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summary / samenvatting 





SUMMARY 

In this dissertation the phenomenon of scattering and reflection of underwater 
sound waves from the sea surface, is studied by considering the surface sound channel 
as sr random, time-dependent filter. This filter can be best analyzed by means of its 
frequency transfer function, from which another important system function, the 
impulse response, can be derived as Fourier transform. 

Starting from the wave equation for an iso-velocity medium with boundary 
condition of zero total pressure, a formula for the transfer function is found via the 
Helmholtz integral, by means of Meecham's perturbation technique. It is a &-fold 
integral that can be reduced to a converging series of surface integrals, when the 
specular angle of incidence is smaller than 84". The convergence is then even so fast 
that the leading term is a good approximation for the whole series. 
Next, the speed of the wind that generates the random sea surface is assumed to k 

at most 10 m/s, and the relative position of transmitter and receiver is chosen in such 
a way that the s@ar angle of incidence does not exceed 84". Numerical analysis 
of first and second statistical moment of this term then shows that it can be replaced 
by a simple formula which is identical to the one that follows from the Kirchhoff- 
Eckart theory. 

This Kirchhoff-&kart formula is used for a statistical investigation of the random 
filter. First and second order moments are calculated under the assumption that the 
ocean surface is a stationary and homogeneous, but anisotropic, Gaussian process. 
Frequency, time, and space-correlation functions of the iilter output, when delta 
pulses or harmonic signals are applied at the input, reflect in a simple way the statisti- 
cal properties in frequency, time, and space of the sea surface, if the roughness para- 
meter % is less than one (X = 2 kh cos 8,). With increasing roughness, this property is 
gradually lost. These theoretical results are shown to be in agreement with ex@- 
mental data found in the literature. Hence they can be used to predict the behaviour 
of the underwater communication channel via the surface, when the surface is 
characterized by its wave spectnun, or by its spatial and temporal correlation 
functions. 



SAMENVATTING 

, In dit proefschrift worden de verstrooiing en weerkaatsing van geluidsgolven onder 
water door het zeeoppervlak bestudeerd door het geluidskanaal aan het oppervlak 
te beschouwen als een stochastisch, tijdsafhankelijk filter. Dit flter kan het beste 
worden geanalyseerd door middel van de frekwentieoverdrachtsfunktie, waarvan een 
andere belangrijke systeemfunktie, de impulsresponsie, kan worden afgeleid als 
Fourier-transformatie. 

Uitgaande van de golfvergelijking voor een medium waarin de geluidsvoortplan- 
tingssnelheid konstant is, met als randvoorwaarde dat de totale druk op het opper- 
vlak gelijk nql is, wordt een formule voor de overdrachtsfunktie gevonden via de 
Helmholtz-integraal, door middel van Meecham's perturbatiemethode. Het is een 
zesvoudige integraal die herleid kan worden tot een konvergerende reeks oppervlakte- 
integralen, als de speculaire hoek van inval minder dan 84" bedraagt. De konvergentie 
is dan zelfs zo groot, dat de eerste term een goede benadering voor de gehele reeks is. 

Vervolgens wordt de snelheid van de wind welke het stochastische zeeoppervlak 
veroorzaakt verondersteld niet groter dan 10 m/s te zijn, en de onderlinge positie van 
zender en ontvanger wordt zodanig gekozen dat de speculaire invalshoek de 84" niet 
overschrijdt. Numerieke analyse van het eerste- en tweedeorde statistische moment 
van die cerste term toont dan aan dat deze vervangen kan worden door een een- 
voudige formule, identiek aan die welke volgt uit de Kirchhoff-&kart-theorie. 

Deze Kirchhoff-&kart-formule wordt geb* voor een statistisch onderzoek van 
het random ater. Eerste- en tweede-orde-momenten worden berekend onder de aan- 
name dat het zeeoppervlak een stationair en homogeen, maar anisotroop, Gaussisch 
proces is. Korrelatiefunkties van het uitgangssignaal van het filter in de tijd, de 
ruimte, en in het frekwentiegebied, wanneer delta-impulsen of harmonische ingangs- 
signalen worden aangewend, weerspiegelen op simpele wijze de statistische eipn- 
schappen in tijd, ruimte en frekwentie van het zeeoppervlak, als de ruwheidsparameter 
x kleiner is dan e n  (X = 2 kh cos 8,). Bij toenemende ruwheid gaat deze eigenschap 
geleidelijk verloren. Aangetoond wordt dat deze theoretische resultaten in overeen- 
stemming zijn met experimentele waarnemingen welke in de literatuur worden aan- 
getroffen. Zij h e n  daarom gebruikt worden om het gedrag te voorspellen van het 
onderwaterkommunikatiekanaal via het zeeoppe~lak, wanneer het oppervlak be- 
schreven is door het golfspectrum, of door de korrelatiefunkties in ruimte en tijd. 
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Nota Bene 

The parts of thls thesis that are reprints of articlespublished in the J o d  of the A c e  
tical Society of America, have their own list of symbols that dzyers on a few points from 
the following me.  

I v. 

symbols 

amplitude 
surface wave variance spectrum 
correlation function of E 
idem, of e 
idem, of H 
idem, of h 
constant depending on wind speed and geometry 
modified version of b, 
normalized correlation function; constant 
absorption coefficient 
correlation function 
sound speed in ideal medium 
path length from T to R via the surface 
specular path length from T to R 
distance from T to R 
spreading function; expectation 
bi-frequency function 
spectral function; auxiliary function 
time function; random function; probability density function 
free space Green's function ., I 

gravity acceleration 
frequency transfer function 
absorption filter function 
impulse response function; standard deviation of surface elevation 
(- 
Bessel function 
wave-number vector: X = (K,, K,, K,) 
wave-number vector : K = (K,, K,, 0) 
wave number of incident radiation 
range; effective correlation distance; auxiliary function 



wave-number vector: A = (M,, My, M,) 
wave-number vector: M = (M,, My, 0) 
constant 
integer 
pressure (time dependent) 
pressure (with factor exp (- iot) suppressed) 
pressure, due to the boundary 
pressure in unbound medium 
space vector: 9 = (x, y, z) ' 

space vector: R = (x, y, 0) 
receiver 
distance 
transmitter ; time 
time 
velocity potential (time dependent) 
velocity potential (with factor exp (- iwt) suppressed) 
wind speed 
distance to the average surface 
distance to the random surface 
horizontal distance; input spectrum 
horizontal coordinate; input signal 
horizontal distance; output spectrum 
horizontal coordinate; output signal 
vertical distance 
vertical coordinate 
angle with X-axis, in horizontal plane; constant 
constant 
direction cosine; coherence function; constant 
fraction 
Dirac delta function; constant 
surface proiile 
difference in Y-coordinates 
angle with vertical, angle of incidence 
wave number of surface wave 
variance 
difference in X-coordinates 
correlation vector: q = (r, u, 0) 
correlation distance 
density 
standard deviation 
time difference 
correlation function of surface elevation 



cp angle with horizontal, grazing angle 
x roughness parameter 01 = 2 hk cos 8,) 
Y auxiliary function 
$ spectral function; phase 
S1 angular frequency 
o angular frequency of incident wave 
o, surface wave frequency 

cross-wind 
deterministic part 
down-wind 
label 
normalized 
label 
receiver 
random part 
specular point, stationary phase 
transmitter 
time derivative 
wave front 
average wind 
derivative with respect to X 
derivative with respect to Y 

Superscripts 

s on random surface 

Notations 

A number between 0 indicates an equation; example: (5.38) means "Equation 
38 of Chapter 5". 
A number between [] indicates a reference; example: [2.52] means 
"Reference 52 of Chapter 2". 
The angular brackets < > denote an ensemble average. Re and Im stand 
for "real part" and "imaginary part" of a complex quantity. 
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ASSUMPTIONS 

1. The sea surface is single-valued. There are no sub-surface bubbles. 

2. The sea surface is a pressure release boundary; the Dirichlet boundary condition 
p = 0 is valid. 

3. The sea surface elevation is a random process, in time as well as in space. It is 
stationary (in time) and homogeneous (in space). 

? 
4. The sea surface has Gaussian statistics. 

5. The anisotropy of the sea surface can be expressed adequately by a cos2(u)-law. 

6. The Pierson-Moskowitz spectrum is the best starting point for a statistical 
description of a fully developed sea. 

7. The medium is ideal: there are no inhomogeneities, and the sound speed is 
constant (c, = 1500 m/sec). 

8. The bottom is so far away from the surface and from transmitter and receiver 
that bottom reflections and reflections from the surface are separated in time. 

