in detail:

(1) The representation of a BCPL program 1in the particular
character set, and other source file conventions such as
ignoring columns 73-80 in card images. There should be a
complete l:st of canonical symbols and their machine
rerresentations.,

The torm and meaning of constructs left to the
implementation. This includes ¢the get directive, the
external declaration, the call command, and finish, ic well
as posslbly other constructs.

The maximum lengths of names, section bracket tags, numbers
and stringconstants, and the maximum number of cases in a

R s]

Y

(4)

N R WPl W W

(6)

(7)

(8)

(9)

(1)

The BCPL Reference Manual

switchon, of elements in a table, of arguments to a function
or routine. There may also be restrictions on the isndith
and complexity of a program, on the depth of recursionh, on

the length of a single stack frame, and the number of global
cells,

The library. This consisis of a number of routines written
in BCPL or assembly language which can be called by ordinary
BCPL calls. Usually a declar-tion for the library rcutines
will be made available on-line in a form suitable for
inclusion by the get directive, .

How a BCPL program iy invoked from the command lanquage or
from another compiler ianguage.

How to invoke the compiler. Also its options, input and

output tiles, temporary files, storage requirements, side
effects, etc.

All the error messages or codes that can be generated by the
compiler or run-time routines.

Extensions or restrictions in the canonical language. All

departures from the standard BCPL described in this manual
should be documented.

Possibly some description of the object program,
representation of strings, format of stack frame, etc.

Several sample programs.

2.0 Hardware Representations and Syntax

! The BCPL Reference Manual

Since BCPL 1is implemented on many machines having different
hardware character sets, i1t 1is wuseful to separate the machine
dependent hardware representation of a BCPL program from the canonical
syntax of the language. Th2 details of the hardware representation
provided for any implementation can be found in the corresponding
| implementation guide. In this chapter we aive the machine independent
f canonical syntax of BCPL and provice guide lines on which any hardware

representation should be based.

A BCPL program can be thought of as a stream of canonical symbols
laid out on a page. The canonical symbols are the basic words,
operators and symbols of the language and they are the terminal
symbols of the canonical syntax. Some canonical symbols are given
below:

let and "P3*n" 36 < + ; while

i
The symbols of a program are chosen from a tinite set of tokens
along with the follcwing unbounded sets:

<name>
<number>
<EtTingconst>
<charconst>
{sectbra>
<{sectket>

As the ropresentations of the tokens may differ in different
implementations because of character set limitations, this manual uses
a canonical BCPL cdefined in the next section.

. 2.1 Canonical BCPL

The following are each a single canonical symbol with an
associated character string part:

<{name> A name 1is a single lower-case letter or a
capital letter followed by any number of letters
and digits. For example: i Abc TaxRate V3

<number> A number consists of one or more decimal digits;
other forms are described in section 4.1.2.

<stringconst> A string constant consists of any number of
string characters contained between two double
guotes ("). An escape convention 1s described
in section 4.1.3. For example: "abc"

i e o

The BCPL Reference Manual

<charconst> A character constant is a single string

character enclosed between two single quotes

("). The same escape convention described 1in

| section 4l 58 applies also to character
3 ' constants. For example: g 1S

<sectbra> A left section bracket consists of $(followed
by any number of letters and digits.
! For example: ${ S$(Trans S(1

<sectket> A right section bracket consists of $§) followed
by any number of letters and digits.
For example: SIS xviz

These are all the other canonical symbols:

and be break by
call case default do
endcase external false finish
for Tobal goto it
Tfnot ifso into Tet
Tist Togand Togor Toop
Ishift lv manifest nil
not or rem rep
repeat Tepeatuntil repeatwhile resultis
return rshift)34 static
switchon table test to
true unless until valof
vec while
+ .+ - - X oo
i ./ = .= # F
< DS > 3P < <
> 2 ¢ > o
= : () {]

Throughout this manual syntax and programming examples will be
given in the representation defined in this section.

e ———

b

The BCPL Reference Manual

2.2 Formal Syntax

2.2.1 @Byategtic Notation

The syntax given in this manual is Backus Naur Form with the
following extensions:

(1) Some common syntactic categories are not surrounded by
meta-linguistic brackets.

(2) The symbols { and } are used to indicate zero or morc
repetitions of the bracketted entity, tor example:

B {; El means E | B B A Bz By B | <56 e
The syntax given in the next section is ambiguous and is simply

intended to 1list all the syntactic constructions available. The
ambiguities are resolved later in the manual.

2.2.2 The Canonical Syntax of BCPL

E ::= <name> | <stringconst> | <charconst> | <number>
| true | false | nil | (E) | valot <block>
| v "B | T E | B { <arg li&t>) B e INE BN
| B <diadic op> E | <monadic op> E | E -> B; E
| vec <constant expression> | table <constant list>
| Wowtr <@ listd>
cdivadig @y = | o® | 7 of | EEE Lo+l sH L= ol .=
[(L g Pl 10 S) & BT g il TR b 2SNl
| lahift | rehift | logand | logot | = | ¥
chonadic op> sv= & | ¥ | =] &= | pet
<E list> ::= <E rep> {, <E rep>]}
<E rep> ::= E | E rep <constant expression>
<arg list> te= CE list> | <emptyd
<constant expression> ::= E
<constant list> ::= <constant rep> {, <constant rep>]

<constant rep> ::= <constant expression>
| <constant expression> rep <constant expression>

C rex <B ligt> o= <B lis&> | B (<arg List>)
| goto E | <name> : C | resultis E
| 3 B do € | unless E o © while E do C | until £ do C
i C repeat | C repeatuntii E | C repeatwhile E

The BCPL Reference Manual

loop | break | return | finish | endcase
test E then C or C | test E ifso C ifnot C

|
| or
| Tor <name> = E to E do C

| Tor <name> = E to E by <constant expression> do C
|

|

I

~wTtchon E into <block> | case <constant expression>: C
case <constant expression> to <constant expression>: C
Jefault: C | call E (<arg list>) | <block> | <empty>

D ::= <name> (<FPL>) = E | <name> (<PPL>) be C
| <name list> = <E list>

(FPL> ::= <name list> | <empty>
<name list> ::= <name> {, <name>}
<block> ::= $(<block body> §)
<block body> ::= <block item> {: <block item> }
<block item> ::= C | <declaration>
<declaration> ::= let D {and D}
| manifest <decl body> | global <decl body>
| external <decl body> | static <decl body>
<decl body> ::= S(<C def> {: <C def>} §)

<C def> ::= <name> : <constant expression>
| <name> = <constant expression>

<progran> ::= <block body>

A ey

The BCPL Reference Manual

2.3 Hardware Representations

Since the hardware character sets used for different
implementations differ, it is practical to give only an outline of the
hardware conventions which al- common to most versions of BCPL.

2.3,1 Names and System Wwor

System words are sed@ences of letters used to denote canonical
symbols for which there are no suitable graphics. The set of reserved
System words is implementation depencent. Names are also composed of
letters and digits and may be coined and used by the programmer to
denote variables and constants within his program. If the available

character set includes small letters then system words and names are
syntactically distinct.

