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SUMMARY

In this dissertation the phenomenon of scattering and reflection of underwater
sound waves from the sea surface, is studied by considering the surface sound channel
as a random, time-dependent filter. This filter can be best analyzed by means of its
frequency transfer function, from which another important system function, the
impulse response, can be derived as Fourier transform.

Starting from the wave equation for an iso-velocity medium with boundary
condition of zero total pressure, a formula for the transfer function is found via the
Helmbholtz integral, by means of Meecham’s perturbation technique. It is a six-fold
integral that can be reduced to a converging series of surface integrals, when the
specular angle of incidence is smaller than 84°. The convergence is then even so fast
that the leading term is a good approximation for the whole series.

Next, the speed of the wind that generates the random sea surface is assumed to be
at most 10 m/s, and the relative position of transmitter and receiver is chosen in such
a way that the specular angle of incidence does not exceed 84°. Numerical analysis
of first and second statistical moment of this term then shows that it can be replaced
by a simple formula which is identical to the one that follows from the Kirchhoff-
Eckart theory.

This Kirchhoff-Eckart formula is used for a statistical investigation of the random
filter. First and second order moments are calculated under the assumption that the
ocean surface is a stationary and homogeneous, but anisotropic, Gaussian process.
Frequency, time, and space-correlation functions of the filter output, when delta
pulses or harmonic signals are applied at the input, reflect in a simple way the statisti-
cal properties in frequency, time, and space of the sea surface, if the roughness para-
meter y is less than one (y = 2 kh cos 0,). With increasing roughness, this property is
gradually lost. These theoretical results are shown to be in agreement with experi-
mental data found in the literature. Hence they can be used to predict the behaviour
of the underwater communication channel via the surface, when the surface is
characterized by its wave spectrum, or by its spatial and temporal correlation
functions.



SAMENVATTING

In dit proefschrift worden de verstrooiing en weerkaatsing van geluidsgolven onder
water door het zeeoppervlak bestudeerd door het geluidskanaal aan het oppervlak
te beschouwen als een stochastisch, tijdsafhankelijk filter, Dit filter kan het beste
worden geanalyseerd door middel van de frekwentieoverdrachtsfunktie, waarvan een
andere belangrijke systeemfunktie, de impulsresponsie, kan worden afgeleid als
Fourier-transformatie.

Uitgaande van de golfvergelijking voor een medium waarin de geluidsvoortplan-
tingssnelheid konstant is, met als randvoorwaarde dat de totale druk op het opper-
vlak gelijk nul is, wordt een formule voor de overdrachtsfunktie gevonden via de
Helmbholtz-integraal, door middel van Meecham’s perturbatiemethode. Het is een
zesvoudige integraal die herleid kan worden tot een konvergerende reeks oppervlakte-
integralen, als de speculaire hoek van inval minder dan 84° bedraagt. De konvergentie
is dan zelfs zo groot, dat de eerste term een goede benadering voor de gehele reeks is.

Vervolgens wordt de snelheid van de wind welke het stochastische zeeoppervlak
veroorzaakt verondersteld niet groter dan 10 m/s te zijn, en de onderlinge positie van
zender en ontvanger wordt zodanig gekozen dat de speculaire invalshoek de 84° niet
overschrijdt. Numerieke analyse van het eerste- en tweede-orde statistische moment
van die eerste term toont dan aan dat deze vervangen kan worden door een een-
voudige formule, identiek aan die welke volgt uit de Kirchhoff-Eckart-theorie.

Deze Kirchhoff-Eckart-formule wordt gebruikt voor een statistisch onderzoek van
het random filter. Eerste- en tweede-orde-momenten worden berekend onder de aan-
name dat het zeeoppervlak een stationair en homogeen, maar anisotroop, Gaussisch
proces is. Korrelatiefunkties van het uitgangssignaal van het filter in de tijd, de
ruimte, en in het frekwentiegebied, wanneer delta-impulsen of harmonische ingangs-
signalen worden aangewend, weerspiegelen op simpele wijze de statistische eigen-
schappen in tijd, ruimte en frekwentie van het zeeoppervlak, als de ruwheidsparameter
x kleiner is dan één (x = 2 kh cos 0,). Bij toenemende ruwheid gaat deze eigenschap
geleidelijk verloren. Aangetoond wordt dat deze theoretische resultaten in overeen-
stemming zijn met experimentele waarnemingen welke in de literatuur worden aan-
getroffen. Zij kunnen daarom gebruikt worden om het gedrag te voorspellen van het
onderwaterkommunikatiekanaal via het zeeoppervlak, wanneer het oppervlak be-
schreven is door het golfspectrum, of door de korrelatiefunkties in ruimte en tijd.
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Nota Bene

LIST OF SYMBOLS AND NOTATIONS

The parts of this thesis that are reprints of articles published in the Journal of the Acous-
tical Society of America, have their own list of symbols that differs on a few points from
the following one.

Symbols

Co

<

QM MRSy

-

h?‘t"ﬂ%h"'h"é’::ﬁ‘ﬁ

amplitude

surface wave variance spectrum

correlation function of E

idem, of e

idem, of H

idem, of h

constant depending on wind speed and geometry
modified version of b,

normalized correlation function; constant

absorption coefficient

correlation function

sound speed in ideal medium

path length from T to R via the surface

specular path length from 7' to R

distance from T to R

spreading function; expectation

bi-frequency function

spectral function; auxiliary function

time function; random function; probability density function
free space Green’s function

gravity acceleration

frequency transfer function

absorption filter function

impulse response function; standard deviation of surface elevation
(=1t

Bessel function

wave-number vector: X" = (K, K}, K7)

wave-number vector: K = (X, K,, 0)

wave number of incident radiation

range; effective correlation distance; auxiliary function
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wave-number vector: A4 = (M,, M,, M)
wave-number vector: M = (M, M,, 0)
constant

integer

pressure (time dependent)

pressure (with factor exp (—iwt) suppressed)
pressure, due to the boundary

pressure in unbound medium

space vector: Z =(x, y, 2)

space vector: R =(x, y,0)

receiver

distance

transmitter; time

time

velocity potential (time dependent)

velocity potential (with factor exp (—iwt) suppressed)

wind speed

distance to the average surface

distance to the random surface
horizontal distance; input spectrum
horizontal coordinate; input signal
horizontal distance; output spectrum
horizontal coordinate; output signal
vertical distance

vertical coordinate

angle with X-axis, in horizontal plane; constant
constant

direction cosine; coherence function; constant
fraction

Dirac delta function; constant

surface profile

difference in Y-coordinates

angle with vertical, angle of incidence
wave number of surface wave

variance

difference in X-coordinates

correlation vector: g = (&, n, 0)
correlation distance

density

standard deviation

time difference

correlation function of surface elevation



angle with horizontal, grazing angle
roughness parameter (y = 2 hk cos 6;)
auxiliary function

spectral function; phase

angular frequency

angular frequency of incident wave
surface wave frequency

ER0SEER S

E

Subscripts

cw  cross-wind

d deterministic part
down-wind

label

normalized

label

receiver

random part

specular point, stationary phase
transmitter

time derivative

wave front

average wind

derivative with respect to X
derivative with respect to Y

=
=

‘ﬁkeg*‘qh‘th:z-
~

Superscripts

s on random surface

Notations

A number between () indicates an equation ; example: (5.38) means ““Equation
38 of Chapter 5.

A number between [] indicates a reference; example: [2.52] means
“Reference 52 of Chapter 2",

The angular brackets <> denote an ensemble average. Re and Im stand
for “real part” and “imaginary part” of a complex quantity.
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11.
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12.

ASSUMPTIONS

. The sea surface is single-valued. There are no sub-surface bubbles.

The sea surface is a pressure release boundary; the Dirichlet boundary condition
p =0 is valid.

. The sea surface elevation is a random process, in time as well as in space. It is

stationary (in time) and homogeneous (in space).

The sea surface has Gaussian statistics.

. The anisotropy of the sea surface can be expressed adequately by a cos*(x)-law.

The Pierson-Moskowitz spectrum is the best starting point for a statistical
description of a fully developed sea.

The medium is ideal: there are no inhomogeneities, and the sound speed is
constant (¢, = 1500 m/sec).

The bottom is so far away from the surface and from transmitter and receiver
that bottom reflections and reflections from the surface are separated in time.

The source radiates equally in all directions, the receivers possess onmi-directional
sensitivity.

The surface channel can be represented by a linear filter; the superposition
principle is valid.

The depths of transmitter and receiver are much larger than the surface elevation:
Zy > 100)¢], Zg > 100]¢].

The conclusion that mean value and variance of H can in practice be described

sufficiently by the stationary phase approximation, may be extended to the
correlation functions of H, in time, frequency and space.

13
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CHAPTER |

INTRODUCTION

1.1 Motivation of this study

Until modern times the oceans were of interest to man only as a source of food
and as a medium that linked and separated the continents. The catching of fish, the
transport of goods from one harbour to another, and the sea battles between warring
nations, all these took place at the surface. Therefore little interest was shown in the
ocean below the surface.

Recent times have seen both the development of submarines, giving the war at sea
one more dimension, and the increasing need of food for a growing world population,
which makes more efficient fishing necessary.

Connected with this development is a diversity of technical systems that operate
with underwater sound waves and are used for detecting an enemy (active and passive
sonar), distinguishing friend from foe (IFF systems), tracing schools of fish, or
measuring depth (fathometry). There is at least one thing all these systems have in
common: they can be considered as communication systems, since each one has a
transmitter and a receiver, between which information is conveyed.

The medium that is used in these communication systems to carry the information
from source to destination, i.e. the ocean, is certainly not perfect. In the first place
there is the phenomenon of a sound speed changing with depth and, to a smaller
extent, with range and time; it causes the formation of sound channels, caustics,
shadow zones, etc. Next there is the so-called volume reverberation, introduced by
inhomogeneities in the medium (e.g. fluctuations in temperature, salinity, pressure,
and small particles), that influences the signals all along their propagation path and
disturbs them in a random fashion. Finally, in many situations there is not only a
direct path between transmitter and receiver, but also connection via the boundaries,
especially at longer distances.

The signals that arrive at the receiver via these different paths may interfere or may
be separated in time, depending on the geometry and the signal duration. If they
interfere then one will probably try to build into the receiver a means of separating
them; if they do not it is likely that the direct arrival will be given priority, as it carries
the least disturbed information. Then the receiver will have to suppress the super-
fluous boundary-reflected signals, because their presence makes the system temporarily
unusable for direct reception.

It is also possible to imagine a situation in which communication between trans-
mitter and receiver can only take place via the bottom, or via the surface. This occurs
when the receiver is placed in the shadow zone of the source.

From the foregoing observations it can be concluded that it is essential for the
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designer of underwater communication systems to know how the propagation of
sound is affected by the medium and its boundaries. A study of this effect can be
split into three parts:

a. The surface,

b. The volume,

¢. The bottom,

although in reality the occurring physical phenomena are not entirely independent.
In this thesis we shall only be concerned with the surface effect. This means that the
influence of the others will be neglected, or eliminated by proper choice of the para-
meters. At the SACLANT ASW Research Centre, scattering due to inhomogeneities in
the medium has been analyzed by LAVAL et al. [1.1], and FORTUIN et al, [1.2]. Their
work can be regarded as an extension to the broad-band case of the studies under-
taken by CHERNOV [/.3] and TATARSKI [/.4] for a monochromatic wave that propagates
through a random medium. As for the bottom reflection, at the SACLANT ASW
Research Centre this phenomenon has been studied by HASTRUP (see for instance
[1.5]).

The phenomenon of scattering and reflection of underwater sound waves from the
rough surface of the sea can be studied in many ways. Ample illustration of this state-
ment can be found in Chapter 2. Since we are interested in the underwater communica-
tion problem rather than in a detailed physical description of surface scattering, we
consider the paths along which the sound waves travel from source to destination as a
communication channel, or a filter. Two sections can then be distinguished immedi-
ately: the direct path, and the path via the surface (see Fig. 1.1). The surface effect
can be studied by looking at the latter of these two.

Signals that travel via the surface path are subject to the influence of the sea surface.

—— =
=T Receiver
—

Transmitter

SURFACE PATH

Fig. 1.1

IN ouT Communication between
transmitter and receiver, via
the direct path and via the
surface path; (A) ray dia-
gram, (B) block diagram,

DIRECT PATH
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This boundary has a random character, both in space and time. Hence the scattered
field is random too, and we arrive at our approach to the scattering phenomenon: we
study the sea surface as a random filter for underwater sound waves. Once the statistical
properties of this filter are known, and given an arbitrary input signal, the charac-
teristics of the output can be predicted.

Basically, three steps have to be taken in order to reach the level of knowledge at
which predictions are indeed feasable: First we have to find a suitable mathematical
description of the physics that govern the scattering phenomenon; after that we have
to apply filter theory to find an expression for one or more of the filter system func-
tions; finally we need statistical techniques to derive quantities that are useful for the
prediction of the output signals. In this way we will have constructed a link between
the statistics of the random sea surface and the statistics of the sound field scattered and
reflected by a boundary. It may be regarded as the paramount purpose of the study
here presented.

With the insight thus obtained, we can return to the underwater communication
problem. Questions like:

— What is the best frequency band in which to operate?

— What characteristics should the optimum receiver have?

— What is the best type of signal processing to reduce the effect of the signal distortion
caused by the surface?

can then be answered. Also the inverse problem can be attacked:

— Given input and output signal, what are the statistical properties of the sea surface?

This problem is of interest to both underwater acousticians and oceanographers.

1.2 Some remarks of a more detailed nature
1.2.1 The sea surface

When wind is blowing over the surface, waves are generated, first small ones and
later larger ones, until a state of equilibrium has been reached. If the wind speed
increases, more energy is put into the surface waves. They can become so strong that
rollers and breakers are formed. In that case the surface is not single-valued any
more, and also sub-surface air bubbles appear. These bubbles can screen the surface
to such an extent that the sound waves do not reach the surface any more. Yolume
scattering then takes over. As this is not the subject of the present study, we assume
the wind speed low enough that the surface is still single-valued and free of sub-
surface bubbles (Assumption 1).

The deformation of the sea surface due to the wind is not the only type of deforma-
tion that can occur: pressure waves in the water can also change the shape. A strong
pressure wave, for instance one caused by an explosion not far below the surface,
will even break this boundary. This is caused by the fact that the surface cannot
support any pressure: it will yield when struck by a pressure wave. For this reason
the upper boundary of the ocean is called a pressure release surface.
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The pressure waves we are considering, however, are sound waves of such a small
amplitude that the surface deformation caused by them is negligible when compared
with the wind effect. The pressure release character of the surface is then merely
present in the mathematical description of underwater sound propagation: it deter-
mines the boundary condition. In accordance with common usage, the Dirichlet
condition® p =0 is supposed to hold (Assumption 2).

The wind-generated sea surface is random in space and time; this random process
is assumed to be homogeneous and stationary (Assumption 3). Its statistics are Gaussian
with good approximation (Assumption 4). As a statistical description is needed, we
have adopted the theory of the sea surface wave spectrum, which regards the sea
surface as the combined effect of a large band of sinusoidal waves that travel over
the upper boundary in all directions and each frequency having its own speed. The
statistical properties in space are dependent on direction. This anisotropy can be
represented by a cos?(x)-law (Assumption 5). For the spectrum we assume the validity
of the empirical formula suggested by PiErsoN and Moskowitz [/.6] for a fully
developed sea (Assumption 6).

1.2.2 The medium

Propagation along straight lines occurs only in an iso-velocity medium. We require
the bending of rays to be absent, hence we assume the sound speed to be constant
(Assumption 7). In reality such is, with good approximation, the case during the
spring time in the upper part of the ocean. Experimental data to check our theory
have therefore to be collected in that time of the year and at not too great depths.

At long propagation distances, absorption in the medium can become important.
It can be incorporated into our communication model by series connection of an
absorption filter with the transfer function

H(w) = exp(—C,La?), (1.1)
where C, =4.5x107*3 dB/m, at a temperature of about 20°C [1.7, pp. 86-90].

1.2.3  The bottom

The bottom effect can be eliminated by considering the sea to have infinite depth.
In practice this means that the transmitter and receiver depths have to be small
compared with the distance from surface to bottom (Assumption §).

1.2.4 The sound source

One of the filter functions that we are interested in is the impulse response. This

1 When electromagnetic waves are considered, the Dirichlet condition describes a perfectly con-
ducting boundary.
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presupposes, if it is to be determined experimentally, a broad-band source, preferably
producing an impulse that — with good approximation — can be regarded as a delta
function. At the SACLANT ASW Research Centre this ideal has been approximated by
using explosive charges as sound sources, in connection with an equalizing filter on
the receiver side that boosts the high frequencies in such a way that the spectrum of
the explosive pulse approaches that of a delta pulse [1.1].

It is our intention to compare our theoretical results with data that are generated
by means of this experimental technique. Hence we have to assume that our source
radiates equally in all directions. Also the receivers have an omni-directional
sensitivity (Assumption 9).

1.2.5 Geometry of transmitter and receiver

The positions of transmitter and receiver will be arbitrary. Both the monostatic
(coinciding T and R) and the bi-static (separated T and R) case are hence covered.
In principle the influence of any coordinate can be studied.

1.2.6 Physics

Our first step will be the construction of a model that describes the scattering and
reflection. Physical considerations of a theoretical character indicate that the wave
propagation is governed by a wave equation. This equation can be solved by standard
techniques. In our case the solution is also determined by the boundary condition of
zero total pressure.

Solutions of the wave equation with boundary condition can be found in the fre-
quency domain via the Helmholtz integral [1.8, p. 24], or in the time domain by
means of the Kirchhoff integral [1.8, p. 37]. Our study is begun in the frequency
domain.

1.2.7 Linearity and filter theory

One of our basic assumptions is the linear character of the sea surface regarded as
a filter. By this we mean that, if an input signal x, gives a reflected signal y,, and if a
signal x, results in an output signal y,, then the result of @,x, together with a,x,
equals @,y, +a,y,. In other words, the superposition principle is valid and the theory
of linear time-dependent filters can be applied [1.9] (Assumption 10).

Another characteristic of our filter worth mentioning is its causality: the scattered
or reflected signal cannot start before the input signal has begun.

Finally we remark that the formulae for the filter functions that will be derived
eventually are not linear in w. This indicates that “washboard” studies (i.e. scattering
from a sinusoidal surface) have only limited importance for the problem of scattering
by the random sea surface: as a deterministic exercise, and for the analysis of “swell”.
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1.2.8 Statistical properties

The fully-developed wind-generated sea surface is supposed to be a stationary and
homogeneous random process (Assumption 3). As a possible random event or “ex-
periment” we can take a description of {(x, y, 7) for x and y belonging to a certain
domain §; and ¢ being an element of a time-domain T;. By assigning to i/ the valuesl,
2, 3, ..., n, we can generate a set of possible realizations of the random filter we are
studying. Statistical properties such as mean value and variance of a system function
can be constructed. Also correlation functions in time and frequency can be derived
as ensemble averages. Phenomena like frequency spread (Doppler effect) and time
spread can be analyzed. These properties describe the random channel formed by one
transmitter, the surface, and one receiver. When more receivers are present, the spatial
structure of the scattered field can be examined. This subject falls slightly outside the
frequency and time analysis of the filter, but it is interesting and important enough
in underwater communication to be included.

1.2.9 Coherence

A somewhat different way to look at the channel properties consists in an investiga-
tion of the coherence between input and output signal.

A channel that is free of dispersion may change the amplitude and phase of a trans-
mitted signal but not the shape: all frequencies are treated in the same way, i.e. they
are subject to the same attenuation and the same time shift. Such a channel processes
the signal in a coherent way. This is what would happen if the sea surface were
perfectly flat. The rough sea surface, however, does not treat all frequencies equally.
Hence it changes the character of the input signal and causes a loss of coherence
between input and output. The degree of this coherence loss increases with the
surface roughness. In practice, it is often possible to distinguish in the output signal
a coherent and an incoherent part. Usually the first one is called reflection and the
second scattering.

1.3 Structure of the thesis

The structure of this thesis can be outlined as follows:

First we give some attention to the literature that is related to our subject. This is
done in Chapter 2. We will see that only certain aspects of our problem are covered.

The description of the sea surface as a random process is the subject of Chapter 3.
Numerical results that are needed later are collected there.

In Chapter 4 we recall some elements of the theory of linear, time-varying filters.
Some statistical properties are included for later use.

Physical considerations that lead to a formula for the transfer function of the sea
surface as a random filter can be found in Chapter 5. The result is a series of surface
integrals of which the first term is a very good approximation.
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The mean value of the transfer function is computed numerically in Chapter 6. It
can be regarded as a representation of the deterministic part of the filter. If this
deterministic part is set apart, the purely random portion (with zero mean value) is
left. Its variance is calculated numerically in Chapter 7.

The results of Chapter 6 and 7 indicate that the filter can be described, with good
approximation, by a simple formula. Starting with this formula, time and frequency
correlation are studied in Chapter 8; the spatial correlation is discussed in Chapter 9.

With the results of Chapter 8, the properties of output signals can be described. In
Chapter 10 this is done for monochromatic input signals, for delta pulses at the input,
and (briefly) for arbitrary input signals.

Discussion of the results, and comparison with experimental and theoretical work
found in the literature, is the subject of Chapter 11. There it is also indicated which
results can be verified best by experiments. This applies to those results for which no
comparable material is available.

Finally, in Chapter 12, the conclusions of this study are presented.
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CHAPTER 2

LITERATURE ON PHYSICAL ASPECTS

2.1 Introduction

The phenomenon of scattering and reflection of waves at uneven surfaces has re-
ceived much attention in the past 20-25 years. The literature that has resulted covers
a wide variety of aspects: electromagnetic and sound waves, rigid boundaries, pressure
release surfaces (in acoustics) and perfectly conducting surfaces (for electromagnetic
studies), sinusoidal and random boundaries (in two and three dimensions), mono-
chromatic and broadband sources, theoretical and experimental studies, etc. It is
no wonder, therefore, that the number of papers and reports is rather impressive.

An excellent introduction to the subject has been provided by BECKMANN and
SpizzicHiNO [2.1]. Although that book is mainly concerned with the case of electro-
magnetic waves, it contains enough material to be of interest to the acoustician too.

The literature explicitly dealing with diffraction of underwater sound waves from
the sea surface and with the description of the surface is discussed in this chapter.
The following system of classification has been used for this review:

1. General considerations,

2. Sinusoidal and other periodical boundaries,

3. Random boundaries,

4. Experimental results,

5. Special subjects.

This has proved to be a useful classification. Many papers, however, belong to more
than one class.

Two journals stand out as the leading media for the communication of new results
to the scientific world: first of all there is the Journal of the Acoustical Society of
America with about 50% of the total number of publications, followed by Soviet
Physics-Acoustics with 11%,

The publications up to the beginning of 1969 are discussed in Section 2.2. This
part is a reprint of a paper I published in the Journal of the Acoustical Society of
America [2.2). More recent papers and articles (up to the middle of 1973), and also
tendencies in the studies at present taking place, form the subject of Section 2.3.

The bibliography contained in Section 2.2 and the references at the end of this
chapter, provide together a rather complete account of the available literature on
scattering and reflection of underwater sound waves from the ocean surface, and
related subjects.
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2.2 Literature up to the beginning of 1969

This is the thirteenth in a series of review and lulorial papers on the various aspects of acoustics.

Received 9 July 1969
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Waves at the Sea Surface

LEONARD FoRrRTUIN

SACLANT ASW Research Cenlre, La Spesia, Italy

The problem of diffraction of waves at uneven surfaces has received increasing attention in the past 15-20
years. This has resulted in a large number of reports and papers in the open literature. In this review article
most of the publications dealing with sound waves and pressure release surfaces (both theoretical and experi-
mental) that appeared up to the beginning of 1969 are mentioned as references. They are classified by sub-
ject, and the main currents in the literature (Rayleigh and Uretsky method for sinusoidal boundaries,
Eckart theory with Kirchhoff approximation for random surfaces, experiments at sea) are analyzed and dis-
cussed. General trends, relations between studies, agreements, and contradictions are mentioned. It is found
that nearly all of the publications cover only part of the problem: although the wave diffraction at rough
surfaces is a function of three basic quantities simultaneously (i.e. time, frequency of incident wave, and
geometry), most of the papers deal with only one or another of these three variables. Possible directions of
future research are indicated.

LIST OF SYMBOLS

= Bessel function

effective correlation distance i integer
boundary coefficient k wavenumber if incident radiation
constant (2x/\)
constant L length of insonified area
sound speed [ integer
sound speed in ideal medium M maximum number of scattering
wave parameter modes
surface-wave spectrum m scattering mode number; integer
frequency of incident radiation = surface normal; integer

(Hz) (0] origin of coordinate system
generalized spectrum P directivity pattern
gravity acceleration 2, po, 1, P1, Pry Pa  Dressure
trough-to-crest surface wave height ¢ -probability function
Hankel function R receiver; shadowing function
amplitude of sinusoidal surface; 7,7y distance

standard deviation of surface S surface; shadowing function

elevation s surface profile
intensity T transmitter
autocovariance function of surface U unit step function

insonification u speed of surface wave
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v reflection coefficient
o wind speed
x, ' horizontal coordinate
v, 9 horizontal coordinate
2,2 vertical coordinate
@, ar, ¢r direct cosine; angle with X axis
B, Br, Br direction cosine
T AT YR direction cosine
A layer thickness
i (normalized) surface profile
fed surface slope
7 difference in y coordinates; normal-
ized y coordinate
8, O, Oin out angle with vertical
K, K. X surface wavenumber (2r/A)
A surface period
A intensity of scattered waves
A incident wavelength

INTRODUCTION

The problem of the diffraction of waves at uneven
surfaces has received increasing attention in the past
15-20 years; “this is due to the growing application of
acoustic waves and radio waves in the centimetre band”
[3, p.1].

Mathematically, the problem is “marvelously com-
plex” [24, p. 12937]. It consists of solving a wave equa-
tion for which certain boundary conditions have to be
satisfied, whereas the shape of the boundary can be
extremely complicated. For this reason, a general and
exact treatment of the problem has not—so far—been
published.

Nevertheless, a large number of publications in the
open literature are devoted to the subject. But they
cover only a part of the problem: all of them are re-
stricted to a special case, and are based on certain
assumptions—sometimes rather arbitrary—that make
simplifications possible but at the same time cast doubt
on their validity.

An excellent survey of the literature up to 1958 has
been given by Lysanov [3]. Although this paper deals
only with periodically uneven surfaces, it has a wider
importance, because many techniques can be applied to
both periodically and statistically uneven surfaces.

More recent work, up to the beginning of 1969, is dis-
cussed and analyzed in Ref. 2. The present paper is a
shortened version thereof.

Two types of waves can be found in the literature:
sound waves and electromagnetic waves. Both types
give rise to the same type of mathematics, when reflec-
tion and scattering at uneven surfaces is studied. There
is an important difference, however: in the case of elec-
tromagnetic waves, the wavelength of the incident
radiation is usually much smaller than the scale of
roughness of the reflecting boundary. Ray theory and
geometrical optics can then be applied. For sound waves
that are scattered from the sea surface, incident wave-
1210  Volume 47

Number 5 (Part 2) 1970

FORTUIN

A Aoy Am direction cosine

Ky Koy Mm direction cosine

v direction cosine

£ difference in % coordinate; normal-
ized x coordinate

p correlation distance

o scattering coefficient

a5 backscattering strength

T time difference

&, by, B, surface correlation function

@ grazing angle

X roughness parameter

¥ correlation function of pressure

¥ phase angle :

@ radial frequency of incident wave

wp frequency shift

Wy frequency of surface wave

length and roughness scale can be of the same order of
magnitude. A diffraction theory then applies.

Also two types of boundaries can be distinguished in
practice, with some idealization:

(1) The free, elastic boundary (e.g., the sea surface)
on which the wave potential vanishes is also called
“pressure release” or “perfectly conducting.”

(2) The rigid boundary (e.g., the rocky ocean floor)
is that where the directional derivative of the wave
potential becomes zero.

Except for the book by Beckmann and Spizzichino
[1], this survey refers only to publications that deal
with sound waves and with perfectly reflecting, free
boundaries. The references at the end are grouped
according to subject. But this is no strict division, as
many papers belong to more than one group.

1. GENERAL CONSIDERATIONS

The phenomenon of scattering and reflection of sound
waves at the sea surface is a random process, both in
space and time.. It depends basically on three
parameters:

(1) Freguency of incident wave: For very high frequen-
cies a behavior similar to “geometrical optics” is likely:
shadowing of “valleys” by “peaks” may occur, whereas.
for low frequencies the waves will be diffracted and
reach all surface points.

(2) Time: Even for fixed geometry and a monochro-
matic incident wave, the scattered field is not constant,
because the boundary is continuously in movement,
owing to winds and currents. A realistic description of
the scattered field is hence impossible without involving
the time variable.

(3) Geometry of source and receiver: The diffracted
field depends strongly on the relative position of source
and receiver with respect to the boundary. The shadow-
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ing mentioned will become increasingly important when
the grazing angle approaches zero. Volume scattering
due to an inhomogeneous subsurface layer can also take
place then.

A general statistical description of the diffracted field,
complete up to second-order statistical moments, there-
fore requires both a realistic surface model that is valid
for a broad range of incident frequencies and that takes
into account the possibility of subsurface scattering,

and observation of the field at an array of separately

located receivers, at two frequencies, and at two instants
of time. Only then can one obtain knowledge about the
following subjects: impulse response of the surface, fre-
quency spreading of signals due to the Doppler effect
(coherence limits), and curvature of the wavefronts.

In view of the foregoing remarks, we can draw a
general conclusion from the literature: most papers give
a very incomplete description of the phenomenon of
scattering and reflection of sound waves at the ocean
surface, as they deal—roughly speaking—only with the
following features:

(1) Monochromatic waves (In experimental work, ex-
plosives are sometimes used, but then the analysis is
done via narrow-band filters, reducing the experiment
to the monochromatic case again).

(2) Time-independent surfaces (The sinusoidal bound-
ary is often encountered. This type of boundary is only
a poor approximation of the true sea surface, but it
offers the advantage of a rigorous treatment of the
problem, without the need of statistical considerations.
Most of the studies involve the (Rayleigh) expansion
of the reflected field into an infinite set of plane waves.
Details are given in Sec. IT. The random surfaces are
based on the assumption of a stationary Gaussian
process, mainly for computational reasons. Analysis of
the sea surface has shown that this assumption is not far
from the truth. The spatial correlation function of the
surface however, is often arbitrarily chosen, e.g., ex-
ponential or Gaussian, again with the excuse that it
makes continuation of the calculations possible. In
more recent publications, the Neumann—Pierson model
of ocean wave spectra is receiving increasing attention.).

(3) One receiver.

(4) Ideal subsurface layer.

There is one important exception to this general con-
clusion : the quasiphenomenological approach of Middle-
ton [49, 507]. A very short description of this approach
can be found in Sec. ITI-C.

II. SINUSOIDAL BOUNDARIES

At the end of the 19th century, Lord Rayleigh studied
the scattering of sound waves at periodically corrugated
surfaces [4]. His method can be considered as the first
attempt to solve the wave equation in combination
with a boundary condition. It is an intuitive approach

AND SCATTERING AT THE SEA SURFACE

that has been used by many investigators, often with
modifications, up to the present day.

The periodicity of the boundary prompted Rayleigh
to expand the reflected field into a set of undamped
plane waves. His assumption that this expansion is valid
up to the boundary (which he made to use the boundary
condition) has been questioned by many authors. The
dispute about the Rayleigh method is condensed in
Sec. 11I-B.

A. Rayleigh’s Method for a Sinusoidal Surface

A simple and straightforward description of the
Rayleigh method for a periodic boundary is given by
Beckmann [1, Chap. 4], from which the following is a
summary. A plane monochromatic sound wave with
wavelength A is incident on an infinitely long periodic
boundary, with angle of incidence 8. In its most simple
form, such a boundary can be described by

z={(@)=¢(x+4) (—o<z<w). ¢V

Because of the periodicity of the surface, the diffracted
field is assumed o propagate in certain discrete modes,
making angles 8,, with the vertical that are given by the
grating formula:

sind,=sinf+m\/A, (m=0,=£1,£2,.+.),
or, in terms of the wavenumbers  and K,
Sindy, =sind+mK/k. @)

We remark that for m=0 the reflection is ‘“specular.”

According to Eq. 2, 6,, can only assume discrete values
when X and A are held constant. These are the directions
of scattering. They have the property that in these
directions the waves scattered from individual periods
reinforce each other because their phase difference is an
integral number of periods.

For a sinusoidal surface, namely for

$(x)=hcos(Kx), (—ow<z<w), (3)

Rayleigh calculated the amplitudes A,.(m=0, %1,
=2, - -+) of the scattered waves via the boundary con-
dition p=0, where p is the total pressure field. His pro-
cedure for obtaining a solution of the wave equation,
i.e., the coefficients 4,,, is based on two assumptions:

(1) That the total field can be written as an infinite
sum of plane waves:

p(x,2) =exp[ik (x sinf—3 cosh) |
+ 3 A, explik(xsinfuts costn)] (&)

(the first term on the right-hand side being the incident
wave).

(2) That this equation holds everywhere above and
on the boundary. This assumption is not at all obvious
and has been seriously criticized (see Sec. II-B).

The Journal of the Acoustical Society of America 1211



LEONARD FORTUIN

Fi6. 1. Diffraction of a plane harmonic wave
by a sinusoidal boundary of finite length;
6=45° A=10A, and bk is a measure of the sur-
face roughness. From Beckmann and Spizsichine
[, pp. 50-53].

With his two assumptions Rayleigh found, for a
point (x,z) at the boundary, the equation

exp[—ik{ (x) cosd]

=— f: Am explimEKx-+iké (x) cosbn]. (5)

M=

“Both sides of this equation are now expanded in a
Fourier series with respect to x (which will in general
result in a double series on the right side) and the re-
sulting Fourier coefficients are equated. This results in
an infinite set of linear equations, each of which con-
tains the unknown coefficient 4,,. By progressive solu-
tion (or successive approximation) the coefficients A,,
are then approximated” [1, p.43]. Formulas for the
first coefficients can be found in Appendix A.

The total number of possible modes as predicted by
Eq. 2 is limited by the condition |sing,,|<1. We call
this maximum M. For m> M, the condition is violated.
Then cosf,, becomes imaginary and we have (see Eq. 5)
waves propagating along the surface (Rayleigh surface
waves) that decay exponentially with depth.

The propagation in discrete modes described here is
valid for “surfaces” that extend from —= to 4. Itis
interesting to note what happens when the periodic sur-
face is of finite length. Then the diffracted field—instead
of being cancelled completely because of destructive
interference between the directions given by the grating

1212 1970
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formula (Eq. 2)—decreases gradually and then in-
creases again, when the observer is moved from the
direction 0, to 0,41 In this way, the so-called “lobes”
are formed. Their width increases as the surface become$
shorter.

For several combinations of 0, A, and kJ, Beckmann
[1] gives figures that illustrate this formation of lobes.
They show that with decreasing value of £/, the “rough-
ness” becomes smaller so that fewer and fewer sidelobes
appear and the lobe with m=0 (specular reflection)
becomes more and more pronounced. With constant kh
and A, the reflection becomes more specular as 8 in-
creases. Both facts agree with a definition of roughness
of the form

X=Ckh cosf. (6)

Examples for #=45° and A=10\ are reproduced in
Fig. 1.

B. The Dispute about the Rayleigh Method

Commenting upon Rayleigh’s procedure for obtain-
ing a solution for the wave equation in the presence of a
sinusoidal boundary, Uretsky remarked that: “The
crucial and unjustified step in this procedure is the
assumption that Eq. 4 describes the solution every-
where above the bounding surface” [25, p. 401]. Refer-
ring to a lettter by Lippmann [/37, he made it seem
plausible that the assumption breaks down in the
“valleys” between the “peaks,” because there both up-
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going and down-going waves should be expected. For
this reason he carefully developed a solution to the
problem, based on Green’s theorem (Sec. II-C). Com-
paring his results with those of Rayleigh, one of his
conclusions (based on numerical experimentation) is
““that the Rayleigh equations are useful when the undu-
lations of the bounding surface are gentle (small kK)”
[25, p.4211*

Meecham too [17, 47] remarked that the validity of
Rayleigh’s second assumption is doubtful. He developed

a, variational method, for the case of a periodic surface-

[2177], which improves the Rayleigh method via an error-
minimizing procedure, and a Fourjer transform method
for boundaries of arbitrary shape. This latter method,
in which an approximation of the first derivative of the
pressure at the boundary is obtained by placing a re-
ceiver at this boundary, is found to be “preferable to
previous methods, notably those which can be classified
as physical optics (such as Rayleigh’s), since the error
in the transform method is of second order in the surface
slope, whereas the error in previous methods is of first
order in the same quantity” [47, p. 370—abstract]).

