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Chris H. Harrisona)

Emeritus Scientist, Centre for Maritime Research and Experimentation, Viale San Bartolomeo 400,
19126 La Spezia, Italy

(Received 9 December 2017; revised 6 March 2018; accepted 8 March 2018; published online 28
March 2018)

An expression for the cross-spectral density matrix of ocean noise naturally separates into a

Toeplitz part and a Hankel part [Harrison (2017). J. Acoust. Soc. Am. 141, 2812–2820]. The
Toeplitz part is shown to be substantially rank-deficient for all practical acoustic cases, which has

implications for adaptive beam forming. The influence of the Hankel part on passive fathometry is

investigated, and its effect on adaptive beam forming is shown to be weak or negligible. Numerical

demonstrations of these findings including beam patterns and eigenvalue spectra derived via circu-

lant matrices are given based on a simple half-space with a Rayleigh reflection coefficient. Two

sets of experimental data are revisited in this context, deriving eigenvalue spectra, beam patterns,

and passive fathometry impulse responses with conventional and adaptive processing and differing

amounts of averaging. The solution to a long-standing puzzle of processing inconsistency is sug-

gested.VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5028360

[KTW] Pages: 1689–1703

I. INTRODUCTION

Ambient noise in acoustics is often regarded as a nui-

sance for sonar signal processing systems, and so its spec-

tral and coherence properties have been studied in the

context of separating it from a desired signal in order to

reject it (Ainslie, 2010; Cron and Sherman, 1962;

Buckingham, 1980; Kuperman and Ingenito, 1980;

Harrison, 1996). In the last 15 years wind noise measured

with a vertical array of hydrophones has been used in two

ways as a tool to investigate the structure of the seabed.

The first approach (Harrison and Simons, 2002) finds a

reflection coefficient as a function of frequency and angle

from the power ratio of an upward and downward steered

beam, and thus depends on the noise’s cross-spectral den-

sity matrix (CSDM) through the beam steering. The reflec-

tion properties can then be converted to layer properties by

geoacoustic inversion (Quijano et al., 2012; Yardim et al.,
2014) and in some cases can be converted to an impulse

response by spectral factorization (Harrison, 2005). The

second approach, known as “passive fathometry” (Siderius

et al., 2006; Harrison and Siderius, 2008), cross-correlates

a vertical upward beam with a downward beam to find the

local seabed’s impulse response—a passive echo sounder.

The entire operation can be done in the frequency domain

and again relies on the noise’s CSDM.

In a sense these two techniques both have the same aim,

i.e., to deduce sound speed, density, absorption, and thick-

ness for each of an arbitrary number of sub-bottom sediment

layers, but their approaches are quite different. With a drift-

ing vertical array they can also both produce a sub-bottom

profile comparable with that of a boomer or echo sounder

(see, e.g., Harrison, 2005; Siderius et al., 2010). The aim of

this paper is to investigate the mathematical properties of

wind noise coherence and the CSDM that is used in these

techniques.

It has already been pointed out (Harrison, 2017, 1996)

that the theoretical shallow water noise CSDM with uniform

hydrophone spacing, d, naturally separates into a Toeplitz

part (a function of n � m) and a Hankel part (a function of

n þ m).

Cn;m ¼
ð1
0

aðþsÞa�ðþsÞ expðþikdðn� mÞsÞds

þ
ð1
0

að�sÞa�ð�sÞ expð�ikdðn� mÞsÞds

þ
ð1
0

aðþsÞa�ð�sÞ expðikdðnþ mÞsÞds

þ
ð1
0

að�sÞa�ðþsÞ expð�ikdðnþ mÞsÞds ; (1)

where s � sin h and the source amplitudes, a, are given by

aðþsÞa�ðþsÞ ¼ 1;

að�sÞa�ð�sÞ ¼ VV�;
aðþsÞa�ð�sÞ ¼ V� expð�i2khÞ;
að�sÞa�ðþsÞ ¼ V expði2khÞ; (2)

with V being a (complex) seabed reflection coefficient, h
being array height above the seabed, and having absorbed a

factor of sin h=ð1� VV�Þ in each integral when compared

with later equations.

Strangely the two methods depend on different aspects

of the CSDM. The up-down power ratio approach is sensi-

tive to the Toeplitz part rather than the Hankel part, whereas

the passive fathometry approach is insensitive to the

Toeplitz part and furthermore gives a null result without the

Hankel part.
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In addition the beam forming in both cases can be per-

formed using either conventional beam forming (CBF) or

adaptive beam forming (ABF) methods. In the latter case

one needs to invert the CSDM which means taking precau-

tions against rank-deficiency. Thus one is driven to a set of

interesting questions about the nature of ambient noise’s

CSDM, its symmetry, its invertibility, and how to optimise

processing. Under what conditions is it rank-deficient and, in

this case, how can ABF possibly work (for instance, reject

shipping)? It was shown (Harrison, 2017) that it is possible

to construct a separate Toeplitz and Hankel part from an

experimental CSDM (although this is not equivalent to

reducing an arbitrary Hermitian matrix to the sum of a

Toeplitz and Hankel matrix).

In yet another application one might want to simulate a

number of noise channels with a specified CSDM, and this

can be done by applying Cholesky decomposition to the

CSDM at each frequency and multiplying by random num-

ber sequences (Gentle, 1998), but this requires the CSDM to

be strictly positive-definite, not just positive-semi-definite.

Indeed, mathematically Cholesky decomposition is a stan-

dard test for positive-definiteness and so the positive-definite

requirement would add another demand to the CSDM

properties.

It is acknowledged that the answers to some of these

questions may be known in other domains, for example,

related fields of research include: reduced rank adaptive

methods (Goldstein and Reed, 1997), ABF using multistage

Wiener filters (Ricks et al., 2001), and fast rank-reducing

ABF (Fang et al., 2014). Nevertheless, the objective of this

paper is to collect related findings in the context of the two

noise processing methods (i.e., up-down power ratio and

passive fathometry), particularly in light of possible future

developments to adapt them to function on moving

platforms.

Section II investigates the behaviour of the Toeplitz part

of the coherence matrix, arriving at a formula for its rank.

Appendixes A and B spell out the relevant mathematics.

Section III investigates the behaviour of the Hankel part of

the matrix, distinguishing between the part that contains the

seabed layering information and the part that may contribute

to the calculation of minimum-variance-distortionless-

response (MVDR) optimum hydrophone weights. Appendix C

shows that, from an ABF point of view, the Hankel part

usually has a negligible effect. Section IV contains some

simulations of eigenvalues and beam patterns using fast

Fourier transforms (ffts). Section V applies these findings

to two sets of experimental data obtained with drifting ver-

tical arrays.