9. The source radiates equally in all directions, the receivers possess onmi-directional 
sensitivity. 

10. The surface channel can be represented by a linear filter; the superposition 
principle is valid. 

1 1. The depths of transmitter and receiver are much larger than the surface elevation: 
lOOlCI, ZR 2 100161- 

12. The conclusion that mean value and variance of H can in practice be described 
sufliciently by the stationary phase approximation, may be extended to the 
correlation functions of H, in time, frequency and space. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation of this study 

Until modern times the oceans were of interest to man only as a source of food 
and as a medium that linked and separated the continents. The catching of fish, the 
transport of goods from one harbour to another, and the sea battles between warring 
nations, all these took place at the surface. Therefore little interest was shown in the 
ocean below the surface. 

Recent times have seen both the development of submarines, giving the war at sea 
one more dimension, and the increasing need of food for a growing world population, 
which makes more efficient fishing necessary. 

Connected with this development is a diversity of technical systems that operate 
with underwater sound waves and are used for detecting an enemy (active and passive 
sonar), distinguishing friend from foe (IFF systems), tracing schools of fish, or 
measuring depth (fathometry). There is at least one thing all these systems have in 
common: they can be considered as communication systems, since each one has a 
transmitter and a receiver, between which information is conveyed. 

The medium that is used in these communication systems to carry the information 
from source to destination, i.e. the ocean, is certainly not perfect. In the first place 
there is the phenomenon of a sound speed changing with depth and, to a smaller 
extent, with range and time; it causes the formation of sound channels, caustics, 
shadow zones, etc. Next there is the so-called volume reverberation, introduced by 
inhomogeneities in the medium (e.g. fluctuations in temperature, salinity, pressure, 
and small particles), that influences the signals all along their propagation path and 
disturbs them in a random fashion. Finally, in many situations there is not only a 
direct path between transmitter and receiver, but also connection via the boundaries, 
especially at longer distances. 

The signals that arrive at the receiver via these different paths may interfere or may 
be separated in time, depending on the geometry and the signal duration. If they 
interfere then one will probably try to build into the receiver a means of separating 
them; if they do not it is likely that the direct arrival will be given priority, as it carries 
the least disturbed information. Then the receiver will have to suppress the super- 
fluous boundary-reflected signals, because their presence makes the system temporarily 
unusable for direct reception. 

It is also possible to imagine a situation in which communication between trans- 
mitter and receiver can only take place via the bottom, or via the surface. This occurs 
when the receiver is placed in the shadow zone of the source. 

From the foregoing observations it can be concluded that it is essential for the 



designer of underwater communication systems to know how the propagation of 
sound is affected by the medium and its boundaries. A study of this effect can be 
split into three parts: 
a. The surface, 
b. The volume, 
c. The bottom, 
although in reality the occurring physical phenomena are not entirely independent. 
In this thesis we shall only be concerned with the surface effect. This means that the 
influence of the others will be neglected, or eliminated by proper choice of the para- 
meters. At the SACLANT ASW Research Centre, scattering due to inhomogeneities in 
the medium has been analyzed by LAVAL et al. [l.I], and FORTUIN et a1. [1.2]. Their 
work can be regarded as an extension to the broad-band case of the studies under- 
taken by CHERNOV [I.3] and TATARSKI [I .4] for a monochromatic wave that propagates 
through a random medium. As for the bottom reflection, at the SACLANT ASW 
Research Centre this phenomenon has been studied by HASTRUP (see for instance 
11.51). 

The phenomenon of scattering and reflection of underwater sound waves from the 
rough surface of the sea can be studied in many ways. Ample illustration of this state- 
ment can be found in Chapter 2. Since we are interested in the underwater communica- 
tion problem rather than in a detailed physical description of surface scattering, we 
consider the paths along which the sound waves travel from source to destination as a 
communication channel, or a filter. Two sections can then be distinguished immedi- 
ately: the direct path, and the path via the surface (see Fig. 1.1). The surface effect 
can be studied by looking at the latter of these two. 

Signals that travel via the surface path are subject to the influence of the sea surface. 

B) 
4 SURFACE PATH 

lN-1 

DIRECT PATH 

OUT 
Fig. 1.1 
Commuoication between 
transmitter and receiver, via 
the dinxt path and via the 
surface path*, (A) ray dia- 
gram, (B) block diagram. 



This boundary has a random character, both in space and time. Hence the scattered 
field is random too, and we arrive at our approach to the scattering phenomenon: we 
study the sea surface as a randomfilter for lmderwater sound waves. Once the statistical 
properties of this filter are known, and given an arbitrary input signal, the charac- 
teristics of the output can be predicted. 

Basically, three steps have to be taken in order to reach the level of knowledge at 
which predictions are indeed feasable: First we have to find a suitable mathematical 
description of the physics that govern the scattering phenomenon; after that we have 
to apply filter theory to find an expression for one or more of the filter system func- 
tions; finally we need statistical techniques to derive quantities that are useful for the 
prediction of the output signals. In this way we will have constructed a link between 
the statistics of the random sea surface and the statistics of the soundfieldscattered and 
reficted by a boundary. It may be regarded as the paramount purpose of the study 
here presented. 

With the insight thus obtained, we can return to the underwater communication 
problem. Questions like: 
- What is the best frequency band in which to operate? 
- What characteristics should the optimum receiver have? 
- What is the best type of signal processing to r e d w  the effect of the signal distortion 

caused by the surface? 
can then be answered. Also the inverse problem can be attacked: 
- Given input and output signal, what are the statistical properties of the sea surface? 
This problem is of interest to both underwater acousticians and oceanographers. 

1.2 Some remarks of a more detailed nature 

1.2.1 The sea surface 
When wind is blowing over the surface, waves are generated, first small ones and 

later larger ones, until a state of equilibrium has been reached. If the wind speed 
increases, more energy is put into the surface waves. They can become so strong that 
rollers and breakers are formed. In that case the surface is not single-valued any 
more, and also sub-surface air bubbles appear. These bubbles can screen the surface 
to such an extent that the sound waves do not reach the surface any more. Volume 
scattering then takes over. As this is not the subject of the present study, we assume 
the wind speed low enough that the surface is still single-valued and free of sub- 
surface bubbles (Assumption I ) .  

The deformation of the sea surface due to the wind is not the only type of deforma- 
tion that can occur: pressure waves in the water can also change the shape. A strong 
pressure wave, for instance one caused by an explosion not far below the surface, 
will even break this boundary. This is caused by the fact that the surface cannot 
support any pressure: it will yield when struck by a pressure wave. For this reason 
the upper boundary of the ocean is called a pressure release surface. 



The pressure waves we are considering, however, are sound waves of such a small 
amplitude that the surface deformation caused by them is negligible when compared 
with the wind effect. The pressure release character of the surface is then merely 
present in the mathematical description of underwater sound propagation: it deter- 
mines the boundary condition. In accordance with common usage, the Dirichlet 
condition1 p = 0 is supposed to hold (Assumption 2). 

The wind-generated sea surface is random in space and time; this random process 
is assumed to be homogeneous and stationary (As,sumption 3). Its stitistics are Gaussian 
with good approximation (Assumption 4). As a statistical description is needed, we 
have adopted the theory of the sea surface wave spectrum, which regards the sea 
surface as the combined effect of a large band of sinusoidal waves that travel over 
the upper boundary in all directions and each frequency having its own speed. The 
statistical properties in space are dependent on direction. This anisotropy can be 
represented by a cos2(a)-law (Assumption 5). For the spectnun we assume the validity 
of the empirical formula suggested by P I B R ~ ~ N  and MOSKOWITZ [1.6] for a fully 
developed sea (Assumption 6). 

1.2.2 The medium 
Propagation along straight lines occurs only in an iso-velocity medium. We require 

the bending of rays to be absent, hence we assume the sound speed to be constant 
(Assumption 7). In reality such is, with good approximation, the case during the 
spring time in the upper part of the ocean. Experimental data to check our theory 
have therefore to be collected in that time of the year and at not too great depths. 

At long propagation distances, absorption in the medium can become important. 
It can be incorporated into our communication model by series connection of an 
absorption filter with the transfer function 

where C, = 4.5 x 10-l3 dB/m, at a temperature of about 20°C [1.7, pp. 86-90]. 

1.2.3 The bottom 
The bottom effect can be eliminated by considering the sea to have infinite depth. 

In practice this means that the transmitter and receiver depths have to be small 
compared with the distance from surface to bottom (Assumption 8). 

1.2.4 The sound source 
One of the filter functions that we are interested in is the impulse response. This 

1 wen electromagnetic waves are considered, the Dirichlet condition describes a perfectly con- 
ducting boundary. 



presupposes, if it is to be determined experimentally, a broad-band source, preferably 
producing an impulse that - with good approximation - can be regarded as a delta 
function. At the SACLANT ASW Research Centre this ideal has been approximated by 
using explosive charges as sound sources, in connection with an equalizing filter on 
the receiver side that boosts the high frequencies in such a way that the spectrum of 
the explosive pulse approaches that of a delta pulse [I.I]. 