For character sets with capital and small letters:

(1) A system word is any sequence of two or more small letters,
(2) A name is either
(a) a single small let‘ter
(b) a capital letter foilowed by any sequence of letters,
digits and possibly o‘her suitable characters (e.q.
. o1)

Fer character sets with only capital letters:

(1) An identifier is a capital letter followed by any
sequence of letters, digits and pocsibly other suitable
characters (e.g. . #)

(2) A name is an identTIfier which is not a system wcrd.

l'hus on some implementations let and logor are system werde while
Let, LET, Logor and LOGOR may be used as names; but with a more
réstrictec character set LET and LOGOUR would be reserved system words
and the programmer would have to represent the names .n some other
w&ay, perhaps by:

F_LET, S_LET, F_LOGOR, S_LOGOR

2.3.2 Section Brackets

The preferred representation of a left section bracket consists
of { followed by zero or more letters, digits, and other characters
allowed in names. A right section bracket consists of } followed by
Rero or more letters, digits, etc. As the symbols { ana } are used in
this manual as meta-linguistic brackets, section brackets in the
syntax and examples are represented using an alternate form also
suitable for more limited character sets,

The BCPL Reiference Manual

2.3.3 Eaquivalent Represent3ations of Canonical Symbols

Several canonical symbols have alternate representations for
clarity and compatibility. Thus by may be represented as step, and do
may be represented as then. Many symbols crdinarily represented by
non-clphabetic cnaracters may also be represented by system words.
For example, = may be represented as eqg.

2.4 Preprocessor Conventions

Several functions which the compiler performs before syntactic
analysis to improve readability and as a convenience to the programmer
are collectively called preprocessor conventions.

2.4.1 Section Brackets

Section brackets are used to bracket blocks and commands. To
aid the recadability of programs, section brackets may be tago~1 with
any sequence of characters v.aich may occur in identifiers. A closing
section bracket matches an earlier open section bracket with the same
tag and any outstanding sections will be closed automatically. For

example:

$(1 until i=0 do

is eguivalent to:

$(1 until i=0 do
$(2 R (1)
i:=1+1 $2 $1

2.4.2 Automatic Insertion of SEMICOLON

The canonical symbol SEMICOLON is inserted by the compiler
between pairs of items if they appeared on different lines and if the
first was from the set of items which may end a command or definition,

namely:

loop break return finish endcase repeat true false nil
<name> <numb~r> <stringconst> <charconst> <sectket>))

and the second is from the set of items which may start a command or
declaration, namely:

test for if wunless wuntil while goto resultis call
switchon case default endcase loop break return
finish valof rv 1lv true false table 1ist (+ - not

e St e e

The BCPL Reference Manual

<name> <number> <stringconst> <charconst> <sectbra>
global manifest static external let

For example, the following two programs are equivalent:

- X
- %

oy := B;

Q

x +
>y
)

IQ.»—-‘
]

~

[]

S

X +
2 ¥
)

E

]
X »
|

rh
| .
E

(

2.4.3 Autonatie Insertion of DO

The canonical symbol DO is inserted by the compiler between
pairs of items if they appeared on the same line and if the first 1is
from the set of items which may end an expression, namely:

true false nil <name> <number> <stringconst>
<charconst> <sectket>)]

and the second 1is from the set of items which must start a command,
namely:

test for 1f unless until while oto resultis case
Jefault endcase loop break return finish switchon call

For example:

unless 8 < T < Tmax resultis true
lf x=3 goto L

is eguivalent to:

unless 9 < T < Tmax gg resultis true
If x=0 do goto L

2.4.4 Comments

User s comments may be ircluded in a program between a doub.e
slash “//° and the end of the line. Example:

let R () be // this is a routine which refills Symb
$(for i = 1 to 200 do // do it 200 times
Readch (INPUT, 1lv Symb!i) §) // read a char

The BCPL Reference Manual

2.4.5 The Get Directive

A directive of the form

get <specifier>

may occur anywnere in a BCPL program;
replace the characters of the the text in the file

referred to by the specifier. The syntactic form of the specifier 1is
implementation dependent but will usually be a string constant.

it directs the compiler

to
directive by

- 19 -

The BCPL Reference Manual

3.8 Fundamental Concepts of BCPL

3.1 The Object Machine

BCPL has a simple underlying semartic structure which is built
around an idealized object machine. This method of design was chosen
in order to make BCPL easy to define accurately and to facilitate the
machine independence which is one of the fundamental aims of the
language.

The most 1important feature »f the object machine is its store,
which is represented diagrammatically in Figure 1.

A (n) A (n+l) A (n+2) A (n+3)

l l |
| | l
| | |
| | |

Figure 1 - The Machine’'s Store

It consists of a set of consecutive boxes (or storage cells) uniguely
identified by arbitrary addresses. Some addvessing function, A,
places the consecutive integers in one-to-one correspondence with the
addresses of consecutive «cells. As is seen later, this property 1is
important.

Each storage cell holds a binary pattern called an Rvalue (or
Right hand value). All storage cells are of the same size and the
length of Rvalues is a constant of the implementation which is usually
between 24 and 36 bits. An Rvalue is the only kind of object which
can be manipulated directly in BCPL and the value of every variable
and exprescion in the language will always be an Rvalue.

Rvalues are used by the programmer to model abstract objects of
Tany ditferent kinds, such as truth values, strings and functions. A
large number of basic operations on Rvalues have been providea in
order to help the progranmer model the transformation of his abstract
objects. In particular, there are the usual arithmetic operations
which operate on Rvalues 1in such a way that they closely model
integers. One can either think of these operations as ones which
interpret their operands as integers, perform the integer arithmetic
and convert the result back into the Rvalue form, or alternatively one
may think of them as operations which work directly on bit patterns
and just haopen to be useful for representing integers. This latter
approach 1is closer to the BCPL philosophy. Although the BCPL
programmer has direct access to the bits of an kvalue, the details of
the binuary representation used to represent integers are not defined
and he would be 1losing machine independence 1if he performed

= i =

The BCPL Reference Manual

nonnumerical operations on Rvalues he knows to represcat integers.

An operation of fundamental importance in the object machine 1is
that of 1Indirection. This operation has one operard which 1is
interpreted as an address and it locates the storage cell which 1s
labelled by this address. This operation is assumed to be efficient
and, as is seen later, the programmer may invoke it from within BCPL
using the rv operator.

3.2 Variables, Manifest Constants, and Address Constants

Names in BCPL are associated either with storage cells or
directly with Rvalues. A variable in BCPL is defined to be a name
which has been associated with a storage cell. It has a value which
is the Rvalue contained in the cell and it is called a variable since
this Rvalue may be changed by an assignment command during execution.
Variables are introduced by simple variable definitions, the for
command, formal parameter lists, and the static and global
declarations.

A manifest constant is a name which is directly associated with a
constant Rvalue; this association takes place at compile time and
remains the same throughout execution. Manifest constants are
introduced only by the manifest declaration. There are many
situations where manifest constants can be used to improve readability
at no cost in run time efficiency.

An address constant 1is defined to be a name which is directly
associated with an Rvalue representing in some way an address. The
Rvalue cannot be determined until "load time" (just before execution)
and remains the same during execution. Address constants cannot be
used in constant expressiong, which must be evaluated at compile time.
Labels, the external declaration, and routine and function definitions

introduce address constants.

1.3 Lvalues and Modes of Evaluation

As previously stated each storaye celi is labelled by an address;
this address 1is called the Lvalue (or ueft hand value) of the cell.
Since a variable is associated with a storage cell, it must also be
sssociated with an Lvaluz and one can usefully represent a variable
diagrammatically as in Figure 2.

The BCPL Reference Manual

Name

I

| Storage Cell

I

v I |
LVALUE | RVALUE I

Figure 2 - The Form of a Variable

Within the machine an Lvalue is represented by a bit pattern of
the same =zize as an Rvalue, and so an Rvalue can tepresent an Lvalue
directly. The processes of finding the Lvalue and Rvalue of a
variable are called Lmode and Rmode evaluation respectively. The idea
of mode of evaluation is useful since it applies to expressions in
general and can be used to clarity the semantics of the assignment
command and other features in the language.

-+ Simple Assignment

The syntactic form of a simple assignment command is:

El := E2
where E1 and E2 are expressions, Loosely, the meaning of the
assignment is to evaluate E2 and store its value in the storage cell
treferred to by El. It is clear that the expressions 21 and E2 are

evaluated in different ways and hence there is the classification into
the two modes of evaluation. The expression E1 to the left of the :=
is evaluated in Lmode to yield the Lvalue of some Storage cell and the
right hand side E2 is evaluated in Rmode to yield an Rvalue; the
contents of the storage cell is then replaced by the Rvalue. This
crocess s shown diagrammatically in Figure 3.