II. THE RANK OF THE TOEPLITZ PART OF THE NOISE
CSD MATRIX

CBF makes no demands on the rank of the CSDM, but

ABF does since it has to invert the matrix, which means that

it must either have full rank or precautions, or special techni-

ques will be required to invert it. In practice the CSDM is

often rank-deficient, and here the reasons for this are set out

and a useful analytical expression for the rank derived. It

will be shown that, on the contrary, for typical acoustic

applications, where the array operates below its design fre-

quency, the CSDM is always rank-deficient.
The summary below (with derivations in Appendixes A

and B) assumes for the time being that the CSDM can be

considered to be approximately Toeplitz, and that each ele-

ment consists of an integral over all angles (potentially two

angle dimensions) of the noise directionality (see Harrison,

1996, 2017).

To find the rank of a N � N Toeplitz matrix one has to

calculate or at least estimate the behaviour of its eigenvalues,

and this is quite straightforward numerically. However, to

relate the rank to general features of ambient noise one needs

an analytical approach which, despite the symmetry of the

Toeplitz matrix, is not directly possible. There is an alterna-

tive using circulant matrices which have the convenient

property that their eigenvalues are exactly their discrete

Fourier transforms (DFTs), and the eigenfunctions for any

circulant matrix are the columns of the matrix of Fourier

exponential multipliers (the Vandermonde matrix, i.e., the

complex Nth roots of unity).

A recipe for choosing an appropriate circulant matrix

for the Toeplitz matrix in question and ensuring that it is

indeed in some sense similar is given in a Tutorial by Gray

(Gray, 2006), which summarizes earlier work (Gray, 1972).

Gray’s recipe offers two alternatives. The first is, using

prior knowledge or a guess, to choose an appropriate circu-

lant matrix (some suggestions are given in Appendix B),

and to hope that under some conditions it will tend to the

desired Toeplitz matrix. The second is to start with the

function that was originally integrated to form the Toeplitz

elements, namely, the noise directionality in this case. Gray

shows that it is exactly this function that maps into the

eigenfunction spectrum provided that the matrix is in some

sense large as predicted by the Grenander-Szeg€o theorem

(Grenander and Szeg€o, 1958). This latter approach for the

ocean noise case is spelled out in Appendix A.

In summary, given a noise directionality D(sinh) and a

uniformly spaced vertical array it is shown that the spectrum of

the eigenvalues of the circulant matrix equivalent to T is

exactly the N-point discretised noise directionality Dðsin hÞ
¼ D½ðfo=f Þð�=NÞ�, where � is related to h through 0 � � � N
as �1 � sin h � þ1. This can be written as Dð�=�oÞ, where
�o ¼ N f=fo. In other words, the distribution of eigenvalues

mirrors the noise directionality function D(sin h) but scaled
by fo/(Nf). The physical function D(sin h) (which is always

positive since it is an acoustic power) has a beam width (to

some defined lower limit), and, whether its discretised values

are ordered or not, that width of significant values is

unchanged and corresponds to �o. Note that in this context,

since sin h can take values between �1 and þ1, “beam

width” means the fraction of the interval �1 to þ1 occupied

by noise of significant strength. Thus if D were to have the

form of a positive angle boxcar of width wp combined with a

negative angle boxcar of width wn this beam width would be

sin hb¼ (wpþwn)/2.

The number of significant values in the eigenvalue spec-

trum is, by definition, the rank, so finally one arrives at
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rank Tð Þ ¼ 1þ �o sin hb ¼ 1þ N
f

fo
sin hb; (3)

where the additional one converts �o sin hb into an index.

The significance of Eq. (3) is that whenever the hydro-

phone array is practically usable acoustically, i.e., below the

design frequency, f� fo, there is little chance of the coher-

ence matrix T achieving full rank even with a wide range of

noise-source angles. Therefore palliatives such as “diagonal

loading” are always necessary.

Some insight into the Grenander-Szeg€o theorem and

Gray’s recipe is given by the fact that multiplication of an

arbitrary vector by a Toeplitz matrix can be interpreted as a

filter or convolution operation. If the matrix is also circulant

the result is a circulant convolution; there are also variants

with a zero-padded vector and a “zero-padded” block matrix

(meaning [T 0; 0 0]). Clearly with any of these options the

difference between a straight matrix multiplication and a cir-

culant convolution becomes negligible as the end (or “edge”)

effects of the matrix disappear, as must happen when the

matrix size tends to infinity.

III. THE INFLUENCE OF THE HANKEL PART ON THE
CSDM

The third and fourth terms in Eq. (1) represent the

coherently reflected paths whose interference behaves as

normal modes. This is the region that Buckingham referred

to as “inhomogeneous” (Buckingham, 1980). An important

question is, does the addition of coherently related paths to

the T-part (i.e., R¼TþH) have any influence on rank(R)?
To answer this, first it is necessary to investigate H alone,

although in the context of MVDR beamforming it is only the

rank of R that matters in determining the optimum hydro-

phone weights. As far as passive fathometry is concerned, H
has two important influences: one is the contribution to the

MVDR weights, as just mentioned; the other is the part of R
that is solely responsible for the impulse response of the sub-

bottom layering (Harrison, 2017). A clear distinction and

comparison of amplitudes can be made between these two

contributions and the T-part by estimating the three integrals

analytically with a crude half-space approximation for the

reflection coefficient.

A. Relative amplitudes of matrix elements

The first two lines of Eq. (1) (i.e., the Toeplitz part,

Tn,m) depend on the power reflection coefficient jVj2 which

is assumed to decay exponentially with s ð� sin hÞ from

grazing up to the critical angle, and thereafter to take a fixed

lower value, V0. Writing the exponent in the integrals as

/T ¼ kdðn� mÞ; (4)

Tn,m is

Tn;m¼
ð1
0

s

1�VV�

� �
exp þi/T sð ÞþVV�exp �i/T sð Þ½ �ds;

(5)

and if jVj2 ¼ expð�a sin hÞ then sin h=ð1� jVj2Þ � 1=a
¼ 10 log10ðeÞ=adB for angles less than critical but otherwise

sin h=ð1� jVj2Þ � sin h=ð1� V0
2Þ, then

Tn;m � 1

a

ðsc
0

exp þi/T sð Þ þ exp � aþ i/Tð Þ sð Þ½ � ds

þ 1

1� V0
2

ð1
sc

exp þi/T sð Þ½

þV0
2 exp �i/T sð Þ� s ds: (6)

Although this can be evaluated exactly, all that is needed for

comparison with the H-part is the value on the diagonal, i.e.,

n¼m; /T¼ 0,

Tn; n � 2sc
a

þ 1þ V0
2ð Þ

1� V0
2ð Þ

1� sc
2ð Þ

2
: (7)

Assuming that a is small (weak reflection decay with angle)

the first term tends to dominate.