It is our intention to compare our theoretical results with data that are generated 
by means of this experimental technique. Hence we have to assume that our source 
radiates equally in all directions. Also the receivers have an omni-directional 
sensitivity (Assumption 9). 

1.2.5 Geometry of transmitter and receiver 

The positions of transmitter and receiver will be arbitrary. Both the monostatic 
(coinciding T and R) and the bi-static (separated T and R) case are hence covered. 
In principle the influence of any coordinate can be studied. 

1.2.6 Physics 

Our first step will be the construction of a model that describes the scattering and 
reflection. Physical considerations of a theoretical character indicate that the wave 
propagation is governed by a wave equation. This equation can be solved by standard 
techniques. In our case the solution is also determined by the boundary condition of 
zero total pressure. 

Solutions of the wave equation with boundary condition can be found in the fre- 
quency domain via the Helmholtz integral [1.8, p. 241, or in the time domain by 
means of the Kirchhoff integral [1.8, p. 371. Our study is begun in the frequency 
domain. 

1.2.7 Linearity andfilter theory 

One of our basic assumptions is the linear character of the sea surface regarded as 
a filter. By this we mean that, if an input signal xl gives a reflected signal y,, and if a 
signal x2 results in an output signal y2, then the result of alxl together with a2x2 
equals alyl  +a2yz. In other words, the superposition principle is valid and the theory 
of linear time-dependent flters can be applied [1.9] (Assumption 10). 

Another characteristic of our flter worth mentioning is its causality: the scattered 
or reflected signal cannot start before the input signal has begun. 

Finally we remark that the formulae for the iilter functions that will be derived 
eventually are not linear in a. This indicates that "washboard" studies (i.e. scattering 
from a sinusoidal surface) have only limited importance for the problem of scattering 
by the random sea surface: as a deterministic exercise, and for the analysis of "swell". 



I .2.8 Statistical properties 
The fully-developed wind-generated sea surface is supposed to be a stationary and 

homogeneous random process (Assumption 3). As a possible random event or "ex- 
periment" we can take a description of 5(x, y, t) for x and y belonging to a certain 
domain S, and t being an element of a time-domain T,. By assigning to i the valuesl, 
2, 3, . . ., n, we can generate a set of possible realizations of the random filter we are 
studying. Statistical properties such as mean value and variance of a system function 
can be constructed. Also correlation functions in time and frequency can be derived 
as ensemble averages. Phenomena like frequency spread (Doppler effect) and time 
spread can be analyzed. These properties describe the random channel formed by one 
transmitter, the surface, and one receiver. When more receivers are present, the spatial 
structure of the scattered field can be examined. This subject falls slightly outside the 
frequency and time analysis of the filter, but it is interesting and important enough 
in underwater communication to be included. 

1.2.9 Coherence 
A somewhat different way to look at the channel properties consists in an investiga- 

tion of the coherence between input and output signal. 
A channel that is free of dispersion may change the amplitude and phase of a trans- 

mitted signal but not the shape: all frequencies are treated in the same way, i.e. they 
are subject to the same attenuation and the same time shift. Such a channel processes 
the signal in a coherent way. This is what would happen if the sea surface were 
perfectly flat. The rough sea surface, however, does not treat all frequencies equally. 
Hence it changes the character of the input signal and causes a loss of coherence 
between input and output. The degree of this coherence loss increases with the 
surface roughness. In practice, it is often possible to distinguish in the output signal 
a coherent and an incoherent part. Usually the first one is called rejection and the 
second scattering. 

The structure of this thesis can be outlined as follows: 

First we give some attention to the literature that is related to our subject. This is 
done in Chapter 2. We will see that only certain aspects of our problem are covered. 

The description of the sea surface as a random process is the subject of Chapter 3. 
Numerical results that are needed later are collected there. 

In Chapter 4 we recall some elements of the theory of linear, time-varying filters. 
Some statistical properties are included for later use. 

Physical considerations that lead to a formula for the transfer function of the sea 
surface as a random filter can be found in Chapter 5. The result is a series of surface 
integrals of which the first term is a very good approximation. 



The mean value of the transfer function is computed numerically in Chapter 6. It 
can be regarded as a representation of the deterministic part of the filter. If this 
deterministic part is set apart, the purely random portion (with zero mean value) is 
left. Its variance is calculated numerically in Chapter 7. 

The results of Chapter 6 and 7 indicate that the filter can be described, with good 
approximation, by a simple formula. Starting with this formula, time and frequency 
correlation are studied in Chapter 8 ; the spatial correlation is discussed in Chapter 9. 

With the results of Chapter 8, the properties of output signals can be described. In 
Chapter 10 this is done for monochromatic input signals, for delta pulses at the input, 
and (briefly) for arbitrary input signals. 

Discussion of the results, and comparison with experimental and theoretical work 
found in the literature, is the subject of Chapter 11. There it is also indicated which 
results can be verified best by experiments. This applies to those results for which no 
comparable material is available. 

Finally, in Chapter 12, the conclusions of this study are presented. 
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LITERATURE O N  PHYSICAL ASPECTS 

2.1 Introduction 

The phenomenon of scattering and reflection of waves at uneven surfaces has re- 
ceived much attention in the past 20-25 years. The literature that has resulted covers 
a wide variety of aspects: electromagnetic and sound waves, rigid boundaries, pressure 
release surfaces (in acoustics) and perfectly conducting surfaces (for electromagnetic 
studies), sinusoidal and random boundaries (in two and three dimensions), mono- 
chromatic and broadband sources, theoretical and experimental studies, etc. It is 
no wonder, therefore, that the number of papers and reports is rather impressive. 

An excellent introduction to the subject has been provided by BBCKMANN and 
SPIZZICHINO [2.1]. Although that book is mainly concerned with the case of cktro- 
magnetic waves, it contains enough material to be of interest to the acoustician too. 

The literature explicitly dealing with diffraction of underwater sound wavcs from 
the sea surface and with the description of the surface is discussed in this chapter. 
The following system of classification has been used for this review: 
1. General considerations, 
2. Sinusoidal and other periodical boundaries, 
3. Random boundaries, 
4. Experimental results, 
5. Special subjects. 
This has proved to be a useful classification. Many papers, howgvcr, belong to more 
than one class. 
Two journals stand out as the leading media for the communication of new results 

to the scientific world: first of all there is the Journal of the Acoustical Society of -  
America with about 50% of the total number of publications, followed by S&t ' 
Physics-Acoustics with 1 1%. 

The publications up to the beginning of 1969 are discussed in Section 2.2. This 
part is a reprint of a paper I published in the Journal of the Acoustical Society of 
America [2.2]. More recent papers and articles (up to the middle of 1973), and also 
tendencies in the studies at present taking place, form the subject of Section 2.3. 

The bibliography contained in Section 2.2 and the references at the end of this 
chap&, provide together a rather complete account of the available literature on 
scattering and reflection of underwater sound waves from the ocean surface, and 
related subjects. 



2.2 Literatare up to the beginning of 1969 '. 
I ,  

h . -. 
This is the thirkmth in o s& of r h  and tudorid papers on the various aspects of acorurics. 

Recdrsd 9 July 1969 13.4, 13.61 3.2 

Survey of Literature on Reflection and Scattering of Sound 
Waves at the Sea Surface 

LEONARD FOBTUIN 

SACLANT ASW Ram& Csnlra, La S*, Ikdy 

The problem of diffraction of waw at uneven d a m  has received in- attention in the past 15-20 
years. Thia has resulted in a large number of reporb and p a w  in the open literatare. In thia review utide 
most of the publications dealing with sound warn and pressure release surfaces (both theoretical and experi- 
mental) that appeared up to the beginning of 1969 are menti ed as references. They are dwsikd by sub- 
ject, and the rmin cunmts in the literature (Rayleigh m?~retslty method for ainudlal 
Eckart theory with Kirchhd. approximation for random .dam, experimmtn at *.) are e= 
cussed. General trends, relations between studies, agmments, and eontdictims are mentioned. It is found 
that nearly all of the publications covu only part of the problem: although the wave dl&Pction at rough 
mrfaces is a function of three basic quantities s i m u l U y  (i.e. time, frequency of incident wave, and 
geometry), most d the papem deal with only one or another of theae three Wisbb. Ponsible dhcdona of 
fatare mearch arc indicated. 