El = B2
Lmode Rmode
evaluation evaluation

Identical

Dit patterns Storage cell

| |
| |
v v
Lvalue Rvalue

A |
I |
| |
| |

|

The kvalue is placed
Lvalue | (===4-- in the cell
| |

Figure 3 - The Process of Assignment

- 1§ =

The BCPL Reference Manual

The only expressions which may meaningfully appear on the left
hand side of an assignment a-e those which are associated with storage
cells; they are called Ltype expressions.

The terms Lvalue and Rvalue derive from consideration of the

assignment command and were first used by Strachey in the CPL
reference manual [2].

3.5 The Lv Operator

As previously stated an Lvalue is represented by a bit pattern
which is the same size as an Rvalue. The lv expression provides the
facility of accessing the Lvalue of a storage cell.

The syntactic form of an 1lv expression is:

lv E

where E is an Ltype expression. The evaluation process 1is shown 1in
Figure 4.

lv E
| | Lmode
| | evaluation
I v
| Lvalue
| A
| | Identical
| j--- bit patterns
v |
Rvalue (=-=-------

Figure 4 - The Evaluation of an lv Expression

The operand 1is evaluated in Lmode to yield an Lvalue and the
result is a bit pattern identical to this Lvalue. Intuitively, 1lv X
is the address in memory of the variable x. The 1lv operator is
exceptional in that it is the only expression operator to invoke Lmode
ovaluation, and indeed in all other contexts, except the left hana
side of the assignment, expressions are evaluated in Rmode.

- 14 -

The BCPL Refecence Manual

3.6 The Rv Operator

The rv operator is important in BCPL since 1t proviaes tne
underlying mechanism for manipulating vectors and data structures; Lts
operation is one uf taking the contents (or Rvalue) of a storaae cell
whose address (or Lvalue) 1is given.

The syntactic torm of an rv expression is as follcws:

rv E

-

and its process of evaluation is shown diagrammatically in Figure 5.

v E

I | Rmode

| | evaluation

| v

| Rvalue

I A

| [Identical

\J | ===~ == bit patterns
I I \
| Rvalue | Lvalue

——————————

Figure 5 - The Evaluation of an rv Expression

The operand is evaluated in Rmode and then the storage cell whose
Lvalue is the identical bit pattern is found. If the rv expression 1is
being evaluated in Rmode, then the contents of the cell is the result;
it is also meaningful to evaluate it in Lmode, in which case the
Lvalue of the cell is the result. An rv expression is thus an Ltype
expression and so may appear on the left hand side of an assignment
command, as in:

Ivp :=t
ind one can deduce that this command will update the storage cell
rointed to by p with the Rvalue of t. Thus

rv 100 := ©

csets location 100 to zero.

S A E——

R T—

= e -

The BCPL Reference Manual

3.7 The Vector Operator

The vector-application operator (represented here by !) takes
advantage of the consecutive arrangement of storage cells. It finds
the n’'th successor to a given cell, as shown in Figure 6.

Bit pattern (==-----

\Y) ! 3
| | |
\4 | \J
-->Rvalue i Rvalue
| I | I
| | I I
| I
| v
I
|

Identical Identical
bit patterns bit patterns
I |
v v
Lvalue Lvalue
| 1 i I 1

Figure 6 - An Interpretation of Vv ! 3

The diagram above shows a pocsible interpretation of the
expression V!3. Some adjacent storage cells are shown and the left
hand one has an Lvalue which is the same bit pattern as the Rvalue of
Vs The «cell at the right is the third successor of the one on the
left. 1In terms of the addressing function A, if Vv = A (n) then the
Lvalue of the cell on the right is A (n+3). Thus the expression:

v e o

accurately models a vector application, since, as i varies from zero
to three, the expression refers to the different elements of the set
of four cells pointed to by V. V can be thought of as the vector and
1 as the integer subscript.

A vector application 1s an Ltype expression; in Lmode evaluation
it vyields the address of the designated cell, and in Rmode evaluation
it yields the contents.

Figure 7 shows how a vector application can be thought of as a
data structure select operation. The variable Xpart acts as a named

= 16§ -

The BCPL Reference Manual

selector applied to the data structure V. Manifest constants are
commonly used to define structure selectors of this kind.

<

IEEECTSEEESEEE >
| |

——

The cel! referred
to by V!Xpart

I
I
I
I
I
I
I
I
I
I
I
I

B)
m——
———
——
——
.—-—|

Figure 7 - An Interpretation of V ! Xpart

By letting the elements of structures themselves be structures it
is possible to construct compound data structures of arbitrary
complexity. Figure 8 shows a structure composed of integers and
pointers.

X
: ——4--==> | 36 |
I | I
e |7 ==4=-===> {'331_:
I I
————————— — 17|
| | | T
- e ==
1 | |
1 A ==
I I I I
--> |7 137 |
I I
| 52 | ==> r
I I

Figure 8 - A Structure cf Integers ana Pointers

The BCPL Reference Manual

3.8 Data Types

The unusual wav in which BCPL treats data types is fundamental to
its design and thus some discussion of types is in order here¢e. It is
useful to introduce two classes:

(a) conceptual types
(b) 1internal types

The conceptual type of an expression 1is the kind of abstrgct
object the programmer had in mind when he wrote the expression. It
mi1ght be, for instance, a time in milliseconds, a weight in grams, a
function to transform feet per seccnd to miles per hour, or it might
be a data structure representing a parse tree. It Jis, of course,
impossible to enumerate all the possible conceptual types and it is
equally impossible to provide for all of them individually within a
programming language. The usual practice when designing a language 1is
to select from the ccnceptual types a few basic ones and provide a
suitable internal representation together with an adeguate set of
basic operations. The term internal type refers to any one of these
hasic types and the intention is that all the conceptual types can be
modelled effectively using the internal types. A few of the internal
types provided in a typical language, s' .h as CPL, are listed below:

real

RGC

integer

[abe%

integer function
(real, boolean) vector

Much of the flavor of BCPL is the result of the conscious design
iecicsion to provide only one internal type, namely: the bit pattern
~¢r kvalue). 1In order to allow the programmer to model any conceptual
type @& large set of useful primitive operations has been proviaed.
ror instance, the ordinary arithmetic operators +, -, * and / have
neen defined for KRvalues 1n such a way as to model the integer
operations directly. The six standard relational operators have been
defined and a complete set of bit manipulating operations provided.
In addition, there are some stranger hit pattern operations which
provide ways of representing functions, labels and, as we have already
seen, vectors and structures. All the operations provided are
aniformly efficient and they have not been overdefined. For instance,
the effect of adding a number to a label, or a vector to a function 1s
not defined even though it 1is possible for a programmer to cause it to
takc place.

4

The most important effects of designing a language 1in this way
can be summarized as follows:

1. There is no need for type declarations in the language,

since the type of every variable is already known. Tnis
helps to make programs concise and also simplifies such

- 18 -

The BCPL Reference Manual

linguistic problems as the handling of actual parameters
and separate compilation.

It gives BCPL much of the pewer of a language with
dynamically varying types and yet retains the etficiency
of a language (like FORTRAN [3]) with manifest types; for,
although the internal type of an expression is always
known Lty the compiler, its conceptual type can never be
and, indeed, it may devend on the values of variables
within the expression. For instance, the conceptual type
of V!i may depend on the value of 1. One should note
that, in 1languages (such as ALGOL [4] and CPL) where the
elements of vectors must all have the same type, one needs
some other linguistic device in order to handle more
general data structures.