The Hankel part, Hn,m, [third and fourth lines of Eq. (1)] is

Hn;m¼
ð1
0

s

1�VV�

� �
Vexp þi/Hsð ÞþV�exp �i/Hsð Þ½ �ds;

(8)

where the coefficients of s in the exponents are

/H ¼ kð2h� dðnþ mÞÞ: (9)

The complex reflection coefficient, up to the critical angle,

can be represented by VðsÞ ¼ �expðði2khW � a=2ÞsÞ, where
a is the angular decay constant, hW is Weston’s “effective

depth,” the displacement of an equivalent pressure release

surface, hW ¼ q=k sc (see Harrison, 2010), where q is the rel-

ative density of the sediment. Since hW is a small vertical

displacement of the reflecting surface it can be added to the

height of the array above the seabed to define

/HW ¼ kð2ðhþ hWÞ � dðnþ mÞÞ; (10)

and so Hn,m becomes

Hn;m � �2

a

ðsc
0

exp �as=2ð Þcos /HW sð Þ ds

þ 2V0

1� V0
2

ð1
sc

cos /H sð Þ s ds

� �2 exp �asc=2ð Þ
a /HW

2 þ a2=4ð Þ /HW sin /HWscð Þð

� a=2ð Þcos /HWscð ÞÞ

þ 2V0

1� V0
2

sin /Hð Þ � sc sin /H scð Þð Þ
/H

�

þ cos /Hð Þ � cos /H scð Þð Þ
/H

2

�
; (11)

or rearranging in terms of sinc functions Hn,m is
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Hn;m � �2 sc exp �asc=2ð Þ
a

/HW
2

/HW
2 þ a2=4ð Þ

� sinc /HWscð Þ � asc
/HW

� �
cos /HWscð Þ

� �

þ V0 1� sc
2ð Þ

1� V0
2

sinc
1þ scð Þ/H

2

� ��

� cos
1� scð Þ/H

2

� �

þ sinc
1� scð Þ/H

2

� �
cos

1þ scð Þ/H

2

� �

þ sinc
1þ scð Þ/H

2

� �
sinc

1� scð Þ/H

2

� ��
: (12)

This shows that each term contains at least one factor pro-

portional to 1//H which is of order 1/(2kh). Thus the ratio of

Tn,n to Hn,n has modulus����Hn;n

Tn;n

���� � 1

2kh
; (13)

but Hn,n oscillates about zero along the diagonal with zero

separations given by Dn ¼ dn=d/H ¼ 1=ð2k d scÞ, and from

frequency to frequency with zero separations at Df ¼ df=
d/H ¼ 1=ð2k h scÞ. There is also the possibility of slow beat-

ing caused by the small difference between /H and /HW. At

the design frequency (e.g., 4.167 kHz in the experiments

described later) the ratio in Eq. (13) reduces to d/(2ph)
which for d¼ 0.18m and h¼ 50m is 5.7� 10�4; however,

for lower frequencies or closer to the seabed it will be larger

and not necessarily negligible. Note that all oscillations in

the tails of the sinc functions are caused by the assumption

of a sharp edge at the critical angle. A more realistic reflec-

tion model would have a more gradual transition which tends

to reduce the oscillation dramatically.

In contrast, the vertical component of H that contains all

the seabed information is from between h¼ p/2 and h¼p/2
� D, i.e., s between 1 and cosD,

HCC
n;m ¼

ð1
cosD

s

1� VV�

� �
V� exp þi/H sð Þ½

þ V exp �i/H sð Þ� ds

� 2V0

1� V0
2

ð1
cosD

cos /H sð Þ s ds

� 2V0 cos /Hð Þ
1� V0

2
1� cosDð Þ

� V0 cos /Hð ÞD2

1� V0
2

: (14)

The width of the effective area after cross-correlation

depends on the time resolution which, in turn, depends on

the bandwidth (i.e., the design frequency). This width is the

Fresnel zone size [Harrison and Siderius, 2008, Eq. (A8)]

so that the effective angle is D ¼ ffiffiffiffiffiffiffi
k=r

p
, where k is the

design wavelength (k ¼ 2d) and r is the depth of the

receiver.

Although D is much smaller than the angle spread in Eq.

(12), that same spread is the cause of the 1/2hk factor in H
that is absent in HCC. Surprisingly the resulting ratio [exclud-

ing the first term of Eq. (12)] is not necessarily big or small

HCC
n;n

Hn;n
� 1

2

h

r
kd: (15)

The cosð/HÞ term, if Fourier transformed, is the impulse

response of the seabed which in this case, having assumed a

half-space, is a delta function at two-way path length 2h.
Excluding this term the ratio of HCC

n;n to Tn,n is

HCC
n;n

Tn;n
� V0a

1� V0
2ð Þsc

d

r
: (16)

For example, with a¼ 0.2303, i.e., adB¼ 1 dB/rad; V0¼ 0.1;

sc¼ 0.2; d¼ 0.18m; r¼ 50m, the ratio is 4.2� 10�4.

B. Matrix rank

1. The rank of H

The oscillatory behaviour of Eq. (12) shows that

trace(H) (i.e.,
P

kHn ) passes through zero at regular fre-

quency intervals, and so there must be some positive and

negative eigenvalues for their sum to equate to zero; in fact,

typically the eigenvalues of a periodic Hankel matrix are

positive and negative pairs. Furthermore a truly periodic real

Hankel matrix can be shown to have rank two. Equation (12)

shows that even in the simple case of a half-space there are

several clustered frequency components but with one domi-

nating, so rank(H) is expected to be small.

2. The rank of (T 1 H) for ABF purposes

Since trace(T þ H)¼ trace(T) þ trace(H), the fact that

trace(H) oscillates about zero means that there are some

acoustic frequencies where the sum of the eigenvalues of T
þ H is equal to the sum of the eigenvalues of T,

XN
i¼1

kTþH
i ¼

XN
i¼1

kTi þ
XN
i¼1

kHi )
XN
i¼1

kTi ; (17)

and since at all frequencies the matrices T þ H and T are

both positive-semi-definite their eigenvalues are never

negative,

kTþH
i 	 0 ; 1 � i � N;

kTi 	 0 ; 1 � i � N;

meaning that there is little leeway for differences, i.e., the

influence of H on the rank of (T þ H) is small. Some useful

inequality relations are collected in Appendix C with a dem-

onstration that the standard deviation of the differences is

small compared with the mean eigenvalue, and the individ-

ual differences are much smaller than the largest eigenvalue.
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3. The distinction between natural T and H parts and
artificially separated T and H parts

Section I referred to the Toeplitz and Hankel parts that

appear naturally in the usual formulation of noise coherence

as in Eqs. (1), (5), and (8). Harrison (2017) showed that,

starting from an experimental CSDM, one could extract

matrices that were, by definition, Toeplitz (by summing ele-

ments along the diagonals) or Hankel (by summing along

the anti-diagonals). It is important to note that the latter type

of matrices do not have the same rank properties as the

“natural” ones, as is easily demonstrated.