LIST OF SYMBOLS 

A, A,, A ,  Ami, 
a 
Bf 
5 
C 
G 

amplitude 
effective correlation distance 
boundary d c i e n t  
constant 
constant 
sound speed 
sound speed in ideal medium 
wave' parameter 
surface-wave spectrum 
frequency of incident radiation 

(-1 
g e n M s p e c t r u m  
gravity acceleration 
trough-to-crestsurface wave height 
Hankel function 
amplitude of sinusoidal surface; 

standard deviation of surface 
elevation 

intensity 
autocovariance function of surface 

insonitication 

Bessel function 
integ;er 
wavenumber if incident radiatiq 

( 2 4 )  
length of honiiied. area 
integer 
maximum number of scattering 

modes 
scattering mode number; integer 
surface normal; integer 
origin of cookdinate system 
directivity pattern 
Dressure 
.i>lobability function 
receiver; shadowing function - 
distance 
surface; shadowing function 
surface profile 
transmitter 
unit step function 
speedofsurfacewsve 
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reflection coefIicient 
wind speed 
horizontal coordinate 
horizontal coordinate 
vertical coordinate 
direct cosine; angle with X axis 
direction cosine 
direction cosine 
layer thickness 
(normalized) surface profile 
surface slope 
difference in y coordinates; normal- 

ized y coordinate 
angle with vertical 
surface wavenumber (2u/A) 
surface period 
intensity of scattered waves 
incident wavelength 

INTRODUCTION 
The problem of the ditrraction of waves at uneven 

surfaces has received increasing attention in the past 
15-20 years; "this is due to the growing application of 
acoustic waves and radio waves in the centimetre band" 
c3, Q.11. 

Mathematically, the problem is "marvelously com- 
plex" [24, Q. 12931. It consists of solving a wave equa- 
tion for which certain boundary conditions have to be 
satisfied, whereas the shape oi the boundary can be 
extremely complicated. For this reason, a general and 
exact treatment of the problem has not--so far-been 
published. 

Nevertheless, a large number of publications in the 
open literature are devoted to the subject. But they 
cover only a part of the problem: all of them are re- 
stricted to a s d a l  case. and are based on certain 
as~um~tions-sbmetimes ;ather arbitrary-that make 
simplifications possible but at the same time cast doubt 
on their validity. 

An excellent survey of the literature up to 1958 has 
been given by Lysanov [3]. Although this paper deals 
only with periodically uneven surfaces, it has a wider 
importance, because many techniques can be applied to 
both periodically and statistically uneven surfaces. 

More recent work, up to the beginning of 1969, is dis- 
cussed and analyzed m Ref. .2. The present paper is a 
sbortened version thereof. 

Two types of waves can be found in the literature: 
sound waves and electromagnetic waves. Both types 
give rise to the same type of mathematics, when reflec- 
tion and scattering at uneven surfaces is studied. There 
is an important difference, however: in the case of elec- 
tromagnetic waves, the wavelength of the incident 
radiation is usually much smaller than the scale of 
roughness of the reflecting boundary. Ray theory and 
geometrical optics can then be applied. For sound waves 
that are scattered from the sea surface, incident wave- 

A, Xo, L 
P, Po, Ccn 
v 
E 

direction cosine 
direction cosine 
direction cosine 
Werence in x coordinate; normal- 

ized x coordinate 
correlation distance 
scattering d c i e n t  
backscattering strength 
time Werence 
surface correlation function 
grazing angle 
roughness parameter 
correlation function of p m  
phase angle 
radial frequency. of in-t 'WW& 
frequency shift 
frequency of surface wave 

length and roughness scale can be of the same order of 
magnitude. A Wraction theory then applies. 

Also two types of boundaries can be distinguhhed in 
practice, with some idealization: 

(1) The free, elastic boundary (eg., the sea surface) 
on which the wave potential vanishe is also d e d  
"pressure release" or "perfectly conducting." 

(2) The rigid boundary (e.g., the rocky ocean floor) 
is that where the directional derivative of the WWQ 
potential becomw zero. 

Except for the book by Beckmann and Spizzkhb 
[I], this survey refers ollly to public~tions that d d  
with sound waves and with pe#ectly refl-, ffra 
boundaries. The references at the end are grouped 
according to subject. But this is no strict division, as 
many papers belong to more than one group. 

The phenomenon of scattering and reflection of sound 
waves at the sea surface is a random process, both in 
space and time.. It depends basically on tbra 
parametem : 

( I )  P r e p m y  of incidetat waw: For very high frequen- 
cies a behavior similar to "geometrical optics" is likely :. 
shadowing of "valleys" by ''peaks1' may OCCW, wh-. 
for low frequencies the waves wil l  be diffracted a ~ d  
reach all surface pointa. 

(2) Tinu: Even for fixed geometry and a m o n h  
matic incident wave, the scattered Iidd is not coastant, 
because the boundary is continudy in mwemmt, 
owing to winds and currents. A realistic description of 
the scattered field is hence i m w b l e  without involving 
the time variable. 

(3) GumKjy of swrce and rtxaiw: The difErwtd 
field depends strongly on the relative position of sounx; 
and receiver with respect to the boundary. The shadow- 



1 REFLECTION A N D  SCAT.TERING AT T H E  SEA SURFACE 

and straightforward description of the 

can be described by: 
and reflection of sound' waves at the ocean s=3(x))-t(x+A) (-a <x< .o). (1) 

Because of the periodicity of the surface, the diBFmtod 

Wm~aine+nrX/A, (m=O, f 1, f 2, . . .), 
ainem~sine+mK/k. (2) 

We remark that for rn=O the reflection is "specular?" 
According to Eq. 2,8, can only assume discrete values 

when X and A are held constant. These are the directions 
of scattering. They have the property that in these 
directions the waves scattered from individual periods reinforce esch other because their phase merace is an 
integral number of periods. 

as shown that this assumption is not far 
The sptial c o d t i o n  function of the a sinusoidal m e l ~  for 

however, is often arbitrarily chosen, e.g., ex- 
al or Gaussian, again with the excuse that it 

the calculations possible. In , the Neumann-Pierson model 
spectrais receiving increasing attention.). 

Ideal *face &yw. 
is one important exqtion to this general con- 

quasiphenomenological approach of Middle- 
of this approach 

end of the 19th century, Lord Rayleigh studied 
ering of sound waves at periodically corrugated 
[4]. His method can be considered as the first 
to solve the wave equation in combination 

boundary condition. I t  is an intuitive approach 

Rayleigh calculated the amplitudes A,(m=O, &I, 
f 2, . .) of the scattered waves via the boundary con- 
dition p=O, where p is the total pressure field. His pro- 
cedure for obtaining a solution of the wave equation, 
i.e., 9 e  co&Ecients A,, is based on two assumptions: 

(1) That the total field can be written as an M t e  
sum of plane waves : 

(the first term on the right-hand side being the incident 
wave). 

(2) That this equation holds everywhere abave and 
on the boundary. This assumption is not at all abvious 
and hgs been seriously critideed (see Sec. 11-B). 
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With his two assumptions Rayleigh found, for a 
point (x,s) at the boundary, the equation 

exp[ - i k l  (x) cod] 

"Both sides of this equation are now expanded in a 
Fourier series with respect to x (which will in general 
result in a double series on the right side) and the re- 
aulting Fourier coefiicients are equated. This results in 
an infinite set of linear equations, each of which con- 
tains the unknown roefficient A,. By progressive solu- 
tion (or successive approximation) the coefficients A, 
are then approximated" El, p. 431. Formulas for the 
first c&cients can be found in Appendix A. 

The total number of possible modes as predicted by 
Eq. 2 is limited by the condition I sine, 12 1. We call 
this maximum M. For m> M, the condition is violated. 
Then cos8, becomes imaginary and we have (see Eq. 5) 
waves propagating along the surface (Rayleigh surface 
waves) that decay exponentially with depth. 

The propagation in discrete modes described here is 
valid for "surfaces" that extend from - to + w . I t  is 
interesting to note what happens when the periodic sur- 
face is of finite length. Then the difFracted field-instead 
of being cancelled completely because of destructive 
interference between the directions given by the grating 

FIG. 1. Diffraction of a plane harmonic wave 
by a sinusoidal boundary of finite length; 
6-45? A-IO~, and kk is s menanre of the mr- 
face roughness. From Becbamn a d  Spirdckino 
CI, ,pp.,pp.. *53E 

formula (Eq. 2)--decrm gradually and then in- 
creases again, when the observer is moved from the 
direction 8, to In this way, the so-called "lobes" 
are formed. Their width increases as the surface becomeb 
shorter. 

For several combinations of 8, A, and kh, Beckmann 
[I] gives figures that illustrate this formation of lob* 
They show that with decreasing value of kk, the "rough- 
ness" becomes smaller so that fewer and fewer sidelobes 
appear and the lobe with m=O (specular reflection) 
becomes more and more pronounced. constant kh 
and A, the rdection becomes more s p d ~  as 8 in- 
c r ~ .  Both facts agree with a defhition of roughness 
of the form 

x = C K ~  COS~. (6) 
Examples for 8=4S0 and A= LOX are reproduced in 
Fig. 1. 