Since there is only one internal type there can be no
automatic type checking and it is possible to write
nonsensical programs which the compiler will translate
without complaint. This disadvantage is hopefully
outweighed by the simplicity, power and efficiency that
this treatment of types makes possible.

i e o

e

The BCPL Reference Manual

4.0 Expressions

All BCPL expressions are described in this section. They ave
grouped into syntactic classes of decreasing binding power as follows:

(a) Primary expressions.

These are the most binding and most primitive expressions. They
are:

~vames, numbers, fruth values, string constants,
character constants, nil, bracketted expressions,
result blocks, lv expressions, rv expressions, vec
expressions, table and list expressions, vector
applications and function applications.

(b) Arithmetic expressions.

These expressions provide the standard integer and floating point
operations of multiplication, division, remainder, addition and
subtraction. They are less binding than the primary expressions.

{c) Relational expressions.

A relational expression takes integer or floating point arguments
and yields a boolean value depending on the truth of the relation.

(d) Shift expressions.

The shift operations allow one to shift a bit pattern to the left
or right by a specified number of places.

(e) Logical expressions.

These expressions allow one to manipulate bits of an Rvalue
directiy. They may be used 1in conjunction with the shift opcrators to
pack and unpack data. The standard BCPL representations of true and
false are chosen so that the logical operators may also be used on
boolean data.

(£) Conditional expressions.

A conditional expression allows for conditional evaluation of one
of two expressions.

This section ends with descriptions of <constant expression> and
<E list> although they are not syntactic subcategories of expressions.

Preceding page blank

The BCPL Reference Manual

4.1 Primary Expressions

All the primary expressicns are described in this section.

4.1.1 Names
Syntactic form:

A name 1s a canonical symbol of BCPL und 1its hardware
representation is implementation dependent. If there are sufficient
hardware characters available il :consists of any sequence of letters.
ilgits and underlines starting with a capital letter. A single small
letter may also be used as a name.

Examples:

H3 Tax_rate F i
List4 StackP

Semantics:

A name may be associated directly with an Rvalue by means ot a
manifest declaration or by a label declaration, function or routine
definition, or external declaration, or it may be associated with a
storage cell to form a variable using any other kind of declaration.
A variable, manifest constant, or address constant can be referreé to
by 1ts name throughout the scope of its declaration (see section 6.0
on scopes and extents of definitions).

A manifest constant or address constant can only be evaluated
in Kmode and its result is the Rvalue which was associated with it by
1ts declaration.

A variable is the association of a name with a storage cell and
1t may be represented as follows:

Name
I
Lmode evaluation | Rmode evaluation
I
I _—
I | |
Lvalue | Rvalue |

| |

It may be eva'uated in Lmode to yield the Lvalue ¢f the storage cell,
or it may be evaluated in Rmode to yield the contents of the cell; in
either case the result is a bit pattern of standard Rvalue length.

The BCPL Reference Manual

45152 §umbers

Syntactic form: <digit> = 0111213141516171819
<number > = <digit> («digit)>}
| 8 <digit> {<digit>}
| <digit> {<digit>} . <digit>}
Examples: 132 43179 8377 3.14159 4.

Semantics:

A number is an Rtype expression and may only be evaluated 1in
kmode. The symbol 8 introduces an octal constant whose Rvalue is the
right justified bit pattern specified by the sequence of octal digits.
A decimal number is a sequence of digits not preceded by 8; its Rvalue
is a bit pattern representing the integer in a way which™ depends on
the implementation. A floating peint number is a sequence of digits
with a decimal point embedded or at the end. The Rvalue 1is
implementation dependent.

some implementations may admit of other number forms, such ac
nexadecimal.

4.1.3 String Constants

Syntactic form: " {<string character>} "

A string constant 1is a canonical symbol of BCPL and 1its
hardware representation is implementatinn dependent. Where possible
it is a sequence of characters enclosed in double quotes ("). The
asterisk (*) 1is used as an escape character with the following
conventions:

*in represents newline
*s represents space

*b represents backspace
ol represents tab

L) represents .

L represents ’

LR represents &

Some implementations may admit additional escapes 1in strings.

Examples: "End of test" "o nxun
"*n*tTRA*tLl*n" [T TR

Semantics:
The Rvalue of a string constant 1is a pointer to a set of

consecutive storage cells containing the length and characters ot the
string in come packed form. The number of bits per character and the

s 23 s

The BCPL Reference Manual

number of characters per storage cell are implementation dependent.
For an implementation which packs four characters per word, the string

“Abcl@*n*"

might be represented as follows:

Rvalue =-=---> 6 A B

I |
| |
i % WM %
| I

The storage cells containing the string should not be updated;
some implementations use a “"memory-protect" hardware facility to
prevent updating.

4.1.4 Charactzr Constants

-

Syntactic form: <string character>
The same escape conventions that are used in string constants
may be used in character constants.
Examples: i = “*n”° s
‘ant p° -

Semantics:
Every string alphabet character has an integer code and the

kvalue of a character constant 1is the Rvalue of its corresponding
integer code. The character code is implementation dependent.

4.1.5 Truth Values

Syntactic form: true or false
Semantics:

The Rvalue of false is a bit pattern entirely composed of zeros
and the Rvalue of true 1s the complement of false, namely a bit
pattern entirely composed of ones., (N.B. These are numerically equal
in a ones-complement machine.)

“w 28 .

The BCPL Reference Manual

4.1.6 Nil

Syntactic form: nil

Example: let x = nil

Semantics:

The kvalue of nil 1is undefined. Its purpose is to avoid
initializing a newly defined cell. In the example, the dynamic

variable x is defined without an initial value.

4.1.7 Bracketted Expressions

Syntactic form: (E)

Fxamples: T rem ((x-y)/(x+y) + 2/z)
(B7=> A, B) ! (i+l)

Semantics:
Parentheses may enclose any expression without changing its

mode of evaluation or its value. Their sole purpose 1is to specify
grouping.

4.1.8 Result Blocks !

Syntactic form: valof <block>

Example: valof $(for i=1 to n do
EE P (i1, Xx) resultis false
resultis true $)

Semantics:

A result block is a form of BCPL expression in which commanrds
can be executed before the value of the expression is found. It s
evaluated by executing the block wuntil a resultis statement 1is
encountered; this causes execution of the block to cease and the
Rvalue of the expression in the resultis command 1s the result. See
section 5.14.

& Wy S

The BCPL Reference Manual

4.1.9 Lv Expressions

Syntactic form: lv E
where E is a primary expression.

Examples: Readch (INPUT, lx Ch)
U s= lv Vi1

Semantics:
Tne Lkvalue of an lv expression 1s the bit pattern obtained by
evaluating the operand (which must be an Ltype expression) 1n Lmode.

See the discussion of left and right hand values in section 3.3, and
ot the lv operator in section 3.5.

4.1.10 Rv Expressions

Syntactic form: rv E
where E is a primary expression.

Example:

Lo

x 1= tv (£ (i) + 2)

Semantics:

An rv expression is an Ltype expression and may be evaluated
to yield either an Lvalue or an Rvalue. It is evaluated by evaluating
its operand in Rmode to yield a bit pattern which 1s 1interpreted as
the Lvalue of a storage cell. In Lmode evaluation this bit pattern i
the result, but for Rmode evaluation the contents of the storage cell
is the result. The rv expression is described further in section 3.6.

4.1.11 Vector Expressions

Syntactic form: vec <constant expression>

Examples: let v = vec 100
word := vec Vmax / 4
Semantics:
Let the value of the constant expression Dbe n. Then the
kvalue of the vector expression is the address (Lvalue) of the first
word of a block of storage n + 1 words long. Thus there 1s both a&

zorc th word and an n ' th word.