The question of the validity of Rayleigh’s second
assumption has been attacked from another side by
Heaps. He presented “‘an investigation of the least pos-
sible value of the surface pressure consistent with the
assumption that all the reflected radiation is in the form
of undamped plane waves” [10, p. 815]. He arrived at
the conclusion, after comparison of his results with ex-
perimental data ‘“‘that if all reflected energy has the
form of undamped plane waves then the surface is
necessarily sound absorbing and of pressure signifi-
cantly different from zero. Thus, in the neighborhood of
a corrugated surface of zero pressure, it is necessary to
take into account other forms of radiation and such
forms play a significant part in satisfying the boundary
condition” [10, p. 8187].

As Marsh has generalized the Rayleigh method for
random surfaces (Sec. IT1I-A), he is arguing “In Defense
of Rayleigh’s Scattering from Corrugated Surfaces”
[167]. His results (for simplicity he takes a sinusoidal
surface) have been compared with those of Uretsky
[24, 257 by Murphy and Lord. They showed “that
Rayleigh’s formulation is inadequate for the description
of the scattered field” [18, p. 1598—absiract].

The results of the above mentioned papers lead us to
the conclusion that the Rayleigh method is indeed in-
correct in the way the boundary conditions are used.
Nevertheless, for smooth surfaces (small AK), the
method produces results that do not disagree more with
experimental data than do other, more rigorous, solu-
tions. It is therefore, useful to a limited extent. The
method developed by Uretsky, on the other hand, is
strict in a mathematical sense and therefore superior
to the Rayleigh solution.

Finally we remark that Beckmann [I], surprisingly
enough, does not touch upon the question of the validity
of Rayleigh’s assumptions.

C. Uretsky’s Method for a Sinusoidal Surface

Uretsky devoted two publications to his method: a
very short outline [24], which is no more than an intro-
duction, and a very thorough and detailed treatment
[25]. The latter one contains a complete description of
the method with the necessary mathematical proofs, as
well as valuable comments upon the Rayleigh method
and the Kirchoff approximation. Application’of the
Uretsky procedure can be found in a study by Barnard
et al.[77, who summarized the Uretsky approach, made
numerical predictions, and compared these with experi-
mental results from a pressure release cork surface in a
model tank. Satisfactory agreement was obtained.

The method starts in the same way as the Rayleigh
method. A plane monochromatic wave with direction
cosines \o(=sinf) and po(=cosh) is incident on a sinus-
oidal pressure release surface as given by Eq. 3. Instead
of assuming that the scattered field can be expanded
into an infinite set of plane waves (as Rayleigh did),
Uretsky proves that this is possible for observation
points not too close to the boundary,

pr@g)= 5 Amexplik(x sindn-+s cosdu)]
(z=h). (7).

The difference from Rayleigh appears in the next step:
the expansion of Eq. 7 is not valid for z<#/, because
there its terms fail to be solutions of the wave equation.
The Helmholtz formula [5a7] which expresses the scat-
tered field py as an integral over elementary sources
induced on the boundary by the incident wave p,, is
invoked to avoid Rayleigh’s second assumption. In
terms of Green’s functions,} the Helmholtz integral can
be written for a two-dimensional case as

m% ] HOG = )VE), (@

because the term in the original integrand containing
the total pressure p vanishes on a free surface. ‘“The
crucial step in the present formulation of the problem
is to recognize that Vp(r’) admits a Fourier series repre-
sentation” [24, p. 1203]; the proof is given in Ref. 25.
Hence, with )\,-= o+7K/k, Uretsky finds

P1(z z) =— E (1)~/B; f da'Ho® (k[r—1'|)
Xexp(ikAz'). (9)
In order to find the scattered field p,, the boundary
coefficients B; have to be determined. This can be done
via the boundary condition of zero total pressure, which
gives
— it (2)]= pox$ (x)]
=exp(ik[Aox—poh cos(Kx)]}. (10)

At this point, the mathematics become rather in-
volved. Details can be found in Refs. 24 and 25, or in
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the summaries of Refs. 2 and 7; here we indicate only
the main steps. The exponential in Eq. 10 is expanded
in a Fourier series, as in the Rayleigh method, after
-which an infinite set of algebraic equations for the Bjis
derived:

X MyBj=(—1):(hkpo). (11)

Je—w0
“The major complication of the problem (other than
the usual difficulties associated with inverting infinite
matrices) is in the calculation of the matrix elements
M, [24, p. 1294]. But the evaluation is possible,
although the result is somewhat complicated.

Inversion of Eq. 11 yields the boundary coefficients

Bj. A relation between 4,, and B; is then needed to cal-
culate p; with Eq. 7. The required relation is proved
to be

A= (=i Qun) B meslbn). (12)
El

The Uretsky method is far from simple, especially in
comparison with the Rayleigh technique. But the re-
sults are obtained with a high degree of mathematical
strictness and with a minimum of conditions on the
validity. It may be noted that only the surface height
h appears explicitly in the formulas; the surface wave-
number K is still present, though, as it should be, via
Km and An.

A generalization of the Uretsky method for random
surfaces seems possible, by analogy to Marsh’s exten-
1970
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sion of the Rayleigh method. The result could be
interesting (although probably rather complicated), as
it would be applicable to the ocean without too restric-
tive conditions for the roughness.

D. Comparison of Several Methods with Each Other
and with Experimental Results

The experiments of La Casce and Tamarkin have
provided the-theoreticians with data that could serve
as a check for their theories. These experimental data
have been published in a study on the reflection of
underwater sound from corrugated surfaces [69].

In addition to their experimental work, the authors
have summarized the theories of Rayleigh, Eckart
[31] and Brekhovskikh, and compared them with their
data. Their formulae for the amplitude coefficients A4,
are given in Appendix A.

Several authors have used the experimental results
of Ref. 69 to check their own theories: Meecham [47]
applied his Fourier transform method to a sinusoidal
boundary, Parker [19, 20] extended the Rayleigh series
of plane waves into an integral, Heaps derived from the
Rayleigh method a recurrence relation for 4, [9] and
(with the assumption that the reflected field contains
only undamped plane waves) obtained values for 4m
that minimize the mean square pressure at the boundary
[10], Jordan [12] computed values for A, via the
coordinate transform

g’ =z—h cos(Kx), (13)
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and Uretsky [24] avoided the mathematical defect of
Rayleigh’s procedure with a careful and rigorous solu-
tion. All these methods to describe the scattering from
sinusoidal boundaries, though very different in formula-
tion and final results, agree in predicting that the main
directions of scattering are given by the grating formula
(Eq. 2).

La Casce and Tamarkin obtained their results with
pressure release cork surfaces of approximately sinus-
oidal form, floating on top of the water in a tank. Such
a surface can be described by Eq. 3. For a concrete situa-
tion, values have to be assigned to the parameters 8, &,
h, K, and m. La Casce and Tamarkin have experimented
with three surfaces, for which 4K equals 2.12, 0.75, and
0.46, respectively. They measured the scattered ampli-
tude 4,, for m=0, —1, —2, and §=0°, 20°, 40°, and
60°, as a function of k%, thus providing a rich source of
data for comparison.

In order to facilitate the comparison of the available
theories with each other and with experimental results,
we have plotted in Figs. 2-4 some of the data of La
Casce and Tamarkin together with theoretical curves
and points. The ones according to Rayleigh, Eckart,
and Brekhovskikh, we have computed with the for-
mulas of Table I;the other data are copied from the dis-
cussed papers. The figures show the specularly reflected
amplitude and the first- and second-order backscattered
amplitudes for §=0° and 40°, as functions of kk, for
the third experimental surface (hK=0.46), as this is
the most sinusoidal one and because most of the theories

presented are based on the assumption of small surface
slopes.

Since the surface with K =0.46 is not very rough, the
Rayleigh prediction is not significantly worse than other
curves. The Uretsky curves, for which a small slope is
not required, are satisfactory but do not appear superior
to the others, More interesting, therefore, is the appli-
cation of Uretsky’s theory to rough surfaces. This has
been done by Barnard ef al. [7] in their model studies.
Their surface can be characterized with: k=1.5 cm,
K=1.4 cm™, and hence /K =2.1. The frequency of inci-
dent sound was 100 kHz (or k=4.2 cm™, making
hk=6.3). They measured the backscattering as a func-
tion of grazing angle with fixed angle of incidence. “The
agreement between the calculated and experimental
curves (---) is, in general excellent” [7, p. 1168].

III, RANDOM BOUNDARIES
A. The Marsh-Rayleigh Method

The method of Lord Rayleigh for a sinusoidal bound-
ary (Sec. II-A) has been generalized by Marsh for the
case of a random surface [40]. He published his general-
ization “in an heuristic form, in order to avoid present-
ing the exceedingly heavy analysis required for a
rigorous treatment” [p. 330]. This omission of sufficient
comments on the basic steps in his paper, together with
a rather large number of misprints, makes his article
somewhat hard to follow. Marsh’s extension of the
Rayleigh method is obtained via Wiener’s concept of
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“Generalized Harmonic Analysis” [56a]. It produces
an expression for the correlation function of the scat-
tered field at two points in space in a horizontal plane
below the rough surface upon which a plane monochro-
matic sound wave is incident, but “this solution is
readily extended to include electromagnetic waves,
general elastic waves, and non-planar, non-harmonic
sources” [p. 330—abstract].

The “exact” solution for the problem of wave scatter-
ing by irregular surfaces can be summarized as follows.
A monochromatic plane wave (direction cosines a, 8,
) is incident on a random pressure relief boundary
S[z=s(x,y)]. For the diffracted field p1(x,y,2), a plane-
wave representation is sought by writing

o
Pz = f f expl—ikOr+ay—m) MG (), (14)

where G(A, p) is the generalized spectrum of p,(x,y,3)
and A, u, » are the direction cosines of the diffracted
wave (hence: A2+u?-+»*=1). The expansion in Eq. 14
is a straightforward generalization of the Rayleigh
method for a periodic surface, in which py(x,y,5) was
decomposed into an infinite series of plane waves (see
Eq. 4). Rayleigh’s second assumption, that the expan-
sion is valid up to the boundary, is also adopted by
Marsh; the criticisms of Rayleigh’s approach apply
therefore equally to Marsh’s (see Sec. II-B).

With the boundary condition of zero total pres-
sure and after normalization of variables: kax=E,

ky=n, ks(x,y)=ct(&n), *=kH, B*=((s—(s))? and
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(b)
{—{))?) =1, Marsh obtained

exp[ —i(ag+Bn+vet)]

+[ f exp[—i(\-Hur—ra) MG =0.  (15)

After this, he expanded G()\u) in a power series in ¢:
GAR)=X o"An(\n) (16)
m=)

and the coefficients 4, are to be calculated. Substitu-
tion of Eq. 16 into Eq. 15 yields an infinite set of simul-
taneous linear equations for the determination of the
Am(\p). By clever manipulation of these equations
Marsh found a simple-looking expression for the scat-
tered field at a point not on the boundary. Choosing the
coordinate system in such a way that the point of ob-
servation lies in the plane z=0 (this includes: (¢ (x,y))
#0, in contrast to most other theories), he obtained:

p(n,0) = —exp[ —i(at+pr+ved) Y/ (14X), (17)

where X is a complicated operator closely related to the
basic expression in Wiener’s work.

Marsh, Schulkin, and Kneale [41] have worked out
the method in more detail, assuming ¢ so small that
G(\u) can be represented satisfactorily with three
terms of the series in Eq. 16. The necessary condition
for this approximation was not discussed. They cal-
culated the correlation function

V(e =@Em0* atentn0)  (18)
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and found

¥ ()= exp[—i(ak+Bn)]

]
X[1+47*a"1>(5,n)—-4w‘ f [ vF(?\—a,n—ﬂ)d?\dp:]— (19)

In this formula, F(\u) is the “power spectrum” of
£(&n), and ®(£n) the surface autocorrelation function;
F and & are each other’s Fourier transforms.

The Fourier transform of ¥(£7), called Ax(\,u), has
an important physical meaning: it ‘‘is proportional to
the intensity of waves proceeding parallel to the line
with direction cosines \, u.”” “In general, Axr will consist
of both a discrete and a continuous portion. The discrete
portion, where Ay is singular, represents plane scat-
tered waves of finite amplitude (such as the specularly
reflected wave). For such plane waves, the integral of
Ay in the immediate vicinity of its singularity is equal
to the square wave amplitude” [40, p. 331].

B. The Kirchhoff Approximation and Variations

When the scattered field at an observation point is
expressed as an integral over elementary sources induced
at the surface by the incident wave (this is the so-called
Helmholtz integral [25a], an assumption has to be made
for the first derivative of the scattered wave field at
the free boundary. For a random surface, the exact
value of this quantity is hard to obtain; approximation
then takes the place of exactness. The assumption most
frequently met is the “Kirchhoff approximation”: the
required directional derivative is put equal to the first
derivative of the incident wave, which is a known
quantity. The validity of this assumption is limited to
the case of surfaces that are “locally flat”; this means
that the radius of curvature of the surface has to be
much larger than the incident wavelength.

A systematic derivation of the Kirchhoff approxima-
tion, which discusses its limits of validity and ‘“‘shows
the size of the errors incurred through its use,” has been
published by Meecham [48]. His formulas justify the
foregoing qualitative statement.

The leading publication in the group of papers that
adopted the Kirchhoff approximation is the paper by
Eckart [31]. The interest of Eckart’s work lies in the
fact that he “obtained significant results with minimum
mathematical complexity by relying on a highly, de-
veloped physical insight into the problem,” as has been
remarked by Horton and Muir [3§, p. 627].

Also the work of Brekhovskikh has to be mentioned
here. His method of obtaining an estimate for the direc-
tional derivative of the scattered field at the boundary
corresponds to the Kirchhoff approximation.

1. Eckarl’s Theory

The basic ideas of Eckart’s theory can be summarized
as follows. A transmitter I' (monochromatic) and

a receiver R are placed above a reflecting surface
S[z=¢(x,y)]. The transmitter induces elementary
sources at S'; the scattered pressure field $1(R) can be
obtained from these sources via the Helmholtz integral.

oL L2 (D]

in which r is the distance from dS to R, and n is the unit
normal to 4 directed away from R. For a pressure re-
lease surface, one has the boundary condition

potp1=00nS, (21)

where p, is the incident pressure wave. The evaluation
of the Helmholtz integral requires also the first direc-
tional derivative of ;. As a second boundary condition,
Eckart assumed the wvalidity of the Kirchhoff
approximation,

Apy/n=2apy/dn on S. (22)

Mintzer [51] has criticized this assumption with good
reasons: when p; is fixed on S, the quantity 8p./dn
cannot be choosen independently [25a, .277]. He
showed that the second assumption is at most a first
approximation for smooth surfaces,

Eckart assumed that T is a directional source and so
far away from S that for all points of the insonified area
the distance to 7' is the same. A similar assumption is
made for R. Indicating the positions of T and R with
the direction cosines (ar,8r,yr) and (ar,8z,Yr), putting
artar=e, etc., and replacing 9/dn by 9/dz (small sur-
face slopes), he derived from Eq. 20:

dapi(R) i — [ [asase

710

Xexp[ —ik(ax+B8y+71)], (23)

where 14 is the distance from R to 0, the center of the
insonified area, and P equals the incident pressure at 0.
Equation 23 is the basic expression in Eckart’s theory.
It is used as the starting point for special cases.

Although the Eckart theory can be used for nonran-
dom-surface profiles, it is designed originally for a ran-
dom surface {(x,y) that can be considered as a station-
ary two-dimensional process, in which case second-order
moments of the scattered field are calculated. Two
auxiliary functions, then, play a role:

B (&) =( @9)8 (x-+E3+) (24)

and

T(Ea)= f f dedyP(5y)P*(etEytn).  (25)

) PutEmg %(0,0)=/* and calling ¢ the effective correla-
tion distance of {(x,) and L the effective size of the
insonified area, the basic conditions of Eckart’s theory
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Eckart calculated the average scattered intensity
(I,), for the low-frequency and the high-frequency cases.
For the low-frequency case, he found

{I.)=7J(0,0)a, 27)

o= (k*?/4m)'F (ka,kB), (28)

the function F(K;,K,) being the surface wave spectrum,
He refers to ¢ as “a dimensionless quantity that may
be called the scattering coefficient, or more descript-
ively, the scattering cross section for unit solid angle per
unit area of sea surface” [31, p.5687]. Equation 28
indicates an important result: “the low-frequency scat-
tering is determined by the surface spectrum, and not
by the height distribution” [42, p. 197].

In the high-frequency case, the calculation of ¢ is
possible only if the characteristic function of the two-
dimensional random variable W=[{(x,y), {(x',»)] is
known. The hypothesis of a Gaussian probability dens-
ity yields an expression for o that is independent of
frequency. This is a disappointing result for the “inverse
problem” (see Sec. V-F) as it does not contain the func-
tion ® but only the variances of the surface slopes.

with

2. Varialions of Eckart's Theory

Horton and Muir [38] extended the low-frequency
case by specifying ®(£y) [or F(K,K,), its Fourier
transform | for isotropic cases. Among others they sub-
stituted an exponential and a Gaussian shape for ®.
They found in all considered cases that, if a>>h, “the
scattered energy is highly directional and is concentrated
about the direction of specular reflection” [38, p. 632].
A companion paper by Horton, Mitchell, and Barnard
[68] deals with experiments on a rough Gaussian sur-
face in_a model tank. The authors used the high-fre-
Number 5 (Part 2) 1970
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quency formula for o of Ref. 3§ to check their experi-
mental data. The agreement was not very satisfactory,
until they changed the second boundary condition into

ap1/on=0 on' S, (29)

which is a compromise between Eq. 22 (valid for illumi-
nated areas) and dp;/dn=—apo/dn (holding in the
deep shadows). This modification can be interpreted as
the introduction of a ‘“shadowing function” (see Sec.
V-E), with the value 0.5 over the whole surface. The
remarkable effect of tke new boundary condition can
be observed in Fig. 5.

Although Eckart discussed only a low- and a high-
frequency case, his theory is also valid in the intermedi-
ate range of frequencies. Proud, Beyer, and Tamarkin
presented “a solution valid for all wavelengths” [55,
p. 544] for a surface with Gaussian probability density
(at least up to the second order), in which the Fourier
integral plays an important part. There is a difference
between their procedure and the one followed by
Eckart, which may be important for practical purposes
at low frequencies. “In the original Eckart theory, the
scattering was described in terms of a scattered inten-
sity proportional to the square of the magnitude of the
difference in pressure reflected from the rough surface
and that reflected from a plane surface replacing the
rough one. This procedure dictates that one know both
the amplitude and phase of these pressures in an experi-
mental determination of the scattered intensity.” The
procedure adopted by Proud e al. “leads to the experi-
mentally simpler operation . of forming the difference
between plane and rough surface reflected intensity.
No consideration of phase is then necessary” [55, p.
5461].

The authors investigated the dependence of the specu-
lar reflected intensity on the acoustic wavenumber,
angle of incidence, and surface roughness. The experi-
mental part of their investigations took place in 2 model
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tank with surfaces that had approximately Gaussian
characteristics. The quantity kky ranged from 0.25 to
2.00 in the first case, i.e., from a smooth to a rough sur-
face. The agreement between theory and experiment
was good, notwithstanding the violation of the condi-
tion of small surface slope.

A comparison between theory and experiments at sea
has been made by Clay [307]. Using the data of Brown
and Ricard [59] [who placed a pulsed CW source (168
Hz, pulse length 89 msec) and a receiver at a depth of
1000 yd, varied their horizontal distance between 1000
and 5500 yd, and measured the fluctuations of the scat-
tered field], he found from numerical calculation “a
curve that had about the same dependence upon the
source-receiver separation as the experimental data”
[30, p. 1551]. Clay extended the Eckart theory to an
omnidirectional source by subdivision of the surface
into rectangles for which the original theory could be
applied.

3. Brekhovskikh's Method

A detailed analysis of Brekhovskikh’s work cannot be
presented here, since translations of the original
Russian papers are not available, But Lysanov [3] gave
some qualitative statements about the method, and
discussed the limits of validity, whereas La Casce and
Tamarkin [69] provided some mathematical details.

It turns out that the method deals with periodic sur-
faces of zero total pressure. “The nature of the irregu-
larities must be such that at each point of the irregular
surface it is possible to draw a tangent plane in such a
manner that the plane does not depart very far from
the irregular surface at distances of the order of a wave-
length” [3, p. 3].

The essence of the Brekhovskikh method lies in the
assumption that the locally flat surface areas are only
specularly reflecting. Introduction of a reflection coeffi-
cient V, “which in general depends, through a complex
phase factor, on the surface coordinates, and which
can also depend on the local angle of incidence”
[69, p. 1427, and use of the boundary condition Eq. 21
make it possible to obtain an expression for dp,/dn. The
total scattered field can then be computed via the
Helmholtz integral. Application of this method to a
sinusoidal boundary of limited size leads to Fig. 1, which
has originally been published by Brekhovskikh. Com-
parison of his method with other techniques and with
experimental results has been done in Sec, II-D.

C. The Quasiphenomenoclogical Approach of Middleton

In contrast to the most widely employed “physical”
methods, where the irregularity of the boundary is in-
troduced via the boundary condition and where the
solution of the wave equation has to satisfy this complex
boundary condition, the quasiphenomenological ap-
proach of Middleton [49, 507 introduces the irregulari-
ties of the surface independent of the wave equation as

a random distribution of point scatterers, each with its
own impulse response function and directivity pattern.
This makes the model very flexible from a theoretical
point of view: time variation, frequency dependency of
the scattering, broad-band signals, complex geometry,
and directivity of transmitter and receiver, subsurface
scatterers (and also bottom and volume scatterers) are
easily incorporated into the model, and there is no
limitation on the degree of surface roughness, For this
reason, Middleton’s is the most complete theoretical
method. “The critical advantage of this approach are
[sic] the elimination of impossibly complex boundary
conditions, the inclusion of the essential geometry of the
overall system, and the ability to handle general signals
and aperture distributions. The principal, but not seri-
ous, limitation appears to lie in the ultimately empirical
nature of the impulse response function of the scatterers,
which must be quantified at some stage by experiment”
[49, p. 374]. The problem of how these experiments
should be performed is not discussed, unfortunately.
For this reason, the practical significance of this elegant
theory seems limited. The most promising application
may be found in computer simulations of the scattering
phenomenon, via a Monte Carlo method. On the other
hand, the physical models, although very limited in
their validity, seem to have a closer relation to experi-
mental work.

IV. EXPERIMENTAL RESULTS
A. The Amplitude of the Scattered Waves

When a monochromatic sound wave is scattered from
a wind-driven surface, the amplitude of the reflected
wave shows fluctuations in time due to the time varia-
tion of the reflecting boundary. This effect has been
measured by Liebermann [70] and Pollak [73] at sea,
and by D’Antonio and Hill [64] with a model tank.
Liebermann swept the frequency of his source from 27
to 33 kHz in 20 msec and observed the interference
pattern between reflected and direct wave. He defined
a reflection coefficient V as

V=(A mu"'A m!u)/(A mu+Amin}: {30)

where A and A, are the first maximum and the
first minimum of the signal envelope, and he found that
(a) surface reflectivity is highly frequency dependent;
(b) the median wvalue of V is near to unity, but for
approximately 109, of the time, V> 1 because of focus-
ing by the surface [70, p. 498—absiract) ; and (c) no cor-
relation exists between surface wave height and reflec-
tion coefficient [70, p. 503]. Pollak used a pulsed CW
source of 100 kHz and analyzed the reflected amplitude
statistically. His results indicate that the probability
density function of the reflected amplitude follows ap-
proximately a Rayleigh curve. The same result has been
obtained by D’Antonio and Hill with a wind driven sur-
face in a model tank. They conclude that “(a) for CW
transmission, the envelope of the received signal has a

The Journa! of the Acoustical Society of America 1219



LEONARD FORTUIN

REGION REGION REGION

[ 4 I o

BACK SCATTERING STRENGTH (dB)

1 1 ] | | | | 1
(] 10 20 30 40 50 &0 70 80 90

GRAZING ANGLE (deg)

F16. 6. Backscattering strength of the sea surface. In the three
regions it is suggested that the scattering processes are different.
From Urick [77].

bandwidth greater than the bandwidth of the surface
amplitude; (b) crosscorrelations observed between
envelopes of the received signals are low but finite; and
(c) thereis no correlation between the surface amplitude
and the envelope of the received signal” [64, p. 701—
abstract).

B. Intensity of the Backscattered Waves
(Reverberation)

“The importance of surface reverberation in the
applications of underwater acoustics can hardly be
over-emphasized. As a result, measurements of the back-
scattering of sound from the region of the surface have
occupied the attention of numerous observers. These
efforts have been of considerable value in attempting to
formulate a description of the phenomenon which is
adequate for the designer of underwater sonic devices
and to reach an understanding of the fundamental
mechanisms of scattering at the air-water boundary
defining the surface” [65, p. 104].

In experiments at sea, the scattered pressure or inten-
sity is often recorded. For comparative purposes a log-
arithmic quantity seems more convenient. Hence, in
most papers, a definition of surface backscattering
strength (in decibels) appeared. And although these
Number 5 (Part 2) 1970
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definitions differ from one author to another (sometimes
attenuation and spreading loss are included [657, some-
times a simpler approach is followed [77, 787]), their true
differences are small enough to make comparison pos-
sible, as is borne out by papers of a comparative charac-
ter [46, 63, 74, 757]. As an example of such a definition,
we mention the one presented by Urick [77] for plane
waves, because of its simplicity. He defined the back-
scattering strength, which we call o, as

op=10 IOg(Ia/IO)r (31}

where I,/I, ““is the ratio of the scattered intensity from
the unit area, measured at unit distance, to the intensity
of the incident sound beam. Following naval practice,
these distances are expressed in yards” [77, . 136].

Two types of sound sources are met: the directional
transducer, mostly operated with pulsed CW [22, 55, 59,
65-68,72, 73], and explosives [43, 57, 58, 60-62, 74]. In
the latter case, the data processing is then carried out
via narrow bandpass filters, making them an aggregate
of simultaneous “monochromatic sources.

All experiments considered here concentrate on the
measurement of ¢p as a function of one or more of the
parameters ¢, v, and f. A typical result is shown in Fig.
6. The curves for op as a function of ¢ prompted Urick
to “divide the angular range from grazing to normal
incidence into three regions, in each of which the domi-
nant scattering process seems to be different” [77,
. 1407]. These regions are indicated in Fig. 6. In Region
I, the scattering by subsurface bubbles is predominant,
at least when f is of the order of 60 kHz: “‘bubbles can
be important at low grazing angles and high wind
speeds, in the 60 kHz region, but definitely not at fre-
quencies of a few kilocycles or below™ [43, . 243]. This
scattering is not very dependent on ¢ for rough sur-
faces, indicated by a more or less horizontal curve.
Increase of wind speed generates more air bubbles and
hence increases op. Clay and Medwin agree with this
explanation [63, p.2134], but Chapman and Harris
doubt its validity, as they do not observe it at 30 kt.
They believe “that the scatterers were in a layer of
biological origin” [61, p. 1596 ] because a diurnal varia-
tion was observed.

“Turning next to Region III, near normal incidence,
the slope of the curves in this region and their behavior
with surface roughness suggests that sound is returned
by reflection (rather than scattering), probably by small
flat wave-facets oriented normal to the incident sound
beam” [77, p. 1427]. An increase of v now decreases oz
because at the rougher surface, less wave-facets have a
slope favorable for reflection. In Region II, Urick is
tempted “to speculate that the slow rise of ¢ with angle
in this region represents the effect of roughness scatter-
ing by surface irregularities that are much smaller than
a wavelength” [77, p. 145].

“Except for the small angle region,” Urick’s theory
is confirmed by Garrison e/ al. [65, p. 111]. Richter [74]



REFLECTION AND SCATTERING AT THE SEA SURFACE

reported a op decreasing with ¢, and Patterson [54]
derived a theoretical (phenomenological) model that
produces curves similar to those of Fig. 6 in Regions II
and III. His curves do not show a constant behavior in
Region I, but this can be explained by the fact that
Patterson only dealt with “facets having random distri-
butions of size and slope” [54, . 11507 and neglected
bubbles.

Brown et al. [60] studied op as a function of fre-
quency. A proportionality of o5 with f was found. Thisis
in keeping with the results of Chapman et al. [61,62] and
Richter [74]. On the other hand, in Marsh’s theory of
backscattering there appears to be an inverse depen-
dence of op on frequency [42, Figs. 11-1 and 11-2].
Also worth mentioning is that the results of Chapman
and Harris are in qualitative agreement with Eckart’s
theory: at relatively low frequencies, op decreases
rapidly with decreasing f (see Eq. 28), whereas op is
independent of fwhen fis relatively high [61, p. 1594].

An interesting study has been made by Schulkin and
Shaffer [75]. They reviewed experimental results on
backscattering in their relation to the Rayleigh criterion
of surface roughness (% sing<\/8). As most of the data
are presented as a function of v rather than /, they em-
ployed the Neumann-Pierson surface wave spectrum
for a fully risen sea in order to relate s and v:

2hi=H =0.0026v57, (32)

where H is measured in feet and » in knots. Then putting
=10 log(fH sing/C)®, (33)

they calculated the constants C and b for a number of
cases [61, 65, 78, plus data from an NDRC report] by
drawing the best-fitting straight line through the data.
As a result they found that b, the most significant
parameter, varied between the values 1 and 2. They
concluded that “there is no theory to date to relate all
the backscattering-strength data satisfactorily [75, p.
17037.

The differences in the results of backscattering mea-
surements are not only caused by differences in tech-
nique or in the definition of o5. A factor of great im-
portance, which has not always been recognized by the
interpretation of data, is the state of development of
the sea surface, which strongly influences its scattering
and reflection properties. More details can be found in
Sec. V-G.

An operational model for sea surface roughness and
acoustic reverberation, in which the theory of ocean
wave spectra has been applied extensively, has been
presented by Martin [46]. He distinguished scattering
and reflection, more or less corresponding to Urick’s
regions IT and III, and combined them into a “total
reverberation coefficient.” “The model, which has a
physical basis over the whole range of incidence angles,
is uncertain in its application mainly in present knowl-
edge of the statistics of the surface elevation and of

derivatives, yet correlates available experimental data
as well as other attempts” [46, p. 706 .

V. SPECIAL SUBJECTS

The subjects discussed in Secs. II-IV can be con-
sidered to be the main currents in the literature. There
are, however, a number of studies that only touch these
basic subjects in passing, or that concentrate on a very
special aspect. These papers are considered briefly in
this section. The last part (Sec. V-G) has an oceano-
graphic rather than an acoustical character, in contrast
to all the others, since it deals with the spectrum of the
surface waves, and with their height and slopes. But
these subjects play an important part in many papers:
the height and slopes because they characterize the
surface roughness, the wave spectrum because it pro-
vides the most realistic way to obtain an expression for
the correlation function of the surface irregularity.

A. Amplitude and Phase Fluctuations

“The reflection of an acoustic signal from an uneven,
time-variant surface leads to variation in the signal
form. For a monochromatic wave, these variations
appear as amplitude and phase fluctuations” [29, .
8871,

In previous sections, we have seen that for relatively
smooth surfaces the total scattered field pr can be sepa-
rated into a specularly reflected wave g, and a diffusely
scattered wave p,. Formulas for p, and g, can be ob-
tained from Eq. 23, by taking the first two terms of the
power series expansion of exp(—iky{). The ratio p./p.
is hence a known quantity. Expressing the pressure p
in amplitude and phase (p=4Ae’¥) and following
Chernov’s almost classical work [7e] amplitude and
phase fluctuations can be defined as

6.4/_»] r=Re(Pc/Pr): ‘W’=Im(Pl/Pr) (34}

where it is supposed that | ,|<| #,|. This definition is
employed by Gulin and Malyshev [, 35, 36, 66, 67 ] for
the surface diffraction. An important role in these
papers, and also in the work of Smirnov and Tonakanov
[76], is played by the Rayleigh roughness parameter X:

X=2kh sing (35)
(cf. Eq. 6).
Two different surface correlation functions appeared

in the theory: ’

@1 (§) =h* exp(—£/a?) cos(KE) (36)

and

Da(Em) =k exp[— (£+77)/a]; (37)

@, is an approximation for a quasiharmonic surface
(“swell”), ®, for “sea.” Together with these functions,
the wave parameters D, and D, are used:

D.=ka* sin’¢/Ry, Dy=Fka*/Ro. (38)
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The transmitter and receiver are lying in the plane
y=0, R, is half the distance between them via the
specular path. Two regions of D, are considered: either
much smaller than unity, or much larger. The physical
significance thereof is that a, the effective surface corre-
lation distance, is either much smaller (D.<1) than
the projection in X direction of the diameter of the
first Fresnel zone along the propagation path [i.e.,
(2AR,)}(sing)*], or much larger (12.>>1).

The probability density function for the amplitude,
calculated from experimental data [667] (for “swell”,
x> 1, pulsed CW), confirmed the results of Pollak [73]
and D’Antonio and Hill [64], who obtained approxi-
mately a Rayleigh curve. For X .21, a Gaussian curve
was found to be a good approximation.

Also the spatial autocorrelation of amplitude and
phase fluctuations has been studied, both theoretically
[36] and experimentally [67]. Small correlation dis-
tances in X, ¥, and Z direction have been considered.
It was found that the correlation in Z direction decreases
much faster than in X direction (which is the direction
from transmitter to receiver).

An important conclusion can be drawn from all these
studies: both theory and experiment demonstrated the
presence of a distinct correlation between the scattered
field at one or more receivers and the state (period,
roughness) of the diffracting surface. For the reflection
coefficient, such a correlation has not been found (see
Liebermann’s third conclusion, Sec. IV-A).

B. Surfaces with Two Types of Roughness

At the surface of the ocean the roughness can very
often be considered as a superposition of several types
of roughness: “the typical sea surface is comprised of
‘swell,” ‘sea’, and ‘ripple’ ” [37, p.599]. In three
papers, a model with different types of roughness
(large-scale plus small-scale) has been developed.
Kur'yanov [39] and Beckmann [27] supposed them to
be independent and demonstrated the relative impor-
tance of the small-scale irregularities.

Correlated roughnesses, with a normal distribution
(four-dimensional), representing a statistically isotropic
surface, have been analyzed by Hayre and Kaufmann
[37]. They calculated the mean scattered power in an
arbitrary direction when a plane monochromatic wave
was incident. For a slightly rough surface, this scattered
power contains two terms: a specular and a diffuse one,
the latter containing the effect of both types of rough-
ness plus their combined effect, in a rather complicated
way. These effects are expressed in second-order quan-
tities (variances and correlation coefficients). A mod-
erately rough surface produces additional terms of a
more complicated structure. The result of the last case,
the “extremely” rough surface (but the Kirchhoff
approximation is used and hence the surface cannot be
too rough), can be interpreted as if the surface consisted
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of three independent processes: small-scale, large-scale,
and a combined roughness.

C. Surfaces with a Sublayer

Below a wind-driven surface, air bubbles are often
formed. Moreover, at sea sound speed can vary with
depth and biological objects can also be present just
below the surface. Consequently, the scattering of sound
waves from the boundary can be accompanied by a sub-
surface scattering. In particular, Russian authors have
tried to find out under what conditions this layer effect
can become so important that it “‘screens” the surface
scattering. In most cases, this is done via a modified
Rayleigh approach. Glotov and Lysanov [33,34]
assumed a homogeneous layer of air bubbles whose
diameters are small compared with the incident wave-
length. Lysanov [ 14] characterized the inhomogeneous
layer by the index of refraction u(z) and also studied
the effect of a layer for which the sound speed is a func-
tion of depth [157]:

¢(z)=c[1-b(s—A) T (sLA). (39)

In this last case, the scattering possesses a resonance
character: the reflection coefficient shows peaks “when-
ever the scattered wave turns out to be a natural vibra-
tional mode for the given layer” [15, . 70].

D. “Doppler” and Other Frequency Effects

Many papers deal with surfaces that are independent
of time. But a simple observation at sea shows that a
realistic description of its surface is not possible without
introduction of the time variable. Because of the time
dependency of the ocean surface, the transmission of a
monochromatic wave results in a received signal that
shows random fluctuations in amplitude and phase,
when they are recorded as a function of time (see also
Sec. IV-A). Since the phenomenon is due to movement
of the surface elements, the terms “Doppler effect” or
“frequency smear” are also used.

When a sinusoidal surface (wavenumber K) moving
with constant speed # isconsidered, as has been done by
Gulin [8], the scattered waves of order 7 are Doppler
shifted over a frequency wp that is given by

(40)

It follows from this formula that the specularly reflected
wave (m=0) is not influenced by the Doppler effect.
This is correct, as the specular reflection comes from the
“average” (flat) surface.