A Toeplitz matrix can be constructed by matrix-

multiplying the column vector, xn¼ exp(iAn) by its conju-

gate transpose. This automatically has rank one because

each row is a multiple of the first row. However, if the

elements are summed along each diagonal the number of

elements in the jth diagonal is N � jjj and consequently

the (constant) values down each diagonal are multiplied by

N � jjj. Therefore each row is no longer a multiple of the

other rows, and the matrix is potentially full rank. In con-

trast, taking the mean, as opposed to the sum, down each

diagonal has no such effect since, with a Toeplitz matrix

there is no change to its elements.

Similarly a Hankel matrix with rank one can be formed

by multiplying the same vector by its unconjugated trans-

pose. In the same way, summing down the anti-diagonals

potentially increases the rank to full.

In summary, summing down the diagonals or anti-

diagonals will always alter the rank whereas averaging has

no effect for pure Toeplitz or pure Hankel matrices.

However, such averaging of an experimental CSDM (i.e.,

not exactly Toeplitz or Hankel) may still alter its rank.

IV. SIMULATIONS

Equations (1), (5), and (8) form a convenient basis for

simulation and numerical demonstration of the analytical

findings of Secs. II and III. Excluding the exponential terms

the integrand of Eq. (5) constitutes the noise directionality

[as a function of sin(h)] corresponding to the Toeplitz part.

The solid line in Fig. 1 shows this directionality assuming

the Rayleigh reflection coefficient for V with the following

seabed parameters, none of which is particularly critical:

sound speed 1600m/s (critical angle hc¼ 20.36
); specific
gravity 1.5; volume absorption 0.1 dB/k. Mathematically

there can be no equivalent beam pattern for H [Eq. (8)] since

the matrix is not positive-semi-definite [i.e., v†Hv may be

positive or negative, as we will see in Fig. 2(b)]. Physically,

in the construction of the noise coherence formula [Eqs. (1),

(5), and (8)] the two H terms each come from an up-going

and a down-going pair of angles. In other words neither

term corresponds to a single direction. In contrast the matrix

(T þ H) is always positive semi-definite since v†(T þ H)v
corresponds physically to a power.

Solving the integrals numerically, assuming the Rayleigh

reflection formula, the complete Toeplitz and Hankel matrices

can be formed, and then the eigenvalues and singular values

of each matrix and their sum can be found using proprietary

algorithms. Geometric and processing parameters are assumed

to be height above seabed h¼ 20m; hydrophone separation

d¼ 0.18m (i.e., design frequency¼ 4167Hz; number of

hydrophones N¼ 32; acoustic frequency f¼ 3000Hz). Figure

2(a) shows a linear plot of the eigenvalue spectrum for T,

with that of (TþH) superimposed. Figure 2(b) shows the

spectrum for H—note the large difference in scale and the

fact that eigenvalues come approximately in positive/negative

pairs. The three vertical bars in Fig. 2(a) indicate the expected

eigenvalue indices that tally with the significant beam widths

according to Eq. (3). The left-most corresponds to the more

or less rectangular beam out to the critical angle, 1þNf/
fo sin(hc); the middle one corresponds to the non-critical

remainder of the beam, 1þNf/fo (1 � sin(hc)); and the

right-most one is the ultimate limit of 90
, 1 þ Nf/fo, seen
more clearly in the log plot of Fig. 2(c). Figure 3 shows that

the eigenvalue spectrum changes with acoustic frequency

according to Eq. (3).

In addition one can form a circulant matrix C from a

conjugate symmetric version of the first row of T (i.e.,

TCS¼ [T1,1 T1,2 T1,3... T1,N 0 T1,N*. T1,2*]) which has the

property that the elements of its Fourier transform are the

same as the eigenvalues of C (see Appendixes A and B).

Figure 4(a) shows that this relation is numerically true by

comparing the (64-point) Fourier transform of TCS with the

eigenvalues of C, with both quantities being ordered accord-

ing to their magnitude. Figure 4(b) shows that, as one might

suspect, the same Fourier transform (having extracted 32

alternate points, see Appendix B) is quite close to the eigen-

values of T, but agreement is not exact.

Last, performing an inverse Fourier transform of the

same first row TCS naturally leads back to the original direc-

tionality. This is shown as the connected-dots-line superim-

posed on the original beam pattern in Fig. 1. Furthermore

performing the same operation on (T þ H) for values of h
greater than about 10m, so that the influence of H is suffi-

ciently small, leads to a beam pattern that is within a line

width in Fig. 1, and for that reason, not shown.

This latter operation with simulated data is trivial, but

with the experimental data in Sec. V it is not trivial, because

FIG. 1. Directionality from the envelope of Eq. (5) (solid line), and from the

Fourier transform of a conjugate-symmetric version of the first row of T
(gray connected dots). The two vertical bars indicate the sine of the critical

angle, sc.
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the experimental noise directionality is unknown. In fact

this way of obtaining the noise directionality is a practical

and computationally efficient alternative to the usual one of

beam forming via CSDM since it only requires a single

Fourier transform of the first row of the CSDM [as opposed

to the N (N þ 1) multiplications for each beam required

for v†Cv].

V. DEMONSTRATIONS WITH EXPERIMENTAL DATA

A. Experimental data from 2003 and 2004

Two experiments were carried out with the same 32-

element drifting vertical array in the Mediterranean near the

FIG. 2. (a) Linear scale eigenvalue spectrum of T (dots) and (T þ H)

(circles) showing that they are both positive semi-definite, and that they

agree closely. The vertical bars indicate the indices corresponding to N
� f/fo times, respectively, sc, (1 � sc), and 1. (b) Linear scale eigenvalue

spectrum for H alone showing positive and negative pairs of eigenvalues.

(c) Eigenvalues identical to (a) except for the logarithmic scale which

emphasises the minor differences between the spectra of T (dots) and (T
þ H) (circles). The vertical bars indicate the indices corresponding to N � f/fo
times, respectively, sc, (1� sc), and 1.

FIG. 3. Linear eigenvalue spectra at four frequencies showing the behaviour

predicted by Eq. (3).