The storage is dynamic in class and is newly allocated by each
evaluation of the expression. 1t remains allocated for as long as
execution is dynamically between the reference and the end of the
function or routine body, or the end of the smallest enclosing scope
ot any dynamic variable declaration. In the first example above, the

< % =

The BCPL Reference Manual

storage remains allocated as 1long as the cell v does. Repeated
evaluation of the expression within a particular invocation of a
function or routine results in allocating the same block of storage
each lime.

4.1.12 Table and List Expressions

Syntactic form: table <constant list>
Tist <E list>

Examples: let T = table 9", '1°, 2, ‘3,
e B R
s’ @ gt . g g
Cv := list "“zero", "one", "two", "three",
*four", "five", "six", "seven",
“eight", "nine", “ten"

Semantics:

All the expressions which appear after table must have Rvalues
wr-ich can be determined at compile time. The Rvalue of a table is a
vointer to a set of consecutive storage cells whose initial values are
ziven by the 1list of constant expressions; the allocation of tne
storage cells and the initialization are performed prior to execution
of the program.

A table may be used as a vector; for instance, T!15 is equal
tc ‘F° in the example above. The elements of a table should not be
:pdated; some implementations use a "memory-protect" hardware facility
to prevent updating.

The 1list expression is similar to table. The initial values
can be any expressions. They are evaluated and stored in the list at
the time the list expression is evaluated. The storage is allocated
dvnamically as for vectors. See section 4.1.11.

let L list E0, E1, ... En

1s eguivalent to

1; -+s Liln := EB, El, ... En

i Y

The BCPL Reference Manual

4.1.13 Vector Applications

Syntactic form: E1 ! E2 | El [E3]

El and E2 are primary expressions and E3 is any expression.
The operator is left associative and thus

x t'y ! z means (x ! y) ! z
Examples: vV ! (i+l) = Vv ! 1 + p ! Xpart
case SEQ: Trans (x[H2])

Trans (x[H3])
return

Semantics:

The expression El!E2 is defined to take the Rvalue ot tne
(E2) "th successor to the cell whose Lvalue is El. Its purpose 1is
explained in section 3.7.

The expression E1 [E2] is equivalent to E1!(E2).

4.1.14 Function Applications

Syntactic form: E@ (<E list>) | EO ()

E0 is a primary expression and the <E list> may contaln any
cXxpressions.

Examples: £ (x)
H (1, 2*t;

(x=0 -> £, P3)(1, "2T", y+2)
Nextparam ()

Semantics:

The evaluation of a function application 1is explained in
section 6.3.2.

4.2 Arithmetic Expressions

Syntactic torm: E*E | E/E | E remE |
E+E | E-E| -
+ E | - E |
E .*E | E ./ E |
F .+ E | E .- E |
¥ B | = B

The operators * / rem .* and ./ are egually binding and associate

e pm———

b s

The BCPL Reference Manual

to the 1left; they are more binding than + - .+ Or .~ which also
associate to the left.

Thus
X * y rem z means (x * y) rem 2z
x +y - z/t means (x+y) - (z/t)
Examples: 2%x*x + 6*x*y + T*y*y
v ! (f (x) rem 13) + G (x)
£ .% 3.3 4+ .* A]D
Semantics:

The arithmetic expressions evaluate their operands in Rmode. The
integer operators then interpret the Rvalues as 1integers and vyield

. Rvalues representing the integer results of the arithmetic. The
| floating point operators similarly interpret the Rvalues as floating
. point numbers and vyield Rvalues representing the floating point
' results of the arithmetic.

The operators * and / denote integer multiplication and division
respectively.

The operator rem yields the remainder after dividing the left
hand operand by the right hand one. 1f both operands are positive the
result will be positive, it is otherwise implementation dependent.

The expression El + E2 yields an Rvalue representing the integer
summation of E1 and E2.

The Rvalue of + El is the Rvalue of El.

The expression El1 - E2 yields an Rvalue representing the result
of subtracting E2 from El.

The expression - El has the same meaning as @ - El.

The operators .* and ./ denote floating point multiplication and
Zivizion respectively.

The infixed operators .+ and .- denote floating point addition
and subtraction.

The expression .+ E is the same as E.

The expression .- E is the same as 0.8 .- E.

The BCPL Reference Manual

4.3 Relational Expressions

Syntactic form: E <relop> E {<relop> E} where
<relop> ::= = | # | < | > 1 < | >
=l LEL D> T D
The relational operators are just less binding than the

arithmetic operators,

Examples: if 8 <

Semantics:
For a simple relational expression defined by

E <relop> E

the operands are evaluated in Rmode; the Rvalues obtaineiy are then
interpreted as integers or floating point numbers accordiang to the
operator and it the particular relation is true then the result of the
expression is true, otherwise the result 1is false. An extended
relation such as

El <relop 1> E2 <relop 2> E3

is equivalent to the following expression:

(E1 <relop 1> E2) logand (E2 <relop 2> E3)

However, the number of times E2 is evaluated is undefined.

The correspondence between the operators and their meanings 1is
yiven below.

Integer Floating Point
Operator Operator Meaning

e —— e —_—

equal to

W not equal to

< . < less than

> > greater than

] 30 less than or eqgual to
> > greater than or equal

The BCPL Reference Manual

4.4 Shift Expressions

Syntactic form: El lshift E2 | El rshift £2

E2 is any relational, arithmetic, ot primary exprecsion and El 1is
any shift, relational, arithmetic or primary expression; the shift

operators are thus just less binding than the relations and associate
to the left.

Examples: let P (t) = t!3 rshift 19 logand 8377
X := x lshift Bytesize logor Ch
Semantics:
The operands are evaluated in Rmode to yield Rvalues. The left

hand one is interpreted directly as a bit pattern and the right hand
one as an integer to indicate the number of places to shift.

The result of E1 1lshift E2 18 the bit pattern produced by
shifting El to the left by E2 places. The operator rehift is similar
to lshift, only it shifts to the right. vacated positions are filled
with zeros and the result 1is undefined if E2 is negative or greater
than the number of bits in an Rvalue.

4.5 Logical Expressions

Syntactic form: not E
" E logand E | E logor E
| E=E | E=/ E

The operator not is most binding; then, in decreasing order of
binding power, there are:

logand, logor, =,=/

All the logical operator: are less binding than the shift operators.

Examples: B := not B
if x=0 logor y=0 resultis f£(t)
X := x logand §770077 logor Yy logand 87700

Semantics:

The operands of all the logical operators are interpreted as bit
patterns of ones and zeros.

The application ot the operator not yields the logical negation
of its operand. The result of any other logical operator is a bit
pattern whose nth bit depends only on the nth bits of the operands and
can be determined from the following table.

¥ I T R —

The BCPL Reference Manual

nth bits Operator

of operands logand logor = 7
toth ones 1 1 1 2
both 2zeros 4] [} 1)
otherwise) 1 2 1

The operators logand and logor are interpreted differently when
an expression is being evaluated to control conditional execution,
specifically in the if, while, test, and repeatwhile commands and the
conditional expression. In most implementations one operand is
evaluated first and if 1its wvalue determines the result the other
operand is not evaluated. This occurs when one operand of logand 1s
false or when one operand of logor is true. =

4.6 Conditional Expressions

Syntactic form: El1 -> E2, E3

El, E2 and E3 may be any logical expressions or expressions of
greater binding power. E2 and E3 may in addition be conditional
expressions. Thus:

Bl -> x, B2 -> vy, z means Bl -> x, (B2 -> vy, z)

and Bl -> B2 -> x, vy, 2z means Bl -> (B2 =-> x, vy), 2z
Example: let £ (x) = x <0 -> 0,
x > 10 -> 16,
X

Semantics:

The Rvalue of a conditional expression is obtained by evaluating
eltner E2 or E3 in Rmode depending on whether the value of [l is true
or false.

true -> E2, E3 means E2
false -> E2, E3 means E3

I1f the wvalue of El1 1is neither true or false the ;esult of the
conditional expression is undefined.