This case may seem somewhat theoretical since the
ocean surface has a spectrum of sinusoidal waves rather
than a single wavelength. But Liebermann stated that
“monochromatic radiation will be preferentially scat-
tered according to the familiar diffraction grating form-
ula” [71, p. 932]: for a given geometry, the scattering
of a monochromatic wave is mainly produced by the

wp=mKu.
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surface wave of length A, where
A=\ (Sinain"I'Sinaout)Ht} (41)

i.e., the scattering has a resonant character. This fact
is also mentioned by Eckart (Eq. 28). Measurements
made by Liebermann [71] have confirmed his state-
ment, and formulas derived by Marsh also indicate that
“the reverberation spectra will be narrow and centered
at frequencies w==wp” [44, p. 1836].

Parkins [52] studied the spectral density of the waves
scattered from a Gaussian surface described by the
Neumann-Pierson directional wave spectrum, for two
cases: the slightly rough surface (low frequency or low
sea state) and the very rough surface (high frequency
or high sea state). This study has recently been extended
to the coherence of acoustic signals that are reradiated
by the sea surface. “The reradiation from a slightly
rough surface is found to be principally a reflection: In
the specular direction, there is a coherent, monochro-
matic reradiation, which becomes partially coherent as
the direction of observation becomes off-specular and
scattering becomes important. In the off-specular direc-
tion, the reradiation is still monochromatic, but there is
a Doppler shifting away from the frequency of the
incident radiation. When the sea surface becomes very
rough and there is only diffuse scattering, there is no
direction in which coherent radiation can be observed.
In this case, the time variation is a sinusoid whose am-
plitude and phase change slowly at a rate determined by
the wind velocity and the angles of incidence and
observation” [33, p. 123].

E. Geometrical Shadowing

The phenomenon of “shadowing” of certain surface
areas by other parts of the boundary, which can occur
when the surface irregularities are large with respect to
the wavelength of the incident radiation and at small
grazing angles, has been treated separately. The papers
devoted to this phenomenon are concerned with the
calculation of a “shadowing function,” based on the
statistics of the surface, with which the scattering area
has to be weighted. Two papers have been found in
which the shadowing function is applied: in one ex-
plicitly [277, in the other implicitly [687]. The latter
one is discussed in Sec. III-B-2.

The starting point in this area of investigation is the
article by Beckmann [79]. His method, extended by
others, can be explained with the aid of Fig. 7, in which
a plane monochromatic wave is incident on a rough sur-
face with incident angle 8. The shadowing function S is
the probability that the point {(0) is illuminated.
Beckmann found for this function the general formula

5(9)=em|:— f qcx)dx],

where g(x)dx is the probability that {(0) is shaded by ¢

(42)

Z

=
xcot @
8
clo) clx) {(x+dx)
4 x
0 X xhdx

Fic. 7. Geometry for the shadowing of a random rough surface
(two dimensional).

in the interval (x,x+dx), given it is not shaded by ¢ in
(0,x). This probability is put approximately equal to
the probabillty that ¢ will interrupt the ray directed
towards {(0) in (x,2+4dx) with slope greater than that
of the ray, i.e., cotd. Hence, the integrand in Eq. 42
contains two conditions: one on the surface elevation
in (x,x+dx) and one on the slope {’. Although these
quantities are correlated, Beckmann treated them as in-
dependent “so as not to complicate matters.” The re-
sulting error “turns out to be zero for symmetrical
distributions” [79, p. 3857, For a surface with Gaussian
correlation function, he obtained

S(6) =exp[ —1 tanf-erfc(a cotd/2h)]. (43)

It is important to note that in Beckmann’s calcula-
tion of .S(6) only the elevation {(0) of the surface obser-
vation point has been considered. But the slope {(0)
also plays a role: if its value is larger than cotf the point
will certainly be shaded. This fact has been recognized
by Wagner [83]. He calculated S(6) for given {(0) and
$'(0), using Beckmann’s method. He found, instead of
Eq. 42,

S[e¢(0),¢(0)] ,
= exp[— f q(x)dx]U[cot&— £(0)]. (44)

To obtain S(f), Eq. 44 has to be averaged over all
possible values of height and slope. Wagner performed
this operation while maintaining the correlation between
these quantities.

A simplified method for the evaluation of the integral
in Eq. 44 has been published by Smith [§2]. He
neglected the correlation between height and slope, but
obtained for Gaussian & results that do not differ sig-
nificantly from the more complete solution of Wagner
(see Fig. 8).

Shadowing in the case of backscattering has been
simulated on a digital computer by Brockelman and
Hagfors [807]. Their shadowing function R(8) puts
special emphasis on those surface elements that are
perpendicular to the line of sight of the observer. This
different concept of shadowing, which is based on reflect-
ing facets, caused serious disagreement with Beckmann
[80, p. 626: Discussion].
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In Fig. 8, we have combined some results of the papers
mentioned. The disagreement between Beckmann’s
theory and the computer “experiment” is especially
large for the rougher surface (k/a=1). It is also clear
that Wagner is in excellent agreement and that the
simplified approach of Smith is very useful.

F. The Inverse Problem

The present section deals with the problem of how
the surface correlation function ®(£7) and related
parameters can be derived from the properties of the
scattered field. Eckart [377] was the first to touch upon
this “inverse problem.” He observed that the surface
wave spectrum F (the Fourier transform of @) could in
theory be measured for low frequencies via o (see Eq.
28). “Unfortunately, it is necessary to vary the direc-
tional parameters « and 8 as well as the frequency of the
incident radiation. This may be difficult in practice”
[31, p. 568]. Even more disappointing is the result for
high frequencies: in that case ¢ does not contain the
function @ but only the variances of the slopes.

Proud, Beyer, and Tamarkin [557, who have slightly
modified the Eckart theory, expressed ®(#) as the ratio
of two empirical functions: one is related to the scat-
tered intensity as a function of frequency; the other
describes the source radiation pattern. The formula
holds for a smooth -surface: |k{max cosf|<<1. The
authors showed “that in theory one can form an esti-
mate of the reflecting surface correlation function from
acoustic measurements alone. It was shown, further-
more, that all the information about the surface is con-
tained in the backscattering” [55, p. 5527].

A very simple experiment to perform a spectral analy-
sis of a rough surface has been described by Liebermann
[71]. He used the fact that the scattering of a mono-

- chromatic wave from a rough surface is resonant: for a
given geometry and incident wavelength, it is mainly a
Number 5 (Part 2) 1970
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narrow band of surface waves that produces the scatter-
ing. Hence, “a ‘spectrum’ analysis of surface roughness
can be obtained by slowly varying the frequency of the
incident monochromatic radiation and observing the
magnitude of the scattered radiation” [71, p. 932].
Marsh [44] provided the corresponding formulas for
the two-dimensional case and showed how the rever-
beration spectrum and the surface wave spectrum are
related.

Medwin [72] analyzed the specular reflection from
a wind-driven surface at normal incidence. and for
several values of the roughness parameter X, as defined
by Eq. 6. He found that measurement of the specularly
reflected intensity makes it possible to predict the rms
wave height if X*<0.1, and the rms surface slope if
x*>10.

G. Surface of the Ocean
1. Surface Height and Slopes

In all studies that deal with a random surface, it is
assumed that the surface elevation and slopes can be
considered as Gaussian processes, stationary (in time)
and homogeneous (in space). It has become clear from
measurements that this assumption, although made
mainly for computational reasons, is fortunately not too
far from reality. Kinsman [§5] recorded wave height
with a capacitance pole and computed the probability
density function of the surface displacements. The sur-
face slopes have been studied by Cox and Munk [§4].
Their method consisted “in photographing from a plane
the sun’s glitter pattern on the sea surface, and translat-
ing the statistics of the glitter into the statistics of the
slope distribution” [§4, p. £387].

2. Surface Correlation Funclion and Wave Spectrum

As for the correlation function of the surface rough-
ness, mainly two types have been applied, namely the
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ones given in Eqs. 36 and 37. They have been chosen for
their relative simplicity in the evaluation of integrals.
Moreover, the first one is not too bad for “swell,” a
narrow band type of waves. More realistic, however,
seems the introduction of the theory of a surface wave
spectrum, which is very well explained by Kinsman
[85], among others. In this theory the surface rough-
ness is considered as the combined effect of a band of
surface waves that travel in all directions over the sur-
face, each of them having its own wavelength. For the
deep ocean the waves are gravity waves; their wave-
number K is related to the frequency w, via

K=w/g. 45)

The surface correlation function $(p) for an aniso-
tropic surface can be described in terms of the energy
spectrum function A*(w,a), where a represents the
direction of travel of the waves with frequency w.. These
functions reduce to ®(p) and 4*(w,) when the surface is
isotropic. The relation between A2(w,) and ®(p) can
easily be found. A plane wave with frequency w, and
direction « arrives at two observation points, situated
on the X axis at distance p, at times that differ by an
amount 7, such that

T=p cosa/u. (46)
Here u is the frequency-dependent wave velocity,
u=g/w, (47)

which follows from Eq. 45. The contribution of this
wave to ®(p) equals exp(—1w,7) ; this has to be averaged
over all possible directions and weighted with the energy
spectrum A4*(w,). The final result is

3(p) % j; i dw,.4’(m.)]n(w—:f),

a formula applied by Marsh_[41, 42, 43].

There is some disagreement in the literature about
the explicit form of the function 4*(w,). At least part of
the discrepancies can be explained by realizing that the
measurements on which the empirical formulas for
A*(w,) are based have not all been made in seas with
the same state of development. We have already ob-
served that this fact also plays a role in the different
outcomes for backscattering measurements (see Sec.
IV-B). When a constant wind starts creating waves on
the sea surface, the stationary situation (that is, a
“fully aroused sea’) is not reached immediately but
after a certain lapse of time. Before that moment, the
sea is partially developed and has a wave spectrum that
is different from that of the completely developed sea.
‘When the wind stops, or when the waves travel outside
the “fetch” where they have been generated, their
spectrum changes from broad-band (*sea”) to a narrow-
band and low-frequency spectrum (“swell”), because
the low frequencies outrun the high ones (cf. Eq. 47).

(48)

THE SEA SURFACE

An excellent account of the generation and propagation
of ocean waves is given by Kinsman [857.

Marsh [41, 42] applied the Neumann-Pierson model
for A%(w,), in which the wind speed v appears as a
parameter:

A*(w,) =Cw, " exp(—2g%/w.?); (49)

v is expressed in centimeters/second and C=4.8X10*
cm?/s% Parkins [52, 53] used the anisotropic version

A*(wy,0) =Co,~ exp(—2¢*/w,*?) cos’a
X (—ir<a<im), (50)

and C=3.05 m?/s%. In Ref. 43 [p. 240] Marsh stated:
“Arguments have been presented that a more satis-
factory form of the equation is

4 {‘l’t) _ ngw‘—s’ (5 I)

where C=7.4X10~*, an absolute, dimensionless con-
stant.” This formula “contains no dependence on wind
speedf and is intended to apply to the fully developed
sea.” Still another spectral form is proposed by Pierson
and Moskowitz [§7]:

A (w,) =Cg'w, " exp(—0.74g"/w "),

with C=28.10X10-.

The meaning of “fully developed sea” or “fully
aroused sea” can be understood with the function
A*(w,). It is a sea whose spectrum, for a given wind
speed, contains components of all frequencies 0<w, < =,
each with the maximum energy of which it is capable
under the given wind. The total energy in a fully
aroused “Neumann sea” can be found by integration
of Eq. 51 over w, from 0 to = [§5, p. 3907. With Eq.
48, it can be seen that this integral equals 28(0), or 2/%.

(52)

VI. SUMMARY

(1) Scattering and reflection of sound waves by the
sea surface is dependent on time, on frequency of inci-
dent waves, and on the geometry of transmitter and
receiver. No theoretical models have been found in
which these three basic variables are considered simul-
taneously, except the quasiphenomenological model
(Middleton). This latter model, however, has a serious
disadvantage: it is based on quantities that have to be
found by experiment.

(2) Almost all scattering theories are only valid for
smooth surfaces (small slopes). Of these theories, the
Eckart approach has been applied most frequently,
because of its relative simplicity. The Rayleigh pro-
cedure, and its generalization for random boundaries
(Marsh), is based on a seriously criticized assumption.
For very smooth surfaces, however, its results are
comparable with those of other theories.

(3) The Uretsky theory not only covers the scatter-
ing at smooth boundaries, but also gives a fairly good
prediction for rough boundaries. Unfortunately it has
been developed only for a sinusoidal surface.
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(4) The surface elevation and slopes are generally
assumed to be stationary Gaussian processes. Measure-
ments at sea have indeed shown the validity (with
limitations) of this assumption.

(5) The most realistic way to incorporate the correla-
tion functions of surface height and slopes is via the
theory of the surface wave spectrum (Neumann-
Pierson).

(6) The scattering of a monochromatic wave at a
random surface is resonant: the scattering is mainly
produced by a small band of surface waves that fit the
incident radiation (Liebermann).

(7) The backscattering contains all statistical in-
formation about the surface. An acoustical determina-
tion of the surface statistics is therefore possible, in
theory.

(8) A large quantity of experimental data has been
collected at sea and by using model tanks. The influence
of several parameters has been studied: wind velocity,
frequency of incident radiation, grazing angle, etc. The
data indicate three mechanisms: reflection by wave
facets near normal incidence, scattering by small air
bubbles below the surface at small grazing angles, and

FORTUIN

scattering by irregularities that are small compared
with the incident wavelength in the intermediate re-
gion (Urick).

(9) No correlation has been found between the height
of a random surface and the reflection coefficient. The
second-order statistical moments of the diffracted field
(spatial correlation functions, intensity, etc.), however,
show good correlation with the surface irregularities.
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Appendix A : Amplitude Coefficients for a Sinusoidal Boundary
(Absolute Values)

¢=cosf, s=sinf, cm=C080m, Sm=sinb,, (from La Casce
and Tamarkin—Ref. 69).

Rayleigh
Ao=TJo(2hke)+% (c—c—1)hkJ \(21kc),
A_y=T1(2hke).
Eckart
Ao=Jo(2hkc),

Hen
R Tl ekl
2¢
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Brekhovskikh
A 0=J0(2kk6),
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2.3 Literatare up to the middle of 1973

2.3.1 General considerations

During the four years that have elapsed since the preparation of [2.2], the interest
in the subject has maintained its high level. The general conclusion that “most papers
give a very incomplete description of the phenomenon of scattering and reflection of
sound waves at the ocean surface” [2.2, p. 1211 is still valid, but there is a strong
tendency towards a more complete, and also a more realistic approach to the problem.
This is evidenced by the following facts:

1. Deterministic models (sinusoidal or other periodical boundaries) are almost
entirely replaced by models in which the sea surface is a random process.

2. Point sources, both omni-directional and with a certain beam pattern, have taken
the place of the plane wave sources.

3. In many theoretical models the time variation of the sea surface is taken into
account. The broadband case is covered by treating the surface as a random,
linear, time-varying filter.

4. The statistical properties of the ocean surface are more and more expressed in
terms of the surface wave “energy’’ spectra.

5. Theoretical models and experimental studies are no longer restricted to the
determination of amplitude and phase fluctuation, scattered intensity or scattering
strength, but also deal with subjects like Doppler effect, time correlation of the
scattered field, and spatial correlation. Sometimes, in experimental work, the
statistics of the sea surface are measured concurrently with the acoustical quantities.

6. Shadowing and multiple scattering are incorporated in some of the theoretical
studies.

One article has to be named explicitly in this sub-section: the review paper by HORTON
[2.3]. This article does not contain more information than the survey I made [2.2],
although it is slightly more up-to-date. Its interest lies in the fact that it considers the
literature in a wider context, from a point of view aimed more at application, and
guided by a large experience in the field.

2.3.2 Sinusoidal and other periodical boundaries

Theoreticians are still intrigued by the possibility of solving, once and for ever, the
diffraction problem for a periodical boundary. HOLFORD [2.5] obtained “An Exact
Solution™ by differentiation of the Helmholtz equation. This differentiation allowed
him to employ the work of Urusovskil, who studied surfaces that are not of the
pressure release type. His analysis also leans heavily on the work of URETSKY (Section
2.2, [24, 25]), which he criticizes in passing because of its process of truncation and
matrix inversion.

The discussion on the Rayleigh assumption is continued by MILLAR [2.6].

It may also be noted that in two articles the sea surface is explicitly considered to
consist of a set of sinusoidals [2.35, 2.48].
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2.3.3  Random boundaries

An often encountered assumption, namely that the Fraunhofer approximation
can be used when source and receiver are distant enough from the surface (because
then they are in the “far field”), is discussed in a paper by MELTON and HORTON
[2.23]. They show that in practical cases the far-field condition is often not satisfied,
so that the Fresnel approximation is superior. Comparison with experimental data
[2.40] confirms this. The implications of the Fresnel correction are investigated by
McDoNALD and SPINDEL [2.21].

As the Fraunhofer approximation leads to simpler formulae than the Fresnel
approach, application of the former is very tempting, notwithstanding its limitations
[2.12]. One method to overcome its drawback has been suggested by CLAY, as was
already pointed out in Section 2.2 (p. 1219). It consists of subdivision of the scattering
area into surface units for which the Fraunhofer formula can be used. In this way the
Eckart theory, still attractive for its relative simplicity, is again applicable [2.10, 2.33].
The Eckart model is also still in use without division of the surface [2.30, 2.48].

As for the sound source, most theoretical papers deal (for simplicity) with incident
plane waves, or sometimes with an omni-directional point source. But point sources
of arbitrary directivity can be handled in a relatively simple way by expansion of their
sound field in an angular plane wave spectrum. This is demonstrated by CLARKE
[2.9], in a study of the coherent part of the reflected field.

A new aspect in the literature on random boundaries is the application of filter
theory to the surface scattering phenomenon. In this view the sea surface is considered
as a linear, random, time-dependent filter [2.12, 2.21, 2.28, and 2.49]. Its impulse-
response function, its frequency-transfer function, or any other system function, can
then be used to describe the scattering, of course in a statistical sense. With this
concept, subjects like Doppler spread and time smear of the surface channel are
investigated.

The quasi-phenomenological model of MIDDLETON (see Section 2.2 — Part 111.C)
has been extended to include “the often critical effects of absorption in the medium,
multiple specular reflections, and nonzero velocity gradients™ [2.24, p. 35 — abstract].
My criticism on this approach, expressed in Section 2.2 (pp. 1219 and 1225) and
regarding its practical limitations, are commented in [2.25, p. 86]. It is claimed that
“in the light of the recent works (...), earlier comments on this practical limitation
to the usefulness of our theory (...) seem no longer in force”. One of these “recent
works™ can be found in the open literature, namely [2.27] together with [2.28].

It is admitted [2.25, p. 87] that the model applies better to volume reverberation
than to surface scattering. Hence I maintain my doubts about the usefulness of the
quasi-phenomenological approach, as far as surface reverberation is considered.

Two more phenomenological approaches have been published [2./4 and 2.29].
Especially ROEBUCK’s paper [2.29] is interesting, because it is one of the rare studies
that use the Kirchhoff formula (time domain) instead of the usual Helmholtz integral
(frequency domain).
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2.34 Experimental results

The collection of data at sea seems unlimited, as so many parameters (e.g. wind
speed, wind direction, sea state, grazing angle, type of sound source, transmitted
frequency) can be varied. In general there is good agreement between new data and
existing results, and between the theoretical predictions and experimental outcomes
[2.34, 2.36, 2.37, 2.39, 2.43, 2.47, 2.48, and 2.51). In particular the work of ANDREYEVA
[2.34] should be mentioned, because it compares the data of many authors.

Experiments in model tanks are also described [2.38, 2.40, 2.42, 2.45, 2.48, 2.49,
2.51, 2.53]. They have the advantage that the parameters are easier to control.

Although the measurement of backscattering strength [2.34, 2.35, 2.37, 2.38, 2.39
240, 247, 2.49] and forward scattered intensity [2.36, 2.42, 2.45] is still receiving
much attention, we can discover the tendency towards the experimental verification
of theories for more complex quantities like correlation functions in time and space
[2.43, 2.45, 2.48, 2.51, 2.52].

The theoretical models that are used in comparison with the data for scattered
intensity are mainly based on Eckart’s work (Kirchhoff approximation) or on the
derivations of BECKMANN and SpizzicHiNO [2,40, 2.42, 2.48]). FUNG and LEOVARIS
[2.40] describe an improved Kirchhoff theory that fits the data better than the ordinary
Kirchhoff model.

When explicit formulae for the sea surface correlation functions are needed, the
exponential and Gaussian attenuated cosine functions are still encountered [2.45].
There is an increasing awareness, however, of the necessity to describe the sea surface
by its wave spectrum. Consequently, the (concurrent) measurement of such spectra
becomes part of the experiments [2.37, 2,47, 2.48, 2.49, 2.51]. The directional wave-
number spectrum is gaining the interest of experimentalists. DUNN [2.39] describes
a new buoy for its measurement.

A new type of “experiment” is introduced by BoURIANOFF and HorTON [2.35]. It
consists of a computer simulation of backscattering from a two-dimensional “sea™.
The conclusions are not very satisfactory, but continuation and improvement of this
type of work seems promising.

Azimuthal dependence of backscattering is measured by REEVES et al. [2.47]. They
used a three-axis gyrostabilized transducer with a very narrow beam, and found no
azimuthal dependence for wind speeds above 9 knots. An explanation is sought in
the formation of sub-surface bubbles.

The idea of treating the surface scattering phenomenon from a communication
standpoint is also gaining popularity among experimental workers. Thus the impulse
response of the wind-driven surface appears as the subject of measurements [2.51].

2.3.5 Special subjects

A. Amplitude and phase fluctuations
The mean value and variance of 44/4, and Ay, random quantities defined accord-
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ing to CHERNOV [2.2, p. 1221], are calculated by MELTON and HORTON [2.23], with the
Fraunhofer as well as with the Fresnel approximation. They showed that the Fresnel
approximation is superior to the Fraunhofer approach only for the prediction of
amplitude fluctuations.

B. Surfaces with two types of roughness

A paper by HUANG [2.18] deals with this subject. Its main improvement over older
work lies in the implication of the surface slope distribution. It is found that surface
slope, incident angle, and acoustic wavelength play a dominant role, the latter being
most important. “The effect of the small irregularities on the surface is to broaden
the angular distribution of the scattered acoustic wave at high frequency” [2.18,
p. 1608].

C. Surfaces with a sub-layer

A model study by Buppruss [2.38] confirms the results of GLoTOV and LysaNov
[2.2, p. 1222] that after a certain concentration of air bubbles is reached, the surface
is completely screened.

D. “Doppler” and other spreading effects

An interesting article has been published by Roperick and CRon [2.48]. They
investigated the frequency spectra of forwardscattered sound from the ocean surface
in three ways:

1. a theoretical study;
2. a model-tank experiment;
3. an ocean experiment.

Their theory for a travelling sinusoidal, based on Eckart’s scattering integral, is
confirmed by the model-tank experiment. Their ocean trials agree with the conclusion
of PARKINS [2.2, p. 1223] that the important parameter for frequency spread is the
power spectral density of the ocean waves.

Transmitting CW-pulses of 750 and 1500 Hz simultaneously, they found that:
“(1) Both amplitude and phase modulation are present. (2) The frequency
spectrum consists of a carrier equal to the original transmitted frequency,
with sideband frequencies related to the ocean spectrum and peaked at the
frequency of maximum energy on the surface. (3) For all conditions for the
ocean experiment, the frequency spread is less than 1 Hz, and under low
sea state conditions, the spread is about 0.2 Hz"” [2.48, p. 765].

These results are further supported by the latest work of PARKINs [2.26], and by
that of ForTUIN [2.12].

Other spreading effects, such as the time smear in the channel, are observed by

SPINDEL and SCHULTHEISS [2.57].
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E. Geometrical shadowing

Two papers, one by LyNcH [2.19] and one by LyNcH and WAGNER [2.20], deal
with geometrical shadowing and multiple scattering. Their shadow-corrected theories
hold for high frequencies, retain curvature effect, show that “the neglect of multiple
scattering effects in the theory of high-frequency scatter from random rough surfaces
is manifested as a nonphysical energy loss or gain™ [2.20a, p. 816], and satisfy the
law of energy conservation for near grazing incidence.

The shadowing function, earlier derived only for incident plane waves, has been
calculated by HARDIN [2.54] for a random surface that is illuminated by a point
source. He analyses the effect of source height and surface variability, and shows
that WAGNER’s expression for the shadowing function (see Section 2.2, p. 1223) can
be obtained as a limit of his analysis.

The statistics of specular points on a Gaussian surface, important when very high
frequencies are transmitted, have been studied by SELTZER [2.55], for a corrugated,
a composite and an isotropically rough surface. His digital simulation indicates that
SmiTH’s shadowing formula (Section 2.2, [82]), provides the best approximation.

F. The inverse problem
No papers have been found that throw new light on the inverse problem.

G. Surface of the ocean

There is a growing interest in the proper statistical characterization of the sea
surface. For acoustical purposes not only the wave-frequency spectrum, but also the
directional wave-number spectrum is important. More and more effort is put in the
measurement of the latter [2.60, 2.61, 2.64], but a satisfactory method has yet to be
found.

For a fully developed sea, surface correlation functions in time or space can be
obtained by integration of an empirically established surface wave spectrum. This is
done by ForTUIN and DE BOER [2.59] for the Pierson-Moskowitz spectrum and the
Neumann-Pierson spectrum. They find little differences in the correlation functions.

In most work on the characterization of the sea surface it is assumed that the surface
statistics are bivariate Gaussian. Measurements made by SPINDEL and SCHULTHEISS
[2.63] seem to indicate that this may not always be realistic.

2.4 Summary

The literature on reflection and scattering of underwater sound waves from the
ocean surface (and on related subjects) that appeared before the middle of 1973, has
been analyzed in this chapter. It is found that the phenomenon is still considered as
an important and interesting problem. As a complete description is yet missing, work
is going on in this field, theoretical as well as experimental. The theoretical models for
the prediction of the scattering are becoming more sophisticated and more realistic,
the data collection more complete and refined.
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CHAPTER 3

DESCRIPTION OF THE SEA SURFACE

3.1 Introduction

When wind is blowing over the surface of the sea, a complicated mechanism of
interaction between air and water causes the formation of surface waves. Many
studies have been made to investigate this phenomenon, and many models have been
proposed to describe it, but a description that covers all aspects is not yet available.

Attempts have been made to characterize the sea surface with only one parameter,
especially the wind speed. But the time during which a certain constant wind has been
blowing (the “duration’) and the size of the area over which it has been blowing (the
“fetch™) also play an important role. This has lead to the concept of a “fully-developed
sea”, over which the wind speed and direction have been constant long enough for
the wave system to contain the maximum amount of energy it can possibly have: an
equilibrium has been reached. Clearly, this is mainly a theoretical construction:
winds of constant speed and direction do not last very long, certainly not in large
areas. Nevertheless, the idea of a “fully-aroused sea™ has produced useful results.

A very good introduction to the subject is given by KinsMAN [3.1]. More recent
insights are presented by PHILLIPS [3.2]. Both authors point out that the sea surface
is a random process, in space as well as time. This process, z = {(R, t), is not Gaussian
(there is a certain skewness of the waves, and waves of infinite height have zero
probability), but in many respects it may be assumed to be Gaussian (Assumption 4),
as measurements have indicated (see Section 2.2-V.G.). This is an important result,
because it signifies that the surface can be described statistically by only two quanti-
ties, namely mean value and correlation function.

The process { is homogeneous and stationary (Assumption 3). From this it follows
that the mean value can arbitrarily be set at zero:

<{R,)> =0, (3.1)

and that the correlation function depends not on the actual observation positions and
times, but only on their differences:

<URy, )R, 1) > = hz‘b(Rl =Ry, [t —13]),
= h*®(&,n, 7). (3.2)

The normalizing constant 4* (so that @(0, 0,0) = 1) is the variance of the surface
elevation. The spatial argument of @ has two components, because the surface is
anisotropic.
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In the following not only the surface elevation ¢ will be encountered, but also the
slopes {, and {,, the time derivatives {, and {,, and the second order space derivatives
Lo Uy and C. As { is Gaussian (Assumption 4), it can be shown [3.3, pp. 145-147)
that these derivatives have Gaussian statistics too. Their mean values equal zero
when the elevation has zero expectation, i.e. when (3.1) is valid.

Once the correlation function of { is known, those of {y, {;, (i exn Liyr Copo Cae
can be found by differentiation. Indicating the combination (R, #,) by the subscript 1
and (R,, 1,) by 2 (c.f. (3.2)), we have:

<C.thx2 > = -h262¢/a§2
= CxlC’yZ S _hzaz‘p,‘aéaq (33)
<1y > = —h*3*®[on’,

< CxxlexZ > hza4¢/@é4
< Lanrlyy2 > = h?0*®/0¢%0n’ (3.4)
= z:yylgyyZ == hza“d’fa'?d,

—h?e*®[oc?,
h2o*®joct.

< ':u ‘::z >

< iz > (3-3)

]

In these formulae @ stands for ®(¢, n, 7). The variances follow from these equations
by letting (R,, 1,) and (R, £,) coincide after the differentiation.

The actual shape of the function @ depends on the duration of the wind that gener-
ates the waves, on its speed, and on the fetch. The determination of @ is the subject
of many oceanographic studies, as can be seen from [3./] and [3.2], and as is also
indicated in Chapter 2.

Of the many proposed models to describe the surface statistically, one using the
“surface wave spectrum’ seems the most realistic approach. This theory considers
the surface “‘as the combined effect of a large band of sinusoidal waves that travel
over the surface in very many directions, each having its own speed and hence its own
wave number. In this way the idea of a surface wave energy spectrum has been
formed™ [3.4, p. 6]. A brief outline of this theory is given in Section 3.2.

The correlation functions in time and space can be expressed as integrals over
the wave spectrum. This is shown in Section 3.3. The Pierson-Moskowitz spectrum,
at present the best spectral function (Assumption 6), is discussed in Section 3.4.
Numerical results that are obtained from it, are collected in Section 3.5, for later use.

3.2 Surface wave spectrum theory

The theory assumes that the surface can be characterized by a spectral function
that depends on wave number, wave frequency and wave direction. But for small-
amplitude deep-water waves, the dispersion relation
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K= ;g (3.6)

reduces the spectrum to Y/(w,, o). A problem is caused by the anisotropy of the surface.
There is evidence that a directionality law of the type cos®(2/2) has to be used,
where s is frequency-dependent and ranges from 1 to 5. Nevertheless, for simplicity,
a cos®(x)-law is often assumed (Assumption 5), in which case® [3.1, pp. 389, 399]

Yo, ) = % A*(w,) cos* () (— g ga< g) (o, = 0), (3.7
and @ follows from [3./, p. 378]
-] nf2
D&, n,7) = (h*) ™" [ dwd4*(w,) | dacos?(x)x
0 -=x/2
2
X COS [c;, {&cos (o) +nsin ()} —w,r] \ (3.8)

The space-correlation function (two different points observed at the same time)
and the time-correlation function (one observation position at different times) follow
from (3.8) as special cases.

3.3 Correlation functions in time and space
3.3.1 The time-correlation function

When the two observation points coincide, we find readily from (3.8) that the time-
correlation function is proportional to the Fourier cosine transform of the wave
spectrum:

®(0,0,7) = (2h*) ™! T dw,A*(w,)cos (w,1). (3.9)
0

In Section 3.5 we will use this relation together with an empirical formula for A%(,)
to compute @(0, 0, 7). But the inverse of (3.9) is also interesting: when the temporal
correlation of the sea surface elevation at one position is measured (and this measure-
ment is not too difficult in practice — see for instance [3.5]), the wave spectrum can
then be obtained via the formula

3 The spectral function A*(w,) is frequently called “energy spectrum™, a name derived from communi-
cations engineering and obtained by considering the process { as an electrical signal. The proper
name, however, is variance spectrum.
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Ax(w,) =2 [ dv < [R,OIR, +7) > cos (@), (3.10)
0

as follows from (3.2).
Another property of (3.9) worth mentioning regards the variance A*. Apparently,
this quantity can be obtained by integration of the variance spectrum:

Wt =13 E dw,AXw,). (3.11)

This follows from (3.9) by putting 7 =0.

3.3.2 The space-correlation function

If the observation times coincide the results become more complicated, as we are
now dealing with a two-dimensional function. But it turns out that this function
can be expressed in terms of two one-dimensional functions, which reduces the
computational work considerably.

Putting T =0 in (3.8) and integrating over «, we get

D(&,n,0) = [E1,(0)+(* —&")lx(e)]e™ - (3.12)

The functions /, and /, are to be found by a weighted integration of 4*(w,):

-] 2
ie)=h"? { do,A*(0)J], (e a;’ ) (3.13)
2
-] l’rl e w’
(o) = h~? [ dw, A% (o) 9.2 (3.14)
0

&

3.4 The Pierson-Moskowitz spectrum
For a fully developed sea the Pierson-Moskowitz spectrum [3.6]:

A¥(w) = Cg’w; exp(—0.74g"lwiv*), (3.15)

where C=8.10x1073 and v > 0, is the best empirical formula available at present
(Assumption 6). With this function, for which a curve is shown in Fig. 3.1, DE Boer*

4 1r. J. G. pE Boer worked as a Summer Research Assistant under my supervision at the Saclant
ASW Research Centre during the summer of 1969,
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Fig. 3.1. The surface wave frequency spectrum as proposed by PiersoN and Moskowirz [3.6] for a
fully developed sea.

[3.4] has calculated the time-correlation function @(0, 0, t) and the space-correlation
function ®(&, 1, 0), by solving numerically the integrals (3.9), (3.13) and (3.14). His
results have been published in a condensed form [3.7]. The parts that we need in this
study are summarized in the next section.

3.5 Numerical results derived from the Pierson-Moskowitz spectrum
3.5.1 The variance of the sea surface elevation

The variance h* is the most elementary quantity to characterize the surface. Its
value can be found by integration of the surface wave spectrum. Combination of
(3.11) and (3.15) yields:

h? =1.35x10"%* (m?. (3.16)

3.5.2 The time-correlation function

As was suggested by PIERSON and MoskowiTz [3.6], it turns out to be convenient
to normalize the time difference © with respect to the wind speed via the relation

Ty = g1/v. (3.17)
This is a dimensionless quantity. Sample values for the correlation function®

5 Strictly speaking, ©(0,0,7x) and @(0,0,7) are different functions. But since there is no chance for
confusion, we use the same symbol for both. A similar argument holds for the space-correlation
function.
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Table 3.1  The time-correlation function @(0,0,7y), derived from the Pierson-Moskowitz spectrum,
for 7y =0(0.5)30 (see Fig. 3.2).

™ @(0,0,7x) ™™ D(0,0,7x) ™™ D(0,0,7x)
0.0 1.000000
0.5 0.831970 10.5 —0.130653 20.5 —0.021439
1.0 0.435359 11.0 —0.131462 21.0 —0.017792
1.5 —0.013626 11.5 —0.115366 21.5 —0.014609
2.0 —0.381110 12.0 —0.088852 22.0 —0.009173
2.5 —0.597637 12.5 —0.055724 22.5 —0.004494
3.0 —0.650945 13.0 —0.023009 23.0 —0.000685
35 —0.568268 13.5 0.007122 235 0.004313
4.0 —0.397249 14.0 0.030089 24.0 0.005633
4.5 —0.189753 14.5 0.046436 24.5 0.007958
5.0 0.009200 15.0 0.053584 25.0 0.009160
55 0.167687 15.5 0.054395 25.5 0.007376
6.0 0.268584 16.0 0.048173 26.0 0.006404
6.5 0.308504 16.5 0.039010 26.5 0.005432
7.0 0.294782 17.0 0.025777 27.0 0.003859
7.5 0.240843 17.5 0.013967 275 0.003124
8.0 0.162847 18.0 0.001141 28.0 —0.000010
8.5 0.077346 18.5 —0.008255 28.5 —0.001131
9.0 —0.002095 19.0 —0.015968 29.0 —0.000928
9.5 —0.066518 19.5 —0.020423 29.5 —0.004203

10.0 —0.109608 20.0 —0.021577 30.0 —0.002692

1.0
$(00.7y)
0.5
0 /.\ P . W
\J T

0 10 20 30
™
Fig. 3.2, The time-correlation function of the sea surface, derived from the Pierson-Moskowitz

spectrum. The normalized time difference 7y equals the actual time difference = multiplied by g/v
(from [3.4]).
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@(0, 0, y), derived from (3.9) and (3.15), can be found in Table 3.1; a curve is
plotted in Fig. 3.2.