FIG. 4. (a) Exact agreement between the eigenvalues of the circulant matrix

constructed from T evaluated with proprietary software (dots), and the Fourier

transform of its first row, i.e., a conjugate symmetric version of the first row of

T (circles). (b) Slight disagreement between the eigenvalues of T evaluated

with proprietary software (dots), and alternate points from the Fourier transform

of a conjugate symmetric version of the first row of T (circles).
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Ragusa Ridge, already described in detail (Harrison and

Siderius, 2008; Harrison, 2005). The 2003 experiment was

over a relatively smooth layered seabed and the sea surface

had “white horses” providing wind and wave noise but no

swell. In contrast the 2004 data had a strong swell causing

the array to bob up and down with an amplitude of about 1m

and a period of 7 s (Harrison, 2017; Traer and Gerstoft,

2011) and the seabed consisted of shallow pools of sediment

over the rock of the Ragusa Ridge. The array had a hydro-

phone separation of 0.18m giving a design frequency of

4167Hz, and noise was sampled at 12 kHz.

A long-standing puzzle (for this author) has been why

the two drifting 32-element-array data sets obtained in 2003

and 2004 in similar areas but very different weather condi-

tions (Harrison and Siderius, 2008) respond so inconsistently

to processing. This puzzle has largely been the inspiration

for this paper and Harrison (2017), and a possible explana-

tion is offered in Sec. VB below. The puzzle is that the 2003

data (white horses but not particularly rough sea) requires

long averaging time and ABF to produce a clear bottom

return and sub-bottom two-way penetration of 50m

(Harrison, 2008; Siderius et al., 2010), whereas the 2004

data (very rough sea; seabed of sand pools over rock)

required only 4 overlapping 4096 length ffts to produce a

clear bottom return and sub-bottom two-way penetration of

4m to rock using only conventional beamforming (Harrison,

2017; Traer and Gerstoft, 2011). In the latter case motion of

the array precluded the necessary integration time of ABF

processing.

B. Experimental directionality

The noise directionality depends dramatically on the

sound speed profile and the depth of the array as well as the

reflection losses of the seabed and the sea surface. In particu-

lar this affects the balance between the residual of the wave

source dipole [s in the numerator of Eq. (5)] and the cumula-

tive multipath effect (1� jVj2) in the denominator of Eq.

(5), see examples in Harrison (1996, 2004). With large bot-

tom losses (i.e., V¼ 0) or absence of ducted propagation

Eqs. (1) and (5) revert to those of Cron and Sherman (1962),

and the noise is proportional to sin(h) in the upward direction
but zero downwards.

Figure 5(a) is a plot of noise intensity vs frequency and

angle for 2003, derived in the same way as Fig. 1 by taking

the Fourier transform of the conjugate symmetric first row of

the Toeplitz-separated part of the CSDM. At the design fre-

quency (where kd¼ p) the transform pair is hydrophone

number, n, and s¼ sin h. At lower frequencies the transform
needs to be interpolated from s to s f=fo to account for the

factor kd in the exponent [see, e.g., Eqs. (4) and (5)]. There

is a clear “noise notch,” a simple frequency-independent

downward-refraction effect resulting in an absence of noise

within about 12
 of horizontal, but for upward angles an

apparently uniform spread, and for downward angles a

weaker spread.

In contrast, Fig. 5(b) for the 2004 data has a general

decay from vertically upward to vertically downward with a

pronounced superimposed horizontal peak. The angular

variation for both data sets can be compared more clearly at

spot frequencies in Fig. 6 (solid line for 2004; dashed line

for 2003). In Figs. 5 and 6 the intensity scale is arbitrary, but

identical equipment and processing was used in the two

experiments. In Fig. 6 it can be seen that the variation above

horizontal in both cases is more or less linear, i.e., propor-

tional to sin h. There is a noticeable spike at the upward ver-

tical for 2004, and this is thought to be the sound of waves

hitting the surface buoy, to which the array was loosely

attached (see Harrison, 2008). In fact, by listening and com-

paring time domain beamformed endfire and broadside

beams, one can hear this distinctly. One can also hear that

the central peak is a single nearby ship which is responsible

for the strong spectral line at about 500Hz in Fig. 5(b). The

residual noise in 2004 resembles the high bottom (and sur-

face) loss case probably caused by rocky seabed and strong

surface swell.

Figure 6, for 2004, shows that it is certainly true that

there is a strong source vertically above the array, regardless

of its nature. In that case, notwithstanding the detection and

proof of 7-s-period vertical motion of the array (Traer and

Gerstoft, 2011; Harrison, 2017), the “good” results of the

cross-correlation technique (i.e., producing a clear impulse

response) could possibly be deemed fortuitous in that exam-

ple on the grounds that not much integration time would

have been required with the sound source so favourably

placed. Nevertheless this would explain the aforementioned

FIG. 5. (Color online) (a) Intensity vs angle and frequency for 2003 data.

(b) Intensity vs angle and frequency for 2004 data.
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puzzle, that a short integration time was sufficient in bad

weather with a rocky seabed, but a long integration time was

required in good weather over deep-layered sediments.

C. Experimental eigenvalues

To investigate the experimental eigenvalue behaviour

three matrices are estimated by averaging the outer product

of the Fourier transforms of the hydrophone channels: the

standard coherence matrix, R; the separated Toeplitz part, T;
the separated Hankel part, H (“separated” as defined in

Harrison, 2017). Each of these quantities is averaged over

500 overlapping 4096-blocks (85 s at 12 kHz sampling), and

each is a 32-by-32 matrix and a function of 2048 frequencies

(up to Nyquist at 6 kHz).

A composite plot of eigenvalue spectra for 2003 is

shown in Fig. 7(a) for six frequencies. The equivalent for

2004 is shown in Fig. 7(b). In all cases the actual step

(expected location marked by the vertical line), though in

the correct place at all frequencies, is less dramatic than

implied by the theory of Sec. II and Appendix A or Figs.

2(a) and 2(c). However, as already pointed out in Harrison

(2017), this is likely to be because even after extensive aver-

aging the true coherence is contaminated by unwanted angu-

lar cross-terms which result effectively in addition of some

randomness to the matrices.

As a palliative it might be thought to be possible to trun-

cate the eigenvalue spectrum at a point defined by a factor

times the limit given in Eq. (3), as indicated in the figures.

However, in practice, even allowing an “engineering per-

centage correction” to this factor there appears to be no obvi-

ous benefit.

D. Impulse response plots

Figures 8(a) and 8(b) show impulse responses for all per-

mutations of experiment year (2003 or 2004), and processing

(CBF or ABF using MVDR with optimum weights based on

the separated Toeplitz part). Figure 8(a) is the result of 40

averaged blocks whereas Fig. 8(b) is for 500 blocks. In both

experiments a two-way path of about 110m was expected.

It is striking that, in the upper panels of Fig. 8(a) with

CBF and only 40 blocks the 2004 data have an extremely

clear peak while the 2003 data have no visible bottom arrival

at all. Note that there are various irrelevant artefacts at about

5 and 20m (see Harrison and Siderius, 2008 for details). In

contrast, in the lower panels of Fig. 8(a), using ABF, the

2004 data are hardly altered but the 2003 data begins to

respond weakly.