A conditional expression is an Ltype expression if both its
alternatives are Ltype expressions.

"he BCPL Reference Manual

4.7 Constant Expressions

Syhtactic form: <constant expression> ::= E
Example: 36 + 3 * Table_size

Semantics:

A constant expressicn is one whose Rvalue can be determined at
compile time. It may be a number, a truth wvalue, a <character
constant, a manifest constant, or a bracketted, relational, shift,
logical, or conditional expression composed of constant expressions.

Constant expressions are used in
(a) case labels
(b) wvector expressions
(c) manifest, static, global, and external declarations

and (d) tables.

5.5 Expression lists

Syntactic form: CE list> ::= <E rep> {, <E rep>}
<E rep» ::= E | E rep <constant expressioin>
Examples: let T = table 0 rep 10 // Arrey ot zeros.
a, b, c s:=a +1, b+1,¢c +1
R (a, h, ¢ rep 4)

Semantics:

Lists of expressions are useful 1in several contexts, such as
argument lists and assignment commands. They are purely a syntactic
feature.

EQ0 rep n

civalent to

L]

i3
(17
4]
[47)

E6, EO, ... ED

where the number of E® terms is given by the value of n. Thus rep is
merely a notation to avoid repetitive typing.

The BCPL Reference Manual

5.8 ggmmands

5.1 Simple Assignment Commands

Syntactic form: El := E2

Examples: x 1= 1
V!iizs=0!)!1i+WwW!i1

Semantics:

The assignment operation has already been discussed 1n section
3.4. El wmust be an Ltype expression and it is evaluated in Lmode to
yield an Lvalue, and E2 is evaluated in Rmode to ylield an Rvalue. The
contents of the storage «cell 1eferred to by the Lvalue 1is then
replaced by the Rvalue.

An Ltype expression may be of one of the following four kinds:

(a) A name referring to a storage cell.

(b) An rv expression.

(c) A vector application.

(d) A conditional expression whose alternatives are both
Ltype expressions.

5.2 Assignment Commands

Syntactic form: <E list> := <E list>

There must be the same number of expressions in the list on the
right of the := as there are on the left.

Example: X, VI1 := 1, U'i + W!i
Semantics:

The assignment command is semantically equivalent to a seauence
ot simple assignment commands. The general form

Li; L2; «.¢ Ln 5= Rl, R2y; ~., ®BRn

is eguivalent to the following set of simple assignménts:

L1 := RI
L2 := R2
Ln := Rn

Preceding page blank

A e i i i o s B e s s it

The BCPL Reference Manual

The order of execution of the assignments is not defined and may not
be relied on. Note that the assignment:

X, ¥ 2= Y, X

will not interchange the values of x and y. The main advantage of the
general assignment command is the syntactic one of eliminating the
need for section brackets in certain circumstances. For instance the
following command

if x =y do $(VI3 := 0
B := true $)
may be written
if m'= y do V!3, B := 0, true

3ince the order of evaluation is not detined, some commands are
strictly incorrect. For example, the command:

Symb!i, i := Rch ()}, i + 1

may have different effects in different implementations.

5.3 Routine Commands

Syntactic form: E@ (<E list>) | EO@ ()

Ed is any primary expression and the <E list> may contain any
expressions,

Examples: R (x)
Compjump (x!H2, false, L)
(Ct 1) ()
Semantics:
The execution of a routine application is explained in detail 1in

cection 6.3.2.

5.4 Labelled Commands

Syntactic form: <name> : C

Examples: Next: Rch ()
L: Chkind := Kind (Ch)

Semantics:

A labelled commnand is a form of declaration which associates the

- 36 =

by el Sebaaa

The BCPL Reference Manual

name directly with the Rvalue representing the location of the
command. The scope of the name is the smallest textually enclosing
routine or function body.

The Rvalue of a label may be the operand of a goto command, as
described in the next section. For an explanation of the term scope
see section 6.1.

5.5 Goto Commands

Syntactic form: oto E
where E is any expression.

Examples: goto Next
goto S ! i
oto x = @ -> Error, Tvec!x

Semantics:

E 1s evaluated to yield an Rvalue, and then execution Jjumps to
the command whose label has the same value. The point where execution
is resumed must be at the same activation level as that of the goto
command, 0:, in other words, the label and the goto command must both
be in the same function or routine bhody. The effect of violating this
rule 1s usually chaos.

As a general rule, it is a good policy to try to minim.ze the
number of labels in a program as this will tend to imp-ove |its
readability.

5.6 1f Commands

Syntactic form: if E do C
unless E do C

Examples: if x = 6 do x = 10
unless Symb=S COMMA do Report (30)
vnless S ! 1 = W ! i resultis lLalse

Note the automatic insertion of do by the compiler in the third
example. See section 2.4.3.

Semantics:

The command if E do C is executed by evaluating E to vyield a
truth value (see section 4.5). If the result is alse execution 1s
complete, if the result is true the command C is executed, and if the
result is neither true nor false the effect is undefined.

The command unless E do C is equivalant to if not (E) ao C.

& 37 =

i The BCPL Reference Manual

%.7 while Commands

until E do

syntactic form: while E do C
C

Examples: while N > SSP do LoadT (S_LOCAL, SSP)
'8 =0doT::=T120

Semantics:

Thne command while E do C is equivalent to:

where L and M are identifiers which do not occur elsewhere in the
Droqgram.

"he command until E do C is equivalent to Eﬁile not (E) do C.

3.8 Test Commands

syntactic form: test E then C or C
test E 1fso C 1fnot C

Example: test 2*n > (CaseK ! n - CaseK ! 1)/2 + 7
' then Lswitch (1, n, D)
or Bswitch (1, n, D)
Semantics:

The command test E then Cl1 or C2 is equivalent to:

iﬁ not (E) goto L
Cl
goto M

L : C2

M .

where L and M are identifiers which are not used elsewhere in the
program.

The command test E ifso Cl ifnot C2 is equivalent to test E then
¢l or C2. The ifso and ifnot clauses may be interchanged.

The BCPL Reference Manual

5.9 Repeat Commands
Syntactic form:
Examples:

$(
Semantics:
The repeat commands
commands, es follows:
C repeatwhile E is
C repeatuntil E is
C repeat is
where L
5.10 For Commands

is an identifier which ise

C repeatwhile E
C repeatun-11 E

C repeat

Rch () repeatuntil Ch = “*p°

WP := WP + 1

S ! WP :- Ch

Rch () $) repeatwhile ‘A° XEh ¢ &

are defined in terms of other equivalent
equivalent to L: C; if E goto L

equivalent to C repeatwhile not (E)
equivalent to C repeatwhile true

not used elsewhere in the program.

Syntactic form: for <name> = E to E do C
for <name> = E to E by <constant> do C
Example: for 1 =0 to 122 do Vv ! i :=
Semantics:
The for command can be defined by the following equivalent
forms:
for N = El1 to E2 by E3 do C
is equivalent to
$(let N, % = El, E2
while N < 2 do
o1 €
N := N+ E3 $) §)
if E3 is positive, or
$(let N, Z = E1, E2
while N > 2 do
$(C
N := N+ E3 §) §)

if E3 is negative.

(The value of E3 is known at compile time.)

Z 1is

39

The BCPL Reference Manual

an identifier not used elsewhere in the program. Also:

for N = E1 to E2 gg C

e

is eguivalent to

for N = E1 to E2 by 1 do C
The to and by clauses may be interchanged. Note that the initial
value and end limit expressions El and E2 are evaluated only once. E3

rust be a constant expression soO that its sign is known at compile
time.

5.11 Lecup, Break, and Endcase Commands

Syntactic form: loop
reak
endcase
Examples: for 1 = 1 to v!@ do
${ Tet x = v!i
iﬁ x = 0 loop
break
Ll

$)
L2:

switchon Op into
(case SWITCHON: Transswitch (x!
endcase
case SEQ: Trans (x1!1)
Trans (x!2)
endcase

$)
L3:

Semantics:
Execution of the break command causes a jump to the point Jjust
after the smallest textually enclosing loop, introduced by one of the

following key words:

until, while, repeat, repeatwhile, repeatuntil and for.