B. The Dispute about the Rayldgh Method 
Commenting upon Rayleigh's procedure for obtain- 

ing a solution for the wave equation in the presence of a 
sinusoidal boundary, Uretsky remarked that: "The 
crucial and unjustified step in this procedure is the 
assumption that Eq. 4 describes the solution every- 
where above the bounding surface" [25, #. 4011. Refer- 
ring to a lettter by Lippmann [13], he made it - 
plausible that the assumption breaks down in the 
"valleys" between the "peaks," because there both up- 
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going and down-ghg waves should be expected. For 
this reason he carefully developed a klution to the 
problem, byed on Green's theorem (Sec. 11-C). Com- 
paring his results with those of Rayleigh, one of his 
conclusions (based on numerical experimentation) is 
"that the Rayleigh equations are useful when the undu- 
lations of the bounding surf& are gentle (small kK)" 
[25, p. 421].* 
- ~ @ c h a &  too [17,47] remarked that the validity of 
Rayleigh's second assumption is doubtful. He developed 
a variational method, for the case of a periodic surface. 
[17], which improves the Rayleigh method via an error- 
mhimizbg procedure, and a Fourier transform method 
for boundaries of arbitrary shape. This latter method, 
in whicli an approximation of the first derivative of the 
pressure at  the boundary is obtained by placing a re- 
ceiver at  this boundary, is found to be "preferable to 
previous methods, notably those which can be classified 
as physical optics (such as Rayleigh's), since the error 
in the transform'method is of second order in the surface 
slope, whereas the error in previous methods is of first 
order in the same quantity" [47, p. r/O-abstract]. 

The question of the validity of Rayleigh's second 
assumption has been attacked from another side by 
Heaps. He presented "an investigation of the least pos- 
sible value of the surface pressure consistent with the 
assumption that all the rdected radiation is in the form 
of undamped plane waves" [lo, p. 8151. He arrived a t  
the conclusion, after comparison of his results with ex- 
perimental data "that if all reflected energy has the 
form of undamped plane waves then the surface is 
necessarily sound absorbing and of pressure signifi- 
cantly different from zero. Thus, in the neighborhood of 
a corrugated surface of zero pressure, it is necessary to 
take into account other forms of radiation and such 
forms play a significant part in satisfying the boundary 
condition" [lo, p. 8181. 

As Marsh has generalized the Rayleiah method for 
random surfaces (Sec. 111-A), he is mydg "In Defense 
of Rayleigh's Scattering from Corrugated Surfaces" 
[la]. His results (for simplicity he takes a sinusoidal 
surface) have been compared with those of Uretsky 
[24, 251 by Murphy and Lord. They showed "that 
Rayleigh's formulation is inadequate for the description 
of the scattered field" [18, p. 1598--abstract]. 
The results of the above mentioned papers lead us to 

the conclusion that the Rayleigh method is indeed in- 
correct in the way the boundary conditions are used. 
Nevertheless, for smooth surfaces (small hK), the 
method produces results that do not disagree more with 
experimental data than do other, more rigorous, solu- 
tions. It is therefore, useful to a limited extent. The 
method developed by Uretsky, on the other hand, is 
strict in a mathematical sense and therefore superior 
to the Rayleigh solution. 

Finally we remark that Beckmann [I], surprisingly 
enough, does not touch upon the question of the validity 
of Rayleigh's assumptions. 

C. UraSWe Method for r Sinawoidal Surface 
Uretsky devoted two publidations to his method: a 

very short outline [24], which is no more than an intro- 
duction, and a very thorough and detailed treatment 
[25]. The latter one contains a complete description of 
the method with the necessary mathematical proofs, as 
well as valuable coinments upon the Rayleigh method 
and the Kirchoff approximation. Application.of the 
Uretsky procedure can be found in a study by Barnard 
d al. [7], who summarized the Uretsky approach, made 
numerical predictions, and compared these with e m -  
mental results from a pressure release cork surface in a 
model tank. Satisfactory agreement was obtained. 

The method starts in the same way as the Rayleigh 
method. A plane monochromatic wave with direction 
cosines Xo(=sinB) and po(=cos8) is incident on a sinus- 
oidal pressure release surface as given by Eq. 3. Instead 
of assuming that the scattered field can be expanded 
into an infinite set of plane waves (as Rayleigh did), 
Uretsky proves that this is possible for observation 
points not too close to the boundary, 

The difference from Rayleigh appears in the next step: 
the expansion of Eq. 7 is not valid for a<h, because 
there its terms fail to be solutions of the wave equation. 
The Helmholtz formula [So] which ekpresses the scat- 
tered field $1 as an integral over elementary sources 
induced on the boundary by the incident wave Po, is 
invoked to avoid Rayleigh's second assumption. In 
terms of Green's functions,t the Helmholtz integral can 
be written for a two-dimensional case as 

Pl(r)-:r-di'Ho(U(klr-r'l)Vp(<), (8) 

because the term in the original integrand containing 
the total pressure p vanishes on a free surface. "The 
crucial step in the present formulation of the problem 
is to recognize that Vp(r') admits a Fourier series repre- 
sentation" [24, p. 12931; the proof is givin in Ref. 25. 
Hence, with Xj=Xo+jK/k, Uretsky finds 

ik  m 
m 

pl(x,z) =- ( i ) - j ~ ~ /  dx'Ho(O(k 1 r-r' 1) 
4- -00 

'Xexp(ikXiz'). (9) 
In order to find the scattered field PI, the boundary 

d c i e n t s  Bj have to be determined. This can be done 
via the boundary condition of zero total pressure, which 
gives 
-P~C~J(X)I - poCz,r (%)I 

= e x p { ~ L - ~ - d  c a w l ) .  (10) 
At this point, the mathematics become rather in- 

volved. Details can be found in Refs. 24 and 25, or in 

The Jwml of tha A d d  S W  of ~mrrko 1313 
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the summaries of Refs. 2 and 7; here we indicate only 
the main steps. The exponential in Eq. 10 is expanded 
in a Fourier series, as in the Rayleigh method, after 
.which an infinite set of algebraic equations for the Bj is 
derived : 

"The major complication of the problem (other than 
the usual di%iculties associated with inverting infinite 
matrices) is in the calculation of the matrix elements 
Mgj' [24, p. 1294. But the evaluation is passible, 
although the result is somewhat complicated. 

Inversion of Eq. 11 yields the boundary coeflicients 
Bj. A relation between A, and Bj is then needed to cal- 
culate pl with Eq. 7. The required relation is proved 
to be 

The Uretsky method is far from simple, especially in 
comparison with the Rayleigh technique. But the re- 
sults are obtained with a high degree of mathematical 
strictness and with a minimum of conditions on the 
validity. It may be noted that only the surface height 
h appears explicitly in the formulas; the surface wave 
number K is still present,' though, as it should be, via 
k and L. 

A generalization of the Uretsky method for random 
surfaces seems possible, by analogy to Marsh's exten- 

sion of the Rayleigh method. The result d be 
interesting (although probably rather Complicated), as 
it wodd be applicable to the ocean without too restric- 
tive conditions for the roughness. 

D. Comparison of Several Methods with B8di 0th 
a d  with Experimental Rsdb 

The e+ents of La Casce and Tamarkin have 
provided tbe- theoretidans with data that could serve 
as a check for their theofies. These experhenu data 
have been published in a study on the teflection of 
udderwater sound from corrugated surfaces [69> 

In addition to their experimental work, the authom 
have summarized the theoriea of Rafl&gh, .EcW 
[31] and Brekhoddth, and compared them with their 
data. Their formulae for the amplitude d a e n t s  A,  
are given in Appendix A. 

Several authors have the experimental iesdts 
of Ref. 69 to check their own theories: Meecham 
applied his Fourier transform method to a sinuddd 
boundary, Parker [lP, 201 extended the Rayldgh seriee 
of plane waves into an integral, Heaps derived from the 
Rayleigh method a recurrence relation for A, [PI and 
(with the assumption that the reflected field contains 
only undamped plane waves) obtained values for A,  
that minimize the mean square pressure at the boundPrp 
[lo], Jordan [I21 computed values for A,  via the 
coordinate transform 



FIG. 3. The drst-order 
backscattered amplitude 
{ A A ~  from a sinus0id.l 
surface with roughnecu, hK 
~0.46; angle of incidence (a) 
e=oO, @).e-400; ~ a d r  dots 
are expenmental data from 
La cacla and Tarqkin 
69 Fsgs K-7Q (Rag !&dart, .and Bnllo* 

values M shown in Appen- 
dix A) 

and Uretsky [ZKJ avoided the mathematical defect of 
Rayleigh's procedure with a careful and rigorous solu- 
tion. All these methods to describe the scattering from 
sinusoidal boundaries, though very merent in formula- 
tion and h a l  results, agree in predicting that the main 
directions of scattering are given by the grating formula 
(Eq. 2). 

La Casce and Tamarkin obtained their m d t s  with 
pressure release cork surfaces of approximately sinus- 
oidal form, floating on top of the water in a tank. Such 
a surface can be described by Eq. 3. For a concrete situa- 
tion, values have to be assigned to the parameters 6, k, 
h, K, and m. La Casce and Tamarkin have expexhented 
with three surfaces, for which hK equala 2.12,0.75, and 
0.46, respectively. They measured the scattered ampli- 
tude A, for m=O, -1, -2, and e=OO, 20°, 40°, and 
60°, as a function of kh, thus providing a rich source of 
data for comparison. 