The variances of the time derivatives {, and {,, follow readily by differentiating
(3.9) and solving the new integrals, as is indicated by (3.5). The result is (see Appen-
dix A)

<> =00020> (m%*7?),
<{2>=04 (m?s™*). (3.18)
3.5.3 The space-correlation function

Normalization of the distances with respect to the wind speed is also convenient
here. Following again PIERSON and MoskowiTz [3.6] we put

on =2go/v* (v #0), (3.19)
so that (3.12) reduces to (see footnote on page 63)

D(Ex, nys 0) = {EXLy(en) + (i — EN)La(en)}en (3.20)

We note that the normalized distances are dimensionless. The functions L, and L,,
proportional to /, and /,, and calculated with (3.13), (3.14), and (3.15), are presented
numerically and graphically, in Table 3.2 and Fig. 3.3, respectively. An impression

Table 3.2 The auxiliary functions L,(x) and L.(x), derived from the Pierson-Moskowitz spectrum,
for x =0(1)40 (see Fig. 3.3).

X Ly(x) Ly(x) X Ly(x) Ly(x)
0 2.000000 1.000000
1 1.685109 0910138 21 0.031476 —0.007071
2 1.207823 0.760491 22 0.031200 —0.005058
3 0.765871 0.606300 23 0.029420 —0.003309
4 0.410755 0.466145 24 0.027955 —0.001871
5 0.150207 0.346600 25 0.023396 —0.000733
6 —0.025481 0.248841 26 0.019119 0.000152
7 —0.132343 0.171491 27 0.016490 0.000777
8 —0.186940 0.112086 28 0.010976 0.001198
9 —0.203925 0.067769 29 0.008360 0.001459
10 —0.195557 0.035761 30 0.004846 0.001557
11 —0.172261 0.013510 31 0.001924 0.001578
12 —0.141542 —0.001208 32 0.000640 0.001495
13 —0.108166 —0.010259 33 —0.002759 0.001378
14 —0.075907 —0.015168 34 —0.002500 0.001215
15 —0.046841 —0.017151 35 —0.003234 0.001042
16 —0.022416 —0.017162 36 —0.003968 0.000861
17 —0.002859 —0.015920 37 —0.003838 0.000684
18 0.011061 —0.013957 38 —0.003708 0.000518
19 0.020852 —0.011660 39 —0.003743 0.000369
20 0.028004 —0.009303 40 —0.003778 0.000237
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Fig. 3.4. The space-correlation function of the sea surface, derived from the Pierson-Moskowitz
spectrum. The normalized correlation distances are 2g/v® times the actual distances; &y is the down-
wind, 7 the cross-wind direction [3.4, 3.7].

of the complete correlation function is given in Fig. 3.4. From this last figure, the
spatial correlation can only be studied qualitatively, because it depicts a three-
dimensional surface in a two-dimensional plane. It is therefore worth considering the
cross-sections in the down-wind and the cross-wind directions (Fig. 3.5). Obviously,
the cross-wind correlation is stronger than the down-wind correlation.

From the curves in Fig. 3.5 we can derive estimates for L, and L_,, the “effective
correlation distances™ in down-wind and cross-wind directions. To this end we define
the effective correlation distance as the distance at which the normalized correlation
function has dropped to the value e '. With this criterium we find
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Fig. 3.5. The space-correlation functions in (a) down-wind and (b) cross-wind direction, derived
from the Pierson-Moskowitz spectrum [3.4, 3.7]; the normalized distances are 2g/v* times the actual
distances.

L, =0.125%  (m), (3.21)
L., =02500*  (m). (3.22)

The variances of the spatial derivatives can be obtained in the way given by (3.3)
and (3.4). The following results are found (see Appendix A for details):

< 2> =0.003
< %> =0.001, el
and
2 = -4 -2

<fGy>=0*t (m™),

in which the X-axis coincides with the down-wind direction and the Y-axis with the
cross-wind direction. The restriction v # 0 is important for (3.24) and is originated
by the fact that @(&, 5, 0) is not defined for v = 0. This behaviour for v — 0 is a serious
defect of the Pierson-Moskowitz formula. On physical grounds, of course, we know
that all derivatives vanish for v = 0, because the surface reduces then to a flat plane
for which z=0.

3.6 Summary

This chapter deals with the statistical properties of the sea surface. Correlation
functions in time and space are described, tabulated and plotted; they are derived
from the Pierson-Moskowitz spectrum. Related quantities, required later on, are
also computed.
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CHAPTER 4

FILTER CONSIDERATIONS

4.1 Introduction

The active element in the communication channel from transmitter to receiver is
formed by the upper boundary of the ocean. In Chapter 3 we assumed that the sea
surface is a random, time-dependent process (Assumption 3). Hence, the filter is
random and time-variant too.

When certain average filter characteristics are known, it becomes possible to
compute the average output behaviour of the channel for any known input signal.
The determination of those filter characteristics is consequently an important object.

As the filter is time-variant, the system functions depend on two variables, e.g.
time and frequency.® The filter system functions, which enable us to express the out-
put signal y(1), or its spectrum, in terms of the input signal x(f), or its spectrum, are
consequently two-dimensional. This represents an important difference with the time-
invariant filter, where one independent variable is sufficient.

Two effects are, generally speaking, present in the output signal of a time-variant
filter as compared with the input: time spread (also called delay spread or dispersion)
and frequency spread (or Doppler spread). Time spread is not a consequence of the
filter’s time-dependency: it also occurs with time-independent filters. It becomes
noticeable when short pulses (i.e. signals with a broadband character) are transmitted:
different frequencies are delayed differently so that the pulses are stretched or smeared
out in time. Frequency spread, on the other hand, is indeed caused by the time-
dependency of the filter. This effect can be observed when the input signal is a pure
tone (i.e. a signal with a very narrow spectrum): the amplitude and phase are subject
to fluctuations so that new frequency components are generated, both slightly higher
and lower than the input frequency.

The two cases mentioned above are extremes: one deals with a signal short in time
and long in frequency, the other with just the opposite. An arbitrary signal will
therefore be spread both in time and frequency.

Time and frequency spread are important for the behaviour of the communication
channel. They can be analyzed by means of the system functions. The most common
ones are discussed in Section 4.2, after which they are used to describe the input-
output relations (Section 4.3). In both sections we have assumed that all system func-
tions have Fourier transforms with respect to both variables. Later on we will see

¢ A third variable can be distinguished in our case, namely the geometry of transmitter and receiver.
But the character of this variable differs so strongly from time and frequency that its significance will
be discussed separately in Chapter 9.
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that for the sea surface sound channel this is not true, so that certain system functions
lose their meaning.

For a random filter, time and frequency spread are stochastic phenomena, which
can only be described statistically. Thus a statistical characterization of the system
functions is required. The most complete description in this respect would be given
by their probability density functions, but there is little hope of finding these. We will
therefore content ourselves with the first and second statistical moment, i.e. with
mean values and correlation functions. Some details are presented in Section 4.4.

Finally, we remark that the random time-variant filter is assumed to be linear
(Assumption 10). This means that the superposition principle is valid: all signals may
be decomposed into their frequency components, the effect of the filter on each of
them may be evaluated, after which the total effect can be found by summation.
The Fourier transform and its inverse will thereby play an important role, as will the
two-dimensional versions, when correlation functions are analyzed. For later reference
we give here the definitions we have adopted:

a. Simple Fourier Transform

F(w) = ? dtf(t)exp (iwt), 4.1)
J@O= ﬁ _nj? doF(w)exp(—iwt); (4.2)

F(w) is the Fourier transform of f(t), the inverse transform of F(w) is f(t).

b. Double Fourier Transform

o0 o0

Floy,0,) = | dt _I dt, f(t, 15) exp [i(@,t, — w,t5)], (4.3)

=0

o

1 2 .
f(fpfz)=ﬁ | do, | do,F(o,,o,)exp[—i(w,t, —w,t,)], (4.4)

F(w,, w,) is the double Fourier transform of f(t,, #;), the inverse of F(w,, w,) is

[, ta).

4.2 System functions for linear time-varying filters

4.2.1 The impulse response

There are several ways to describe the impulse response of a time-varying filter
[4.1, 4.2]. In this study we have adopted the definition that A(z, t) is the response
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! n for r < 1, because of
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TANFNIN TIME causality.
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measured at time ¢ to a unit impulse applied at time t—1, where > 0. Physically,
this means that when a unit delta-pulse is applied at the input at time t = {,, i.e.
x(t) = 6(t—1,), the output is given by y(t) = h(t—1,, t). This time spread is illustrated
in Fig. 4.1.

In general, for an arbitrary input signal, the impulse response can be interpreted
as a weighting function by which the signal inputs in the past must be multiplied to
determine their contributions to the present output [4./, p. 101]. The total output is
then obtained by summation:

y(t) = T dzh(z, t)x(t—1). (4.5)

Only the past of x(7) gives a contribution (r = 0). This reflects the fact that the filter
cannot weight portions of the input signal that have yet to occur.

4.2.2 The transfer function

The filter can also be described by the transfer function H(w, t), which is the Fourier
transform (with respect to 7) of the impulse response:

H(w,t) = }D dth(z, t) exp (iwr), (4.6)

h(z,t) = fli—t | dwH(w,1)exp(—iwr). 4.7
If in (4.5) the input signal is harmonic, i.e. x(t) = exp (—iwt), then
¥(t) = H(w, t) exp (—iwt) (4.8)
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follows by using (4.6). This indicates an important property of the transfer function:

response of the filter to exp(—iwt), at time ¢_

H(o,t) = e ; (49)

it permits the application of monochromatic sources (with variable frequency), in
accordance with the mathematical formulation of the scattering phenomenon, which
is most conveniently performed in the frequency domain, via the Helmholtz integral
(Chapter 5).

4.2.3 The spreading function

A more unconventional system function is obtained by taking the Fourier transform
of h(z, t) with respect to ¢ [4.3, p. 25-5]:

E(r,Q) = ? dth(z, t)exp (iQt). (4.10)

This is the spreading function. It gives the spectrum, with Q as frequency variable,
of the time variations of the impulse response.

4.2.4 The bi-frequency function

Also H(w, t) can be transformed with respect to ¢ In this way the bi-frequency
function e(w, Q) is found:

Impulse Response

h(T,t)
Q\ ?fu
Spreading Frequency
Function E (T' Q) H(w,t ) Response
F 5
©
0\
e(Ww,Q)

Bi-Frequency Function

Fig. 4.2. Relations between system functions.
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e(w, Q) = }o dtH(w,t)exp (iQt). (4.11)

Its significance will become clearer, when input-output relations are discussed
(Section 4.3). The same result is obtained by Fourier transformation of the spreading
function, with respect to .

4.2.5 Relations between system functions

The four system functions mentioned in the preceding sub-sections are interrelated
via Fourier transforms. This is illustrated in Fig. 4.2, by means of a general diagram.
We emphasize that in the derivation we have assumed that the various Fourier trans-
forms indeed exist. In practice it may happen that this assumption is not correct. The
system function under consideration is then not defined.

4.3 Input-output relations

The most elementary relation has been encountered in (4.8): an harmonic input
signal of the type x(t) = exp (—iwt) yields an output signal y(t) = H(w, t) exp(—iwt).
An arbitrary input signal x(¢) can be decomposed into its spectral components,
according to (4.2):

X = | doX(@exp(—ioi); (4.12)

the spectrum X(w) may be regarded as a weighting function. As each component
exp (—iwt) causes at the output of the filter a signal H(w, t) exp (—iwt) and since
linearity is assumed (Assumption 10), we can add the response of all components,
with their proper weight. So we get

) = 7 uf doX(w)H(w,t)exp(—imt). (4.13)

It may be noted that this is not the inverse Fourier transform of X(w)H(w, t),
because that product is not independent of time.

Equation (4.13) relates the output signal to the input spectrum. This can be illustra-
ted by returning to the example of Sub-Section 4.2.1, where the input signal was a
unit delta pulse at time ¢ = #,. Such a signal, x(t) = (¢ — #,), has the spectrum X(w) =
exp (iwt,), as results from (4.1). Substitution into (4.13) yields then, together with
(4.7), the output y(t) = h(t—t,, t).

A relation between input and output signal has been mentioned already in (4.5),
the convolution integral for time-variant filters:
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y0)= | deh(r,0x(t—1). (4.14)

Again, when x(f) = 6(t —1,), we find y(t) = h(t—1,, t).
The inverse of (4.10) can be put into (4.14); it gives

y() = ]o dr ]9 dQx(t—1)exp(—iQE(z, Q). (4.15)

=0

The quantity x(t—1) exp (—iQt) may be considered as a time and frequency shifted
version of x(¢). The output signal y() is formed as a sum of such components, weighted
with E(r, Q). Apparently, E(z, Q) determines the spread in time and frequency the
signal will suffer in the channel. For this reason it is called “spreading function”.

The spectrum of y(f) can be expressed in terms of the input spectrum and the bi-
frequency function:

Y(0) = %r [ d2X(w—Qe(w—2,9). (4.16)

-

This formula has been obtained by Fourier transformation of y(¢) with (4.1),
followed by substitution of (4.13) and the inverse of (4.11). It indicates that the output
at frequency @ is not determined merely by the input at that frequency, but by
components in a frequency band around w. The width of that band and the weight of
each component are given by the bi-frequency function.

The simplest way to illustrate the foregoing statement is to take a purely harmonic
input signal: x(t) = exp (—iwgt), or X(w) = 2nd(w— w,). Putting this into (4.16) gives
Y(w) = e(wy, =), which clearly shows the described frequency spread. A sche-
matic form of this can be found in Fig. 4.3.

G TIME-DEPENDENT | o (e w-wy)
. . FILTER SHaas

; ] |
6 wo » Frequency
H Fig. 4.3.
I The response of a time-
Gis I ! dependent filter to a har-
/\V\ monic input signal of radial
i : » Frequency frequency w,.
0 :
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For later reference it is useful to summarize the input-output relations for the two
special cases that we have discussed:

A. A unit delta pulse at the input,
B. A purely harmonic input signal.

This summary is given in Table 4.1.

Table 4.1 Input-output relations for a time-dependent filter.

input output

A Unit Delta-Pulse
x(t) = d(1—1,) (1) = h(t—ty,1)
X(w) = exp (iwty)

B Harmonic Input
x(t) = exp (—iwyt) W(t) = H(wg,t)exp (—iwol)
X(w) = 27w —w,) Y(w) = e(wy,0—w,)

4.4 Statistical properties of the filter
4.4.1 General

It has already been remarked that the filter we are studying has a random character.
Consequently, the system functions have to be regarded as random functions of two
variables. Their description has to be limited to statistical properties, of which only
mean value and correlation function are simple enough to find.

In general, the mean value of the system functions is non-zero. But in many statistical
analyses it is convenient to deal with processes or functions that do have zero mean
value. This applies to our filter for the first part of the investigation. Hence, we
temporarily split the filter into two parts: a deterministic part (equal to the mean value)
and a random part (which is obtained from the true random filter by singling the

random filter
INo———» with —— OUT
non-zero mean

- A

deterministic
filter

Fig. 4.4.
random filter Decomposition of (A) a random filter with non-zero
with mean value into (B) a deterministic filter and a random
Lo filter with zero mean value.

(B)

77



deterministic part out). These two filter pieces, if considered as separate “‘black boxes™,
have to be connected in parallel, as is sketched in Fig. 4.4. In formula, with the fre-
quency response as an example, we have then

H(w,t) = Hfw, )+ H/(o,1), (4.17)

where the subscripts ¢ and r indicate respectively “deterministic part” and “random
part”.

Similar decomposition relations hold for all the other system functions. This is
due to two facts: (1) they are all related via Fourier transforms, and (2) the Fourier
transform is a linear operator. An interesting result therefore follows immediately:
Fig. 4.2 and all the input-output relations remain formally valid when the system
functions are given either the subscripts d or r. This signifies that the deterministic
part and the random part may be treated separately.

A possible statistical approach to an arbitrary random filter can now be outlined
as follows: first, one considers the mean value of any system function and deals
with it as a fixed part; second, one subtracts the mean value and studies the properties
of the remaining random part. Nevertheless, it should be remembered that the filter
is not really divided in two parts. For the analysis of correlation functions it is often
better to consider the filter as a whole.

4.4.2 The stationary filter

In Chapter 6 and following chapters we will see that the random filter we are
studying is stationary in time. This has an important consequence: Fourier trans-
formation of A(t, t) and H(w, t) with respect to ¢ is impossible, and the scheme of
Fig. 4.2 degenerates into an elementary relation:

h(z, ) < H(a, 1). (4.18)

Spreading function and bi-frequency function have thus lost their significance.
Formally, (4.18) is also correct when 4 and H carry the subscript 4 or r.

4.4.3 Mean values

Due to the stationarity of the filter, the time-dependency will disappear when mean
values are computed in (4.18). Hence this relation reduces to

hy(7) > H). (4.19)

4.4.4 Filter correlation functions

The system functions are functions of two independent variables. So the correlation
functions depend in general on four, because they are defined as an average (conjugate)
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product. For the impulse response, for instance, we have the following definition:
By(t1, T, 1y, 1) = < h(zy, t)h (15, 15) >, (4.20)

while the other possible correlation functions, that is By, B, and Bg, are defined in a
similar way. They are interconnected by double Fourier transforms (see (4.3) and (4.4)),
a property that can — for the general case — be derived from Fig. 4.2. The corresponding
diagram is shown in Fig. 4.5.

Modifications occur again, when the stationarity of the filter is taken into account:
B and B, are no longer defined, and B,(z,, 13, #;, 1;) and By(w,, ®,, 1,, t;) reduce

Bh(T,.TQ.tl.tz)

o %
o g
Be (T1 0.Q Qz) By (wl LW, :2)
2y oo
N £

Be (wl' W, QI‘QZ)

Fig. 4.5. Relations between system correlation functions, in general.

(T, T, A1)
o &
*3
BE(Tl hy 2 Q) BH(w,, w,,m)
&,
P% o.'b\
B,,(w,.w,.Q)

Fig. 4.6. Relations between system correlation functions, when H(w,t) is stationary in time.
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to By(zy, 73, 4t) and By(w,, w,, At), where At =t,—t,. Fourier transformation of
B, and By with respect to At will turn out to be possible (see Chapter 8). This leads
to the functions Bg(ty, 75, Q) and B(w,, w,, Q). By is the double Fourier transform
of B, with respect to @; and @,, and vice versa. It can easily be shown that a similar
relationship exists between By and B,. In this way the primed functions are related
-according to the diagram of Fig. 4.6. For simplicity we have dropped the primes,
bearing in mind that Bg and B, are not the correlation functions of E and e, because
these functions are not defined.

4.5 Summary

The basic properties of time-variant linear filters are described in this chapter.
Input-output relations are derived and discussed. Since the filter is random, the mean
values and the correlation functions of the system functions are also considered.

The mean values are non-zero. Therefore the filter is divided into a deterministic
part and a purely random part, connected in parallel.

Also the consequences of stationarity in time are analyzed. It is found that various
relationships simplify or disappear, because spreading function and bi-frequency
function are no longer defined.
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CHAPTER 5

THE SEA SURFACE AS A RANDOM FILTER

5.1 Introduction

In this chapter we are faced with the task of finding an expression for one of the
system functions of the underwater communication channel from transmitter to
receiver via the surface. The most convenient system function to deal with appears
to be the transfer function H(w, t), because the problem can then be formulated in
the frequency domain’ (by means of the Helmholtz integral), and monochromatic
sources can be used (see (4.9)).

Physically, the derivation of a formula for H(w, t) consists in solving the wave
equation (Helmholtz equation)

(V2 +k*p =0, (5.1)

with the boundary condition p = 0, since the sea surface is a pressure release surface
on which the sound pressure has to vanish (Assumption 2). This is done in Section 5.2,
which is a reprint of a paper that I published in the Journal of the Acoustical Society
of America [5.2]. It also contains some preliminary results of a statistical analysis;
a more complete treatment can be found in the Chapters 6-10.

The result of Section 5.2 is rather complicated: H(w, t) is expressed there as a six-
fold integral which renders the analysis of this system function somewhat problematic.
In Section 5.3 a simplification is applied in such a way that H(w, t) can be written
as a series of surface integrals. In addition to the fact that these double integrals are
more suitable for a detailed analysis, they allow a simple physical interpretation.

When o is sufficiently large, the surface integrals can be solved approximately by
application of the method of stationary phase. Section 5.4 is devoted to this subject.
It also contains a comparison of the first few terms, and derives the conditions for
which the whole series can be represented by the term of zero order. These results,
here produced as a side-issue, will turn out to be useful later on in this study.

The wave equation (5.1) is, strictly speaking, only valid when the boundary is
time-independent. Its use in combination with a time-varying surface such as the
upper boundary of the ocean has hence to be justified. For this justification we refer
to Section 5.5. Part of this section is a reprint of a paper that I published in the
Journal of the Acoustical Society of America [5.3].

7 A formulation in the time domain via the impulse response function is possible (Kirchhoff s
formula [5.1, p. 36]), but will not be used here.
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5.2 Derivation of a formula for the transfer function
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The Sea Surface as a Random Filter for Underwater
Sound Waves
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When underwater sound waves propagate from a transmitter to a receiver, part of the energy reaches the
receiver after reflection and scattering from the sea surface. This boundary effect can be called the impulse
response of the sea surface if the incident sound field is caused by a delta pulse. In this paper the Helmholtz
diffraction integral is used together with a perturbation technique for the derivation of a formula for the cor-
responding transfer function. The result is a random function that depends on the frequency of the incident
wave, on time, and on the source-receiver configuration. Its validity is limited by three assumptions: (1) the
medium is ideal (constant velocity, no subsurface layer), (2) source and receiver depth are many times
larger than the surface elevation, and (3) the bottom is infinitely far away. For very high frequencies the
formula indicates specular reflection from each surface “highlight.” In the Fraunhofer domain, the transfer
function reduces to specular reflection with phase fluctuations. Some results of a statistical analysis are
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SEA SURFACE AS A FILTER FOR UNDERWATER SOUND

w angular frequency of incident wave
W, frequency of surface wave
Subscripts

D Doppler

F frequency correlation
N normalized
n order of Fresnel ellipse

INTRODUCTION

In studies of reflection and scattering of underwater
sound waves from the sea surface, two assumptions
are often encountered that make the phenomenon
describable in terms of plane waves: (1) transmitter
and receiver have a narrow beam, and (2) they are far
away from the surface. Another useful simplification,
the Kirchhoff approximation, is possible when a
monochromatic sound source of sufficiently high
frequency is considered. A detailed survey of these
approaches can be found in Refs. 1 and 2, together
with an analysis of other currents in the existing
literature,

Although these simplifications are useful to gain
insight into the phenomenon, their drawback is evident
when the path from transmitter to receiver via the
surface is considered as a communication channel, or a
filter. A broad-band source is then required, and, as
this is often an explosive charge, the plane-wave
assumption also becomes invalid.

The broad-band source should possibly have a flat
frequency spectrum, so that impulse response and
transfer function of the sea surface can be investigated.
An experimental procedure has therefore been developed
at SACLANT ASW Research Centre that consists of
firing explosive charges and recording the surface-
reflected signals after passing them through a filter
that boosts the high frequencies in such a way that the
spectrum of the explosive pulse approaches that of a
delta pulse®

The theoretical counterpart of- this experimental
technique is formed by a description of the scattered
field, in which the characteristics of the sea surface and

R receiver

S spatial correlation

s point of stationary phase, specular point
T transmitter; time correlation

z Z direction

Superscript

s on random surface

the relative position of source and receiver are param-
eters (see Fig. 1 for the geometry). Such a description
is the subject of this paper. It is derived with the
Helmholtz integral as a starting point, and Meecham’s
method? is applied to obtain an estimate for the normal
derivative of the sound field at the surface. The result
is a formula that connects the scattered field at an
arbitrary point below the surface with the random
process that describes the surface elevation in time and
space. Consequently, it presents the scattered field as
a random process. Useful information can hence only
be obtained by means of statistical operations (e.g.,
mean value, correlation function—both in time and in
space). This will be the subject of a subsequent study.
Nevertheless, some preliminary results are included
here.

Although we are eventually interested in the impulse
response h(r,t) of the random sea surface (i.e., the
response measured at time # to a unit impulse applied
at time {—7), we prefer to formulate the problem in
the frequency domain and study the transfer function
H(w,t) first. The functions /& and H are each other’s
Fourier transform®:

Hwit)= [ i drh(r,t) exp(iwr),
- (1

r

1 e _
) =—— L deal ) exp(— o).

An important advantage of the use of H(w,f) is that it
enables us to apply a monochromatic source (with

Fic. 1. Positioning of transmitter and receiver.
The transmitter (T) and the receiver (R) are
placed in the plane y=0, but this causes no loss
of generality if the wind direction can make an
arbitrary angle with the X axis.

R(Xg, 0, Zg)
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ii! :Sea Surface S
il .

Auxiliary Surface S'

P

Fi1c. 2. The sea surface S and the au::ilia:y surface §’. §' can
be Lhouqht to consist of two parts: a part " just below S, and
a part S", infinitely far away, that makes S a closed surface,

variable frequency) of the type $=p exp(—iwt), since’

response of the filter to exp(—iwt)
H(w,l)= : v (2)
exp(—iwf)

1. THE SCATTERED FIELD
A. Solution of the Wave Equation

Since we are only interested in the surface effect,
we assume the medium to be ideal. We require a solution
of the wave equation [suppressing the time dependency
exp(—iwt)]

(V+£2)p=0, )

with the boundary condition p=0 (pressure release
surface). The field at the receiver can be thought of as
the sum of po, the field that would exist in the absence
of boundaries, and s, the boundary effect:

p=pot+pe. @)

It is the second term that we are interested in.

A generalized version of the Helmholtz integral can
be derived from Ref. 6 by application of Green’s
theorem:

i dS'[G (®R,® ")i (R*")—p(®R ")iG (®,® ")]
F= k,nanﬁn Poanz.n

+ f f f AVoGA(®,Re)o(G)

=p(®) if & is on or inside the closed surface S,

P ®)
=0 if ®is outside S’.
As is shown in Fig. 2, the closed surface S’ can be
thought to consist of the parts S”” and S'. The latter
does not contribute to the surface integral (Som-
merfeld’s radiation condition) and S approaches the
sea surface S, on which the total pressure vanishes.
Volume 52 1972
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Moreover, we have p(®q)=8(®o— GRr), so that Eq. 5
yields

1 a
P(GIR)=;fdeGg(mR,mo')‘a_n'?(aﬂ')

+G(®r,®R7). (6)
The second term is recognized as the undisturbed wave
po(®g). Hence by combination of Egs. 4 and 6, we
arrive at an expression for the scattered field:

1 ad
o) =— f f 4SG(Bn00)—p(06). (D)

This formula has an interesting physical meaning. It
shows that one can imagine that the transmitter
induces elementary sources on S, and that these
radiate omnidirectionally. The effect at the receiver of
one of them, that is Gi(Gg,®,"), has to be weighted
with dp(®,*)/dmn, the normal derivative of the total
field at the boundary. This derivative depends on the
position of the unit source relative to the transmitter
and on the slope of the surface at that position. The
total effect p; is obviously obtained by summation over
all sources.

B. Derivative of the Field at the Boundary

Before Eq. 7 can be used for the calculation of the
scattered field, the normal derivative of the total field at
the boundary has to be known. It is here that difficulties
arise for a surface that is not perfectly flat,® because then
dp/dn is unknown. However, an integral equation for
the desired function can be found if we consider an
observation point on the boundary; here also the
diffraction integral (Eq. 7) holds. If we then use the
boundary condition of zero total pressure, a Fredholm
equation of the first kind is found for the derivative:

1 i)
— (') =— dSG(Ry*, Ro*)—p(Re*). (8
’(“)4,/[ (@@ —p(a). @

The surface element dS can be written as

dxodyo dRu

ds(mlll) = ?
cosB(xo,y0) cosf(Ro)

©)

where 6 is the angle between the vertical axis and the
surface normal n at Ro(x,y0). For convenience we
define a function ¥:

F(R)=—p(ct9) / 4r cos(R) (10)
( _6np c '

The scattered field is then determined by the following
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pair of equations:

Pu(®g) = f f dRG (R, R0 ) ¥ (Ro), (11a)

— po(@) = [ f dRGH (G, ) ¥(Ry).  (11b)

The random function ¥ has to be solved from Eq. 11b
and substituted into Eq. 11a. Examination of Eq. 11b
shows that .this integral equation has a somewhat
peculiar kernel: It depends not only on Rg and R;, as
it would in a regular case, but also on the surface
elevation at the positions Rg and R,. To illustrate this
statement, we write out the kernel in full:

Gi(®y*, ") =exp(ikr) /1, (12)

where

r={ (x1—20)*+ (y1—y0)*+[$ (x1,31) = (o, 30) P} (13)

The dependence of G, on { and {; has an important
consequence : An exact solution for ¥ cannot be found.
However, its approximation is possible by means of a
perturbation method.

C. Perturbation Method

Equation 11b can be solved exactly when {=0
(perfectly plane surface), because then the kernel
becomes a regular one. This fact leads us to consider
the irregular kernel Gi(®,%,®,") as a disturbed version
of Gx(Ry,Ro). If the disturbance is small, a perturbation
technique can be applied to approach the exact solution.

The perturbation method starts by substitution into
Eq. 11b of

Gi(®y",R0") =Gi(Ry,Ro)+P(Ry,Ro), (14)
where P represents the disturbance:
P(Ry,Ro)=G(®",Ro*) —G(Ry,Ro). (15)

If the condition P<KGx(R,,Ro) is satisfied, we may apply
Meecham’s perturbation method,! so we put P=eP,
with e— 1, and try to find a solution of the form®

V=3 Wn (e—1). (16)
me=0

Substituting this expansion into Eq. 11b, together with
Eq. 14, and equating equal powers of ¢, gives a set of
equations for the ¥,,:

f [ dRon(Rl,Rn)‘I’ﬂ(RO) = —f'“(ml')! (173)

f [ IRGA(Ry,R) W (Ro)

- f f dRoP(RyRo)¥n(Ro) if m>0. (17b)

Equation 17a can be solved easily (see Sec. I-D). Its
solution, substituted into Eq. 17b with m=0, yields a
similar equation for ¥;. Solving this and using the
result in Eq. 17b with m=1, we find an equation for
W¥,, and so on. In this way the terms ¥,, of Eq. 16 can
be calculated successively.

D. Inversion of the Integral Equations

The integral equations for the functions ¥, are
Fredholm equations of the first kind. As their kernel is
a Green's function, we expand it in eigenfunctions'®":

1

dK
Gu(RR) = f f e S DD

where K.= (k2—K?)). Substitution of this expansion
into Eq. 17a and exchange of the order of integration
yields

—Po(ml')'—"f[dl{ exp(iK-Ry)

1

2rK z

X

[[dRucxp(—t'K-Rn}\I'o(Ro). (19)

Both the integral over K and the one over Ry can be
considered as two-dimensional Fourier integrals. The
desired function ¥, can hence be obtained in three
steps: (a) transformation of — p,, (b) multiplication of
the result by —i2xK., and (c) inverse Fourier trans-
formation. In this way we find

""'(R")“a% f f dKK, f f dR,

)(expffK-(Ro-'Rl}lﬁn(lﬁ;’). (20)

This is the solution of Eq. 17a. The terms ¥ py(m>0)
are obtained if pg is replaced by the right-hand side
of Eq. 17b.

It may be useful to remark that ¥, can also be derived
from Eq. 17a without the expansion of Gi(Ri,Ro).
This function namely depends on the difference R;—Ro,
so that Eq. 17a can be considered as a convolution
integral. Application of the Fourier transform and its
inverse then yield an expression identical to Eq. 20.
This is the method used by Meecham.*
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F16. 3. Two points at the surface: Py and
Py are arbitrary points with pesition vectors
®;* and Ro*; PiPe= |G —QRe* | =7, Pi'Py’
= |Ri—Ro| =r0.

Py
e
I
|
lcl - /
| P
2 : g X
P; Cn:
i
Po
'
Z

E. Conditions for the Perturbation Method

Figure 3 indicates the surface area that contains the
points ®,* and ®,*. For simplicity, a cross section in
the plane y=0 is shown, but the points may have
arbitrary positions.

First we consider the distance r between the points,
A formula is given in Eq. 13. If we put

ro=| Ri—Ro| =[ (21—x0)*+ (1—30)* ]},  (21)
then we can write
r=ro+Ar,. (22)
An expression for Arg can be found by series expansion
of r:
Arg=(F1—$0)%/2r0 if  Arg/rek1. (23)

For large r, the condition Arer, is always satisfied.
However, if ro— 0, it can only be met if Ary goes to
zero faster than r,. The square of the surface slope is
then approached, and we arrive at the condition*

(at/ox)r<l, (at/ay)1. (24)

According to Kinsman," the slope of the sea-surface
waves cannot exceed the value 2/7, so that the condition
on the slope quadrature is easily satisfied.

Next we examine the perturbation P. Using Eqs. 12
and 22 in Eq. 15, we get

P(Ry,Ro)=ikArGi(Ry,Ry), (25)

because Arg<Kro. The condition P<<Gi(Ry,Ry), to which
the perturbation method is subject, is hence satisfied
if the phase difference between the paths PyP, and
PyPy in Fig. 3 is much less than 1 rad: kAre<1.
Following Meecham,* we investigate this inequality by
distinguishing three regions for kro, the phase difference
between Py’ and Py':

(1) krokl, (2) kro>>1,

Region 1. The condition kAr,&1 is rewritten as
(kro) (Aro/ro)<<1. This is satisfied, because both factors
are small compared to unity.
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(3) 0.1< k< 10.
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Region 2, For kro>>1 the situation is more compli-
cated. With Eq. 23 the condition kAry<<1 leads to

W —f)*S L

This inequality is hard to examine, as {; and {, are
random quantities. We replace it therefore by its mean

(26)

-value, and find the condition

RS [1—3(re) T (27)

The spatial correlation function of the surface, ®(ry),
can be calculated when the sea-surface spectrum is
known. For the Pierson-Moskowitz spectrum' this
calculation has been done by De Boer."'* His results
‘are used in Fig. 4 to draw a cross-wind and a down-wind
curve for (1—®)~}. The condition expressed in Eq. 27
means that &k can only assume values below or very
close to these curves. Obviously the down-wind case is
in this respect more critical than the cross-wind case,
In principle, the condition implies a frequency limitation
depending on the horizontal distance between the two
surface points under consideration. However, in
practice there is the fact that integration over the whole
XY plane can be replaced by integration over a limited
area—the effective scattering domain—the size of which
decreases with the incident wavelength. This signifies
that in Fig. 4, for a certain value of kk, the distance rq
does not have to assume all values between zero and
infinity (in which case the “forbidden” area above the
curves would be entered when kkh>1), but only those
between zero and the maximum size of the effective
scattering area, say, 2a,, the length of the Fresnel
ellipse of order n.

To investigate the importance of the frequency
limitation in practical cases, we have plotted in Fig. 5
the normalized values of 2a, for which kk>1 as a
function of kh, together with the curves for (1—®)-%
The parameter values n=1, 2, 3, Zr=50 m, Xg=0,
50, 100, 150, and 200 m, k=6, 60, and 600 (i.e., f=1.5,
15, and 150 kHz), and v=1, 2, 5 and 10 m/sec are used,
Values for v are required to calculate . Many of the
2a, points lie below these curves, but not all of them.
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Especially for #>2 and Xz>150 m we find points in
the prohibited zone. However, the condition on kk
(Eq. 27) is not very strong: if kry is large enough, &k
may even be greater than (1—®)~). We conclude hence
that in region 2 the condition kAre<1 is satisfied in
practice.

Region 3. When krq is neither much smaller nor much
larger than 1 (0.1<%7,<10), we apply the same reason-
ing as in region 1 and find

10(Are/ro)<< 1. "7 (28)

This inequality emphasizes the importance of Eq. 24.

Collecting the results of the foregoing investigations,
we conclude that the perturbation method used here
is subject to only one important condition, the one on
‘the slope quadrature.

F. Convergence of the Perturbation Series

Defining an integral operator L that acts on a

function of R;:

L{f(Rl)}Eé [ f dKK, f f R,

Xexp[iK-(Ro—R1)Jf(Ry), (29)

the terms of the series expansion of ¥ can be written as
Ym(Ro) =L{po(®1*)} (m=0)
=L{-£ f f an(kAro)G;.(Rl,Ro)\P....l(Ra)l
(m>0). (30)

The inverse operator L™ follows readily from Eq. 17a:

LRy = f f RG(R,RYGRS).  (31)

4
3
=
L.,
§ CROSS WIND
- /
Al
—
—_—
/— DOWN WIND
1
‘\
0 5 10 15 20

NORMALIZED CORRELATION DISTANCE.

OoN

F1c. 4. The upper limit for kh. The cross-wind and down-wind curves of [1—®(ro) 1" are calculated for the Pierson-Moskowitz
sea-surface frequency spectrum, with data from Ref. 14. The horizontal scale is normalized with respect to the wind speed : rov=2gro/v"
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F16. 5. Normalized values of 2an, the length of the Fresnel ellipse of order n, vs kk. The plotted points are calculated with Eq. 52a
- :

of Ref. 17, for Zr=50 m, X g=0, 50, 100, 150, and 200 m, k=6, 60, and 600, and v=1,2, 5, and 10 m

[I—®@w) ] 0:n=1; A:n=2;0:n=3.