In the example, this is the point labelled L2.

The loop command causes a jump to the end of the body of tne
smallest enclosing loop, so that the end condition is tested and the

= 4 =

i

The BCPL Reference Manual

loop repeated as required. In the example, this is the point labelled
L1. 1. a for loop the loop command also causes the 1index to be
incremented befoire the test is made (as usual).

The endcase command causes a jump to the point just after the
smallect textually enclosing switchon block. 1In the third example,
this is the point labelled L3.

5.12 Finish Commands

Syntactic form: finish
Example: if Reportcount > Reportmux do
S(WriteS (*nToo many errors*n’)
Endwrite (OUTPUT)
finish §)

Semantics:

The finish command causes execution of the program to cease in
an orderly manner. Its exact effect is implementation dependent.

5.13 Return Commands

Syntactic form: return
Example: let MapB (F, x) be

e ——

S(l1 1f x = @ return
If x!Hl = S COMMA do
= $(MapB (F, x!H3)
F Ix!H2)
return $)
F (x) $)1

Semantics:

The return command causes the execution of the smallest
enclosing routine body to cease and so control roturns to the point
just after the routine call that invoked the current activation of the

body.

The BCPL Reference Manual

5.14 Resultis Commands

Syntactic form: resultis E
Example: valof $(for i = @ to n do

if Vi # U!T resultis false
resultis true $)

Semantics:
The execution of the command resultis E causes the execution of

the smallest enclosing result block to cease and yield the value which
is the Rvalue of E.

5.1. Switchon Commands

Syntactic form: switchon E intc <block>
where the block contains labels of the form:
case <constant>:
case <constant> to <constant>:
or default: —_

Example: let Trans (x) be
TT$(1 if x = @ return
switchon X ! HI into
$(default: Report (100); return
case 5 LET: - - -

endcase

case S_SEQ: Trans (x ! H2)
Trans (x ! H3)
endcase $) 1

jemantics:

The expression after switchon is evaluated to vyield an Rvalue
ana then, it a case label exists which has a case constant of the same
volue then execution jumps to that point, otherwise if there 1s a
sefault label execution resumes there. If the switch has no default
label and 1t no case constant matches the switch expression then the
effect is undefined.

The case label

case E1 to E2:

is eqguivalent to

case El1: case E1 + 1: case E1 + 2: ... case E2:

The BCPL Reference Manual

where E2 must not be less than El.

Note that the names S _LET and S_SEQ in the example above must
have been declared to be manifest constants.

The switch 1is implemented by any one of a number of methods

(e.g. direct switch, sequential search, hash table, binary tree)
depending on the number and range of the case constants.

5.16 Call Commands

Syntactic form: call E@ (<E list>) | call EB ()
Example: call Terminate (Name char 32, lx Code fixed)
Semantics:

In most implementations BCPL does not use the system standard
call seguence. The call command provides a way of calling routines
not written in BCPL. The nature of the argument 1list 1is extremely
implementation dependent. In the implementation from which the
example is drawn, the types of the arguments must usually be provided
to tne called program. This information is provided by infixed and
postfixed operators which are not allowed in any other context.

5.17 Blocks
Syntactic form:
<block item>

<hblock body>
<block>

C | <declaration>
<block item> {: <block item>}
S(<block body> $)

Example: S(let List2 (x, y) = valof
T $(let P = Newvec (1)
PIlo, P! 1 :=x,yY
resultis P $)
finish §)

Semantics:

A block body consists of a sequence of intermixed commands and
declarations. It 1is executed by executing the declarations and
commands in sequence.

The names declared by the declarations are local to the block
and the dynamic storage cells allocated only remain 1in existence as
long as execution is dynamically within the block. For a detailed
discussion of scopes and extents see sections 6.1 and 6.2.

The BCPL Reference Manual

6.0 Definitions and Declarations

Before a name may be used in a BCPL program it must be declared
by the programmer in order to specify its scope, extent and, possibly,
its initial value.

6.1 Scope and Scope Rules

The SCOPE of a name N is the textual region of program throughout
which N refers to the same variable, manifest constant, or address
constant. The scope of a name depends on its declaration as follows:

(a) A formal parameter 1list of a function or routine
definition declares a list of names whose scope is the
body of the function or routine defined.

A name labelling a command is a form of declaration and
it declares a name whose scope is the smallest enclosing
routine or function body.

A let declaration declares a name or set of names whose
scope is the declaration itself and all succeeding
commands and declarations within the smallest enclosing
prlock body. A let declaration at the outer level of a
program includes the rest of the program in its scope.

A manifest, external, global, or static declaration
declares a set of names whose scope 1s all succeeding
commands and declarations within the smallest enclosing
block body c¢r program.

(e) The scope of the control variable of a for command is the
body of the command.

It two variables have 1identical scopes then they must have

distinct names and so, for instance, the names in a formal parameter
i3t and the labels in the routine body must all be different.

6.2 Extent and Space Allocation

The EXTENT of a variable is the time through which it exists and
has a storage cell (with 1its associated Lvalue). Throughout the
extent of a variable it remains associated with the same storage cell
and so the Lvalue remains constant; however, the contents of the cell
‘cr Rvalue) may be replaced by the execution of an assignment command.
In BCPL, variables can be divided into two classes:

preceding page blank

The BCPL Reference Manual

(a) Static variables
These are wvariables whose extents last as lorg as the
program 1s running. The storage cell of a static
variable is allocated prior to execution and continues tc
exist until the program has finished or longer.

(by Dynamic variables

The extent of a dynamic variable starts when 1its
declaration is executed and continues until execution
leaves its scope. Dynamic variables are useful when one
needs some working space for a shcrt period (perhaps
dur:ng the execution of a routine) and it is too wasteful
to use static storage. Dynamic variables are
particularly useful when wusing functions and routinec
recursively.

The class of a variable depends only on its declaration. Static
variables are declared by

static declaratiorns,
and global declarations.

Dynamic variables are declared by

simple variable definitions,
tor commands,
and formal parameters.

During the execution of a program there are three separate arcas
of storage in which variables may reside; these are:

(a) the global vector,
(b} the stack,
(c) miscellaneous static cells.

The global vector provides a facility rather similar to COMMON in
FORTRAN and 1is wused as a means of communication between separately
complled segments of pr.gram. The programmer may use a global
declaration to associate nares with particular cells in the global
vector.

The stack 1s needed tor the implementation of recursion and |is
used to hold dynamic wvariables (such as vectore and function
arguments) and enonymous results needed during the evaluation of
expressions.

The miscellaneous static cells hold non-global static variables
which are local to the segment in which they are declared.

Function and routine def{initions, labels, and the manifest and
external declarations do not introduce variables.

The BCPL Reference Manual

6.3 Let Declarations

Syntactic form: let D {and D}

where D denotes a definition
Example: let x, vy =8, 1

and f (t) = 2*t - 1

and ItermV = vec 22

Semantlcs:

A let declaration may occur in a block body or at the outer level
of a program and may be used to declare simple variables, functions
and routines. The scope of the names declared is the textual region
of program consisting of the let declaration itself and the succeeding
declarations and commands of the block. At the outer level of a
program a let declaration may only declare functions and routines.
The definitions between the ands are at the same level and are
effectively executed simultaneously, and by this means a let
declaration may be used to declare a set of mutually recursive
functions and routines.

The various kinds of basic definitiors are described below.