In older to facilitate the comparison of the available 
theories with each other and with experimental results, 
we have plotted in Figs. 2-4 some of the data of La 
Casce and Tsmarkin together with theoretical curves 
and points. The ones according to Rayleigh, E h t ,  
and Brekhovskikh, we have computed with the for- 
mulas of Table I ; the other data are copied from the dis- 
cussed papers. The figures show the specularly reflected 
amplitude and the first- and second-order backscattered 
amplitudes for B=OO and 40°, as functions of kh, for 
the third experimental surface (hK=0.46), as this is 
the most sinusoidal one and because mmt of the theories 

as- 

presented are based on the assumption of small nuface 
slopes. 
Since the surface with hK-0.46 is not very rough, thc 

Rayleigh prediction is not dgdicantly worse than other 
curves. The Uretsky curves, for which a small dope is 
not required, are satisfactory but do not appear superior 
to the others. More interesting, therefore, is the appli- 
cation of Uretsky's theory to rough surfaces. This has 
bcen done by Barnard d d. [a in their model studiea 
Their surface can be charac- with: h a  1.5 a, 
K- 1.4 cm-I, and hence hK= 2.1. The frequency d ind- 
dent sound was 100 kBe (or k-4.2 cm4, making 
kR=6.3). They measured the backecattuing as a func- 
tion of grazing angle with fixed angle of incidence. "The 
agreement between the calculated and expehental 
curves (. . -) is, in general excellent" [7, #. 11681. 

The method of Lord Rayleigh for a sinusoidal bound- 
ary (Sec. 11-A) has been gen& by Marsh for the 
case of a random surface [WJ. He published his gemend- 
ization "in an heuristic form, in order to avoid present- 
ing the exceedingly havy analysis r e q W  fob a 
figorous treatment" Cp. 3301. This omisdon of &dtnt 
comments on the basic steps in his paper, together with 
a rather large number of misprints, makes his article 
somewhat hard to follm. W ' s  extension of the 
Raylei& method is obtained via Wimds concept of 
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"Generalized Harmonic Analysis" [56a]. It produces 
an expression for the correlation function of the scat- 
tered field at two points in space in a horizontal plane 
below the rough surface upon which a plane monochro- 
matic sound wave is incident, but "this solution is 
readily extended to include electromagnetic waves, 
general elastic waves, and non-planar, non-harmonic 
sources" Cp. 3%bstract]. 

The "exact" solution for the problem of wave scatter- 
ing by irregular surfaces can be summarized as follows, 
A monochromatic plane wave (direction cosines a, 8, 
7 )  is incident on a random pressure relief boundary 
S[z=s(x,y)]. For the mracted field pl(x,y,s), a plane- 
wave representation is sought by writing 

where G(A, p) is the generalized spectrum of pl(x,y,z) 
and A, p, r are the direction cosines of the difiracted 
wave (hence: X*+p9+~S== 1). The expansion in Eq. 14 
is a straightforward generalization of @e Rayleigh 
method for a periodic surface, in which pl(x,y,z) was 
decomposed into an infinite series of plane waves (see 
Eq. 4). Rayleigh's second assumption, that the expan- 
sion is valid up to the boundary, is also adopted by 
Marsh; the criticisms of Rayleigh's approach apply 
therefore equally to Marsh's (see Sec. 11-B). 

With the boundary condition of zero total pres- 
sure and after normalization of variables: kx= f, 
hy-TI, Ks(x,y)=ul';h(t,d, oJ=Ph8, hZ=((s-(s)>') and 

VrIucr u duma in App- 
ak A.) 

((s- Q)') = 1, Marsh obtained 

After this, he expanded G(A#) in a power d e s  id v: 

and the d c i e n t s  A, are to be calcu?atsd. Sub@tu- 
tion of Eq. 16 into Eq. 1> yid& an M t e  set of dmul- 
taneous linear equations for the determinatia df the 
A&#). By clever manipulation of these equlrti- 
Marsh found a simple-looking e x p d o n  for thq a t -  
tered fidd at a point not on the boundary. Choasifrg the 
coordinate system in such a way that the point of ob- 
servation lies in the plane s=O (this includes: (f(x;y)) 
#O, in contrast to most other theories), he obtained: 

where X is a complicated operator c l d y  related to the 
basic expression in Wiener's work. 

Marsh, Schulkin, and Kneale [41] have worked out 
the method in more detail, a s y b g  s so d that 
G(Ap) can be represented satdactorily with thnc 
terms of the series in Eq. 16. The necessary d t i c m  
for this approximation was not discussed. They 4- 
culated the correlation function 
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and found 

In this formula, F(X,p) is the "power spectrum" of 
f (63, and @(E,q) the surface a~tocorrelation function; 
F and * are each other's Fourier transforms. 

The Fourier transform of 9(&q), called Au(X#), has 
important physical meaning: i t  "is proportional to 

the i&mity of -waves proceeding parallel to the line 
with direction cosines A, p." "In general, AM will consist 
of both a discrete and a continuous portion. The discrete 
portion,.where Ax is singular, represents plane scat- 
tered waves of finite amplitude (such as the specularly 
redected wave). For such plane waves, the integral of 
AM in the immediate vicinity of its singularity is equal 
to the square wave amplitude" [a, p. 3311. 

B. The Kirchhoff Approximation and Variations 
When the scattered field at an observation point is 

expressed as an integral over elementary sources induced 
at the surface by the incident wave (this is the so-called 
Helmholtz integral [25a], an assumption has to be made 
for the h t  derivative of the scattered wave field at 
the free boundary. For a random surface, the exact 
value of this quantity is hard to obtain; approximation 
then takes the place of exactness. The assumption most 
frequently met is the "Kirchhoff approgimation": the 
required directional derivative is put equal to the first 

a receiver R are placed above a reflecting surface 
S[z=l(x,y)]. The transmitter induces elementary 
sources at S; the scattered pressure field $l(R) can be 
obtained from thee sources via the Helmholtz integral. 

derivative of the incident wave, which is a known 
quantity. The validity of this assumption is limited to 
.the case of surfaces that are "locally flat"; this means 
that the radius of curvature of the surface has to be 
much larger than the incident wavelength. 

A systematic derivation of the Kirchhoff approxima- 
tion, which discusses its limits of validity and "shows 
the size of the errors incurred through its use," has been 
publish4 by Meecham [#I. His formulas justify the 
foregoing' qualitative statement. 

The leading publication in the group of papers that 
adopted the Kirchhoff approximation is the paper by 
Eckart C311. The interest of Eckartys work lies in the 
fact that be "obtained sigdicant results with minimum 
mathemapcal complexity by relying on a highly, de- 
veloped physical insight into the problem," as has been 
remarked' by Horton and Muir [38, p. 6271. 

Also th'e work of Brekfiovskikh has' to be mentioned 
here. His method of obtaining an estimate for the direc- 

in which r is the distance from a3 to R, and n is the unit 
normal to d!T directed away from R. For a pressure re- 
lease surface, one has the boundary condition 

po+p1=0 on st (21) 
where po is the incident pressure wave. The evaluation 
of the Helmholtz integral requires also the first direc- 
tional derivative of $3 As a second boundary condition, 
Eckart assumed the validity of the K.irchhofE 
approximation, 

apJ& - ap& on S. (22) 
Mintzer r511 has criticized this assumption with good 
reasons: ;hen pi is fixed on S, the quantity a f ~ &  
cannot be choosen independently [ZSa, 9.271. He 
showed that the second assumption is at most a first 
approximation for smooth surfaces. 

Eckart assumed that T is a directional source and sa 
far away from S that for all points of the insonified area 
the distance to T is the same. A similar assumption is 
made for R. Indicating the positions of T and R with 
the direction C&~S (~T#T;/T) and (uE#B;/E), putting 
ar+ajpa, etc., and replacing a/& by a/& (small sur- 
f ace slopes), he derived from Eq. 20 : 

where r ~ o  is the distance from R to 0, the center of the 
inaonified area, and P equals the incident pressure at 0. 
Equation 23 is the basic expression in Eckart's theory. 
It is used as the starting point for special cases. 

Although the Eckart theory can be used for nonran- 
domsurface profiles, it is designed originally for a ran- 
dom surface l(x,y) that can be consid~ed as a station- 
ary two-dimensional process, in which case second-order 
moments of the scattered field are calculated. Two 
auxiliary functions, then, play a role : 

*(t,d ='(r(x,sr)f (~+t ,~+9))  
and 

-* 
tional'derivative of the scattered field at the boundary 
corresponds to the Kkchhoff approximation. 