Increasing the number of blocks to 500 with CBF proc-

essing, the upper panels of Fig. 8(b) shows that there is lim-

ited improvement in 2003, and the amplitude of the 2004

peak has just about halved. But the latter point is because the

periodic motion of the array has distributed the arrivals into

two separate peaks which are easily seen when enlarged. In

the lower two panels the 2004 peak is largely unchanged by

ABF processing, but on the other hand, the 2003 data are

very much improved by ABF processing.

VI. CONCLUSIONS

Surprisingly, ocean ambient noise contains a lot of use-

ful information, not least about the ocean upper and lower

boundaries, but in particular about sub-bottom layering.

Several methods are available for extraction and processing

of this information, but they all rely on the noise coherence,

FIG. 6. Superimposed intensity vs

angle for the 2003 (dashed line) and

2004 (solid line) data at four frequen-

cies as indicated: 1, 2, 3, and 4 kHz.
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i.e., the frequency-dependent CSDM for a hydrophone array.

Because there is always conflict between the necessity for

some kind of time-averaging and temporal changes in the

environment or hydrophone locations, an understanding of

this quantity is paramount. This paper has addressed the

questions of its separation into a Toeplitz and a Hankel part,

the eigenvalue behaviour of both parts, their rank, and asso-

ciated beam patterns.

An analytical treatment of the Toeplitz part in Sec. II

showed that whenever the hydrophone array is practically

usable acoustically, i.e., below the design frequency, the

coherence matrix is necessarily rank-deficient [Eq. (3)], and

FIG. 7. (a) Eigenvalue spectra for

2003 data with a 500 block average at

six indicated frequencies. The loca-

tions of the expected step [limit set by

Eq. (3)] are shown by the vertical

dashed lines. (b) Eigenvalue spectrum

for 2004 data with a 500 block average

at six indicated frequencies. The loca-

tions of the expected step [limit set by

Eq. (3)] are shown by the vertical

dashed lines.
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so adaptive methods that rely on matrix inversion require

palliatives such as diagonal loading. Even if averaging raises

the rank to a point sufficient for matrix inversion, still the

true coherence matrix will be contaminated by angular

cross-terms. These findings were based on setting up a circu-

lant matrix, which is in some sense similar to the given

Toeplitz matrix and then using the property that the fft of its

first row is identical to its eigenvalues. A derivation was

given in Appendix A, and some candidate circulant matrices

given in Appendix B. This eigenvalue spectrum without any

rearrangement is the same shape as the originally assumed

noise directionality, and when sorted in descending order it

is the same as the eigenvalue or singular value spectrum cal-

culated with proprietary software.

FIG. 8. (a) Impulse responses for the

2003 and 2004 data each using CBF

and ABF processing, as indicated, with

a 40 block average. (b) Impulse

responses for the 2003 and 2004 data

each using CBF and ABF processing,

as indicated, with a 500 block average.
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To investigate behaviour of the Hankel part the specific

case of a half-space bounded by a seabed with Rayleigh

reflection coefficient was taken in Sec. III. Analytical solu-

tions for the Hankel [Eqs. (8), (12), and (14)] and Toeplitz

terms [Eqs. (5) and (7)] were given. It was shown that the

Hankel part, paradoxically, contains all the sub-bottom

layering information that is used by passive fathometry, but

still it is usually weak enough that adding it to the Toeplitz

part does not significantly alter the eigenvalues or rank. In

other words the eigenvalue spectrum of (T þ H) is more or

less the same as that of T alone. Appendix C used the Weyl

inequalities and some other relations to demonstrate this.

Limits on the rough ratio of Hankel to Toeplitz terms were

given for the passive fathometry case [Eq. (16)] and for

ensuring minimal influence on the eigenvalue spectrum

[Eq. (13)].

Section IV took the Rayleigh reflection case as the basis

for some numerical simulations and demonstrations of the

analytical findings. Figures 1–4 collected various properties

including beam pattern and eigenvalue spectra as a function

of frequency. Good agreement was found with the formula

for rank [Eq. (3)] by marking the expected stepping points in

the spectra [Figs. 2(a) and 2(c)].

Section V revisited two sets of drifting array experimen-

tal data (Fig. 5) in light of these predictions and in light of a

long-standing “puzzle.” The puzzle was that in unfavourable

weather and environmental conditions CBF processing

worked well with minimal averaging and indeed revealed

array periodic vertical motion, whereas with favourable

environment and weather conditions CBF did not work and

ABF was required to get any impulse response at all. It is

thought that the reason for the processing performing well in

the poor conditions is that, for whatever reason, but probably

waves splashing on the buoy in a heavy sea, the noise con-

tained a strong sound source overhead (Fig. 6). This angular

concentration of sound, particularly in that direction,

strongly reduces the integration time required for the

impulse response to emerge.

Figure 7 shows that there is indeed a step in the eigen-

value spectrum as predicted by Eq. (3), but in practice it

takes a lot of averaging to see it. This is because angular

cross-terms contaminate the true coherence matrix. The end-

product impulse responses (Fig. 8) demonstrates the

“puzzling” behaviour explicitly.
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APPENDIX A: THE EIGENVALUE SPECTRUM OFA
TOEPLITZ MATRIX

Appendix B suggests some appropriate circulant matri-

ces without considering the similarity of their eigenvalue

spectra to that of the given Toeplitz matrix T. According to

the Grenander-Szeg€o theorem (Grenander and Szeg€o, 1958)

similarity is assured when the matrix (i.e., N) is large in

some sense. This theorem is embedded in a recipe due to

Gray (2006, Sec. 4.4) where, rather than guessing candidate

circulant matrices, one starts with the continuous function

that, when integrated produces the Toeplitz elements Tnm—
in the noise coherence case this function is none other than

the noise directionality. Then the recipe produces the eigen-

values by itself.