6.3.1 Simple Variable Definitions

Syntactic form: <name> {, <name>} = <E list>

All the names must be distinct and the number of names on the
left of the = must be the same as the number of expressions on the
t ight of the =,

Example: let x =1
and y, z = £ (t) + 3, A!H2
and v = vec 50

Semantics:
In the general form

Nl, N2, ... Nn

]
j2a]
—
m
(3]
m
3

dynamic data items with names Nl, N2, ... Nn are first declared but
not initialized, then the assignment command

N1, N2, ... Nn := El, E2, ... En

is executed.

T AT ——

The BCPL Reference Manual

6.3.2 Function and Routine Definitions

Syntactic form:

<function definition> ::= <name> () = E |
<name> (<name list>)

<routine definition> ::= <name> () be C |
<name> (<name list>) be C

E

The list of names in parentheses is called the formal parameter
list.

Example:

let Node (x) = valof
$(let P = Freelist
Freelist := P + 3
p!g, P!1, P!2 :=x, 0, @
resultis P §)
ggg Put (x, t) be

$(if t7@0 = x return
T := t!d <X > €t +1, t + 2
test rv t = 0
then rv t := Node (x)
or Put (x, rv t) §)

Semantics:

The purpose of a function or routine definition is to associate
a name with an Rvalue which may be used in a function or routine call.
The heading of the definition consists of the name of the function or
routine being defined, followed by a 1list of formal parameters
(possibly empty) enclosed in parentheses. The formal parameter list
is a form of declaration which declares a set of variables with the
specified names and they all have the same scope, namely, the body ot
the function or routine. Formal parameters are dynamic variables
whose storage cells are allocated at the moment of ~all. The initial
values are given by the actual parameters of the call.

The process of calling a function or routine 1is shown
diagrammatically in Figure 9.

- @8 -

)
I The BCPL Reference Manual
‘ EQ L Ed; E2, <.+« En |
I I I I
1 I | &= = | <= - | <= - - 1. Evaluate the
] | I I I arguments in Rmode.
I N v Y
| Rvalue Rvalue Rvalue
I I I I
. I | <- - | <- - | <- - - 2. Place the Rvalues in
} I I I I n new consecutive
' I | I | storage cells.
I | Vv i ‘2R |7V I
: | I | I | i
| A A
v I I
Rvalue | I
I I I
: | <= = =-=-¢+-=-=-~-|-=-==-=-=--=- 3. Find the function or
I I I routine corresponding
I i I to the Rvalue of E@.
I I i
I | u= = | ¢= = = = == - - 4. Associate the formal
I I [I parameters with the
I I I storage cells from
| I [I left to right.
’ v I | = E
N (N1, N2,)
be C

5. Evaluate or execute the body of the function or
routine in the environment of the definition
extended by the new variables.

6a. For a routine call return to the point just after
the call.

6b. For a function application, yield as result the
Rvalue of the body of the function.

Figure 9 - The Process of Calling a Function or Routine

The number of formal parameters need not equal the number of

actual parameters and so it is possible to define a variadic routine.
Consider:

let R (a; b, ¢, d, e, £) be
‘ S(let v = 1lv a
[- - - - v!p
- - - =-v!3

: - - - -5
] R (4, 32, -14, 63)

The BCPL Reference Manual

within the body of R, the variable v may be thought of as a vector
whose elements are the arguments of the call, «nd thus in this example
v!9 equals 4 and v!3 eguals 63.

Ncte that the parameters of a BCPL call are passed by value;
however, it 1is still possible to achieve the effect of a call by
reference using the lv and rv operators. Consider:

let S (x, y) be rv x =Y
Tet A, B =0,
S (lv A, B)

The effect of the call for S is to assign the current value of B
(namely 1) to the variable pointed to by 1lv A (namely A), thus after
the call A has value 1.

All functions and routines may be defined and used recursively.

There is one important restriction on functions and routines
which has been imposed in order tn achieve a very efficient recursive
call. This restriction is as follows:

Every name which is used in the body of a function or
routine but which is not declared there must be a
manifest constant or address constant or static
variable (see section 6.2).

In terms of the implementation, this restriction states that
either the Rvalue or the Lvalue of every free varilable of a function
or routire is known prior to execution (but not necessarily at compile
time) .

Note that the following program is illegal:

let a, b =1, 2
let f (x) = a*x + b

However, it may be corrected as follows:

static $(a
let f (x)

l1; b=228)
a*x + b

but this is not necessarily equivalent - e.g., if a or b 1is updated.

—

The BCPL Reference Manual

6.4 Manifest Declarations

Syntactic form: manifest $(<decl item> {; <decl item>} S)
where <decl item> ::= <name> = <constant>

Examples: manifest $(Hl=0; H2=1; H3=2 §)
manifest $(S LET=74

S_SEQ=73
S_COMMA=38 §)

Semantics:

A manifest declaration associates Rvalues directly with the
declared names; the association takes place at compile time and cannot
thereafter be changed. The names soO declared are not variables and
may not appear in a left hand context. Any constant expression may be
used.

6.5 Static Declarations

Syntactic Form: static $(<decl item> {; <decl item>} §)
where <decl item> ::= <name> = <constant>

Example: static S(P =0; Q =0
Reportmax = 10 §)

Semantics:

A static declarat declares a set of static variables (see
section 6.2) whose init 1lues are given. Both the allocation of
storage cells and the initialization are performed prio. to execution
of the program. Thus the initialization is performed only once. Any
constant expression may be used.)

6.6 Global Declarations

Syntactic form: lobal $(<decl item> {; <decl item>} §)
where <decl item> ::= <name> : «<constant>

Examples: lobal $(Charcode:127; Option:128 §)
gIoSaI $(Rdblockbody:1460; Rdblock:141
Rexp:144; Rdef:145; Rcom:146 S)

Semantics:

A global declaration declares variables whose storage cells are
in the global vector (see section 6.2). The main purpose of tne
global vector is to provide a means of communication cCetween
separately compiled segments of program, Each name 1in & global
declaration is associated with a constant expression whose value

- 5] =

The BCPL Reference Manual

specifies which storage cell in the global vector belongs o the name.
The same global storage cell may be associated with variables in many
Separate segments and hence may be wused to pass values from one
segment to another.

6.7 External Declarations

Syntactic form: external $(<decl item> {; <decl item>} $)
where <decl item> ::= <name> = <constant>

Example: external $(Initiate = "hcs _Sinitiate" §)
Semantics:

The external declaration defines a set of names directly
associated with Rvalues representing routines and functions in other
separately compiled programs. The constant expression in the
declaration 1is implementation dependent but will usually be a string
constant representing the name of an "exterral reference".

The external declaration can also be used to make rout.nes in
this program known to other programs, as a result of the following
rule:

If a function or routine definition occurs within
the scope of an external declaration with the same
name, then the function or routine is defined as
an "external symbol" with the name derived from
the external declaration.

The connection between an external reference and tne
corresponding external symbol will be made by a loader (linker,
binder) sometime before or during execution, the details depending on
the operating system.

For example, the following segment will define an external
fuRetion .

IlstH $)

external S(F =
=g (x) + g (=-x)

leE ¥ (g,x%)

The following program fragment is a segment which uses the function
defined in the last example.

external
([“ = llfs[‘\llv
Write = "libraryS$Write"
$)
let G (t) =t * t + t + 3
for i = @ to)90 do Write (F (G, 1))

R T N T A———

The BCPL Reference Manual

References

(1) Barron, D. W.
et al

[2]) Strachey, C.

[3] IBM Reference Manual

[4) Naur, P.
(ed)

"The Main Features of CPL"
The Computer Journal, Vol. 6,
1963, p. 134.

"CPL wWorking Papers"”

Cambridge University Mathematical
Laboratory and London Institute of
Computer Science (1965)

709/7094 FORTRAN Programming System,
Form C28-6054-2

"Revised Report on the Algorithmic
Language ALGOL 66"

The Computer Journal, Vol. 5,
January 1963, p. 349

- 53 =