I .  Eckart's Thcmy Putting *(O,O) =hs and calling a the effective c o d a -  
The basic ideas of Eckart's theory can be summarized tion distance of {(x,y) and L the effective size of the 

as follows. A transmitter T (monochromatic) and hni f ied  area, the basic conditions of Eckart's theory 
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Eckart calculated the average scattered intensity 
(I,), for the low-frequency and the high-frequency cases. 
For the low-frequency case, he found 

(IJ=J(o,O)u, 
with 

(27) 

.= (klu'/~laF(ka,kB>, (28) 
the function F(K,,K,) being the surface wave spectrum. 
He refers to u as "a dimensionless quantity.that may 
be called the scatt.ering coefficient, or more descript- 
ively, the scattering cross section for unit solid angle per 
unit area of ,sea surface" [31, p. 5681. Equation 28 
indicates an important result: "the low-frequency scat- 
tering is determined by the surface spectrum, and not 
by the height distribution" [42, P. 1971. 

In the high-frequency case, the calculation of a is 
possible only if the characteristic function of the two- 
dimensional random variable W~u(x ,y ) ,  f(x1,y1)] is 
known. The hypothesis of a Gaussian probability dens- 
ity yields an expression for u that is independent of 
frequency. This is a disappointing result for the "inverse 
problem" (see Sec. V-F) as it does not contain the func- 
tion @ but only the var'iances of the surface slopes. 

2. Variatiolw of Eckart's Thcory 
Horton and Muir [38] extended the low-frequency 

case by specifying *(t,v) [or F(K.,K,), its Fourier 
transform] for isotropic cases. Among others they sub- 
stituted an' exponential and a Gaussian shape for *. 
They found in all considered cases that, if a>>h, "the 
scattered energy is highly directional and is concentrated 
about the direction of specular reflection" [38,$. 6321. 
A companion paper by Horton, Mitchell, and Barnard 
[68] deals with experiments on a rough Gaussian sur- 
face in-a model tank. The authors used the high-fre- 

e='4s0, FTM da~tm ~ i r :  
c M ,  and B m w d  [&. 

quency formula for u of Ref. 38 to check their experi- 
mental data. The agreement was not very satisfactory, 
until they changeil the second boundary condition into 

which is a compromise between Eq. 22 (valid for illumi- 
nated areas) and apJih=-ap$ih (holding in the 
deep shadows). This modification can be interpreted as 
the introduction of a "shadowing function" (see Sec. 
V-E), with the value 0.5 over the whole surface. The 
remarkable &ect of the new boundary condition can 
be observed in Fig. 5. 

Although Eckart discussed only a low- and a high- 
frequency case, his theory is also valid in the intemedi- 
ate range of frequencies. Proud, Beyer, and Tamarkin 
presented "a solution valid for all wavelengths" [SS, 
p. 5#] for a surface with Gaussian probab'ity density 
(at least up to the second order), in which the Fourier 
integral plays an important part. There is a Werence 
between their procedure and the one followed by 
Eckart, which may be important for practical p- 
at low frequencies. "In the original Eckart theory, the 
scattering was described in terms of a scattered inten- 
sity proportional to the square of the magnitude of the 
difference in pressure reflected from the rough surface 
and that reflected from a plane surface replacing the 
rough one. This procedure dictates that one know both 
the amplitude and phase of these pressures in an experi- 
mental determination of the scattered intensity." The 
procedure adopted by houd dJ d. "leads to the experi- 
mentally simpler operation. of forming the Werence 
between plane and rough surface @ected intensity. 
No consideration of phase is then necessary" [55,$. 
5461. 

The authors investigated the dependence of the specu- 
lar reflected intensity on the acoustic wavenumber, 
angle of incidence, and surface roughness. The ex@- 
mental part of their investigations took place in a model 
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tanlr with surfaces that had approximately Gaussian a random distribution of point scatterers, each with its 
characteristics. The quantity khy ranged from 0.25 .to own impulse response function and directivity pattern. 
2.00 in the first case, i.e., from a smooth to a rough sur- This makes the model very. flexible from a theoretical 
face. The agreement between theory and experiment point of view: time variation, frequency dependency of 
was good, notwithstanding the violation of the condi- the scattering, broad-band signals, complex geometry, 
tion of small surface slope. and.directivity of transmitter and receiver, subsurface 

A comparison between theory and epriments at  sea scatterers (and also bottom and volume scatterers) are 
has been made by Clay [N]. Using the data of Brown easily incorporated into the model, and there is no 
and Ricard [59] [who placed a pulsed CW source (168 limitation on the degree of surface roughness. For this 
Hz, pulse length 89 msec) and a receiver at  a depth of reason, Middleton's is the most complete theoretical 
1000 yd, varied their horizontal distance between 1000 method. "The critical advantage of this approach are 
and 5500 yd, and measured the fluctuations of the scat- [sic] the elimination of impossibly complex boundary 
tered field], he found from numerical calculation "a conditions, the inclusion of the essential geometry of the 
curve that had about the same dependence upon the overall system, and the ability to handle general signals 
sourcereceiver separation as the experimental data" and aperture distributions. The principal, but not seri- 
[30, p. 15511. Clay extended the Eckart theory to an ous, limitation appears to lie in the ultimately empirical 
omnidirectional source by subdivision of the surface nature of the impulse respoase function of the scatterers, 
into rectangles for which the original theory could be which must be quantified at  some stage by experiment" 
applied. [49, p. 3741. The problem of how these experiments 

3. BraWlovsRikk's M W  should be performed is not discussed, unfortunately. 
For this reason, the practical sigdicance of this elegant 

A detailed analysis of Brekhovskikh's work cannot be theory seems limited. The most promising application 
presented here, since translations of the original may be found in computer simulations of the scattering 
Russian papers are not available. But Lysanov [3] gave phenomenon, via a Monte Carlo method. On the other 
some qualitative statements about the method, and hand, the physical models, although very limited in 
discussed the limits of validity, whereas La Casce and their validity, seem to have a closer relation to experi- 
Tamarkin [69] provided some mathematical details. mental work. 

It turns out that the method deals with periodic sur- 
faces of zero total pressure. "The nature of the irregu- IV. EXPBRIMBNTAL RESULTS 
larities must be such that at  each point of the irregular A. The Amplitude of the Scattered Waves 
surface it is possible to draw a tangent plane in such a When a mondromatic sound wave is scattered from manner that the plane does not depart very far from a wind-ddven the of the dected the irregular surface at distances of the order of a wave- wave shows fluctuations in time due to the time varia- length" [3, p. 31. tion of the reflecting boundary. This effect has been The essence the BrekhOvskikh method lies in the measured by Liebermam [70] and Pollak [73] at  sea, assumption that the locally flat surface areas are only and by D'Antonio and Hill [64] with a model tank. s ~ e c u l u l ~  r d d n g .  Introduction of a reflection coefi- liebemann swept the frquency of his from 27 dent V, "which in general depends, through a complex to 33 & in 20 msec and observed the interference 
phase factory On the surface coordinates, and which pattern between reflected and direct wave. He d h e d  can also depend on the local angle of incidence" 
[69, p. 1421, and use of the boundary condition Eq. 21 a coefficient as 
make it possible to obtain an expression for ap  Jan. The v= (Am,-A,i~)/(Am,+Amh), 
total scattered field can then be computed via the 

(30) 

Helmholtz integral. Application of this method to a where A,, and Amin are the first maximum and the 
sinusoidal boundary of limited size leads to Fig. 1, which fi"t of the signal and he found that 
has originally been published by Brekhovskikh. Com- (a) surface reflectivity is highly frequency dependent; 

(b) the median value of V is near to unity, but for parison of his method with other techniques and with approximately of the v> beCBuse Of fOCUSOCUS experimental results has been done in Sec. 11-D. ing by the surface [70, p. 498--abstract) ; and (c) no cor- 
relation exists between surface wave height and reflec- 

The QdPh~enO1O'dApprOach of IvZiddleton tion coefficient [70, p. 5031. Pollak used a pulsed CW 
In contrast to the most widely employed "physical" source of 100 kHz and analyzed the reflected amplitude 

methods, where the irregula&y of the boundary is in- statistically. His results indicate that the probability 
troduced via the boundary condition and where the density function of the reflected amplitude follows a p  
solution of the wave equation has to satisfy this complex proximately a Rayleigh curve. The same result has been 
boundary condition, the quasiphenomenological ap- obtained by D'Antonio and Hill with a wind driven sur- 
proach of Middleton [49, SO] introduces the irregulari- face in a model tank. They conclude that "(a) for CW 
ties of the surface independent of the wave equation as transmission, the envelope of the received signal has a 

Tba Jomrnol of the Acorutical Society of Amarico 1219 
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bandwidth greater than the bandwidth of the surface 
amplitude; (b) crosscorrelations obsemed between 
envelopes of the received signals are low but finite; and 
(c) there is no correlation between the surface amplitude 
and the envelope of the received signal" [64, p. 701- 
abskact]. 