About the quantity kAr, we can remark that (a) it
is never negative if >0, (b) it equals zero for Ry=R,,
and (c) it tends to zero when |R;—R;| — . We
know also that kAre<<1, so there must exist a positive
constant ¢ such that

kAr,<epK1. (32)

In view of this inequality we can derive from Eq. 30,
with the definition of L=, an important relation:

‘I’,.,(Ro) < —iEo‘I'.'_l(Ro) _for m>0.

If this were an equality, the perturbation series would
be a geometric one, convergent as e<1, with sum
Wo(1+ie)~". Each of the terms of the true series is
smaller than the corresponding term in this geometric
series. Therefore, the perturbation series converges even
more rapidly, to a value that is about ¥, because
€K1, when kAr<1. Consequently, if the condition for
the applicability of the perturbation method is satisfied,
the convergence of the series is guaranteed at the same
time. The convergence is even so fast that the first
term of the series is a very good approximation of the
exact solution of the integral equation. Hence, from

(33)
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. The curves show the function

now on, we can take

¥ (Ro) =¥, (Ro) =L{po(®1%)}. (34)

G. Transfer Function of the Sea Surface

We are now ready to write the final formula for the
scattered field, by substitution of Eqs. 34 and 20 into
Eq. 11a. The result is rather complicated:

gy ] o

Xexp[iK- (Ro—R1) JGH(®1*, Rr)Gr(Rr,Ro*).  (35)

Some simplification is possible, as for the Green’s
functions. They depend on the distances wr and wg
from T and R, respectively, to the random boundary
(see Fig. 6). However, as Zp and-Zy are much larger
than the surface elevation, these distances are about
equal to Wy and Wg, their values for { =0. Therefore,
we expand wr and wg, and have

wy=Wr—(Zs/Wr)t (Ry),

wr~Wa— Za/W e (Ro). 36)
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F16. 6. The distance from T" and R
to the surface. If Zr and Zy are much
larger than {, wr and wg are approxi-
mately equal to Wy and Wg.

The random term in these expressions is important for
the phase of Gy, but not for the amplitude, Equation 35
can therefore be changed into

p,,(mg)=g% f f iRs f f dKK, f f iRy

Xexp[iK- (Ro—Ry) JGi(Ry,Rr)Ga(®Rr,Ro)
Xexp{ —ik[(Zr/W )t (R)+(Zr/W )t (R)1}.  (37)

The random character of py is concentrated in the last

Fig. 7. Signal from an under- —1
water explosion after reflection
from the sea surface (X g=2200m,
Zp=2Zr=100 m, v=12 knots, sea
state 2). The arrows indicate
reflections from facets.

exponential. This assumes the value 1 if {=0, in which
case ps reduces to the specular reflection.

As a consequence of the mathematical formulation
in the frequency domain, ps can be regarded as the
response of, the surface to a continuous signal of the
form exp(—iwt). As the time dependency has been
suppressed throughout the analysis, we conclude from
Eq. 2 that

2o(®Re)=H(w,). (38)

The dependency of p» on frequency and time has,
hence, to be incorporated. The frequency variable is

1 m sec
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present via the wavenumber £ in K., in the Green’s
functions, and in the phase of the random factor.

The time variable needs a bit more consideration.
We want to observe the scattered field at time ¢ This
field is built up by elementary waves, ‘transmitted at
the surface points Ry. Each wave needs a time t=Wr/co
to reach the receiver. Consequently, {(R,) has to be
evaluated at time f=f{—Wpg/c,. In the same way a
time f=t—|R;—Rs|/co can be assigned to {(R,).
(If the effective scattering area is small with respect to
Woe and Wg, we can take approximately fi=/.) The
complete formula for the transfer function of the sea
surface then becomes

H(k,¢)=$ [ [orof [oxe. | fam,

Xexp[iK- (Ro—Ry) JGi(Ry,R7)Ge(®R R, Ro)
Xexp{ —ik[(Zz/W )¢ (Ry,t1)

II. SOME PROPERTIES OF THE
SCATTERED FIELD

Section I has produced a description of the scattered
field that is not subject to strong restrictions on
receiver-transmitter geometry, on sea state, or on
incident sound frequency., The price for this general
validity of Eq. 39 obviously is its great complexity.
A detailed analysis is, therefore, a study in itself.
However, some properties of H(k() can be found
relatively easily, if we consider sound frequencies so
high that the integrals in Eq. 39 may be approximated
via the stationary-phase method.

A. Multipath Effect

When £ is sufficiently high, we enter the frequency
domain where the ray theory is valid. The surface can
then be considered as a. combination of locally flat
areas, or facets, It will act as a rough mirror, and each
facet on the surface where the slope hsa the correct

+(Zr/Wr)t(Royt)]}, (39) Vvalue will produce a local specular reflection. This
where effect occurs when the first few Fresnel zones are smaller
to=1—Wg/cy, than the facet. It has been observed at sea -when
ti=lo— | Ri—=Ro| / (40)  impulsive underwater signals are reflected by the sea
e surface (Fig. 7). Mathematically, this multipath effect
Wr and Wp are defined by can be seen in Eq. 39 via a generalization of the method
B of stationary phase.)® This generalization is straight-
Wz (Ry) = (e +yi+27)}, forward from the one-dimensional to the six-dimensional
Wr(Re) =[(Xp—xo)+yo+Z52 N (41) case, but somewhat lengthy. It is hence omitted
= \
/ % =1
Bp
Xz = 10
0.5
=100
o ) LXz
0 0.5 1.0 1.5 2.0
£,/f,
Fic. 8. The frequency correlation function Bp for constant fi; x=2 kk cosf, is the roughness parameter.
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here.)” It indicates that each surface point where the
slope has the geometrically correct value yields a
contribution of the specular type exp(ikD)/D.

B. Fraunhofer Diffraction

At lower frequencies or for a very smooth surface,
the analysis in Sec. II-A indicates that there will be
only one point of stationary phase: the point of specular
reflection R,=(X,,V,), with X, =X Zz/(Zs+Z1) and
¥,=0. The random factor in Eq. 39 then reduces to a
constant that can be taken out of the integrals. The
transfer function is then given by

exp(ikDy)

H(k )=~ — exp(—iy), (42)

0
where

¢=2k COS&,;'(R,,’!,). (43)

Comparing this result with the transfer function of the
perfectly flat surface, we conclude that the random
boundary has introduced a phase fluctuation ¢, with
zero mean value and with the same type of probability
density function as the sea-surface elevation. For a
Gaussian sea surface, the mean value of the scattered
field and the correlation functions in frequency, time,
and space can readily be calculated. An important role
is played by roughness parameters of the type

X =2kh cosb,. (44)
1. Mean Value
(H (k,t)) = —exp(ikDo—X2/2) /D. (45)

This is the coherent part of the scattering. It is propor-
tional with the specular reflection, and the proportional-
ity factor decreases with growing roughness, either
because the incident frequency increases, the incident
angle decreases, or the variance of the surface elevation
becomes greater. Note that the mean value does not
depend on the surface correlation properties.

2. Frequency Correlation

For this type of correlation we consider coinciding
receivers and equal observation times. Two frequencies
are transmitted simultaneously: a variable f; and a
fixed f2. The normalized correlation function becomes

Br(f1,fa=const)=exp[ —3X*(1— f1/f2)*], (46)

and on a fi/f. scale we find curves with a Gaussian
shape. Some are plotted in Fig. 8 for Xa=1, 10, and 100,

Coherent transmission is possible in a frequency band
around f, in which By is close enough to unity. In this
band all frequencies are affected by the rough surface
in the same way, so that the shape of signals transmitted
in this band remains unchanged. Then pulse elongation
will not occur. If we accept the 3-dB points as the limits
of the coherent band, we get Br>0.5, so that the useful

bandwidth equals 2Af,=2.36f,/Xs, a quantity in-
dependent of f», but dependent on wind speed and
geometry.

The choice of fi and f: is not arbitrary, as the
Fraunhofer approximation has to be valid. Adopting the
usual assumption that the scattering is mainly coming
from the first Fresnel zone and accepting relative path
differences of up to 109, we get the condition

[ (clX 2 X10%) /422Dy if Zr=Zgp.  (47)

In order to illustrate the foregoing remarks we
consider two examples: (a) X z=100 m, (b) X r=1000
m, both with =5 m/sec or k=9 cm (Pierson-Mosko-
witz spectrum) and Zr=Z =100 m.

Example (a): From Eq. 47 we obtain f>168 Hz,
whereas 2A f=3.54 kHz.

Example (b): Now f>3750 Hz and 2Af=15 kHz.

Comparing these two examples, we see that at longer
range the coherent bandwidth increases as the surface
appears more smooth. However, the condition for the
applicability of the Fraunhofer approximation shifts
this coherent band to higher frequencies.

3. Time Correlation and Doppler Spread

When coinciding receivers and a single incident fre-
quency are taken, the input signal to the random
filter is of the type exp(—iwt), and its response equals
H (w,t) exp(—iwt), as follows from Eq. 2. With Eq. 42
we see that this output signal is proportional with a
harmonic oscillation that suffers from a random-phase
fluctuation. This random-phase modulation broadens
the frequency content of the signal: Instead of only the
frequency w, it also contains some energy in a band
around w. This effect is caused by the movement of the
surface elements, It may hence be called “Doppler”

spread.
Quantitative insight into this phenomenon can be
gained via the time-correlation function of the filter

Br(r)=exp{—x*[1—2(0,0,7)]} (48)

and its Fourier transform, the spectral density S(2).
Strictly speaking, By has no Fourier transform because
if +—, then Br=exp(—X*)0. However, we can
substract this constant and transform it separately,
the result being a delta pulse.

A useful simplification is possible when the surface
is sufficiently smooth. For X<0.625 the spectral density
is approximately'®

S(Q) =2 exp(—X?)
x! ]
X[6(9)+-2: [_ i dr exp(tﬂr)d!(ﬂ,(].,r)]. (49)

The integral is recognized as the frequency spectrum
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(a)

in the plane y=0

Fic. 9. Receiver positions for
the spatial correlation of the
scattered field: (a) receivers on an

(b) average wavefront in the plane
y=0, (b) receivers on an average
wavefront in the plane g=const,
and (c) receivers in the direction

of propagation.

Circle with radius Dg cos @,
in the plane z=Dgsing-Z,

// t
/K//‘L

Circle with radius Dg

of the surface waves 4%(w,)," so that
S(@)=2mexp(—x))[3(Q)+ (/41*)4*(@)]. (50)

We are now ready to discuss the statistical properties
of the output signal when a monochromatic signal of
the type exp(—iwt) is applied to the input. The time-
correlation function of such an output signal equals
Br(r) exp(—iwr). The spectral density function is
hence obtained by a shift of 5(2) over a frequency w:

'Snuumt(n)

=Stilter (ﬂ—m)

=2 exp(—X2)[6(Q—w)+ (2/4h) A1 (Q@—w)]. (51)
Yolume 52 1972
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(c)

Circle with radius Dg+ p

The delta pulse indicates the specular reflection: It is
monochromatic and has the same frequency as the
incident wave. Its importance decreases when the
roughness is growing and at the same time the inco-
herent part becomes more pronounced. This incoherent
part consists of two side bands. For a smooth surface
they have the same shape as the surface-wave frequency
spectrum. Experiments made by Roderick and Cron®
confirm this. For a fully developed sea (Pierson—
Moskowitz spectrum) the strongest surface-wave fre-
quency equals w,=8.77 g/v, so that fp=14/v Hz is the
most important Doppler frequency. Hence the Doppler
spread amounts to only a few hertz, independent of w.
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Fi6. 10. The vertical transversal correlation function Bs(Ag,¢). The receivers are placed on an average wavefront, in the plane y=0,
at positions given by the angles ¢ and oA [see Fig. 9(a)]; Zr=100 m, f=7.5 kHz.

This makes the Doppler effect more important at

in a plane Z=const, and (c) in the direction of
lower incident frequencies. propagation.
Figure 9 presents the three transmitter-receiver con-
4. Spatial Correlation

figurations and the pertinent parameters. Since the

To study some aspects of the spatial correlation of mean wind direction can be chosen arbitrarily, these

the scattered field, we consider two receivers in three geometries are perfectly general. They are, however,
different relative positions: (a) on an average wave- restricted by the Fraunhofer conditions.

front in the plane ¥ =0, (b) on an average wavefront Formulas for the spatial correlation functions are

1.0

v=3 m/sec v=5.m/sec

0.5

I~ \
s \

) \

R \

\\ @ = 80°
¢= 700\.‘ (‘:.--5.0)
o [m==o [(x=4-8)NQ_
y 10 0 2 4 ¢ ] 10

a, degrees

Fio. 11, The horizontal transversal correlation function Bs(a,¢). The receivers are placed on an average wavefront, in the plane
z=const; their positions are determined by the angles ¢ and « [see Fig. 9(b)]; Zr=100 m, f=7.5 kHz.
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Fi1c. 12. The longitudinal correlation function Bs(p,¢). The receivers are placed on a line in the direction of propagation; their
positions are defined by ¢ and p [see Fig. 9(c)]; Zr=100 m, f=7.5 kHz.

easily derived from Eq. 42. For a single incident fre-
quency w and equal observation times at both receivers,
we get the following:

a. Vertical Transversal Correlation

BS(AQO,KP)=3Xp{—;’xntl—Zﬂ(E,0,0)'F‘T!]}, (52)

where y=sin(¢+Ag)/sing and t=Zp|cotp—cot
(¢+Ag)|, for small receiver spacings.

b. Horizontal Transversal Correlation

Bs(we)=exp(—X[1-3(2 0],  (53)
with §=Zz|cote (1—cosa)| and n=2Z7|cot ¢ sin|.
¢. Longitudinal Correlation
Bsl(p,¢) =exp{ _x’[]-_q)(ololf)J}s (54)

where 7=p/co.

For large values of Ag, «, or p the influence of the
surface correlation functions vanishes and the correla-
tion functions tend to a constant. Only for small
receiver spacings does & play a role.

Numerical examples are shown in Figs, 10-12, for an
incident sound frequency of 7.5 kHz, a transmitter
depth of 100 m,-and wind speeds of 3 and 5 m/sec.
The shape of the surface correlation function is hard
to recognize in these results. In general, it can be said
that an increasing roughness, either due to larger values
of ¢ or of v, results in a decrease of the spatial correla-
tion. However, in case b two effects are present when
¢ is growing: (1) the apparent roughness increases so
314  VYolume 52
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that poorer correlation can be expected; (2) the specular
points corresponding to a certain receiver spacing ap-
proach each other and the surface correlation function
@ therefore becomes more influential. Clearly in Fig. 11
the second effect is stronger than the first. In the
limiting case ¢=90° the receivers coincide for any e,
and Bg= 1,

The longitudinal curves (Fig. 12) indicate that good
correlation is maintained even at receiver distances of a
few hundred meters, when X<2. This is due to the
high sound speed.

III. SUMMARY

Underwater sound waves are randomly scattered and
reflected by the sea surface. When the incident field is
caused by a delta pulse, this boundary efiect can be
called the “impulse response of the sea surface.” It is
random and time variant.

An expression for the transfer function of the filter
that can be thought to represent the sea surface has
been derived using a generalized version of the Helm-
holtz diffraction integral. The normal derivative of the
total field at the boundary—a random function re-
quired for the evaluation of the Helmholtz integral—
has been approximated by means of a perturbation
method. We have shown that for the upper boundary
of the ocean it suffices to take the leading term of the
perturbation series.

The resulting expression for the transfer function is
rather complicated. It depends on the frequency of the
incident wave, on the observation time, and on the
geometry of source and receiver. Its validity is only
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restricted by the assumptions that no subsurface layer
of air bubbles is present, that source and receiver
depth are large compared with the surface elevation,
and that the bottom is infinitely far away.

For frequencies so high that the first few Fresnel
zones are small compared with the surface facets, the
formula indicates that specular reflection occurs at
each surface point where the slope has the value
required by geometrical optics.

For lower frequencies, in the domain of Fraunhofer
diffraction, there exists only a virtual point of reflec-
tion: the specular point for the average surface. The
effect of the random boundary is then a phase distor-
tion of the specular reflection.

A detailed analysis of the statistical properties of
.the sea-surface transfer function is at present under
way. Its results will be reported later. Some preliminary
results are included, however, regarding mean value,
and frequency, time and spatial correlation functions,
for frequencies in the domain where the Fraunhofer
approximation is valid.
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5.3 Simplification of the formula for H(w, 1)

5.3.1 The basic formula

We start our analysis with Section 5.2, Eq. (35). This equation gives an expression
for the scattered field at the receiver that can be interpreted as the transfer function
of the random filter we are studying. It may be written as:

H(w,1) = [{dRoGy(Rg, Z5) ¥ (Ry), (5.2
where

Y(R,) = 'S_fiﬂdKKz exp (iK*Ry) [[dR, exp (— iK' R,)G(%}, #7). (5.3)
n

The first expression states that H can be obtained by a weighted summation of the
effects of unit scatterers at the surface, the weighting function ¥ being given in (5.3).
Physically, this weighting function is proportional to the normal derivative of the
total field at the boundary. First we will concentrate our attention on this quantity.

5.3.2 The weighting function ¥

In (5.3) appears the Green's function Gy (2], %), which is the field that would be
caused at the surface point 2}, by a unit point source at % (i.e. by the transmitter),
if the surface were absent. It represents a spherical wave and can be written as (see
Section 5.2, Eq. (12)):

G(#1, Rr) = exp [ikwr(R)]/wr(R,), (5.4)
where

wr(R,) = [Ri+{Z;— (R D}TE. (5.5)

Substitution of (5.4) into (5.3), together with R; = R, + ¢ and R, =R, leads to
i 3 A
PY(R) = S—SH dKK, [[deexp(—iK: @+ ikwy)/wy. (5.6)
n

It is impossible to continue the analysis without using approximate methods. We
therefore apply a generalized version of the stationary phase method,® and find

F(R) = HZr—0)exp (lhwy) {1 +2(xcx+yc,)}* o
27rw§. ZT"C * "

with w; = wr(R) being the distance between the transmitter and the surface point

8 For the one-dimensional case this technique is described in [5.4, pp. 752-753]; the generalization to
more dimensions is treated in [5.5].
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Fig. 5.1.

Distances from an arbitrary surface point to
transmitter and receiver, and from its projection on
the average surface z=0.

A* (see Fig. 5.1). Also {, {, and {, have to be evaluated at the point R. In the deriva-
tion of (5.7) we have used the inequalities {2 <1 and {2 < 1, which follow from (3.23).

Details of the calculation can be found in Appendix B. There it is also shown that
a better approximation, only subject to the condition

IZ(R)| < 0.01Zy, (5.8)
can be obtained if in (5.7) the amplitude fluctuations outside the square root are

neglected and only the phase fluctuations are retained. This simplifies the formula
for ¥ into

P(R) = K = 21 oxp(ikws) \/ 142%5120) (59)

Zr-0

where Wy = (R*+Z})}.

The question of how good this approximation is, is difficult to answer because the
exact solution is not known. The method of expanding ¥ in a series and estimating
the error that is made when all the terms after the »'" are suppressed, offers no
solution because of the complexity of the formula for ¥. However, the analysis made
in Appendix B indicates that (5.9) differs less than 20% from the exact solution for
surface points inside an ellipse with semi-minor axis equal to 3.6 Z; and semi-major
axis 6.4 Z;, the major axis of this ellipse being orientated perpendicular to the wind
direction. It is also shown that ¥ is most significant inside this ellipse.

The condition (5.8) is easy to satisfy. For Z, we will have a value of at least 100 m,
so that |{| has to be smaller than 1 m. From (3.16) we see that for v < 10 m/s the
standard deviation of { is given by A< 0.368 m, so that 34 < | m. Since the prob-
ability that || = 3h is only 0.27%, the condition (5.8) cannot cause any problem.

5.3.3 The transfer function

With the foregoing results we return now to the transfer function. Using (5.9) in
(5.2), and putting at the same time
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G(Rg, R°) = exp (ikwg)/wg (5.10)
with (see Fig. 5.1)
wg = Wg(R) = (IRg—R*+{Zz — {(R)}})%, (5.11)

the transfer function can be written as a surface integral:

B !kzr HdRexp [ik(wr+wg)] {l_'_z(XCx-f-y(y)} (5.12)

TWR T

The square root makes this somewhat difficult to handle. But for R<9 Z; this
root can be expanded into a converging power series (see Appendix B). For H we
have then

H=H;+H+H;+... (5.13)
with
ukZT exp [ik(wr+wg)]
Hy(o,1) = ﬁ dR — W (5.14)
Hy(o,0) = K jfarZRLKr+wal o\ s (5.15)
2n Wrwg
Hy(o, 1) = H dREPL*Wr Wl r | ry2 (5.16)
4 WT Wg
etc.

The significant domain of integration lies inside the circle with radius R <9 Z;.
In that domain the power series expansion of [1+2(x{,+y(,)/Z;]* is convergent.
The function with which each term is multiplied, i.e. the integrand in (5.14), is
smooth and has no singularities. Hence the series expansion of H is also convergent.

The physical interpretation of the expressions for Hy,, H,, H,, etc. is very much
the same as the one given in Section 5.2 for Eq. (7). Again we find that the transmitter
induces elementary sources at the surface that reradiate the received energy omni-
directionally. For an arbitrary source on the boundary the distance to the transmitter
equals wy and the distance to the receiver is wg, as is depicted in Fig. 5.1. Hence the
phase delay at the surface amounts to kwy and at the receiver it is k(wy+wg). The
weight of the sources for H,, depends only on the surface elevation (via wg), whereas
for H,, H,, etc. the slopes are also involved.

5.4 Behaviour of H for high frequencies
5.4.1 Purpose of the analysis for high frequencies

For later use it will be convenient to have approximate versions of H,, H, and H,
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that are valid when k is so large that the stationary phase method can be applied to
solve the integrals in (5.14)—(5.16). As a side-issue that for the moment has only
restricted value, we derive these approximations in this section, and discuss some of
their properties.

5.4.2 The stationary phase method

Applying the stationary phase technique on the integrals for H,, H, and H,, we
readily see that, for a surface with gentle slopes, there is only one point of stationary
phase, namely the point of specular reflection. By “gentle slopes” we mean that {,
and {,, satisfy the following relations. For X & 0 their absolute values do not exceed
the value o, for X = 100 m they are not larger than f and y, where «, f§, and y are
constants that depend on the geometry of transmitter and receiver:

a=0.05(Z;+Zg)[Zrr
B = 0.05c0s*0,X /Zx (5.17)
¥y =0.15(Zr+Zg)* (XrZ1,8)s

and Z; p being the larger of Z; and Z. Details of the derivation of these conditions

are collected in Appendix C. There it is also shown that the formulae for H,, H,, and
H, reduce to

Hy(w,t) = —Dg "exp(ikDy—i2k cos 0.,%), (5.18)
H(o,t) = { tan 6,Ho(, 1), (5.19)
HZ((D! t) = _'& taIIzG,CiHO((D, t)! (520)
when
2[(, I tan 0, < 0.1 (5.21)
and
1 1
[N M MES T (~Z— + 7). (5.22)
T R

It should be remembered that in these equations the surface elevation and its
derivatives have to be evaluated at the position R, and at time f,, as in Section 5.2,
Egs. (42) and (43). It is also worthwile noting that Hy(w, t) is the same as H(k, 1)
in those equations.

The foregoing results were derived under the condition that k is “sufficiently large™.
The frequency range in which (5.18)-(5.20) hold, could probably be established by
an analysis of the stationary phase integration such as is described in [5.6]. But such
an analysis will be very complicated, and since the formulae for H,, H,, and H, are
only used here for comparison, we will not attempt such an investigation.
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An indication about the degree of reliability of the stationary phase approximation
can be obtained by letting { — 0 in (5.18)-(5.20): H, becomes

Ho(w,t) = —exp(ikDg)/Do, (5.23)

which is the exact solution for { = 0, whereas all terms of higher order vanish.

5.4.2 The convergence of the series expansion for H

In Sub-Section 5.3.3 we found that the convergence of the series Hy+ H, + H, +...
is guaranteed if R<9 Z;. We can now give more significance to that statement
because we have seen that the main contribution to H,, H,, H,, etc. comes from the
specular point. With that knowledge we can write that the convergence is guaranteed
if X, <9 Z,, ortanf,<9.

This result has only formal value. It states that the expansion (5.13) is convergent
as long as Xy <9(Z;+ Zg), but it does not indicate how many terms are needed to
approximate H with a certain accuracy. However, the formulae for H,, H,, etc. are
subject to condition (5.21), and if this condition is satisfied, we have automatically
that

Hy>H{>H;>... (5.24)

Hence H, is the leading term of a convergent series, and the higher order terms
represent only corrections of relatively small importance, if 2|, | tan 6, <0.1.

5.4.3 Significance of various conditions

The results obtained in Section 5.4 are accompanied by four conditions on the
slopes of the surface: in (5.17) the maximum acceptable values are given, and (5.21)
requires the slope to be less than &, where

8 = 0.05/tan 0,. (5.25)

Furthermore, we have the condition on the slope quadrature ({2<1 and Ci((l)
that played a role in Section 5.2.

The slope of the sea surface is a random quantity with zero mean value and - for
the Pierson-Moskowitz spectrum — with variances equal to 0.003 in down-wind and
0.001 in cross-wind direction. These values are three orders of magnitude smaller
than one, so that the condition on the slope quadrature is amply satisfied.

The standard deviation of the slopes is at most about 0.05. In (5.17) we see that «
is never smaller than 0.05, so that also the condition |{,,| <« is observed.

The behaviour of f, y and é as functions of Xy and Zy is more difficult to analyze.
But we can easily see that

y > 0.15/tan 0, = 3. (5.26)
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Fig. 5.2. Curves enclosing the areas in which both f and & are larger than a given value m. (The dots
indicate the receiver positions that are used in Tables 6.1 and 7.1).

Hence it is sufficient to require that the slopes are smaller than f and §. Curves

for constant f and § can be plotted. For a certain value f =& =m, two curves are

found that enclose a region where both f and é are larger than m. In Fig. 5.2 such
regions are indicated for several values of m. The curves in that picture can be used
in two ways:

1. For a given geometry the value of m can be read; it is the smaller of f and 6,
and our results are only valid if |, ,| <m for the chosen receiver position.

2. If the maximum value of the surface slopes is known, say equal to m,, the area
of receiver positions for which our formulae are valid can be found inside the
curve for which m = my,.

We note that in the second case the region of validity is decreasing when m goes up.

The condition (5.22) for the second derivatives of the surface elevation is less
important than the one on the slopes, because it only affects the amplitude of H and
not the convergence of the series expansion. From Appendix C it can be learned
that H, will have a modulus

o ZTZR —2
A -A|:l Z(ZT+ZR)(C“COS 0,+¢,,)+

ZeZn ¥ . -4
+4 (ZT:'ZRR) COS % s(C::(yy_;:y):I s (5_2?)

instead of 4 = Dg !, if (5.22) is not satisfied. Also the higher order terms have that
factor, and so it does not influence our conclusions.
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5.5 Justification of the use of the Helmholtz equation °
The wave equation in a medium with a time-dependent boundary
Leonard Fortuin

SACLANT ASW Research Centre, La Spezia, Italy
(Received 19 October 1972; revised 1 Deeember 1972)

It is shown that the Helmholtz equation is not exactly correct for a medium with a time-dependent boundary.
The equation can be used with very good approximation when the time-derivative of the surface elevation is
much smaller than the speed of the waves through the medium. For underwater sound waves, reflected and
scattered by an ocean surface that can be described by the Pierson-Moskowitz spectrum, this means that the

wind speed has to be much less than the sound speed.

Subject Classification: 13.2, 13.4.

LIST OF SYMBOLS

amplitude

sound speed

standard deviation of surface elevation
(=Dt

wavenumber of radiation

pressure (time dependent)

pressure (time independent)

pressure, due to the boundary
pressure in unbounded medium

vector in horizontal plane

P E T N

INTRODUCTION

The propagation of sound waves through the ocean
is governed by a wave equation. In case of a mono-
chromatic source this wave equation is usually written

35'
(V+E)p=0, ¢y

the so-called Helmholtz equation. This equation is
exact when the boundaries of the medium in which the
waves are propagating are independent of time. How-
ever, in case of a time-dependent boundary, such as
the ocean surface, the Helmholtz equation can only be
used when the boundary changes slowly enough. It is
the purpose of this paper to derive a condition for the
validity of Eq. 1 in that case. Also, the significance of
the derived condition will be discussed.

I. THE CONDITION FOR THE VALIDITY
OF THE HELMHOLTZ EQUATION

_It is convenient to deal with the velocity potential
U rather than the sound pressure §. For sound waves
of small amplitude these two quantities are related by

the equation _ 5
p=podU/oL. )
The velocity potential satisfies the equation?
Vel =c;2020/ 0P A3)

[ time
v wind speed
Yr, Yr direction cosines

(s surface profile
Po density
time difference

T

P correlation function of surface elevation
w angular frequency of incident wave

ws frequency of surface wave

Before treating the case of a time-dependent surface,
we consider the “frozen” boundary for comparison.

A. The Time-Independent Surface

If the sound source is monochromatic, U can be
written as U(f)=U exp(iwf), where U is independent
of time. We have then

al/ot=iwl, @)
a0/t =—uwl, (5)
and B
5““"?0[}: (6)
so that Eq. 3 changes into
(V2+E2) T=0. )

Using Eq. 6 and dropping the time-factor exp(iwf),
Eq. 1 is found without any approximation.

B. The Time-Variant Surface

The movement of the surface causes the sound field
to depend on time in a more complicated way than in
the foregoing case. To illustrate this we refer to the
Doppler effect that is present in the scattered field,
hence also in the total field # and so in U. For this
reason U/ is now a function of time.
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Consequently, instead of Eqs. 4 and 5 we find:
all/at= (iwlU~+aU/dt) exp(iwt), (8)
820/ 8= (—a*U~i200U/ 81+ U /3F) exp(iwt), (9)

and this result substituted into Eq. 3 does not produce
Eq. 7. However, if the inequality

|aU/at| << |wU| (10)

is satisfied, Eqs. 8.and 9 may be replaced by Eqs. 4
and 5, and Eq. 7 does follow. So this is a sufficient
condition for the validity of the Helmholtz equation
in the case of a time-dependent boundary. In that case
Eq. 6 also holds, so that the condition can be written

as
|ap/ot| << |wp]. (11)

It should be noted that p is the total sound field:
p=po+ps. As the incident field p, is independent of
time, we get
| 83/ 0| <Kw| potpol, (12)
where >0,
If either |po|<<|ps| or |po|>>|ps], this condition
is certainly satisfied when

|0ps/ 01| Kw| ps|. (13)

But if |po| and |ps| are of the same order of mag-
nitude (as occurs close to the boundary), we have to
observe the complete condition (Eq. 12) instead of
the reduced condition (Eq. 13). The significance of
both conditions is discussed in Sec. II.

II. SIGNIFICANCE OF THE CONDITIONS
A. The Reduced Condition

In Ref. 1 (Eq. 39) a formula is given for the scattered
field that is derived from the Helmholtz equation. The
time dependency is concentrated in the factor

F(f)=exp{ik[vr¢ (Ryt)+vat (Roto) 1},

where vr and yg are constants, smaller than or equal
to 1. Replacing g3 by F in Eq. 13, we find the inequality

(14)

[ Y23t/ dti+y RS o/ 3o | Keo. (15)
This formula may be replaced by?
2| at/at| <Kco, (16)

as { is a stationary process and yr, v2<1. The left-
hand side of this inequality is hard to deal with, because
it is a random quantity. Therefore, we replace it by its
mean value or its standard deviation. In both cases we
find, for a sea-surface elevation that is Gaussian and
that can be described by the Pierson-Moskowitz wave
spectrum*

v<K10¢o. (17
1973
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For realistic values of the windspeed, this condition is
easily met, Details can be found in Appendix A.

B. The Complete Condition

For simplicity we take the Fraunhofer formula
(Ref. 1, Eqs. 42.and 43) and find for a point close to the
surface (Zp=Az):

po(t) = —exp[ikDy—i2k cosh,{, (1) ]/Ds,  (18)

with Dy=[Xz*+ (Zp-+As)*]i The direct wave for that
same point is time-independent and given by

po=exp(ikd)/d, (19)

where d=[Xz*+ (Zr—Az)*]. If now Az<Zr, we can
put Dy=d and

ps(t) =~ po exp[—i2k cosb.f. ()] (20)
follows. This result into Eq. 12 yields
VZ cost, | 8¢,/ at| Keo[1—cos(2k cosa,f) . (21)

Also this inequality has to be analyzed statistically.
Using the mean-square criterium, plus some results of
Appendix A, we obtain the condition

0.0040*<ce?[ 1 —exp (— 2k%2 cos*d,) ). (22)

Very low values of the windspeed (and consequently
of /) need not be considered because the surface looses
then its time dependency, and our problem disappears.
Hence we assume that the quantity between square
brackets in Eq. 22 has at least the value 10~* (following
from k=1, v=1 m/sec and cosf,=0.6). Then we find

(23)

This condition is far more restrictive than the one found
in the previous section, but still easy to satisfy.

2<0.05¢9= 75 mi /sec.

III. SUMMARY

We have shown that for a medium with a time-
dependent boundary the well-known Helmholtz equa-
tion holds only approximately. We have also derived
a sufficient condition to which its use is subject: The
time derivative of the surface elevation has to be much
smaller than the speed at which the waves are propa-
gating through the medium.

This condition has been analyzed statistically for
the random sea surface. Using the Pierson-Moskowitz
spectrum to describe the surface elevation, it is found
that the wind speed has to be much smaller than the
sound speed. This condition is very weak and easy to
satisfy. Hence we conclude that it is permitted to use
the Helmholtz equation in studies on sound scattering
from the time-variant ocean surface.
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APPENDIX A: MEAN VALUE AND VARIANCE OF
|at/at|

It is assumed that the sea-surface elevation { is a
stationary process with Gaussian probability density.
It can then be shown (Ref. 5, p. 147) that also the
random process d¢/d! is stationary and Gaussian. Its
mean value equals zero, and its variance is given by

al
= (at/apn =~ —2007)| . (@D

0

The correlation function ® can be expressed in terms
of the surface-wave spectrum A*(w,) (Ref. 6, p. 15):

#(0,0,7) = (2h*)~ j du,A¥(w,) cos(w,r).  (A2)

0
. Hence, 3
6‘35 f dw, AHwo)w? . (A3)
0

For A? we take the Pierson-Moskowitz spectrum (Ref.
4, p. 1679). The integral can then be solved analytically:

0?=0.0021%, (A4)

Next we turn to the random process Q=|a{/at|.
Its probability density follows from Ref. 7, pp. 130,

EQUATION

131:
f@)=2[c(2m)¥] " exp(—Q%/2:)U(Q), (AS)

where U is the unit step function. Expected value and
variance are readily obtained by integration:

E{Q}=a(2/m)},

E(Q}) =o". (46)

Statistically, the condition 20<¢, means that we

require
20<Kco. (A7)

With Eq. A4 this yields

2&5/5¢0= 10co. (A8)

'L. Fortuin, “The Sea Surface as a Random Filter for
Underwater Sound Waves,” J. Acoust. Soc. Am. 52, 302
(1972).

IB. B. Baker and E.'T. Copson, The Mathematical Theory of
Huygen's Principle (Clarendon, Oxford, England, 1953), p.
8

*The same result follows if we substitute the Fraunhofer
formula (Ref. 1, Egs. 42 and 43) into Eq. 13.

“L. Fortuin and J. G. de Boer, “Spatial and Temporal
Correlation of the Sea Surface,” J. Acoust. Soc. Am.
49, 1677 (1971).

*P. Beckmann, Elements of Applied Probability Theory
(Harcourt, Brace, and World, New York, 1968).

®]J. G. de Boer, “On the Correlation Functions in Time and
Space of Wind-Generated Ocean Waves," Saclantcen Tech.
Rep. 160 (15 Dec. 1969).

7A. Papoulis, Probability, Random Variables, and Stochastic
Processes (McGraw-Hill, New York, 1965).

The Journal of the Acoustical Society of America 1685



In the foregoing paper we have derived the condition under which the original
differential equation

V2U = c; %0°Ulot* (5.28)
is approximately equal to the Helmholtz equation
(V2+kH)U =0, (5.29)

and we have stated that the use of (5.29) instead of (5.28) is justified if that condition
is fulfilled. An important objection can be made against this reasoning: the fact that
two differential equations are about equal does not at all mean that their solutions
are very close. Indeed, a small perturbation in a differential equation may be integrated
into a large disturbance of the original solution, so that the two solutions thus obtain-
ed are far apart.

A better justification has been found if we solve (5.29), and can show that this
solution also satisfies (5.28). This will be done in the remaining part of this section.