Generally given a real continuous function f(/) one

forms the Toeplitz elements tj from it through the Fourier

series representation

g /ð Þ ¼
X1

l¼�1
tl exp i l/ð Þ;

tl ¼ 1

2p

ð2p
0

g /ð Þ exp �i l/ð Þ d/ : (A1)

Now a circulant matrix is chosen (see Appendix B) with top

row (c1, c2,., cn) and

cl ¼ 1

n

Xn�1

�¼0

g 2p�=nð Þexp i2pl�=nð Þ: (A2)

The circulant matrix’s eigenvalues are given exactly by the

DFT of this top row,

k� ¼
Xn�1

l¼0

cl exp �i2pl�=nð Þ

¼ 1

n

Xn�1

l¼0

Xn�1

�¼0

g 2p�=nð Þexp i2pl0�=n
	 


exp �i2pl�=nð Þ

¼
Xn�1

�¼0

g 2p�=nð Þ 1
n

Xn�1

l¼0

exp i2p l0 � lð Þ�=n	 

¼ g 2p�=nð Þ; (A3)

and they correspond to the discretised function g which was

originally Fourier transformed to get the elements cl. Now
by the Grenander-Szeg€o theorem for large n the eigenvalues

of C and T converge, i.e.,

lim
n!1 cl ¼ lim

n!1
1

n

Xn�1

�¼0

g 2p�=nð Þexp i2pl�=nð Þ

¼ 1

2p

ð2p
0

g /ð Þ exp i j/ð Þ d/
¼ t�l: (A4)

Finally a correspondence needs to be found between the arbi-

trary function g and the noise directionality. For a function

periodic in the interval �L=2 � x � L=2, Eq. (A1) becomes

g0 xð Þ ¼
X1

l¼�1
tl exp i 2plx=Lð Þ;

tl ¼ 1

L

ðL=2
�L=2

g0 xð Þ exp �i 2plx=Lð Þ dx : (A5)

In the current noise case, with directionality D(s) where

s � sin h [see Eq. (1)] the equivalent of Eq. (A5) is
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tl ¼
ð1
�1

DðsÞ expðikalsÞds: (A6)

A comparison of the exponents and integral limits in Eqs.

(A5) and (A6) shows that

2p x=L � ka s � ka sin h;

2 x=L � f

fo
s;

L ¼ 2;

s ¼ sin h ¼ xfo=f ; (A7)

where fo is the design frequency, defined as fo ¼ c=ð2aÞ.
Already the equivalences between �, g, g0, and D are as

follows:

/ ¼ 2p�=n;

gð/Þ; 0 � / � 2p;

g0ðxÞ; �L=2 � x � L=2;

DðsÞ; �1 � s � 1: (A8)

So one finds that

D sð Þ ¼ D
fo
f
x

� �
¼ D

fo
f

�

N

� �
: (A9)

Thus the spectrum of the eigenvalues of the circulant equiva-

lent of T is exactly the n-point discretised noise directional-

ity D½ðfo=f Þð�=NÞ� which appears in Eq. (A3) as gð2p�=nÞ.
This can be written as Dð�=�oÞ where �o ¼ Nf=fo.

The number of significant values in the eigenvalue spec-

trum is, by definition, the rank, so finally one arrives at

rank Tð Þ ¼ 1þ �o sin hb ¼ 1þ N
f

fo
sin hb; (A10)

where the additional one converts �o sin hb into an index

[since 0� �� (N � 1)].

APPENDIX B: SOME CANDIDATE CIRCULANT
MATRICES AND THEIR EIGENVALUES

In the noise coherence case the N � N Toeplitz matrix T
is Hermitian and positive semi-definite (since the product

v†Tv represents a physical power for any steering vector v),
and we are searching for a set of non-negative (i.e., positive

or zero) eigenvalues. Remembering that the Fourier trans-

form of a conjugate-symmetric function is real, a fairly obvi-

ous choice of circulant matrix is constructed as follows.

Take the first row of T (t1, t2,..., tn) and concatenate it with

the reversed conjugate offset by one (0, tn*, tn–1*,..., t3*,
t2*). With this first row, offsetting subsequent rows each cir-

cularly by one element to the right produces a 2N � 2N
matrix C which is the 2-by-2 block matrix C¼ [A B; B A]
where A � T (the given matrix) and the top row of B is (0,

tn*, tn–1*,..., t3*, t2*). By inspection C is circulant, and its

first line is conjugate symmetric with a real Fourier trans-

form, therefore its eigenvalues are real, as required.

From the above definition and the properties of circulant

matrices the eigenvalues of C are given in terms of the ele-

ments of A by

kC� ¼
XM�1

l¼0

C0;l expði 2p �l=MÞ ¼
XN�1

l¼0

A0;l expði 2p �l=MÞ þ
X2N�1

l¼N

B0;l�N expði 2p �l=MÞ

¼
XN�1

l¼0

A0;l expði 2p �l=MÞ þ 0þ
X2N�1

l¼Nþ1

A�
0;2N�l expði 2p �l=MÞ

¼
XN�1

l¼0

A0;l expði 2p �l=MÞ þ
X1

l0¼N�1

A�
0;l0 expði 2p �ð2N � l0Þ=MÞ

¼
XN�1

l¼0

A0;l expði 2p �l=MÞ þ
X1

l0¼N�1

A�
0;l0 expð�i 2p �l0=MÞ

¼
XN�1

l¼0

A0;l expði 2p �l=MÞ þ
XN�1

l¼1

A�
0;l expð�i 2p �l=MÞ

¼
XN�1

l¼0

A0;l expði 2p �l=MÞ þ
XN�1

l¼0

A�
0;l expð�i 2p �l=MÞ � A0;0

¼
XN�1

l¼0

ðA0;l expði 2p �l=MÞ þ A�
0;l expð�i 2p �l=MÞÞ � A0;0

¼ 2
XN�1

l¼0

ðReðA0;lÞ cosð 2p �l=MÞ þ ImðA0;lÞ sinð 2p �l=MÞÞ � A0;0

¼ 2Re

�XN�1

l¼0

A0;l expði 2p �l=MÞ
�
� A0;0;
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whereM ¼ 2N and 0 � � � M � 1. This is a standard result for DFTs. The last line is explicitly a length-M DFT but including

only N points in the summation. This is the exact equivalent of zero-padding A0;l to length M¼ 2N.
By inspection it can be seen that the N-by-N matrix (A þ B) is also circulant, and therefore an alternative candidate for

being similar to T. Its eigenvalues are

kAþB
� ¼

XN�1

l¼0

ðA0;l þ B0;lÞ expði 2p �l=NÞ ¼
XN�1

l¼0

A0;l expði 2p �l=NÞ þ
XN�1

l¼0

B0;l expði 2p �l=NÞ

¼
XN�1

l¼0

A0;l expði 2p �l=NÞ þ
XN�1

l¼1

A�
0;N�l expði 2p �l=NÞ

¼
XN�1

l¼0

A0;l expði 2p �l=NÞ þ
X1

l¼N�1

A�
0;N�l expði 2p �l=NÞ

¼
XN�1

l¼0

A0;l expði 2p �l=NÞ þ
XN�1

l0¼1

A�
0;l0 expði 2p �ðN � l0Þ=NÞ

¼
XN�1

l¼0

A0;l expði 2p �l=NÞ þ
XN�1

l0¼0

A�
0;l0 expð�i 2p �l0=NÞ � A0;0

¼ 2
XN�1

l¼0

ðReðA0;lÞ cosð 2p �l=NÞ þ ImðA0;lÞ sinð 2p �l=NÞÞ � A0;0

¼ 2Re

�XN�1

l¼0

A0;l expði 2p �l=NÞ
�
� A0;0 ¼ 2Re

�XN�1

l¼0

A0;l expði 2pð2 �Þl=MÞ
�
� A0;0:

The last line shows explicitly that the eigenvalues of (A þ B) are exactly the even numbered eigenvalues of C.
Although the matrix (A � B) is not circulant, it can be shown that it is, in fact, skew-circulant (Ng, 2003), and so its

eigenvalues can still be written in terms of the DFT of the first row provided that that row is pre-multiplied by exp(ipl/n). To
be precise, its eigenvalues are

kA�B
� ¼

XN�1

l¼0

ðA0;l � B0;lÞ expðip l=NÞ expði 2p �l=NÞ ¼
XN�1

l¼0

ðA0;l � B0;lÞ expðip ð2� þ 1Þl=NÞ

¼
XN�1

l¼0

A0;l expði p ð2� þ 1Þl=NÞ �
XN�1

l¼0

B0;l expði p ð2� þ 1Þl=NÞ

¼
XN�1

l¼0

A0;l expði p ð2� þ 1Þl=NÞ �
XN�1

l¼1

A�
0;N�l expði p ð2� þ 1Þl=NÞ

¼
XN�1

l¼0

A0;l expði p ð2� þ 1Þl=NÞ �
X1

l¼N�1

A�
0;N�l expði p ð2� þ 1Þl=NÞ

¼
XN�1

l¼0

A0;l expði p ð2� þ 1Þl=NÞ �
XN�1

l0¼1

A�
0;l0 expði p ð2� þ 1ÞðN � l0Þ=NÞ

¼
XN�1

l¼0

A0;l expði p ð2� þ 1Þl=NÞ �
XN�1

l0¼0

A�
0;l0 ð�1Þð2�þ1Þ

expð�i p ð2� þ 1Þl0=NÞ � A0;0

¼
XN�1

l¼0

A0;l expði p ð2� þ 1Þl=NÞ þ
XN�1

l0¼0

A�
0;l0 expð�i p ð2� þ 1Þl0=NÞ � A0;0

¼ 2
XN�1

l¼0

ðReðA0;lÞ cosðp ð2� þ 1Þl=NÞ þ ImðA0;lÞ sinðp ð2� þ 1Þl=NÞÞ � A0;0

¼ 2Re

�XN�1

l¼0

A0;l expði p ð2� þ 1Þl=NÞ
�
� A0;0 ¼ 2Re

�XN�1

l¼0

A0;l expði 2p ð2� þ 1Þl=MÞ
�
� A0;0:

The last line shows explicitly that the eigenvalues of (A � B) are exactly the odd numbered eigenvalues of C, so the complete

set of eigenvalues of C consists of the interleaved eigenvalues of (A þ B) and (A � B).
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In contrast, neither A nor B is circulant. The diagonal of

B consists entirely of zeros, and so its trace is zero and the

sum of its eigenvalues is also zero. Also since trace(B)¼ 0,

the sum of the eigenvalues of (AþB) is identical to the sum

of the eigenvalues of A since

traceðAþ BÞ ¼ traceðAÞ þ traceðBÞ ¼ traceðAÞ:

APPENDIX C: SOME MATRIX INEQUALITY
RELATIONS

There are various general inequality relations that help

to evaluate the effect on eigenvalues and rank of adding the

matrix H to the matrix T (see Gray, 2006; Ikramov and

Nesterenko, 2009). All relate differences of the eigenvalues

of (T þ H), kTþH
i , and T, kTi , to the Frobenius norm of H

[i.e., the matrix difference between (T þ H) and T], which
is defined here for a matrix A with elements ak,j as

kAk ¼
�XN

k¼1

XN
j¼1

jak;jj2
�1=2

: (C1)

Note that, in contrast, Gray’s definition has the quantity on

the right divided by N1/2.

Gray’s Lemma 2.4:

1ffiffiffiffi
N

p
���� XN

i¼1

kTþH
i �

XN
i¼1

kTi

!���� � kHk:

Gray’s Lemma 2.5:

1ffiffiffiffi
N

p
XN
i¼1

jkTþH
i � kTi j � kHk:

The Wielandt-Hoffman theorem (Hoffman and Wielandt, 1953):�XN
i¼1

jkTþH
i � kTi j2

�1=2

� kHk: (C2)

The latter theorem is most useful because it enables one to

compare the standard deviation of the differences in eigen-

values with the mean of the eigenvalues, as follows. Define

the standard deviation r as

r¼ 1

N

XN
i¼1

jkTþH
i �kTi j2

!1=2

� 1

N

XN
j¼1

XN
k¼1

jHj;kj2
0
@

1
A

1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NhHj;k

2i
q

¼
ffiffiffiffi
N

p
Hpeak=2; (C3)

and define the mean l as

l ¼ 1

N

XN
i¼1

kTi ¼ trace Tð Þ
N

¼ Tn;n: (C4)

So their ratio is

r
l
�

ffiffiffiffi
N

p

2

Hpeak

Tn;n
; (C5)

and Hpeak/Tn,n is exactly as calculated in Eq. (13), so

r
l
�

ffiffiffiffi
N

p

4 kh
: (C6)

At 3 kHz with 32 hydrophones set 20m above the seabed the

limit on r/l is 1/178.

A more stringent restriction on the deviation of individ-

ual eigenvalues is set by the Weyl inequality (Franklin,

1993). In the current notation it is

kTi þ kHN � kTþH
i � kTi þ kH1 : (C7)

Knowing that the eigenvalues of H are bounded by kHk
which can be written [from Eq. (C3)] as NHpeak/2, this

becomes

jkTþH
i � kTi j � NHpeak=2: (C8)

Using Eq. (C4) this can be rearranged in terms of the mean

eigenvalue, l, as

jkTþH
i � kTi j

l
� N

2

Hpeak

Tn;n
; (C9)

or alternatively in terms of the first (maximum) eigenvalue as

jkTþH
i � kTi j
kT1

� �o
2

Hpeak

Tn;n
¼ Nf

2 fo

Hpeak

Tn;n
¼ Nf

4kh fo
; (C10)

where �o is the effective number of eigenvalues as defined in

Eq. (3) of the main text. At 3 kHz with a 32 hydrophone

array (design frequency fo¼ 4167Hz) set 20m above the

seabed the limit on the fractional deviation of individual

eigenvalues is 1/43. This constrains the magnitude of kTþH
n

but it also prevents any significant increase in the number of

eigenvalues over and above those of T alone. Thus H has

minimal effect on the rank of T þ H.
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