In Section 5.2 we solved the Helmholtz equation for p, with the boundary condition
p=0. We found p = po+p,, Where p, is the solution for a space without boundary:

po = exp (ikd)/d, (5.30)

and p, is the boundary effect:

P, 1) = 5[] ARy [JAKK, [ dR, exp [iK-(Ro—R,)]
X Gy( 9B, Rr)G(Rg, B5). (5.31)
In that analysis U and p were related via
U = (iwgo) ™" (po + py) exp (—io2t). (5.32)
Hence (5.29) is satisfied, if
V2B = cg 26%Polot?, (5.33)
V2P, = cg 20%pyJ0t>. (5.34)
The differential equation for p, is easily checked: V2p, is equal to —k?*P,, and the
time dependency of j, is only present in the factor exp (—iwt), so that 0*polot? =
—w?p,. This shows that for po, (5.29) and (5.28) are identical.

For p, the situation is more complicated. For V2p, we need to differentiate with
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respect to Xp, Yg and Z, (because % is the point at which we check the solution)
and this dependency is only present in Gy (Zg, #5). The time dependency of p, is
contained in both Green’s functions:

Gk('girgr)Gk(le Q’O) &
Z
~ Gy(Ry, Z1)Gy(%g, Ro) exp |:-fk {W: C(Ry, 1) + ;,—:((Ro, Io)}], (5.35)

with 7o =1—Wg/c, and t; =t,—|R;—Ry|/co, and in the factor exp (—iwt). The
approximation made in (5.35) is based on Assumption 11.

Turning now to the differential equation for p, in (5.34) and assuming that in
(5.31) the order of differentiation and integration can be exchanged, it is sufficient
to demonstrate that

GRS, A1) exp(—iwt) V>Gy( Ry, R5) =

s _ .
=Co iﬁ{ck(&e 15 R1)G( R, Ro) exp (—iot)}. (5.36)

The left hand side is easy to calculate: we find —k”Gy 1G; » exp (—iwt). For the
right hand side we employ (5.35) and obtain

2
C;Z%{G,‘_Tc,‘,gexp(—fwn} = — k%G, 1Gy xexp(—iot)
~1(Zr, L Ze, V[ i (Zr Zr
X {I:H'Co (Wr Lt +‘ﬁ,:§ro)] + e, W;Cal * W—Rfuo . (537)
Therefore (5.36) is true if

<o (5.38)

7 Lz
WEC” Tt W:("O
and

Z

Z
W_::Cnl s i WiCuo < ®cy. (539)

Condition (5.38) is the same as Eq. (15) of the first part of this section. It is true,
for the Pierson-Moskowitz spectrum, if v <10 ¢,. Hence (5.38) is always amply
satisfied. Condition (5.39) can be replaced by

2|{q| < wcy. (5.40)
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In Chapter 3 we found <{?> =0.4 for the Pierson-Moskowitz spectrum. There-
fore (5.39) is well fulfilled if @ > 0.1 radian/sec.

Finally, collecting results, we arrive at the conclusion that the use of the Helmholtz
equation is justified in studies that involve the time-variant sea surface, because such
a boundary changes slowly enough with time.

5.6 Summary

Starting from the Helmholtz equation with boundary condition of zero total
pressure, an expression for H(w, t) has been derived. It is a six-fold integral that can
be reduced to a convergent series of surface integrals, when the surface slopes are
gentle enough (|{,,| <4cotan@). These surface integrals are examined for high
frequencies. The first one is shown to be a good approximation for the whole series,
if the first and second derivatives of the surface elevation do not exceed certain limits
that depend on the geometry of transmitter and receiver. This approximation of zero
order reduces to the exact solution when { = 0. For { #0, it can be improved by
addition of the corrective terms H, and H,. Further improvement is possible, at
least in principle, by adding more terms, but the algebra will become quite formidable.
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CHAPTER 6

THE DETERMINISTIC PART OF THE FILTER

6.1 Introduction

After the derivation, in Chapter 5, of an expression for one of the system functions
of the random filter, we are ready to embark on a statistical study. The first step,
the determination of the filter’s fixed part, will be made in this chapter.

This fixed part, also called deterministic or coherent part, is represented (see Section
4.4) by the mean value of a system function. We have chosen the transfer function H
for this purpose. Its deterministic part is called H,.

Further simplification of the formula for H is possible, starting from the one derived
in Chapter 5. This is shown in Section 6.2. The calculation of H, is treated in Section
6.3; some remarks about absorption are made in Section 6.4.

6.2 Further simplification of H

Starting point for the present analysis is the approximation
H=~ Hy+H,, (6.1)

with Hy and H, given as surface integrals, in (5.14) and (5.15). This truncation of the
series for H is justified, at least in the upper part of the frequency domain, when (see

(5.18)~(5.20))
1| <0.5/tan0,. (6.2)

For |{,| <0.05 (Pierson-Moskowitz spectrum), this means tan 6, < 10 or 0, < 84°.
It allows for any geometry of transmitter and receiver, as long as the grazing angle
is larger than 6°.

Examination of (5.15) reveals that the mean value of 4, equals zero, since <[, > =
<{,> =0. Hence, as at present we are only interested in the mean value of H, we
may write

H(“’: t) = Ho(&), t)

= ey g g P [ak(~:r+ w)] (6.3)
2n Wrwg

The distances w; and wy depend on the surface elevation {(R). This can be seen
in (5.5) and (5.11). The dependency can be expressed more conveniently if we use the
following approximations (see Fig. 5.1):

113



wr = Wp—(Z1/Wp)L,

(6.4)
W = Wr—(Zg/W)L.
They are valid with an error less than 1%, because Z, and Z, are much larger
than { (Assumption 11).
In the argument of the integrand it is important to conserve the random process
{, but in the modulus we can go one step further and put wg & Wy. Therefore H(w, t)
may be written as

:kZ,- R [ikD —iky{(R,1)]
H dR 1 6.5
(@0 =""Lff o (65)
where
D = D(R) = W+ Wy,

Y =YR) = Zy/Wr+Zg|Wp, (6.6)
t' = {(R) = t— We/co.

The surface elevation has to be evaluated at time 7' < ¢, in order to take into account
the travel time required in going from the surface to the receiver.

6.3 Calculation H,

In (6.5) the random character of H is represented by the phase term —iky{. Con-
sequently, H,, the mean value of H, involves the characteristic function [6.1, p. 153]
of {(R, t'). This process is stationary and Gaussian (Assumptions 3 and 4), with zero
expectation and variance /42, so that its characteristic function equals exp (—1k*h%y?).
Thus we find from (6.5):

21.2,.2
sz,-”dRexp(:kD 3k*h*y ).

6.7
W, (6.7)

Hyw) =

This integral will be evaluated numerically. But before doing so, it is useful to
consider the outcome when the stationary phase method is applied. This technique
produces a simple result:

H{w) = —exp(ikDy—2k*h* cos?6,)/D,, (6.8)

which equals the mean of H, as given in (5.18). Formula (6.8) is interesting, but of
little use — as long as it is unclear for which frequencies it holds.

The integrand in (6.7) is a complex function; this makes the integral less suitable
for numerical calculations. For this reason we compute the Fourier transform of H,
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that is the impulse response function k(7). Using (4.2), together with [6.2, Vol. 1,
p. 15(11) and p. 73(19)], we get

~109.1 (z'-1) (-7’
ht) = —Zyeq "(27) ‘l” dR mup [— 2—b2:| (6.9)

Two new functions of R appear in this formula:

b(R) = hy(R)/c,
7'(R) = D(R)/cy.

(6.10)

Table 6.1 Transmitter-receiver configurations and wind speeds, used for the numerical calculation

of Hy.
v in mfs

Xginm 1 2 5 10
0 case 01 case 02 case 03 case 04
100 11 12 13 14
200 21 22 23 24
500 31 32 33 34
1000 41 42 43 R
2000 51 52 53 54
5000 61 62 63 64

Zp = 650m, Zp = 100 m.

The numerical calculation of A, with (6.9) and (6.10) produces an interesting result:
for all cases listed in Table 6.1 the numerical value of %, does not differ significantly
from the stationary phase approximation, i.e. from the Fourier transform of (6.8).
This signifies that we have, with good approximation,

ha(z) = —(bDov/27) L exp [—&(’;" )] (6.11)

where b, and 7, are the values of b and 7’ at the specular point'®:

b, = 2hcos 0,/cy, 6.12)

Ty = DolCu.

An illustration is presented in Fig. 6.1, where we have plotted A, given by (6.11),
together with the results of numerical integration for all cases, on normalized scales.

10 Some authors (e.g. McDONALD and SPINDEL [6.3, p. 750]) call b, the “Rayleigh parameter”.
Usually this name is given to the quantity wb, =2 kh cos 0, (BECKMANN and SPIZZICHINO [6.4,
p. 10], HorToN and MELTON [6.5, p. 300], VENETsANoPoULOs and TUTEUR [6.6, p. 1102]). Then it
is identical to our roughness parameter y.
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10 I Fig. 6.1.

i The impulse response function of the fixed
—bg Do\ 21T hy(Ty) part of the filter, on normalized scales:
stationary phase approximation
(6.11), » numerical integration (6.9); Ty =

(z—1y)/b,.

The foregoing results also mean that (6.8), although derived for high frequencies,
can be used for all frequencies from 0 to co. Hence we arrive at an important and
very useful conclusion: for the deterministic part of the filter, the stationary phase
approximation can be used in the whole frequency domain, if we limit ourselves to
moderate wind speeds (v < 10 m/s) and grazing angles (¢ = 8.5°). In terms of the
roughness parameter x = 2kh cos 0, (see Section 5.2, Eq. (44)) we have hence:

Hjw) = —Dg " exp (ikDy—117). (6.13)

It would be interesting to compare this result with an analysis of (6.7) by means of
an extended stationary phase integration technique, for instance the one developed
by Jones and KLINE [6.7]. The question whether discrepancies at low frequencies
have been smeared out by the Fourier transformation could then also be answered.
But as such an analysis is very complicated, it will not be attempted here.

Finally we elaborate on the meaning of (6.11): the deterministic part of the filter
delays a unit delta pulse and changes it into a pulse with a Gaussian shape. The
delay is proportional to the specular path length, the width of the pulse depends
linearly on the cosine of the specular angle of incidence and on the variance of the
surface elevation, whereas the pulse height is inversely proportional to that variance.

6.4 Absorption

Up to this point we have neglected the absorption in the medium. This phenomenon,
which can become important enough to be taken into account in practice, can be
built into our model by series connection of an absorption filter. This has been
discussed in Chapter 1.
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Such an absorption filter is time-independent and has the transfer function
H,(w) = exp(—w’LC,), (6.14)
with C,=4.5x 10713 dB/m (at a temperature of 20°C) and L the travelled distance,
in meters. Thus by incorporating the absorption, the complete formula for H,
becomes:

H/w) = —Dg " exp(ikDy—43* — D, C ). (6.15)

Its Fourier transform is easily obtained and differs from (6.11) only in one respect:
b, has to be replaced by b;, where

b, = (b2 +2D,C,)*. (6.16)
Table 6.2 Values for b, b’y and b’ /b, for the wind speeds and the transmitter-receiver configurations
of Table 6.1.
vinm/s
Xprinm 1 2 5 10
0 4.899,,—06" 1.960,,—05 1.225,,—04 4.899,,—04
2.644,,—05° 3.254,,—05 1.252,,—04 4.906,,—04
5.397,,-+00% 1.661,,-+00 1.022,,+00 1.001,,-+00
100 4.856,,—06 1.942,,—05 1.214,,—04 4.856,,—04
2.654,,—05 3.253,,—05 1.242,,—04 4.863,,—04
5.466,,+00 1.675,,+00 1.023,,-+00 1.001,,+00
200 4.734,,—06 1.893,,—05 1.183,,—04 4.734,,—04
2.685,,—05 3.251,4,—05 1.213,,—04 4.741,,—04
5.673,,+00 1.717;,+-00 1.025,,-+00 1.002,,-+00
500 4.076,,—06 1.630,,—05 1.019,,—04 4.0764,—04
2.877,,—05 3.282,,—05 1.058,,—04 4.086,,—04
7.059,,-+00 2.013,,+00 1.038,,-00 1.002,,--00
1000 2.939,,—06 1.176,,—05 7.348,—05 | 2.939,,—04
3.367,,—05 3.554,,—05 8.078,,—05 2.958,,—04
1.145,,+01 3.023,,4-00 1.099,,+00 1.006,,+00
2000 1.720,,—06 6.881,,—06 4300,—05 | 1.720,,—04
4.388,,—05 4.438,,—05 6.141,,—05 1.775,,—04
2.551,,+01 6.450,,+00 1.428,,-+00 1.032,,+00
5000 7.267,,—07 2.907,,—06 1.817,,—05 7.267,,—05
6.746,,—05 6.752,,—05 6.986,,—05 9.915,,—05
9.283,,+-01 2.323,,+01 3.845,+00 1.364,,+00

U by = 2h coshylce; * b’y = (b2 +2 DyC¥; * ' /b,
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Both b, and b are functions of wind speed and geometry. In Table 6.2 we have
listed the values they assume for the cases of Table 6.1, and also their ratio b,/b,. It
can be seen that the absorption becomes influential for the longer ranges (X = 1000
m) and the lower windspeeds (v < 2 m/s).

6.5 Summary

The fixed part, or mean value, of the transfer function has been investigated in
this chapter by considering the surface integrals derived in Chapter 5. The first one
(H,), integrated numerically after the mean value of the integrand has been calculated,
produces the same result as the stationary phase integration, for wind speeds less
than 10 m/sec and a grazing angle larger than 8.5°. The second one (#,) is identically
zero due to the statistical properties of the sea surface, the third and higher order
terms produce results that are negligable compared with < H, > for ¢ > 6°. Hence
an important result is found: for many realistic combinations of geometry and wind
speed, the deterministic part of the filter can be described with good approximation
by the formula that follows from the stationary phase integration (i.e. the specular
point formula).
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CHAPTER 7

THE RANDOM PART OF THE FILTER

7.1 Introduction

The second step in the statistical analysis of the filter regards its random part. It
is defined, as has been pointed out in Chapter 4, as that portion of the filter that
remains after the fixed part has been removed. Again any system function could be
used to describe it, and once more we have chosen the transfer function, that is #,,
in order to be consistent with the foregoing chapters.

A formula for H, is derived in Section 7.2; its average value equals zero (as a
consequence of the way in which H, has been defined), its variance is considered in
Section 7.3. For the evaluation of this variance, numerical integrations are required.
Results are presented in Section 7.4. Conclusions about the best way to approximate
H, can then be drawn, which is the subject of Section 7.5.

7.2 Derivation of a formula for H,

A definition of H, follows readily from (4.17):
H/(w,t) = H(®,1)— H/ w,1). (7.1)

In Chapter 5 it was found that in practical cases H, is a very good first approxima-
tion of H, whereas in Chapter 6 we have shown that H, is time-independent.
Thus we can write

H/(w,t) = Hy(w,t)— H (o), (7.2)

bearing in mind that improvement might be obtained by addition of H,, H,, etc.
Expressions for H, and H, have been derived in the previous chapter. Applying (6.5)
and (6.8) to (7.2), we find

exp [ikD_zik?C(R" )], exp (ikDy —2k*h? c0s®0,)/Dy.  (7.3)

Hyw, 1) = %21 {{4R
2n

If the stationary phase approximation is used, this simplifies into

_exp(ikDy)

o {exp[—i2kcos O,L(R,, t,)]—exp(—2k*h*cos’6,)},  (7.4)
0

H/(w,1) =
with t, = t—Zpt,/(Zr+Zg) and 1, = Dy/c,.
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7.3 The variance of H,

Using the fact that ((R, t") is Gaussian and stationary (Assumptions 3 and 4), we
derive easily from (7.3)

kZ.\? dR dR
< |H(o,)]* > = (_—T) L 2__exp[ik(D,—D,)] x
) N wawa,wawg, P O D)
x exp [ —4k*h*{y] — 29,7, (R, — Ry, t— 1)) +93} ]+
—exp (—4k*h? cos? 6,)/DZ, (7.5)

where the subscripts 1 and 2 refer to R, and R,, respectively.

The integrations over R, and R, are coupled via the surface correlation function @.
If & were equal to zero, the coupling would disappear and the double surface integral
would be cancelled by the second term; the variance would then vanish. This property
can be used to simplify the expression for the variance.

If we use the indentity

exp (k*h?y,y,®12) = 1+ ["-"P(kzhz?x?zd’u) -1] (7.6)

in (7.5), we get

kZ,\? dR dR
H , 2 = T 1 2 3 =D
< |H{o,1)|" > (—-—-2?:) “(W;Wx)i .fj'(WrzWR)zmnp[:k(B‘1 D,)] x

x {exp [~ PR (v — 27,7291, +73)] —exp [_’y‘zhz(?‘f Sy '}’i)]} . 7.7

In this expression it is easy to see that the integrand tends to zero, when R, and R,
are so far apart that @ vanishes. Hence, if we introduce centre-of-mass-coordinates
and relative coordinates:

R, =R—1¢

R = ‘}(RI‘FRz)

(7.8)
e =R,—R,

we find an integral over ¢ that has as integration domain the area S, around the
origin in which @ #0. We now suppose S, to be so small that: (1) #;,—t{ ~ 0 for
any ¢ inside this area, (2) D, and D, may be replaced by a Taylor expansion up to
the first order term, around the point R, as follows,

D, ~ D—3({D.+nD,)

(7.9)
D, ~ D+4(éD,+nD,),
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and (3) Wy and Wy can be replaced by their values at R. These approximations are
correct with an error not larger than 2%, if

1% max+ Ymaxl < 0.2WZ(R),
|(XR _'x)gmax y’?maxl 0. 2WR (R)

Replacing &, and ... by the effective correlation distances, this yields for the
most representative surface point R =R,

(7.10)

Liws Ly € 04Z . 3 (7.11)
T,

in which Zy p is the smaller of Z; and Zj.

In (3.21) and (3.22) we have the effective correlation distances for the Pierson-
Moskowitz spectrum. Using those values in (7.11), together with a minimum of 100 m
for Z; g, the condition turns out to be equivalent to v> < 160 m?/s?, or » < 12.6 m/s.
This condition is always observed, because v will be at most 10 m/s.

Returning now to (7.7) we see that the time-dependency disappears, and we get

< |H/a,0)* > = ( ) iy e WR)z {f doexp [ik(D,& +Dyy)] x

x (exp [— k*h {1 - (0,0 ]—exp(~ k). (1.12)

In this formula we need to substitute ®(g, 0), the spatial correlation function of
the surface elevation. The results of Chapter 3 could be used in full detail, but both
surface integrals would then have to be evaluated numerically. Rather then under-
taking this formidable task (for a rigorous examination the geometry, the sound
frequency, the wind speed and its direction would have to be varied, and for each
combination of these parameters a four-fold integration would have to be performed),
we seek to do the integration over g analytically. To this end we approximate ®(g, 0)
in the following way:

P& n,0=1 for [|<Ly and |n] < Lews (7.13)

=0 otherwise,

the effective correlation distances L, and L., being given in (3.21) and (3.22). It
may seem from (7.13) that we are restricting ourselves to a wind blowing along the
X-axis, but the cross-wind case follows by exchanging L,, and L,,. Next integrating
over @, we obtain a relatively simple answer:

< iH,(ﬂ), f)lz > = (kn ) de cwII W‘Wn X

x {1 —exp (—k*h*y*)}sinc(kD,L,,)sinc(kD,L.,).  (7.14)
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In this formula sinc (x) is a shorthand notation for sin (x)/x [7.1, p. 23].
The corresponding stationary phase approximation follows from (7.4):

< |H/(w,1)|* > = Dy *{1 —exp(—4k*h* cos®d,)}. (7.15)

With the roughness parameter y = 2kh cos 0, (see Section 5.2, Eq. (44)), this can
be written as

< |H(w,1)|* > = Dy *{1—exp(—x)}. (7.16)

7.4 Numerical results

In (7.14) we see that the variance of H, is not only a function of frequency, but it
depends also on wind speed (via A, L,, and L.,) and on the geometry (via Zr, Zg
and Xg). For a numerical integration, actual values have to be chosen for these
parameters. Several combinations have been analyzed, namely the cases of Table 7.1.
The computer results are plotted in Fig. 7.1, together with the pertinent stationary
phase curves, derived from (7.15). The vertical scale has been normalized by multi-
plication with DZ.

Table 7.1 Transmitter-receiver configurations and wind speeds, used for the numerical calculation
of the variance of H,.

vinm/s
Xrpinm 1 2 5 10
0 case 01 case 02 case 03 case 04
100 11
200 21 22 23 24
500 31
1000 41
2000 51 52 53 54
5000 61

Zp=650m, Zp= 100m.

Another way of presenting these results is shown in Fig. 7.2. There the roughness
parameter x is used as the independent variable, and the curve is described by (7. 16).
Both figures show an important property of the variance of H,: in practical cases it
can be represented satisfactorily by the stationary phase approximation (7.15), over
the whole frequency range from 0 to oo.

The physical meaning of Fig. 7.2 is interesting and simple to see:

1. For y <0.1 the variance of H, is practically zero, and as also its average equals
zero, the random part has no influence on the characteristics of the filter. In
other words: the filter is entirely coherent, with a transfer function given by (6.13),
and there is only specular reflection.
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Fig. 7.2. The variance of H, (normalized) as function of the roughness parameter y = 2k/ cos 0,.

2. For x> 2 the deterministic part has vanished (see (6.13)) and the filter is totally
incoherent. No specular reflection occurs, there is only random scattering.

3. In the intermediate region 0.1 <y <2, both the deterministic and the random
part play a role, and there is specular reflection as well as random scattering.

7.5 Approximation of H, and H

In the preceding section we reached the conclusion that the stationary phase
approximation is useful to describe the variance of H,, over the whole frequency
range from 0 to co. Compared with the correlation functions of H, in time, frequency
and space, this variance is merely a special case: it is the value of the correlation
functions for equal frequencies, equal times, coinciding receivers and coinciding
transmitters.

It seems reasonable to suppose that the stationary phase approximation maintains
its validity when correlation in frequency, time and space is considered (Assumption
12). Accepting this supposition, we can take (7.4) as the starting point for the calcula-
tion of the correlation functions of H, and consequently of H. As for the latter one,
with the foregoing supposition the formula for the transfer function of the random
filter as a whole becomes very simple. Taking (7.4) and adding H; as given in (6.13),
we get

H(w,t) = —Dg ' exp[ikDo—i2k cos 0,((R,, 1,.)]. (717
As this approximation depends only on the random surface at the specular point,

we call it the specular point approximation. Formula (7.17) will be used for the analysis
of time, frequency, and space correlation of the scattered field, in the following

126



chapters. When necessary, we will multiply H by H, as given in (1.1) to take the
absorption of the medium into account. The incorporation of the absorption has an
important consequence: it guarantees the existence of the Fourier transform with
respect to w. During the analysis in the w-domain, however, we will often meet
cases in which @?D,C, is very small, because C, has such a low value (~4.5x107'3
dB/m). We can then simply use (7.17).

7.6 Summary

In this chapter the variance of the transfer function, describing the random part
of the filter, has been examined. Numerical integration produced a result similar to
that found for the mean value: for many practical combinations of wind speed and
geometry, the variance of H can be presented satisfactorily by the specular point
formula.

These results for mean value and variance have been generalized into the assump-
tion that also the correlation functions of H in time, frequency, and space can be
described by a specular point formula (Assumption 12). In this way a simple expression
has been obtained as the starting point for the calculation of these functions.
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CHAPTER §

TIME AND FREQUENCY CORRELATION

8.1 Introduction

As a result of the foregoing chapters, we have found that in practical cases the filter
can — with good approximation — be described by:

H(w,t) = —Dg 'exp[ikDy—i2k cos O(R,, 1,)],

T (e
i ZT*"ZR Co.

This represents a random function of time and frequency. The random character
is contained in the function {; the statistical properties of this Gaussian process
were discussed in Chapter 3. For very large distances A has to be multiplied by H,,
the absorption function (see Sub-Section 1.2.2); H, can also be invoked at high
frequencies to guarantee the existence of Fourier transforms (see Section 7.5).

(8.1)

Bh(TlgTSJO) Bh(TlsTZ’ﬁt)

/ ey
By (w1 ,wsz,0) By (w1 ,wa , At)
\ By (w, =0, 4¢)
/ Be(w,",0)
Be(W1,%:,0)
\ Be (¥,-1,0)

Fig. 8.1. Some system correlation functions and their special versions.
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As ( is stationary in time, the time correlation of H depends only on the time dif-
ference At and not on the actual times. Hence the diagram of Fig. 4.6 is applicable
for the calculation of the various system correlation functions.

In the analysis of output signals (Chapter 10) not all correlation functions are
needed: it turns out that By, B, and B, are sufficient. These are treated successively
in Sections 8.2, 8.3 and 8.4.

Often, in practical cases, we consider either the correlation in time or the correlation
in frequency, at the same time keeping the other variables constant or even equal.
The correlation functions reduce then to special versions. Figure 8.1 gives a summary
of the functions that will be examined; their formula can be found in the corresponding
sections.

8.2 Correlation of the transfer function

8.2.1 A general expression for By

In its most general form the correlation function of H is given by

By(w,, 05, 4t) = < H(w,, t—A)H (@,, 1) >
= Dg *exp [ — {1} — 21120290, 40) + 13} +i(w, — @,)7,]. (8.2)

The argument of this complex function depends linearly on the frequency dif-
ference, the modulus can be characterized as a Gaussian *“hat”. The maximum value,
equal to Dy 2, is reached at the origin of the y,7,-coordinate system; the contours
are concentric ellipses orientated along the diagonal yx, = y,. Their properties depend
strongly on &: for @ =1 the semi-major axes tend to infinity, for @ =0 the ellipses
reduce to circles. A few examples are drawn in Fig. 8.2. For @ =1 the correlation
function depends apparently only on the frequency difference. This is further dis-
cussed in Sub-Section 8.2.4.

8.2.2 Equal frequencies

By taking equal frequencies in (8.2) we find that the time-correlation function of
H can be written as'!

By(w, w, Aty) = Dg *exp [ —*{1 = ®(0, 4ty)}]. (8.3)
This is a function of y that tends to the value Dg? for x <0.1. For Aty— it
reaches the value Dj? exp (—x?), a constant that represents the fixed part of the
filter.

1 The time difference has been normalized, in accordance with Chapter 3; thus: Ary = (g/v)A1.
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Fig. 8.2.

Contours for Dg?|By(w,,w,,Ar)|, for @ =1,
0.5 and 0. The radial frequencies @, and , are
expressed in terms of the roughness parameter
%

When y is small enough, a useful simplification of (8.3) can be obtained by power
series expansion of the exponential function; we get

By(w, , 4ty) = Dy *[1+2®(0, 4ty)], if x<0.2. (8.4)

The first term inside the square brackets represents the fixed part of the filter, the
second stands for the random part. The time-correlation function of H, is apparently
proportional to the time-correlation function of the surface elevation, for x less
than 0.2.

In Fig. 8.3-A the function By(w, w, Aty) is plotted for some values of yx, after
multiplication by DZ. The constant value to which By tends for large Ary reflects
the influence of the fixed part of the filter. The true time correlation can be observed
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Cy(x.aty)

(B)

0 10 20 30
NORMALIZED TIME DIFFERENCE, At

Fig. 8.3. (A) The time-correlation function of H(w,t) for equal frequencies on a normalized time scale
(4t = gAt/v) with x as parameter; (B) the normalized time-correlation function of H (w,t), with the
inverse of the variance of H, as normalizing factor.

better if we subtract this effect and normalize the curves. This is done by defining a
new correlation function:

D?By(w, w, Aty)—exp(—x?)
1—exp(—1%)

Culx, 4ty) = : (8.5)

This is the normalized correlation function of H,, and it assumes the value 1 for
Aty =0 and any value of x. Curves for various values of y are drawn in Fig. 8.3-B.
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The normalizing factor is the inverse of the variance of H,. Its value can be obtained
from Fig. 7.2. An interesting result follows for small y:

CH(X9 AIN) == dj(os Atﬂ’)’ if X < 0.2. (86)

8.2.3 Zero time difference
In (8.2) we put 4t=0, i.e. ®=1, and get

By(w,,,,0) = Dg *exp [ —1(x, —12)* + i@y —wy)r,]. (8.7)

This depends only on the difference between w; and w,, so that the contours of
|By| in a y;x,-plane are straight lines (see Fig. 8.2).

The dependency on the frequency difference only has an important consequence:
By(t,, 15, 0), the double Fourier transform of By(w,, w,,0), will contain a delta
function (see Sub-Section 8.4).

8.3 The function B (o, o, 2)

According to Fig. 4.6, we can find B (o, w, Q) by taking the Fourier transform of
(8.3) or (8.4) with respect to Aty. In general, this cannot be done analytically, but
using the Fast Fourier Transform technique on the numerical values of Fig. 8.3-A
we readily obtain a digital representation of B,(w, ®, Q). This function, depicted'?
in Fig. 8.4, together with the normalized version C,(y, Qy), characterizes the frequen-
cy spread in the channel. The normalizing factor is again the inverse of the variance
of H,.

The special case y < 0.2 is interesting, because an analytic expression for B, can
then be found by application of some results of Chapter 3. First we write the Fourier
transform of (8.4) as a cosine transform; this is possible because ®(0, 4ty) is even.
Using then (3.10) we find

B(@,,Qy) = D5 *[6(2y) +1"h ™ *A*(Qy)] (x<0.2), (8.8

with Qy = vQ/g. The second term between brackets is caused by the random part of
the filter; it is proportional to the sea surface wave spectrum. The normalized version
of B, is easily found:

C.(x, Qy) = h™24%(Qy), if x<02; (8.9
this result is confirmed by comparison of Figs. 8.4 and 3.1.

12 We have suppressed the delta function at 25 =0, It represents the fixed part of the filter and is
irrelevant here.
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Fig. 8.4. (A) The frequency-correlation function B,(w,m,f2y) on a normalized scale (2 =v{2[g)
with y as parameter; (B) the normalized correlation function, with the inverse of the variance of H, as
normalizing factor.

8.4 Correlation of the impulse response function

Examination of Fig. 8.1 reveals that the correlation function of h(z, f) can be
found as the inverse double Fourier transform of By(w,, w,, 4t), with w, and ©,
as the independent variables. By, is a two-dimensional Gaussian function. The Fourier
transform can hence be found analytically (with 47 =0 as a special case) and will
have Gaussian properties too.
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We apply the operator described by (4.4) on (8.2) and take into account the nomen-
clature of Fig. 8.1. Also using the parameter b,, defined in (6.12), we obtain for
At #0 (i.e. = ®(0, A1) < 1):

IS 3. 2
By(t,, 75, At) = (2uD2b2\/1—D%) 'exp [— (T 2¢T1T: +1 ):l, (8.10)
A1-9%)
where T, = (t,—1,)/b,, and n = 1, 2. This changes into
By(t1,72,0) = (V27 D)™ '8(T, — Ty) exp [~ H(Ty + T2)*] (8.11)

when 41 =0 and consequently ¢ = 1.

3

$-09

=2 L

S Contours for 272D,%b 2By (7,,7:,41), for @ = 0.9,
T 0.5 and 0. The time variables 7, and 7, are
1 expressed in terms of 7' = (v—7,)/b,.
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The Gaussian character of B, is clearly visible. The maximum value is reached for
T, =T, =0; it depends on @ as (1 —®*) "% for ¢ < 1. The contours are again con-
centric ellipses with major axes along the diagonal T; = T,. Examples are plotted in
Fig. 8.5.

A remarkable property of By, is that for 47 =0 it is only non-zero if t, = 7,. This
is caused by the fact that By(w;, w,, 0) depends only on the difference between w,
and ,.

If By is multiplied with the absorption factor exp [—(w?+w3)D,C,], the case
At =0 needs no special treatment any more. For B, we then get a slightly modified
version of (8.10): b, has to be replaced by b;, defined in (6.16), and @ by &' =
(by/b,)*®. Since b,> b, we have @' <1 which explains why @ =1 is no longer a
special case.

8.5 Summary

The specular point formula for the transfer function, taken as the starting point
for the statistical description of the filter, contains the random surface elevation
linearly in the exponent. As this random process is Gaussian (Assumption 4), any
kind of correlation function can be calculated easily. Time and frequency correlation
have been considered in this chapter. The results depend strongly on the roughness
parameter . For y <0.2 there is a distinct correspondence between the surface
statistics and the filter properties (coherent scattering), which property is gradually
lost for x increasing beyond the value 1 (incoherent scattering).
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CHAPTER 9

SPACE CORRELATION

9.1 Introduction

In Chapter 4 it was mentioned in passing that a third variable can be distinguished
when the surface channel is considered as a random filter, namely the geometry of
transmitter and receiver. The influence of this third variable will be investigated in this
chapter, by looking at the spatial correlation of the scattered field. A brief analysis
of this type of correlation has been made in Section 5.2. The material presented in
this chapter is an extension thereof.

A wide variety of possibilities could be considered, because now the filter functions
depend on eight independent variables: the three coordinates of the transmitter, the
three coordinates of the receiver, and the two variables dealt with in the foregoing
chapter. We will not attempt to analyze the influence of all these variables; we
restrict ourselves (see Fig. 9.1) to a fixed transmitter, radiating a constant frequency
, and we observe the scattered field at two receiver positions and at equal instants
of time. This signifies that the number of independent variables on which the filter
functions now depend has been reduced to three: the coordinates of the receiver,
while @, f and the transmitter coordinates are merely parameters.

Since the input signal is monochromatic, the output signal will be proportional to
H(w, t), according to (4.9). Hence the spatial correlation as taken here is best examined
by means of the frequency transfer function.

A general formula for the spatial correlation function is easily derived from (8.1).
Calling the two receivers R and R,, placing R, in the plane y = 0 and R, in its vicinity,
labeling all quantities that distinguish the two receivers from each other with 1 and 2

0 xsz Xs1

filter 1

R, filter 2

(A) (B)
Fig. 9.1. Spatial correlation of the scattered sound field; (A) geometry of transmitter and receivers

(for simplicity both receivers are drawn in the plane y = 0, but R, can have a non-zero y-component),
(B) blockdiagram.
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respectively, and assuming the average wind direction to make an angle «,, with the
positive X-axis (0 < «,, < /2), we obtain:

< Hy(w,)H3(w,1) > = (Dg;Dy;) ™" exp [ik(Doy — Do,)]

x exp [ —3{xi —20(¢, n, T)Zle+x§}]’ ©.1)
where y, = 2kh cos 0,

f = 1",;Sin(acw)+(X,2—X,,)cos(aw),
n = Yy, cos(a,)— (X — X,y) sin (a,,), 9.2)

T= “31— JZI!
and

Y.m = (’Z—T) Y,Rns (93)

withn=1, 2.

An important property of (9.1) can be noted immediately: if &, , and/or 7 are so
large that @ equals zero, the spatial correlation function reaches a constant value
that is in general non-zero. This value is due to the deterministic part of the filter.
For the analysis of the spatial correlation this constant level is irrelevant. Hence we
subtract it, which means that we will examine the spatial correlation of H, instead
of H. Furthermore, in (9.1) only the second exponential function is important
for the spatial correlation, because the other elements merely describe an amplitude
and a phase shift. Therefore we drop them and so we are concerned with the reduced
space-correlation function, defined by

C(Rgy, Rrs) = exp [ — 3y =20, 0, Dx1xa + 15} —exp [ =303 +13)]. 9.9

This function will be analyzed in two steps: in Section 9.2 we consider the spatial
correlation on and across an average wave front (c.f. Section 5.2), and after that we
investigate the correlation in X, ¥, and Z-direction, in Section 9.3. To distinguish
the various correlation functions that appear in this way, they will carry a descriptive
label.

For sufficiently high frequencies the concept of wave fronts is often used. They are
surfaces of constant phase. For a perfectly flat boundary these surfaces are spheres
with the image 7"’ of the transmitter 7" as centre. When the boundary is random these
spheres will be distorted, in a stochastic manner. The extent of this distortion is
analyzed statistically in Section 9.4.
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9.2 Correlation on and across an average wave front

In this section we are concerned with the receiver positions that are already discussed
in Section 5.2 (page 312-Fig. 9). This time, however, we assume the wind direction
to be arbitrary: whereas in Section 5.2 the average wind was blowing along the X-axis,
it now makes an angle «,, (with values between 0 and n/2) with that axis.

9.2.1 Vertical transversal correlation

The receivers are placed on an average wave front, in the plane y =0. Their
positions are conveniently expressed in terms of the angles ¢ and 4¢ (see Section
5.2, Fig. 9a). Then (9.4) can be written as

Cyr(49,9) = exp[ —}{xi —29(, 1, 01z + 23} ] —exp [— (i +22)]  (9-5)
where xy = 2kh sin (@), x, = 2kh sin (p+ 4¢) and

¢ = Z[cot (¢ + 4p)—cot(@)] cos(a,,),
n = —Zy[cot(¢+4¢)—cot(¢p)]sin(x,).

(9.6)

We have put 7 =0, because the difference in travel time between R, and R, is only
depending on the surface elevation at the specular points, whereas & and # depend on
the coordinates of these points. This makes the influence of 7 an effect of second
order.

Examination of (9.5) reveals that Cy, is not even in 4¢. This is caused by the fact
that the transfer function (see (8.1)) is not stationary in .

In order to investigate Cy as a function of 4¢ and ¢, we have to chose the para-
meters Zy, k, v, and «,,. Some results'? are shown in Fig. 9.2. The following conclusions
can be drawn:

1. When the surface roughness increases either because v or k is augmented, or both,
the Ag-range in which some correlation can be expected, becomes narrower.

2. The correlation range for the cross-wind case is about twice as large as the A¢-
range for the down-wind case. This corresponds to the property of the sea surface
that L., ~ 2L,,, (see (3.21) and (3.22)).

3. For y < 1, the spatial correlation function Cy; has the same shape as the spatial
correlation function of the surface elevation (c.f. Fig. 3.5). This is confirmed by
(9.5), which reduces for y;, y, <0.2 to Cyr(de, @)~ x1x2P(&, n, 0). Especially
for low values of ¢ this effect can be noted.

13 We have restricted ourselves to negative values of Ag. This causes no loss of generality because
when dp> 0, we simply exchange the receivers R, and R,.
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Fig. 9.2. The vertical transversal correlation function Cyp(dp,p), with ¢ as parameter, (A) in
down-wind direction, (B) in cross-wind direction (Z7 = 100 m),
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9.2.2 Horizontal transversal correlation

The receivers are placed on an average wave front in a horizontal plane. Their
positions are given by the angles ¢ and u (see Section 5.2, Fig. 9b) and the correlation
function becomes

Crr(2, @) = exp[—x*{1—D(£,n,0)}]—exp [— x*] 9.7)

with x = 2kh sin (¢) and

& = Zycot () [cos (x, — ) —cos ()],

(9.8)
n = —Zycot(¢) [sin (a,,—a)—sin(a,)].

With the same justification as in the previous sub-section we have put 7 ~ 0. Results
can be found in Fig. 9.3. The conclusions that can be drawn from the curves there are
about the same as in the preceding sub-section. The main difference is that the down-
wind and cross-wind cases have exchanged their role, due to the passage from vertical
to horizontal transversal correlation (see Section 5.2 — Fig. 9). The curves for ¢ = 90°
are not plotted, because Cy; degenerates into a constant (Cyp = 1—exp (—x?)) for
that value of ¢. This follows from (9.7) and (9.8) in a straightforward way.

9.2.3 Longitudinal correlation

The receivers are placed in the mean direction of propagation: R, on a sphere with
radius Dy, R, on a sphere with radius Dy+ g. Their position is further determined
by the grazing angle ¢ (see Section 5.2, Fig. 9¢c). The specular points coincide, so
that £ =5 =0. The time difference is not negligible any more, because now it is
directly coupled to the receiver positions. For the correlation function we find

Cr(0, ) = exp[—x*{1—(0,0,7)}]—exp [—1*], (9.9)

where © = g/c, and x = 2kh sin (¢). This formula is illustrated by Fig. 9.4. There we

see that:

1. The correlation function becomes more peaked when the roughness increases
(when k, v, or ¢ is augmented).

2. The shape of the time-correlation function of the sea surface elevation can be
recognized, especially for small values of x (¥ < 1).

3. The distances over which there is some correlation are large, due to the fact that
we are considering the propagation in the mean direction of propagation, and
the propagation speed is high.

An interesting case arises when the observation times are not taken equal but
differ by exactly the amount 7, i.e. at R, the scattered field is observed at time f, at
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Fig. 9.4. The longitudinal correlation function Cr(p,p), with ¢ as parameter, for Z;p =100 m.
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R, the observation takes place at time 7+ 1. The observer travels then with the wave,
and the propagation delay from R, to R, is compensated. Hence we get

Cu(e,9) = 1—exp(—x%), 9.10)

which is independent of g, and equals the variance of H(w, t).

9.2.4 Correlation between two arbitrarily placed receivers

Up to this point we have been discussing the correlation of the scattered field in
the three orthogonal directions that were suggested by the concept of average wave
fronts. These average wave fronts are spheres; hence we have been working in a
polar coordinate system (g, ¢, ), and we have considered successively the correlation
in the direction of ¢, o, and p.

The question arises whether the spatial correlation between two arbitrarily placed
receivers can be expressed in terms of the correlation functions Cyy, Cyy, and Cy.
In order to find an answer, we assume that the first receiver has the coordinates
(0r, @, 0) and the second one (g + ¢, ¢+ 49, &). The specular points are then given
by

X.ll = ZTCOt (‘P)s

(9.11)
Y.-nl = 0’
and
X.ﬂ. - ZTGOt(‘P'l'A(P)COS(a):
9.12)
Y,; = Zycot(p+4¢)sin(w),
so that (c.f. (9.6) when « =0 and (9.8) when 4¢ =0):
& = Zy[cot (¢ + 4¢) cos (a,, — @) —cot (¢) cos ()], _
n = —Zg[cot (¢ +Ag)sin (x, —a) — cot (¢) sin (,)]. '
Next we return to (9.4) and write
C(QRU QRZ) = CO(Q! Aq’: a)
= exp [ —3{x] —20( 0, Daxz + 22} ] —exp [ = 30 +22)]- (9.14)

The relative coordinates & and 5 are given by (9.13), and t = p/c,. For sufficiently
small values of ¢, 4¢ and «, we can expand C, in a Taylor series around the point
for which ¢ = 4¢ = o =0, i.e. the position of the first receiver. This expansion yields
(in symbolic notation):

o 6C 09Cq 6C 0.15
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The derivatives of C, have to be evaluated at the point (0, 0, 0). Therefore we can
write:

Colo,4¢,0) = 1—exp(—x*)+

= 1 [8C, OCyrp Cyur ‘ i
il S : A o). 9.16
+.,§'1n!(39 |o L7 I PR G "R ke

This result indicates that the spatial correlation between two arbitrarily placed
receivers can indeed be expressed in terms of Cyp, Cyr and Cp, when small displace-
ments are considered. Unfortunately, it is mainly of formal value only and does not
enhance our insight in the spatial correlation of the scattered field, unless a special
case is considered. To illustrate this point, we examine the first two terms of the
series. The calculation of the coefficients is a matter of straightforward, but tedious
algebra. The results are collected in Table 9.1. We note that the coefficient of 4¢ is
not zero; this shows that Cy; is not even in A¢.

Table 9.1 First and second derivatives of Cr, Cyp and Cgyp, forg=4p=a=0.

function first derivative second derivative

Cr 0 Ko Dy

Cyr %* exp (—x*) tanf, %*Z7* cos~40, [P, cos¥(a,)+ Dy, sin*(a,)]+
—x* tan*0,—x* exp (—x*) [1+(x*—1) tan®f]

CHar 0 2*Zp* tan®*d, [P, sin¥(e,,)+P,, cos¥(a,)]

For A¢p =0, we have only second order terms, so that
Co(0,0,0) & 1—exp(— )+ m,* + ma’; 9.17)

the contours of constant correlation in the (g, «)-plane are consequently ellipses, for
small ¢ and @ The coefficients m, and m, follow from Table 9.1 and Chapter 3.
For the Pierson-Moskowitz spectrum we obtain:

2 2
My == x_z(i) '10_3,
h* \¢q

) (9.18)
m= — Z—XhEZ;tanzﬂ,[?: sin®(t,,) +cos*(@,))] 107>,

It is easy to see that |m,| <|m,|. The aforementioned contours are consequently
very long and narrow ellipses, with major axes in the g-direction.
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9.3 Correlation in cartesian coordinates

9.3.1 The general formula

In experiments it often happens that an array of hydrophones is hanging vertically
from a ship, or that the array is towed in more or less a horizontal position. The
data so obtained produce information about the spatial coherence of the scattered
field in X, Y, or Z-direction. Some formulae are derived in this section, and some
curves are plotted, to facilitate the comparison with such experiments.

In general the coordinates of the two receivers differ by an amount g. If g is small
compared to the other distances that determine the geometry of R, and R,, we can
base the formulae for the correlation functions on the geometry of R, (the receiver
in the plane y =0), with ¢ = (4x, 4y, 4z) as a (small) deviation. R, is further deter-
mined by Zp and Xg. For simplicity we take Zp = Z;, and investigate the range
dependency of the spatial correlation.

The specular points are again very close together; hence we neglect the time dif-
ference 7. From (9.4) we derive -

Cyyz(4x,4y,4z, X g) =
= exp [ =3 {1=29(, 1,0y +7y*}] —exp [ 4°(1 +97)], (9.19)
where £ and 5 are defined in (9.2) and

X VT?
yx = 2kh [1+(22';” % (9.20)

The quantity y is the ratio between the roughness parameters as ‘“seen” by the
receivers. Its complete formula is

2
1+ (;;" )
W(dx,4y,4z) = —= =
1+(XR+Ax) +( Ay )
2Z,+ Az 2Zp+A4z
Simplification of y, and also of & and #, results when the correlation in X, Y, or
Z-direction is considered.

(9.21)

9.3.2 Horizontal correlation in X-direction
The correlation function C(4x, 0, 0, X3) = C.(4x, X) follows from (9.19) with
7 =7(4x, 0, 0) and

¢ = }|dx| cos (),
(9.22)
i = 4|dx|sin (a,,).
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Fig. 9.5 shows some graphs for C,, with acoustic wave number, wind speed, and

range as parameters. They indicate that:

1. The correlation function of the sea surface elevation can be distinguished clearly,
especially for values of y less than 1. This also results from (9.19) by series expan-
sion of the exponential functions, for y <0.2.

2. The correlation in case of cross-wind is stronger than for a wind blowing along
the X-axis. This can be understood by realizing that the sea surface is approxi-
mately a “wash board” with the waves extending in the direction of the mean wind.

3. When the apparent surface roughness y is increased by growth of k or decrease of
range, the correlation functions become more peaked. This indicates loss of
coherence.

4. When the true surface roughness increases as a consequence of higher wind speed,
the correlation functions become less peaked. This is caused by the changing
character of the sea surface.

9.3.3 Horizontal correlation in Y-direction

Putting 4x = Az = 0, the correlation function C(0, 4y, 0, Xg) = C,(4y, Xy) is found.
Its formula is given by (9.19), this time with y = y(0, 4y, 0) and

¢ = }|4y|sin(a,),
n = %|4dy|cos(a,).

(9.23)

Some curves are presented in Fig. 9.6. They show the same tendencies as Fig. 9.5,
with only one exception: the correlation is stronger for a wind blowing in the direction
of the X-axis than for a wind blowing in the direction in which the spatial correlation
is observed, i.e. the ¥Y-axis.

9.3.4 Vertical correlation (in Z-direction)

Finally we examine C(0, 0, Az, X) = C.(4z, Xg). This function is described by
(9.19) with y =79(0, 0, 4z) and

¢ =144 (2"; )cos(a.,).

(9-24)
_ Xz \ ..
n =44z (ﬁ:) sin (a,,).
An impression about the behaviour of C, can be obtained from Fig. 9.7. Again
we see that with increasing y the curves become more peaked. The shape of the sea

surface correlation function is less easy to detect. The correlation for o, =90° is
better than for e, = 0°.
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Fig. 9.5. The correlation function C,(4x,Xg), with Xg as parameter, (A) in down-wind direction,
(B) in cross-wind direction (Zp = Zg =100 m).
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9.4 Wave front distortion

With a perfectly flat surface the reflected waves have spherical wave fronts that
are concentric around the point 7", the image of the transmitter 7, with radius D,,.
This follows from (8.1) by putting { = 0.

When the reflecting surface is random, the surfaces with constant phase are corru-
gated spheres, according to (8.1) with { # 0 (see Fig. 9.8). For not too extreme values
of {, they may still be considered as originating from the centre 7", but the distance
rwy from 7" to a point P on the wave front is now a random function of the direction
T'P. As (in statistical sense) there is rotation symmetry with respect to the Z-axis,
it is sufficient to study the random wave fronts in the plane y = 0.

Along a wave front the phase is constant, say equal to AC. Mathematically, the
surface can therefore be described (for y = 0) by the equation

riwve(@) = C+2sin (@){(R,, t,). (9.25)

The average wave fronts are spheres, with radius C, as for the flat boundary. The
standard deviation depends on ¢:

owr(@) = 2hsin (o), (9.26)

as it should, because for larger grazing angles the surface appears rougher. It may also
be noted that gy is independent of ry. This means that after the spherical incident
wave front has been distorted by the random boundary, its randomness remains
untouched by the spherical spreading. Only the scale over the sphere is expanded as
time goes on, but each “trough™ and “crest™ retains its depth or height, in accordance
with the assumption of an ideal medium. But it should be emphasized that this result

I'-l\—qq’ )

Fig. 9.8.

Corrugation of wave front. The

AyeDige Wave Ficnb average wave front is a sphere with
centre at T, the distorted wave

Réndaw: ey Zroub front has a variance that increases

z with g,
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can only be true locally and temporarily. A physical reasoning, based on Huygens’
principle, quickly shows the limitation of this “frozen” wave front: each point on
the wave front acts as a secondary source, and each “‘ray” is propagating in a direction
perpendicular to the wave front, so that the shape of this equi-phase surface is
continuously changing.

In (9.25) the second term on the right hand side represents the corrugation of the
wave front. Its correlation properties are easily found. Considering, as in Section 9.2,
the correlation on and across the average wave front, we get:

Vertical Transversal Correlation
c.(49, @) = 4h*sin (¢ + 4¢) sin (¢)P(&, 7, 0), (9.27)
with £ and # given in (9.6);

Horizontal Transversal Correlation
Cm(a, ‘P) y 4h2 sz(q))ﬂf, s 0): (928)
with & and # defined in (9.8);

Longitudinal Correlation
ce, ) = 4h*sin*(9)#(0,0,7), (9-29)

with T = g/e,.

The most remarkable property of these correlation functions is their linear
dependency on the correlation function of the sea surface elevation. For small values
of A and o, & and 5 are proportional to 4¢ and a. This can be seen in (9.6) and
(9.8). The properties of the wave front corrugations are therefore closely related to
the properties of the sea surface. These were discussed in Chapter 3. Finally we note
that the correlation functions of the wave fronts are frequency-independent.

9.5 Summary

The spatial correlation of the scattered field is studied in this chapter, for a fixed
transmitter that radiates a harmonic signal with frequency . Various possibilities,
as for the receiver positions, are considered: vertical transversal correlation (two
receivers on an average wave front, in a vertical plane), horizontal transversal correla-
tion (two receivers on an average wave front, in a horizontal plane), longitudinal
correlation (two receivers in the mean direction of propagation), and correlation in
X-, Y-, and Z-direction. It is found that the space-correlation functions reflect the
shape of the surface correlation function, for small values of x (x <1). For larger
values this effect is lost, and the correlation becomes very poor (incoherent scattering).
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CHAPTER 10

STATISTICAL PROPERTIES OF OUTPUT SIGNALS

10.1 Introduction

After the analysis of the statistical properties of the various system functions, the
questions arise what characteristics the output signals of the random filter have in
time and frequency and how they are related to those of the filter. The answers to
these questions, which may be of interest for the experimentalist who uses the under-
water sound channel for communication purposes,'* will be given in this chapter,
for three different types of input signals. First, in Section 10.2, we will give our
attention to monochromatic input signals. After that, in Section 10.3, the input
signals will be delta pulses. Finally, arbitrary input signals will be considered briefly,
in Section 10.4.

Mainly the first and second order statistical moments will be investigated, but in
some occasions it will also be possible to say something about probability density
functions.

An important restriction is caused by the stationarity (in time) of our filter: only
two system functions are defined, namely H(w, t) and A(z, t). This means that for the
second moments the scheme of Fig. 4.6 has to be applied.

10.2 Monochromatic input signals
10.2.1 Random expressions

We recall some results of Chapter 4 (Table 4.1) and write them in a more complete
form, expressing the fact that a monochromatic signal not only depends on time, but
also on the input frequency @,. So we have at the input

X(f, wD) = exp('-' imﬂ‘),
{ (10.1)
X(w,my) = 2nd(w—m,),
and at the output
W(t, @) = H(wg, 1) exp (—imyt). (10.2)

The time function y(t, @) is, according to (8.1) and (10.2), a time-shifted and
phase-modulated version of x(t, w,):

14 Similar questions can be posed about the characteristics in space.
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W, 00) = = D5 *exp [ —ito(t—1,) ~i2ko O O,(t)]. (10.3)
It is stationary in time, due to the stationarity of {. Its spectrum is hence not defined.

10.2.2 Mean values
Using the results of Chapter 6 we get from (10.2):

< W(t, w0) > = Hfwo) exp(—iwof). (10.4)

Comparing this result with the input signal, we see that the filter has introduced
the factor Hy(@,). From (6.13) it follows that this factor, apart from the spherical
spreading represented by Dy !, describes a frequency-dependent attenuation with a
Gaussian shape, and a time delay 1, = Dy/c,.

10.2.3 Second order moments in general

In the most general case we have at the input a number of monochromatic signals
of the type x(1, ®,) = exp (—iw,+@,) withn =1, 2, ..., and observe the output signal,
that is the combined effect of the input signals, at two different instants of time
(r and t"). It can be shown easily that no loss of generality occurs when only two
frequencies (w; and w,) are assumed to be applied at the input. The block diagram
for this situation is sketched in Fig. 10.1.

H(w,t) Fig. 10.1.

Time and frequency correlation
of the output signal, for purely
harmonic input signals with
angular frequencies w, and w..

delay

The output of the random filter, before the delay and multiplication, is equal to
f(t) = p(t, @)+ y(t, @,), so that the second moment consists out of four correlation
functions of the type < y(t, ®,)y'(t', ®;) >. An expression for such a correlation
function can be obtained from (10.2). It can be evaluated by using the results of
Chapter 8. We have

< y(t, )y (t',w,) > = By(w,, @5, t—1")exp [ —i(w,t—w,t)], (10.5)
of which special cases can be derived rapidly.
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10.2.4 Time correlation

When only one frequency is presented at the input (@, = @, = ®,) and when the
output signal is sampled at two instants of time, A7 units apart, we can construct (see
Fig. 10.2) the time-correlation function of y. In formula we have

< y(t, o)y (t—=At, wy) > = By(wo, wo, 4t) exp (—iwyA4t) (10.6)

which is a phase-shifted version of By for constant w. Fig. 8.3 gives a qualitative
description of the time correlation of the random part of the output signal. For
% < 0.2 the time correlation of the surface elevation is linearly present in the output
of the filter; for ¥ > 2 the output signal is almost uncorrelated, unless 4t is very small.

@4 el =~ &

Fig. 10.2.

Time correlation of the output signal, for a

purely harmonic input; the output signal is - m
sampled at two times, At units apart. DELAY

10.2.5 Frequency correlation

For coinciding instants of time, the second moment of the output signal in Fig.
10.1 involves correlation functions of the type <y(f, ®,)y'(t, @;)>. A formula
follows from (10.5) by putting t' = t:

< J(t,0,)y’(t, ;) > = By(@y, w5, 0)exp [ —i(w, —,)f]
= | By(@y, 05, 0)| exp [ —i(@, —@,) (t—1,)]. (10.7)
The argument is linear in @, and w, and is therefore not very relevant. The modulus
is plotted in Fig. 8.2 (¢ =1).
As in Section 5.2, we can investigate the “coherent bandwidth”. To this end we put

w, = constant = w (the “center frequency”) and w, =@+ 4w into (10.7) with the
following result

< y(t,w+4w)y'(t,w) > = By(w+ dw, ,0)exp (—idwt). (10.8)
With (8.7) this becomes
< y(t, 0+ Aw)y'(t,w) > = Dy *exp[ -3 (dw/w)’ —ido(t—1)].  (10.9)

The modulus is drawn in Fig. 10.3 with 4w/w as variable and y as parameter. The
Gaussian curves of Section 5.2 are found once more.
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Fig. 10.3. Curves for the ““coherent bandwidth™ of the output, for monochromatic input signals.

Quantitative insight into the “coherent bandwidth” can easily be gained by consid-
ering the 3-dB points, i.e. the values of Aw for which the curves of Fig. 10.3 have
decreased to the level 0.5. A bandwidth equal to 24f = 0.188 ¢,(h cos 6,)~* follows.
This is only dependent on wind speed and transmitter-receiver geometry. Taking the
same combinations as in Table 6.1, we can compute the value of 24f. Results are
collected in Table 10.1. They indicate that at longer range the coherent bandwidth
increases, whereas an augmenting wind speed causes this bandwidth to decrease.
This can be understood by looking at the apparent surface roughness, expressed in
the parameter y: the roughness decreases with range and increases with wind speed.
As an example we take v =5 m/s, Xz = 1000 m, and f=7.5 kHz. A coherent band-
width of 5.1 kHz is found, which means that signals with a frequency content ranging
from 5 to 10 kHz are received without too much loss of coherence.

Table 10.1 Some values of the coherent bandwidth (24f=0.188 ¢,(h cos 6,)-*) as function of wind
speed and transmitter-receiver configuration (all frequencies in kHz.).

vinm/s

Xpinm 1 2 5 10
0 76 19 3.0 0.8
100 77 19 3.1 0.8
200 78 20 3.1 0.8
500 91 23 3.7 0.9
1000 127 32 5.1 1.3
2000 217 54 8.7 2.2
5000 500 127 20.0 5.1

These values hold for Zp = 650 m and Zr = 100 m.
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10.2.6 The variance spectrum of y

In (10.6) we have a formula for the time-correlation function of y(t, @,), when a
single frequency @, is applied at the input. The Fourier transform of this time-correla-
tion function is equal to B,(wg, @y, @—w,), as can be seen from (10.6) with (4.1)
and Fig. 4.6. It is the variance spectrum of the output signal.

For the evaluation of B, (w,, ®,, ®—®,) we have — in general — to employ Fig.
8.4-A: the variance spectrum of y is simply obtained by shifting the origin of the
curves to the angular frequency w,. However, when y, <0.2, we can apply (8.8),
getting

B (@0, g, @ — o) = D *[8(w—4) + xoh™*A*(@—0)]- (10.10)

This last result indicates clearly that, in the coherent'? frequency domain (¥ <0.2),
the Doppler spread in the channel is simply related to the surface movements: a single
input frequency w, causes an output signal with a variance spectrum that is composed
of two side-bands with the shape of the surface wave spectrum, centered at @w,. For
increasing roughness, though, this property is gradually lost, and the spread in the
channel increases. A qualitative illustration of this statement is presented in Fig. 10.4.

A) IN
FREQUENCY
Y '
;
1
B) OUuT | X=1
0 i
:
Fig. 10.4.
The variance spectrum of the
C) out | X=2 output for a harmonic input signal
with radial frequency w,.
0 o

The dominant surface wave frequency occurs, according to Fig. 3.1, at w,=8.77/v
radians. This gives the side-bands in Fig. 10.4-B a frequency off-set of about 1.4/v
Hz. Table 10.2 lists some values.

15 The word coherent has more than one significance. In general it means that the random filter part is
negligable (< 0.1). Here it indicates that the correlation function can be simplified by series
expansion of the exponential function (y<0.2). When used in connection with bandwidth, it
merely refers to the fact that the signal distortion remains within acceptable limits.
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Table 10.2 Values of the frequency off-set of the side-bands generated by the movement of the

surface (y < 0.2).
wind speed frequency off-set
(m/s) (Hz)
1 1.40
2 0.70
5 0.28
10 0.14
20 0.07

10.2.7 The variance of y
The variance of a complex quantity z is defined as [10.1, p. 241]

v = E{|z—E{z}|*}. (10.11)
For y this gives
v(@o) = Dg *[1—exp(—x0)]- (10.12)

This result follows from (10.3), (10.4), and (10.6) with 4t = 0.

10.2.8 Probability density functions

We return to (10.3), the formula for y(t, w,). Dropping the factor —Dg !, which
represents the phase inversion caused by the surface and the spherical spreading and
which is of no importance in the present analysis, we are dealing with a vector of
unit length and with a phase that fluctuates randomly (see Fig. 10.5) about the mean
value ¢ = wy(t—1,). The phase fluctuation is described by

Ap = 2kycos 0L (1,); (10.13)

Im

Ap
Re

0
Unit circle Fig. 10.5.
The random vector y (after normalization),

representing the output signal caused by a
harmonic input signal (see (10.3)).
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it has a Gaussian probability density function:

fae(d®) = (x0+/27) " exp [— (49) ] (10.14)

25

This expression is correct and useful when the phase fluctuations are small (%o <n),
but when |4¢| > = radians (which is likely to happen when y, > =) the probabilities
in the intervals ..., (—=5n, —3n), (=3r, —n), (n, 3n), (37, 57), ... have to be added to
the probability in (— =, 7) because a A¢ in one of these intervals is not distinct from
Ag in the central interval. It is easy to see that in this way 4¢ tends to be distributed
uniformly:

| E
fifd@) =5 if -n<dp<n

for xo>m. (10.15)
=0 otherwise
An illustration is given in Fig. 10.6.
f(ap)
Pl
: p o s
- -Xo 0 Xo ” Ap

1|
- |mwansn =Ton

Fig. 10.6. The probability density function of Ap, (A) for %<, (B) for ye>7; Ap is expressed in
radians.
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10.3 Delta pulses at the input
10.3.1 Random formulae

At time ¢ = t, a unit delta pulse is applied at the input. From Table 4.1 we have
then

x(t,t5) = o(t—1o),
{ (10.16)
X(w, ty) = exp (iwty),
and at the output
V(1 t0) = h(t—1o,1),
(10.17)

Y(w,ty) = C_F dth(t—tg, t)exp (iwt).

The random output signal y(z, t,) is a delta pulse, as follows from Fourier trans-
formation of (8.1) with (4.7):

y(t,to) = —Dg 'o[t—to—T1,+2cos 0,L(t,)/co]- (10.18)

The average arrival time equals f7o+7,, the actual time fluctuates around that
instant in a random fashion with Gaussian distribution (zero mean value, and standard
deviation by).

10.3.2 Mean values
It follows from (10.17) that

{'{ y(ta ‘0) &= hd(t_ tO)e (10 19)

< Y(w,ty) > = Hy(w)exp (imty).

So in the mean we have a Gaussian pulse at the output, centered at f = 1,417, (see
(6.11)). This Gaussian shape is caused by the Gaussian distribution of the random
arrival time of the output delta pulse. The average output spectrum is identical to
the transfer function of the deterministic part of the filter, with a phase shift of wf,.

10.3.3 Second order moments in general

Two delta functions are applied at the input, one at time ¢, and the other at time
t,. The output signals are measured at the instants of time ¢ and ¢’, the spectra are
observed for the frequencies w and @’. In this way we can study < y(¢, t,)y(t’, t;) >
and < Y(w, 1)Y' (o', t,) >. First we derive their formulae

172



< y(t! ‘1).1’(& tz) > = Bk(t_ tl' f'—'f;, t' = t)!
< Y(o,1,)Y' (@', 1;) > = exp[i(wt; —0't,)] (10.20)

w o
x | dry [ dt,By(t4.75,7T,— 1y +1,— 1)) exp [i(wT, + @';)].
-0 -0

The integral for < YY" > cannot be written in terms of By, because the third varia-
ble of B, contains the integration variables 7, and t,. For this reason we shall con-
centrate our attention on the time-correlation function.

10.3.4 Time correlation

When #, =1, =1, we can study the time correlation of the output signal from

< Yt t)y(t' 0) > = Byt —to,t' — 1o, t'—1) (10.21)

with (8.10) and Fig. 8.5. The observation times ¢ and ¢’ have to be taken close to
ty+ 1, to find some correlation.

Two input delta pulses, observed at the output at time ¢, give a correlation function

< (1))t 13) > = By(t—1,1—1,,0). (10.22)

This function is zero, unless t; =1, =1, (see (8.11)), in which case it assumes the
value infinity. In practice this correlation function is therefore of little interest.

10.4 Arbitrary input signals

For an arbitrary input signal x(r), with spectrum X(w), the output signal and its
spectrum can only be described by using the input-output relations of Chapter 4:

)= T dz x(t—r1)h(z,1)

(10.23)
- ﬁ J do X@)H(@.exp(—ion)
and
Y(w)= [ dt | dex(t—1)h(z,1)exp(iot). (10.24)

Average values result from these expressions when the system functions are replaced
by their mean values. For the second order moments we can derive complicated
integrals that involve the system correlation functions By, B, and B,. They can only
be evaluated when x or X is specified.
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10.5 Summary

The question of what statistical properties the output signals have, has been ans-
wered in this chapter for

~ harmonic input signals,
— delta pulses at the input.

The results can be summarized as follows.

10.5.1 Harmonic input signals

A harmonic or monochromatic input signal x(z, @) = exp (—iwt) produces an
output signal that differs from the input only in one respect: it has a phase that
fluctuates randomly. In the domain of coherent scattering (x <0.2) it is quasi-
harmonic. The distribution of the phase fluctuations is Gaussian, but in the domain
of incoherent scattering (x > 2) it is practically uniform.

The mean value of the output signal shows a decrease in amplitude that is frequency-
dependent:

< y(t,w) > = —Dg " exp(—1yP)x(t—1,, w). (10.25)
The standard deviation of the complex amplitude is given by
o(w) = Dy *{1—exp (=)} . (10.26)

For y <0.2 the time correlation of the surface elevation is directly present in the
output signal, whereas the surface wave spectrum can be distinguished in the output
variance spectrum. These properties are lost with increasing roughness. Loss of
coherence with increasing roughness is also indicated by the fact that the *“‘coherent
bandwidth™ becomes narrower as y gets larger.

10.5.2 Delta functions

An input signal x(t, t,) = (f —1,) gives at the output a delta pulse with an arrival
time that fluctuates around the value #,+1,, with Gaussian distribution (see Fig.
10.7). The average of this fluctuating delta pulse is a Gaussian pulse:

< W(t,19) > = —(bDo~/27) L exp [—g (’"‘;—_’ﬂ (10.27)

Also the correlation function has a Gaussian character. Its significance is lost when
one delta pulse is transmitted and the output signal is observed at one instant of
time only.
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Fig. 10.7.

The output signal y(t,t,) when
the input signal is a delta
function: x(1,1,) = 3(t—1,).

References

¥ (t,t,)

10.1 A. PapouLis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New

York, 1965).
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CHAPTER 11

DISCUSSION OF THE RESULTS

11.1 Introduction

The foregoing chapters have produced theoretical results that can be divided into
two parts. First of all, we have found that the stationary phase approximation (also
called specular point approximation), although basically developed for high frequen-
cies, can be used over a broad frequency range when practical cases are considered.
This conclusion is based on an analysis of mean value and variance of the transfer
function of the surface channel. In the second place the correlation in frequency, time,
and space of the scattered field has been examined for many combinations of trans-
mitter-receiver geometry, wind speed, and wind direction. A rather large number of
drawings and tables has been the result. Two types of sound source have been used
in that examination: the monochromatic and the broadband (impulsive) transmitter,
both radiating omni-directionally. Also the receivers have been assumed to possess
equal sensitivity in all directions.

In order to be able to express a judgement about the validity and usefulness of
the above mentioned theoretical results, experimental data are required for com-
parison. Several reasons, however, make it difficult to find material that is suitable
for comparison:

1. Ensembles of data would be required for the computation of statistical averages.
But at sea these ensembles are hard to collect, because fixation of the geometry
(stable platforms) is almost impossible. As a consequence, this fact puts a limita-
tion on the confidence level of experimental data.!®

2. Unless explosives are employed, the sound sources are not usually omni-direction-
ally radiating.

3. At sea the geometry can be held approximately constant when backscattering is
measured. But then we are limited to the mono-static case (X =0).

4. Another way to fix the geometry, and - in addition — to control all other para-
meters involved, consists in model tank experiments. However, for this kind of
experiment only directional sources and receivers are available. For the purpose
of comparison with our model, we have to select the data dealing with specular
scattering and reflection. Moreover, there is the basic question about the useful-
ness of model studies for the prediction of surface scattering and reflection in the
true ocean.

5. Our model employs the Pierson-Moskowitz spectrum and its derivatives to

16 The validation of data, necessary before reliable statistical conclusions can be drawn, has only

recently been taken into account [/1.1]. This could be done because it concerns a study of a lake
surface where the transmitter and receiver could be rigidly fixed.
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characterize the sea surface. That spectrum applies to a fully developed sea, and
needs the wind speed as an input parameter. In many experiments at sea the
environment is described very poorly, e.g. by sea state or wind speed, without
indication about the state of development of the surface waves.

These remarks suffice to explain why the amount of experimental data available
to check our theoretical work is small and incomplete, notwithstanding the fact that
many experiments have been reported (see Chapter 2). Summarizing the difficulties,
it can be said that of the existing literature on field work only those papers may be
useful that deal with

a. Explosive sources;

b. Directional sources, together with the measurement of specular scattering;

c. Directional sources, together with the measurement of backscattering in a mono-
static geometry. (This is a special case of specular scattering, namely with 0, = 0).

Another possibility for comparison is offered by the theoretical results of other
workers. But again we have to search for theoretical models that involve omni-
directional sources, or directional transmitters in combination with the specular case.
Moreover, agreement with the results of other theories does not necessarily signify
agreement with reality; it only enhances the confidence that one can have in our
theory as a tool for the prediction of the scattering phenomenon.

In this chapter both experimental and theoretical material will be employed to
back up our theoretical results. This verification will take place in three steps: First
of all the validity of the specular point approximation will be checked (Section 11.2),
then the mean value of some system functions will be discussed (Section 11.3), and
finally the correlation functions in time, frequency and space are examined (Section
11.4). Also a few other subjects deserve some comments; these can be found in
Section 11.5. Finally, in Section 11.6, we will try to answer the question of which of
our results can be verified best by experiment.

11.2 The validity of the specular point formula

The analysis of mean value (Chapter 6) and variance (Chapter 7) of the transfer
function H(w, t) of the sea surface leads to the conclusion that (a) numerical integra-
tion over the whole surface (this is basically the Helmholtz integral, in which the
scattered field is expressed as a weighted summation of the contributions of omni-
directionally radiating point sources induced at the surface) and (b) approximation
of the surface integral by means of the stationary phase method, yield about the same
results. This is somewhat surprising given the complexity of the underlying theory,
although we have to admit that at one stage of the analysis the stationary phase
technique has been used, namely in the approximation of ¥, the weighting function.

As a consequence of the foregoing conclusion, the first and second order statistical
moments of H can be described, in many practical cases, by relatively simple formulae:
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Mean value
Hyw) = —Dg " exp(ikDy—1x%); (11.1)
Variance
<|H(o,0]* > = Dg *[1—exp(—2))]. (11.2)
Confirmation of (I11.1) can be found in the theoretical work of many authors:

BECKMANN and Sp1zziCHINO [/1.2, p. 81] gave a formula for the average normalized
specular reflection that is equal to (11.1) when the factor Dy * exp (ikD,) is dropped.
They also derived a formula for the mean coherently scattered power [/1.2, p. 88]
that is — apart from a normalizing factor — equal to |H,|>.

CLARKE [/1.3] computed the coherent acoustic intensity at the receiver after
acoustic energy is radiated by a transmitter with arbitrary directivity and reflected
by a rough random surface. His results [/1.3, p. 290] reduce to

4. | =Dg*exp(~x7) (11.3)
coh
for an omni-directional source that radiates unit total power. This is equal to |H,|?.
VENETSANOPOULOS and TUTEUR [/].4, p. 1102] found an expression proportional
to (11.1) when considering the first-order statistics of the surface channel.
Boyp and DEAVENPORT [/1.5, p. 794] assumed a directional source and found a
formula for the mean scattered pressure that is proportional to (11.1).

The theoretical models used by these authors are all based on the Kirchhoff
approximation, or on the variant developed by Eckart (see Section 2.2-IIIB.1). So
we arrive at the conclusion that the theory here presented leads, in first approximation
(i.e. using only H,), to the same result as the Eckart theory. This agrees with the state-
ment of SPINDEL and SCHULTHEISS [/1.6, p. 1817] that Eckart’s scattering model gives

E{H(w, 1)} = exp(—2k*h*cos’0,). (11.4)

Two points of difference can be noted, however:

1. The validity of our results is not restricted to high frequencies, but includes in
practice the frequency range from 0 to co. This is important, because only then
is Fourier transformation of H(w, 1) allowed.

2. The way in which these results have been derived is entirely different: instead of
making an a priori assumption about the derivative of the total field at the
boundary (ép/én = 28py/on, the Kirchhoff approximation), we have maintained
so much rigour in our analysis that we obtained the Eckart results only as a first
approximation. Improvement is possible by adding more terms of the series for
H, or by studying H from (5.12), without series expansion. This last possibility
may prove difficult in practice, because the statistical moments require integration
over the joint probability density function of {, {, and {,.
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The variance, as given in (11.2), can be regarded as the intensity of the incoherently
scattered field. Addition of (11.2) and the square of (11.1) shows that the total amount
of scattered power is proportional to Dy 2, and independent of time and frequency,
and of the surface statistics. This result can be derived in a more straightforward
way by looking at H, the sum of H,; and H,. Within the present approximation its
formula is given by (8.1):

H(w,t) = —Dg "exp[ikDo—i2k cos O L(R,, t,)]. (11.5)

Formula (11.5) describes a spherical wave that suffers from phase distortions. Its
average intensity at a point on a sphere with radius D, equals

< |H(w,1)|* > =Dg?%; (11.6)

this is the same as the intensity on such a sphere in the case of a perfectly flat boundary,
which signifies that our theory does respect the law of energy conservation. It also
says that the surface focussing has no preferred direction. Experimental work perform-
ed at the SACLANT ASW Research Centre by WIIMANS [//.7] confirms this, at least
for not too large values of A, and also ADLINGTON [11.8] reported that the scattered
energy is independent of grazing angle and wind speed.

Specular reflection has been measured by WELTON et al. [11.9]. Their results show
that there is no dependence on grazing angle and hardly on frequency. They do find,
on the other hand, that the surface statistics (i.e. #) have some influence. A possible
explanation of the discrepancy between this last result and our model may be found in
the fact that the surface slopes are not included in H, the approximation of H
on which our simplified model is based.

WELTON and his co-workers [11.9] also investigated the influence of the geometry.
They found a (1/D,) — law (geometrical acoustics) rather than a (wywg) ™' — depen-
dency. This proves the validity of what they call the “image solution” and what we
have named “specular point approximation™.

From the foregoing discussion our approximation emerges as a valid and useful
way to describe the first and second order statistical moments of the scattered field.
Nevertheless, physical arguments can be found that suggest its breakdown under
certain circumstances:

1. When the frequency of the incident sound is high and the slopes of the surface are
steep enough, there can be more than one surface point that produces specular
reflection. This so called “multipath effect” has been found experimentally (also
for slopes that are allowed in our model) and is discussed in Section 5.2.

It is not predicted by (11.1) and (11.2), but it could be included to a certain extent
in our theory via H,, H, etc., the terms in the expansion of H that were discarded
in Section 5.4 and that involve the surface slope.
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2. In Section 9.4 it was indicated that the specular point formula predicts “frozen”
wave fronts. But this comes in conflict with the well-known physical fact that the
sound rays are propagating along paths that are perpendicular to the wave fronts.
Hence it can only be true locally, and during a short time.

11.3 Mean values of system functions

The expectation of system functions is not a quantity often encountered in experi-
mental studies: only one paper has been found that deals with this subject, namely
the one by SPINDEL and SCHULTHEISS [/1.6]. It describes a model tank experiment
with a wind-driven surface, and the measurements were concentrated on the impulse
response of the surface channel. Typical results for the average impulse response
function are copied in Fig. 11.1. They indicate a Gaussian pulse, as predicted by the

10 MSEC 1] IO#sgc 15

¢=60° Y=60°

o o...l..,-m/..\s.r

S 0 usEC 15 \&_~ 0 usec B

¢=45° ¢=45"

o
o

5

2 10 4sEC 18 0 ,sec '3

¢=30"° ¢=30"°

(o) (b)

Fig. 11.1. Ensemble averages of the impulse response, found experimentally by SpiNDEL and
ScuurTHESS [11.6]; (a) cross-wind, (b) down-wind direction.
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Fourier transform of Hj (c.f. (6.11)), followed by one or two smaller peaks. This tail
shows that our model is not complete. This point is also brought out in the analysis
of H,, where the agreement between (11.1) and the data is reasonably good but not
perfect. It should be noted, however, that the experimental surface had a wave spec-
trum with a peak at ~ 6 Hz. This is much higher than at sea (see Table 10.2), so
that perhaps the experiment falls outside the validity domain of our model.

As for the leading Gaussian pulse, (10.27) gives us an estimate for the width. The
turning points of the curve for <y > occur at T=+1, where T = (1—1,—1,)/b,. If
we define the width as the time that elapses between these two points, we get a
pulse width in real time equal to 2b,. Looking in Table 6.2 we see that for low wind
speeds, values of the order of a few pseconds follow. This agrees pretty well with
Fig. 11.1.

11.4 Examination of correlation functions

11.4.1 Time correlation and frequency spread

In this sub-section we are dealing with the results that were derived in Chapter 10
for harmonic input signals. Their essence is described in Sub-Section 10.5.1, together
with Figs. 8.3 and 8.4.

In the case of a monochromatic input signal, our theory predicts an output signal
with a time-correlation function in which the time correlation of the surface elevation
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Fig. 11.2. Comparison between the measured time-correlation functions of the scattered sound
field and the surface elevation (from Mepwin and CLAY [11.11]; their parameter g equals 2y).

184



can be distinguished clearly (see Fig. 8.3). The similarity between both correlation
functions is better the lower the value of y. This theoretical result is completely
confirmed by the experimental work of GULIN and MALYSHEV [/1.10] for y = 0.52,
0.74 and 1.4 and a sea surface with swell, and by that of MEpWIN and CLAY [11.11]
for y =0.9, 1.1 and 1.4 and a large laboratory *‘sea”. Fig. 11.2 gives an illustration.

The frequency spread of the output signal is represented by the side-bands around
the transmitted frequency. According to our theory these side-bands have the same
shape as the surface wave spectrum when y is less than 0.2, and the peak frequency
differs from the centre frequency by an amount Af equal to the peak frequency of the
surface wave spectrum. With increasing roughness, the side-bands broaden and
gradually lose their resemblance to the surface wave spectrum. Experimental con-
firmation of these predictions can be found in the work of KINGSBURY [/].12] for
0.4 < y <4 and in that of Roperick and CroN [//7.13] for x = 0.4 and 0.8.

SpiNDEL and ScHULTHEISS [17.6] studied the bi-frequency function e(w, Q). Its
correlation function shows a peak that coincides with the peak in the spectrum of
the surface waves, which agrees with our Fig. 8.4.

11.4.2  Frequency correlation and time spread

Next we consider the results of Chapter 10 that were obtained for delta pulses at
the input. They are summarized in Sub-Section 10.5.2. Agreement on the basis of
mean values of the predicted time spread (amounting to a few pseconds) with experi-
mental data collected by SPINDEL and ScHULTHEISS [/1.6] has been mentioned already
in Section 11.3. For the second order statistical moments dealing with frequency
correlation and time spread, no data have been found, which is not surprising in
view of the remark at the end of Sub.-Section 10.5.2.

11.4.3 Spatial correlation

GULIN and MALISHEV [//.14] have studied the correlation in X-, Y-, and Z-direction.
They used CW-pulses (f=4, 7, and 15 kHz, or k= 16, 20, and 60 m™"), the sea
surface had a standard deviation A with values between 0 and 40 c¢cm, Z; =80 m,
Zg =30-60 m, and X = 600-700 m. They concluded [/1.14, p. 368] that:'’

1. “The signal amplitude spatial correlation coefficient in the case of small values
of the Rayleigh parameter usually takes the form of damped-oscillation functions.
(...) The oscillation period is related to the average wavelength of the water waves
on the sea surface.

2. In the case k> 1 a more abrupt drop in the correlation coefficient is observed,
and the quasi-periodic behaviour disappears.

3. The vertical spatial correlation for amplitude fluctuations, at small grazing angles
of incidence, decays much more rapidly than the horizontal correlation.”

17 The Rayleigh parameter is identical with y, the roughness parameter.
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This is in qualitative agreement with Figs. 9.5, 9.6 and 9.7.
The vertical transversal correlation has been analyzed by MepwiN and CLAY [17.11].
Their results, for y =0.15, 0.4 and 1.0, show the same tendencies as Fig. 9.2.

11.5 Various comments

11.5.1 Coherence functions

When the statistical characteristics of an acoustic field scattered by a randomly
rough surface are studied, one of the quantities of interest is often the coherence of
the scattered field. Usually, for stationary processes, a measure of the coherence in
the scattered field is defined by [11.15, p. 501]:

712(4) = B5(4)[B, 1(0)322(0)]_*: (11.7)

where the subscripts 1 and 2 refer to two observations of the scattered field, and 4
is some quantity that separates the two observations. If, for instance, 4 =p, we
are dealing with spatial coherence; temporal coherence follows from A = At, whereas
Jrequency coherence can be studied by taking 4 = Aw.

It is also possible that the subscripts indicate input and output signal, or spectrum,
of a filter. This is the interpretation of WimaNs [71.7]. Still another definition that
produces useful results is presented by NovariNt and CARUTHERS [/1.16]. They
compare the scattered field with the field coming from a perfectly plane surface.

With the material presented in Chapters 8-10, any kind of coherence function can
easily be computed. The results will not differ essentially from ours, because (11.7)
provides merely a normalization of the correlation functions we have analyzed.

11.5.2 Amplitude fluctuations

In experiments at sea that have long CW-pulses as input signals, both amplitude
and phase fluctuations can be observed. Only the latter are predicted by our theory
(see (8.1)). A possible explanation of the experimental amplitude fluctuations may be
found in the instability of the transmitter-receiver configuration.

11.5.3 The joint probability density of the surface elevation

The statistical description of the sea surface employed in this study, is based on
the assumption that the surface elevation is a Gaussian process in space and time
(Assumption 4). But “measurements of the two-dimensional wave height probability
distribution of wind-driven waves in a model tank”, performed by SPINDEL and
ScHULTHEISS, “suggest that the use of bi-variate Gaussian statistics in acoustic scat-
tering computational approximation may be less realistic than assuming Gaussian
behaviour in only one dimension” [/1.17, p. 1065 — abstract].
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11.6 Suggested experiments

The main problem for the experimentalist who wants to study the scattering of
underwater sound waves from the sea surface, is caused by the necessity of fixing
the geometry of transmitter and receiver. This is so because when measuring fluctua-
tions, he wants to be sure that these are indeed introduced by the surface, and not by
the swinging of transducer and/or receiver(s) down below a ship, at the far end of a
cable. Reduction of this basic problem is possible, to a limited extent, by mounting
transmitter and receiver on the same cable so that 7 and R are equally effected by
the ship movements. The possibility to study the influence of the geometry is lost in
this way, because now 0,=0.

One way to solve the foregoing problem is offered by model tank experiments, but
they have the disadvantage that one has to determine how representative they are for
the true ocean.

Another possibility could be found in sources and receivers that are bottom
mounted, for instance on the continental shelf, or mounted on cables anchored at
the bottom and kept vertical by a buoy floating on the surface.

The simplest way to use such an arrangement is by driving it with CW-pulses of
variable frequency, and generating ensembles of output signals by taking sets of, say,
30 pulses for each experiment. In this way the time- and frequency-correlation func-
tions can be established as functions of the roughness parameter. Especially for low
values of y this would be interesting, if concurrently the temporal correlation function
of the surface is measured (or its Fourier transform, the surface wave spectrum).

If more than one transmitter signal is available in the foregoing fixed set-up, the
coherent bandwidth can easily be measured. This is done by transmitting simulta-
neously two CW-pulses, one with frequency , the other with frequency w+ 4w,
and varying Aw after every set of pulses.

The space-correlation functions can be mesaured by providing an array of hydro-
phones on the receiver side. A problem is caused, however, by the requirement that
the orientation of such an array with respect to the transmitter is known.

11.7 Summary

The theoretical results derived in the preceding chapters have been commented on
and compared with material found in the literature, both of experimental and theoret-
ical nature. It turned out that our specular point formula is in essence equivalent to
the Kirchhoff-Eckart approximation, albeit that the derivation is entirely different.

Little experimental data is available for comparison, mainly due to the fact that
generation of ensembles of output signals that allow for a statistical treatment is
almost impossible. Nevertheless, for the essential results of our theoretical work,
confirmation could be found, especially in the domain of coherent scattering.

Suggestions for further experimental work have been given. A crucial point in this
respect is the availability of a fixed geometry so that ensembles of data can be generated.
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CHAPTER 12

CONCLUSIONS

The following conclusions can be drawn from the study presented in this thesis.

They are subject, where such applies, to the validity of the assumptions listed on
page 13.

1.

The phenomenon of scattering and reflection of underwater sound waves from
the randomly rough sea surface can be successfully studied by considering the
surface channel as a random, linear, time-dependent filter.

This filter can be divided into a deterministic part and a purely random part.
These two sections are connected in parallel.

Meecham’s perturbation method is a useful technique to solve the wave equation
with the Dirichlet condition of zero total pressure on the boundary.

Its result is complicated. But for wind speeds not exceeding 10 m/s and specular
grazing angles larger than 6°, the formula for the transfer function of the filter
reduces to the same simple expression as the one that follows from the Kirchhoff-
Eckart theory.

This Kirchhoff-Eckart formula can be applied — under the foregoing conditions -
over the whole frequency domain of interest (0-20 kHz). It indicates that specular
and omni-directional scattering and reflection produce identical results: only
the specular point is important; the contribution from surrounding points
cancel each other.

The statistical properties of the sea surface can be distinguished in the output
of the random filter, if a harmonic input signal is used and y is less than 1: the
time-correlation function of the output signal reflects the time-correlation func-
tion of the surface elevation, the output variance spectrum shows the surface
wave spectrum.

Narrowband signals are transmitted without distortion if their relative bandwith
2Af/f is smaller than 2.3/y.

A delta pulse propagating through the channel suffers only from fluctuations in
the arrival time. These fluctuations have a Gaussian probability density with
zero mean value and standard deviation equal to 24 cos 0,/c,.
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Also the space-correlation functions of the scattered field reflect the statistical
properties of the surface when y < 1: the transversal and the horizontal correla-
tion functions have the same shape as the spatial correlation function, the longi-
tudinal correlation function resembles the time-correlation function of the
surface elevation.

The sea surface has no preferred direction for scattering and reflection of under-
water sound waves, when it is insonified by an omni-directional source.

Available experimental data confirm the conclusions 4, 5, 6, 9 and 10.

For the collection of ensembles of experimental data to check further the theoret-
ical work here presented, it is essential to employ an arrangement of transmitter
and receiver(s) that is rigidly fixed. Such an installation does not seem to be
available at present.
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APPENDIX A

Some derivatives of {

Formulae for the variances of the first and second order derivatives of the surface
elevation follow from (3.3), (3.4) and (3.5) as limits:

< {?> = —h%lim 8*®(¢,0,0)/082,
lin A1)
<2 > = —h*lim &*®(0, n, 0)/on?,
n=0
< :ix > = hz lim 6445(5, 0; 0)fa¢4'
s (A2)
< ny > = Hh*lim 649?5(0, fy O)IB'T"
n=+0

<{?> = —h*lim 8*9®(0,0,7)/d7?,
R0 (A.3)
h?lim 8*®(0, 0, 7)/o*.

=0

]

2
<Cu>

Before we can actually use these relations, we have to compute the spatial correla-
tion function @ for small values of ¢ and 5. To this end we consider (3.12) and note
that

@(£,0,0) = 14,(5)— 1,5
(p(os ", 0) == IZ('?);

(A4)

with /, and /, defined by (3.13) and (3.14).

Fig. 3.1 indicates that the spectral function 4%(w;) is practically zero, when ;>
@, = 3g/v. Therefore we can make the arguments of the Bessel functions in (3.13)
and (3.14) as small as we want, by taking values of & and 7 close to zero. Hence
Jo and J; can be replaced by the first three terms of their power series expansion,
that is [4.1, p. 360]

Jo(z) = 1—%2% +4¢2%,
(A.5)
222 +5122°.

J:(Z)._
i '
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The first terms of these expansions, substituted into (3.13) and (3.14), yield the
value 2 respectively 1 (see (3.11)), so that /, and /, may be approximated as follows:

2 4
l(0) = 2-4%1,%5—21‘,

: (A6)
Q e
hQ=1- };"z'f;-l' hzh,
in which expressions the constants I, and I, are defined by
T I do A} (w)of,
(A.7)
Iy dw,A*(w)w?.
- 4 7 I oA%(@)
Using now (A.4), we find
g &
¢(¢,0,0)=1 3= Iz+5h I‘:
(A.8)

®(0,1,0) = 1 — h—1,+ 2214

Then we are ready to perform the operations required in (A.1) and (A.2); they
yield
<2 > =6I,,

A9
<{} >=2I, )

< (i > =120I,

(A.10
<t} >= 24I, )

The calculation of 7, and I, has to be done by substitution of (3.15) into (A.7),
bearing in mind that the upper limit of integration equals w,,. We obtain

Wam

I, = 55 j dw,w; ' exp(—0.74g%wiv®), (A.11)
Iy=—=— T dowdexp(-0.74g*/oto*). (A12)
384g° o
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These integrals can be brought in a tabulated form [4.1, pp. 228-229] by using the
substitution 7 = (wg,/®,)*. Putting at the same time, for convenience,

z = 0.74(g/vw,,)* = 0.009, (A.13)
we find
12 = 0.0ms,
(A.19)
14 = 0.04”“4-

Substitution of these values into (A.9) and (A.10) gives the desired results for the
spatial derivatives:

< (% > =0.003,

(A.15)
< > =0.001,
<{L>=5"* (m™),

(A.16)

< Ci‘, >= p ¢ (lllhz).

The time derivatives follow from (3.9) by performing the operations described
in (A.3):

<> = -3 ] dodXw)o?, (A17)
0

<t>= ifdodol. (A18)
The second oﬁe is equivalent with 8927, (see (A.7)). From (A.14) we get therefore:

<{Z> =04 (A.19)
For the calculation of <{?> we substitute (3.15) into (A.17) and get

<{’>= —§ngIdm,w;i‘exp(—o.Mg“;w:u‘), (A.20)

which becomes

<(}> = Cv*(4y0.74)"" [ dtexp(—1?) (A.21)
o

after we have put ¢ = g?+/0.74/(w?v?). This yields with C =8 x10~3;
< {?> =0.0020% (A.22)
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APPENDIX B

Approximation of ¥ starting from the stationary phase method

We rewrite (5.6) in the following way

P(R) = E:FH dK [ do(K../wr) exp [i(K, ¢)] (B.1)
where

W(K,e) = —K-@+kwy. (B.2)

This phase depends on 4 variables:
¥ =YK, K,, & n) = —K.S— K+ kwr(,n); (B.3)

wy is given in (5.5). When k is such that i varies rapidly with ¢ and K, the integral
will be small because the components of the integrand with different (K,, K,, &, 1)
will cancel. However, this cancellation will be minimum at values of (K, ¢) for which
the derivatives of ¥ with respect to K and ¢ are zero. At these points, the points of
stationary phase, the mutual cancellation of the sinusoidal waves in the integrand
will be least. Consequently, for a given value of k, these points will be dominant
[B.1, p. 392].

Differentiation of  in (B.3) reveals that it is only stationary at the “point”
P(K,, K,, &, n), for which

S =n,=0,
Ky = k[x—(Zr =0 ]/wrs (B.4)
Kya = k[y_(zT-OCy]!wTa

where now wr, { and {, {, have to be evaluated for ¢ = 0. According to the stationary
phase method, y is developed in a Taylor series around the point P(K,,, K,,, 0, 0):

III(K", Ky; C! 'f) e W(Kn +u, Kys + 0, é! l]')
= Y(K s Kys 0,0) + 3 (W& + 2y En+ Yo" +...)- (B.5)

The constants /., ¥,,, ... etc. are the 16 second derivatives of i with respect to two
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of the four variables. Investigation of these derivatives shows that more than half of
them equal zero; (B.5) reduces to

‘l’ - kwT-I-'}(w:xéz +2w.xycq+ 'i!’yﬂz)—'“‘f—w}- (B6)

With this expansion the integral for ¥ is then approximated in the following way:

P(R) = éﬁ (5-) exp (i)

Wr,

x [d¢[dn fdu[dvexp [15 (Va2 8 + Yy n”) — il — ivn} (B.7)

Only small values of u, v, £, and 7, both positive and negative, will be significant
in the integral. The integration can therefore be taken between the limits —oo to
+ 00 [B.1, p. 396]. Integration over # and v yields then 47*6(£)3(n), which makes the
integration over ¢ and #n very simple. The result is, after evaluation of K, and y at
the stationary point:

(R) = % JZ— 0 -C—0)+2Zr—D(L3L). (B
T

The square root can be simplified somewhat, because Ci,Ci < 1. Using these
inequalities we finally obtain

2nwy Zr-0
For { =0, this reduces to
ikZ pexp (ikWy)
P(R)= —F T B.10
(R) 2mW2 (B.10)

with Wy = (R*+Z7)¥, whereas ¥, the exact solution for the perfectly plane surface,
is given by (see [B.2, p. 28])
P R)=¥YR) | = Wexp(ikwg. (B.11)
=0

3
2nWy

This reduces to (B.10) if KWy > 1, which seems to indicate that our approximation
is good in the far field.

The question arises now how good the foregoing approximation (B.9) is, or — in
other words — what conditions have to be satisfied for its application. In order to
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give an answer to this question we will try to find an upper and a lower limit for 7,
and require that the approximate solution falls between these two limits. The error is
then at most equal to the difference between these bounds. By chosing the parameters
involved so that these bounds ly close together, we can keep the error within reason-
able limits.

We assume that kW; > 1, or k > 10/Z;. For Z; > 100 m, this means k >0.1 m™*
or f= 25 Hz. In practice this will always be true. Therefore we can write ¥, as

ikZ
Y, (R) = —L exp (ikWy). B.12
o(R) W p(ikWy) (B.12)

In order to gain some insight in the behaviour of ¥, we return to (5.6) and expand

the factor exp (ikwy)/wr in plane waves. So we get as the starting point of our analysis

1

Y(R) = —
®) 167*

jjd—MMexp [iM-R+iM.Z] [[dKK,
x [{deexp [ig"(M—K)—iM {(R+0)]. (B.13)

The dependence of { on ¢ makes that the integrals cannot be solved analytically.
Therefore we concentrate our attention on the factor F=exp [—iM {(R+¢)]. We
note that two domains of M have to be distinguished: 1) M < k, for which M, =
(k*—M?)* is real and F is a unit vector in the complex plane with random phase
equal to M {(R+¢); and 2) M > k, for which M, becomes purely imaginary and F
is real and equal to exp [{(R+9) NyYCE

In the latter case, when M > k, it is easy to see that the following inequality holds:

L, < [[deexp[ie:(M—K)—iM{(R+)] < L, (B.14)
where

L, = exp [~ [{(R)[vV/M? = k*] [[ doexp [ig-(M~K)],

(B.15)
L, = exp [ +|{(R)| vV M?—k*] [[ deexp [ie*(M—K)].

Clearly the equality signs in (B.14) hold for { = 0.
For M <k, the situation is less simple, because now L; and L, are each others
complex conjugate:

Ly = exp [ +iM,|{(R)[] [[dgexp [ie:(M—K)],
L, = exp [ —iM_|{(R)|][[ deexp [ie-(M—-K)].

(B.16)

Nevertheless, L, and L, must indicate limiting values, since the random phase
fluctuations around zero in F have been replaced by fixed values (compare coherent
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addition of unit vectors versus random or incoherent addition). This idea is confirmed
if L, and L, are substituted in (B.13): ¥,, obtained with L,, depends now on (Z,+|{|),
whereas ¥, is a function of (Z;—|(]).

In (B.16) the integration over g yields 4n*6(M—K). The quantities ¥, and ¥, can
therefore be calculated explicitly. Substitution of L; and L, into (B.13) and integra-
tion over K, which is easy because of the selective properties of the delta function,
produces

7 R)= — 41?][ dMexp [iM'R+iM_ {Z;+|{(R)[}],
(B.17)
V,(R) = — ﬁﬂdMexp [iM:R+iM_{Z; — [(R)]}].

Integrals of this type can be calculated by using polar coordinates (M, 0) instead
of M= (M,, M,). The general expression for ¥, and ¥, is then

Y(R)=¥(x,y)

@ .2
— L { dM Mexp(iZ,K*—MP) | dbexp [iM(x cos 0+ ysin )],
m 0 0

(B.18)
or, after integration over @ and substitution of f = &—ik with e— 0,
Y(R) = _%r | dM M Jy(MR)exp(—Z;/ M* + B?). (B.19)
0

This last integral is a Hankel transform. The solution is found in [B.3, Vol. 2,
p- 9(23)):

w,R) = - Z(1+BVR*+Z2)

2n(R?+23)}

exp(—BvVR*+23); (B.20)

for e— 0 it reduces to

_ Z(1—ikVR*+Z3)
2n(R*+Z))*

¥ (R) = Zexp(iky/R? + Z3). (B.21)

This is the general solution. For ¥, we have Z, = Z+|{(R)|, and Z, = Z;— |{(R)|
for ¥,. Defining now two distances, w, and w,:

= [R*+{Z+|LR)[}*T%,

B.22
Wy = [R? + {(Zr— [(R}TE, e
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and remembering the assumption kw>1, we have

v, (R) = FEHED oo iew,),
1
¥,(R) = Mexp(isz) (B.23)
2nw3

Next, as (| < 0.1 Zy (Assumption 11), we have Z|{| <0.1 W3, where Wy = (R*+
Z3%)%, so that (with an error less than 1%) we can write

=W.+Z Wr,
r+ZlC| /Wy (B.24)
wy = Wp—Z|C|[Wry.
Hence
ICl(Zi—R’)} .
| PP G e g
{ 2.z 1 x| PRI
(B.25)

IC[(Zi—R’)} ;
Y, =¥,41 +=2—"— "> exp(—ikZs|{|/W-
follows from (B.23). Again we note that for {—0 both ¥ and ¥, reduce to ¥,.

With these results we are ready to judge the approximate solution given in (B.9).
Using the same approximations as for ¥, and ¥,, we have

_ _C(sz%-+R‘)} \/ +ycz 3
4 9’0{1 i exp(—ikZ L /Wy) 1425 - (B.26)

The phase of ¥ is lying between those of ¥, and ¥,, for any value of k and R.
The mean phase is about equal to kW, the fluctuations are at most kZy||/Wr.
These phase excursions will be 19 or less, if the condition

1¢] < 0.01Z, (B.27)

is satisfied.

Turning now to the moduli of ¥, and ¥,, we see that their relative behaviour is
governed by the expressions between curled brackets. The mean values of these
quantities are sketched in Fig. B.1, together with their standard deviations. This
produces the shaded areas. Corresponding curves for ¥ are drawn as dotted lines.
Fig. B.1 leads to the conclusion that ¥ is likely to fall outside the limits ¥; and ¥,.
But it also suggests a possible improvement of the formula for ¥': if we take

¥ = ¥, exp(ikZ{/Wy) \/ 1 +2~-——""¥£-‘§Z (B.28)
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. r Fig. B.1.
& Relative behaviour of the moduli of ¥,,%, and V.
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instead of (B.26), we have an approximation of which the mean value can be brought
between the bounds ¥, and ¥, if we see to it that the square root in (B.28) is close
to L.

This last statement needs a qualitative investigation. First we require that

x{+ 6

Zp—(

2 <1 (B.29)

in the x, y-range where |¥;| is not negligible, because the square root can then be
expanded in a converging series, which will be useful later on. The useful x, y-range
can be found from (B.12): the modulus |¥,| has a maximum equal to k(2nZ,)~*
at R=0, and at R=10 Z; it has decreased to 1% of that maximum. So the most
important surface part is the area for which R< 10 Z, and in that area (B.29) has
to hold. This condition is certainly satisfied if

(% 1Eal + [Y11E,| < 325 (B.30)

Considering the mean value of the random quantities involved, together with the
numbers derived in Chapter 3, this yields:

[yl + 1.76 |x| < 20Z, (B.31)
whereas the mean square criterium produces

0.003x2+0.001y% < 0.25Z%. (B.32)
Equation (B.31) indicates a rhombic area with —20 Z, <y <20 Z; and —12 Z,

<x<12 Z;, (B.32) an ellipse with semi-axes equal to 9 Z; and 16 Z;. Most of
the area inside the circle R =10 Z; falls inside the rombic and the ellipse, so we

conclude that for R <9 Z, the series expansion of v/ 1 +2(x{, + Y{,)/Zy is convergent.
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As a result of the foregoing analysis we see that for

—0.2 < (xLo+yL,)/Zr <02 (B.33)
we have
\/1+2"‘:=+”5’~1+"c*”‘:’s1.2 (B.34)
ZT ZT

with an error less than 2%. The mean value of this expression is equal to one, for any
(x, y), as was required in the discussion of (B.28). The variance increases with x* and
»2, as can be seen from (B.33). Taking the mean square of this expression, we have
the condition

0.003x%+0.001y? < 0.04Z3. (B.35)

This condition is of course much more demanding than (B.32). The corresponding
limiting ellipse is consequently smaller: now the semi-axes are 3.6 Z and 6.4 Zr.
Inside this ellipse (B.28) is an acceptable approximation of ¥.

Finally we note that these results indicate limiting values. In most of the cases the
errors are less. The complete formula for ¥, as it emerges from this discussion, is
found by substitution of ¥, into (B.28):

W(R) = 2T exp (ikwy) \/ 2 Xty (B.36)
2w

T ZT

with Wy = (R®+Z2)* and wy = [R*+(Z;—0)*]*.
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APPENDIX C

Behaviour of H for high frequencies
In (5.12) we have the complete formula for H. It can be written as
H(@,) = “ 22 ({dR(Wwg)” iz Eepl ), €D
T

with
'I‘(x, Y) = k(“’r"‘ wR)

zk{wrwg—(f,:" w)c( y)} (C2)

and Wy = (R*+Z7)}, Wg=(IRg—R|*>+Z})%. The approximation in (C.2) is based
on |{| <0.01 Z,, Z; (Assumption 11).

The points of stationary phase follow by differentiation of (C.2) with respect to
x and y, i.e. from the equations

x  (Xg—x) Z
W W -‘*(“W‘i)

(ool )

Exact solutions are difficult to obtain, except when { ={,={,=0. Then x=X, =
ZrXg/(Zy+Zg) and y = Y, =0 follows; X| and Y, are the coordinates of the specular
point.

In order to derive a condition for which the solution of (C.3) is sufficiently close
to x=X, and y=0, we suppose that x=X,+4x and y= Ay satisfy (C.3), and
require that Ax and Ay are small compared with the geometry of transmitter and
receiver. Two cases have now to be distinguished: A) X = 100 m, and B) Xz ~ 0.

(C.3)

A. For X = 100 m, we can write

Wy & Wy [1+A4xX /W]
(C4)
Wy & We,[1—Ax(X g — X,)| Wi,

These approximations will hold with an error less than 3% if in (C.4) the deviations
are smaller than 0.3.
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With (C.4) we can rewrite (C.3), and find as first order approximations:

Ax = 20,Z1ZxD5/(Zr+Zr)*,
Ay =2 ZrZp/(Z1+Zg).

(C.5)

Requiring next that 4x and A4y are at most 10% of X, we obtain the following
conditions for the slopes:

1Z,] < 0.05c0s%0,X g/ Zg,
1] < 0.05X g/Zg.

(C.6)

Since ¢, and {, are exchangeable, and cos?0, < 1, this means that
|Cx.y| < 0.05 COSZBSXRIZR. (C'?)
This result is subject to the conditions

|4x|X,/Wr, < 0.3,

(C.8)
|4x|(X g — X )W, < 0.3,

to make (C.4) valid. Using (C.5) this leads to
[y < 0.15(Z5+Zp)* (X8 Z1.8)- (C9)
In the denominator the larger of Z; and Z has to be taken.

B. For Xy ~ 0 we have

w,zz,.(l =

Ax* + Ayz)
T L

(C.10)

2 2
W, zzx(l +A_x+_AL),

Zz
with the condition
(Ax*+4y*) €0.3Z% if Z;> Zg,

(C.11)
€032 if Z,<Z,

With (C.10) substituted into (C.3), 4x and Ay are easily found. In first approxima-
tion we get
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Ax = 2, Z;Zp[(Zr+Zp),

(C.12)
These have to be small compared with Z; and Z. Therefore
|Cxyl < 0.05(Z7+Zg)/Z 1 r (C.13)
has to be true.
Turning finally to the condition (C.11), we derive with (C.12):
G40 <03(Zr+Z)* /(427 ). (C.14)

The quantity on the right hand side is not smaller than 0.075. So (C.14) is certainly
satisfied, if

G+ <0.075. (C.15)

According to KINSMAN [C.1, p. 11] the slopes cannot be larger than 1/7. Thus the
maximum value of {2 +(? equals 0.04, so that condition (C.11) is always observed.

Summarizing the results of A. and B. we find that the phase  in (C.2) has approxi-
mately one stationary point — namely P(X,, Y,), the point of specular reflection — if
the slopes of the surface elevation satisfy the following relations: For X ~ 0 their
absolute values have to be less than or equal to a, for X > 100 m they cannot exceed
the values ff and y, where «, f§, and y are constants that depend on the geometry of
transmitter and receiver in the following way:
o= 0.05 (ZT+ZR)IZT,R'
B = 0.05c08%0,X x| Zy, (C.16)
Y =0.15(Zs+Zp)*[(XgZr,p)-

In the expressions for a and y the larger of Z; and Z; has to be taken.

Returning to (C.1) and (C.2), we expand the phase in a Taylor series around the
stationary point:

Y(x,y) = Y(X+&, Y+n)
=YX, Y)+3W o+ 20 En+ Y1), (C.17)

and get from (C.1):
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H(, 1) 52T (Whwg) (142X, 22)* X
exp 106, 1] 2 T anexp| 500+ 20t v’ |
(C.18)

After evaluation of the double integral (see [C.2, p. 86]) and substitution of X,
and Y,, this gives

i ZrtZe’ J1+2¢ tan®,

Hlo, 0=k e V=V

exp [ik(Do—2{ cos 0)]. (C.19)

The constants Y,,, ¥,,, and ,, are the second derivatives of ¥ at the stationary
point. Their complete formulae are rather complicated:

) . WY .
.p“_kcose,{cos 9,(ZT+ZR)(1 {3) =20 5+ 2L, sin 6,cos 0, (Zr Z )\

1 1 1 1
V., = kcosb, {— £.L, cos®0, (?r_ + f;) 2+ sin 0, cos 0, (Zr Z—R)}.
1 1
¥, = kcosb, {(Z—T + Z_R) (1-¢ coszﬂ,)—ZC”}, (C.20)

but {2, {,L,, {3 are much smaller than 1, so that some simplification is possible. If
moreover

2|¢,,|tan 0, < 0.1 (C.21)
and
1 1
|Cxx|; l;xyl; tnyl K%COSZGS (Z_ =+ T)) (C22)
T R
we can write
1 1Y\
l)bxx'p”“l,{’i, ~k? 00843 (-——Z + Z—) a (C.23)
T R

Then (C.19) becomes
H(w,t) = —Dg " exp [ik(Do—2¢ cos 0)]+/ 1+2{ tan 0,. (C.24)

Series expansion of the square root, which is permitted in view of (C.21), leads to
the formulae for H,, H,, etc. given in (5.18)-(5.20).
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theses/stellingen




THESES

|
The Kirchhoff-Eckart theory is better than it seems.

2

The Doppler spread in the surface sound channel is mainly determined by the vertical
surface movements.

3

The Pierson-Moskowitz spectrum is physically unrealistic because a fully developed
sea occurs seldom, and mathematically because of the behaviour for v— 0 of functions
that can be derived from it.

4

The application of a fast digital computer is a useful way to advance a theory for the
description of a physical phenomenon.

5

It is possible to measure the velocity as function of time or position of a projectile
inside the barrel of a gun by means of Doppler radar, if the caliber of the gun is at
least 75% of the free space wavelength of the radiated radar signal.

6

A function is sufficiently sampled if it can be reconstructed by drawing a smooth
curve through the sample points.

7

In many research projects the recording and reporting of results and methods are
wrongly treated as a requirement that can wait until the project is finished. Proper
reporting and recording form an essential aspect of a research project: they can help
to clarify vague ideas and detect errors in an early stage.



8

The informal contacts between scientists working in international organizations — for
the total scientific output as important as the organizational relations — are usually
established in three steps: first with persons of the same nationality, next with
colleagues from nations with a cultural pattern similar to the own, and finally with
others. Often the last step is not made at all.

9

In Holland, but strangely enough also in other parts of The Netherlands, the teaching
of both national history and local geography fail to create sufficient insight into and
understanding of the difference between “Holland” and “The Netherlands”.

10

Persons in directorial positions always leave a chaos behind at the moment of their
departure — in the eyes of their successors.

11

Italian labourers that work in The Netherlands are not representative of their country-
men. Opinions about the Italian people should therefore not be based on the
behaviour and appearance of these labourers.

12

It is an illusion to believe that the world can be improved by means of theses added
to a dissertation.

13

It is most remarkable that bathroom mirrors do exchange left and right, but not up
and down.
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