B. Intensity d the Backscattared Waves 
(Revwbsntlon) 

"The importance of surface reverberation in the 
applicatiom of underwater acoustics can hardly be 
over-emphakd. As a result, measurements of the back- 
scattering of sound from the region of the surface have 
occupied the attention of numerous observers. These 
&orb have been of considerable value in attempting to 
formulate a description of the phenomenon which is 
adequate for the designer of underwater sonic devices 
and to reach an understanding of the fundamental 
mechanisms of scattering at the air-water boundary 
defining the surface" [65,#. 1041. 

In experiments at sea, the scattered pressure or inten- 
sity is often recorded. For comparative purposes a log- 
arithmic quantity seems more convenient. Hence, in 
m a t  papers, a definition of surface backscattering 
strength (in decibels) appeared. And although these 

definitions dEer from one author to another (sometimes 
attenuation and spreading loss are included [65], some- 
times a simpler approach is fallowed [77,783, their true 
differences are small enough to make comprison pos- 
sible, as is borne out by papers of a comparative charac- 
ter [46,65, 74,751. As an example of Buch a dtfinition, 
we mention the one presented by Urick [77] for plane 
waves, because of its simplicity. He d e f i  the back- 
scattering strength, which we call.u~, as 

UB = 10 l q ( I r / I 0 ) ~ :  2 = +5 (31) 
3 . -%:4 

where Ir/Io "is the ratio of the scattered intensity from 
the unit area, measured at unit distance, to the intensity 
of the incident sound beam. Following naval practice, 
these distances are expressed in yards" [77, p. 1361. 

Two types of sound sources are met: the directional 
transducer, mostly operated with pulsed CW [ZZ, 55,59, 
65-68,72,73], and explosives [43,57,58,60-62, 7q.  In 
the latter case, the data processing is then carried out 
via narrow bandpass filters, making them an aggregate 
of simultaneous "monochromatic" sources. 

All experiments considered here concentrate on tho 
measurement of UB as a function of one or more of the 
parameters (p, v, and f. A typical result is shown in Fig. 
6. The curves for UB as a function of (p prompted Urkk 
to "divide the angular range from grazing to nonnal 
incidence into three regions, in each of which the domi- 
nant scattering process seems to be dSerentm [V, 
p. 140). These regions are indicated h Fig. 6. In Region 
I, the scattering by subsurface bubbles is predominant, 
at least when f is of the order of 60 kHz: "bubbles can 
be important at low grazing angles and high wind 
speeds, in the 60 kHz region, but d&tely not at fro- 
quendes of a few kilocydes or below" C43, Q. 2431. This 
scattering is not very dependent on (p for rough sur- 
faces, indicated by a more or less horizontal m e .  
Increase of wind speed generates more air bubbles and 
hence increases UB. Clay and Medwin agree with this 
explanation 163, f .  21341, but Chapman and Ha& 
doubt its validity, as they do not observe it at 30 kt. 
They believe "that the scatterers were in a layer of 
biological origin" [61, p. 15961 because a d i d  varia- 
tion was observed. 

"Turning next to Region 111, near nor& incidence, 
the dope of the curves in this region and their behavior 
with surface roughness suggests that sound is returned 
by reflection (rather than scattering), probably by small 
flat wave-facets oriented normal to the incident sound 
beam" [77, p. 1421. An increase of u now decreases UB 
because at the rougher surface, less wave-facets have a 
slope favorable for rdection. In Region 11, Urick is 
tempted "to speculate that the slow rise of UB with ~I@G 
in this region represents the effect of roughness scatter- 
ing by surface irregularities that are much d e r  than 
a wavelength" [77,9.145]. 

"Except for the small angle region," Urickls theory 
is co*ed by Garrieon ct d. [65,9. 1 111. Bi~htet [74] 
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reported a UB decreasing with (p, and Patterson [54] 
derived a theoretical (phenomenological) model that 
produces curves similar to those of Fig. 6 in Regions I1 
and 111. His curves do not show a constant behavior in 
Region I, but this can be explained by the fact that 
Patterson only dealt with "facets having random distri- 
butions of size and slope" [54, p. 11501 and neglected 
bubbles. 

Brown et al. [60] studied UB as a function of fre- 
quency. A proportionality of UB with f was found. This is 
in keeping with the results of Chapman et al. [dl, 621 and 
Richter [74]. On the other hand, in Marsh's theory of 
backscattering there appears to be an inverse depen- 
dence of UB on frequency [4Z, Figs. 11-1 and 11-21. 
Also worth mentioning is that the results of Chapman 
and Harris are in qualitative agreement with Eckart's 
theory: at  relatively low frequencies, UB decreases 
rapidly with decreasing f (see Eq. 28), whereas UB is 
independent off when f is relatively high [dl, p. 15941. 

An interesting study has been made by Schulkin and 
Shaffer [75]. They reviewed experimental results on 
backscattering in their relation to the Rayleigh criterion 
of surface roughness (h sinV<X/8). As most of the data 
are presented as a function of v rather than h, they em- 
ployed the Neumann-Pierson surface wave spectrum 
for a fully risen sea in order to relate h and v :  

where H is measured in feet and v in knots. Then putting 

they calculated the constants C and b for a number of 
cases [61, 65, 78, plus data from an NDRC report] by 
drawing the best-fitting straight line through the data. 
As a result they found that b, the most significant 
parameter, varied between the values 1 and 2. They 
concluded that "there is no theory to date to relate all 
the backscattering-strength data satisfactorily [75, p. 
17031. 

The differences in the results of backscattering mea- 
surements are not only caused by Werences in tech- 
nique or in the definition of UB. A factor of great im- 
portance, which has not always been recognized by the' 
interpretation of data, is the state of development of 
the sea surface, which strongly influences its scattering 
and rgection properties. More details can be found in 
Sec. V-G. 

An operational model for sea surface roughness and 
acoustic reverberation, in which the theory of ocean 
wave spectra has been applied extensively, has been 
presented by Martin [%I. He distinguished scattering 
and reflection, more or less corresponding to Urick's 
regions I1 and 111, and combined them into a "total 
reverberation coeflicient." "The model, which has a 
physical basis over the whole range of incidence angles, 
is uncertain in its application mainly in present knowl- 
edge of the statistics of the surface elevation and of 
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derivatives, yet correlates available experimental data 
as well as other attemptsJJ C46,p. 7061. 

V. SPECIAL SUBJECTS 

The subjects discussed in Secs. 11-IV can be con, 
sidered to be 'the main currents in the literature. There 
are, however, a number of studies that only touch these 
basic subjects in passing, or that concentrate on a very 
special aspect. These papers are considered briefly in 
this section. The last part (Sec. V-G) has an oceano- 
graphic rather than an acoustical character, in contrast 
to all the others, since it deals with the spectrum of the 
surface waves, and with their height and slopes. But 
these subjects play an important part in many papers: 
the height and slopes because they characterize the 
surface roughness,, the wave spectrum because it pro- 
vides the most realistic way to obtain an expression for 
the correlation function of the surface irregularity. 

A. Amplitude and Phase Fluctuations 
"The reflection of an acoustic signal from an uneven, 

time-variant surface leads to variation in the signal 
form. For a monochromatic wave, these variations 
appear as amplitude and phase fluctuations" [ZP, p. 
881. 

In previous sections, we have seen that for relativgy 
smooth surfaces the total scattered field p~ can be sepa- 
rated into a specularly rdected wave f r  and a ditEusely 
scattered wave pa. Formulas for pr and p, can be ob- 
tained from Eq. 23, by taking the first two terms of the 
power series expansion of exp(-ST(). The ratio pa/$, 
is hence a known quantity. Expressing the pressure p 
in amplitude and phase (p=Aei*) and following 
ChernovJs almost classical work [7a] amplitude and 
phase fluctuations can be defined as 

where it is supposed that I 9, I << (9. I .  This definition is 
employed by Gulin and Malyshev [8, .35,36,66,67] for 
the surface diffraction. An important role in these 
papers, and also in the work of Smirnov and Tonakanov 
[76], is played by the Rayleigh roughness parameter X: 

X=2kh sincp (3-5) 
(cf.  Eq. 6). 

Two different surface correlati~n functions appeared 
in the theory : 

is an approximation for a quasiharmonic surface 
("swellJ'), 92 for "sea." Together with these functions, 
the wave parameters D. and D, are used: 
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The transmitter and rechver are lying in the plane 
y=O, Ro is half the distance between them via the 
specular path. Two regions of D, are considered : either 
much smaller than unity, or much larger. The physical 
significance thereof is that a, the dective surface corre- 
lation distance, is either much smaller (D,<<l) than 
the projection in X direction of the diameter of the 
first Fresnel zone along the propagation path [i.e., 
(2XRo)i (sinq)-'], or much larger (&>>I). 

The probability density function for the amplitude, 
calculated from experimental data [66] (for "swell", 
x> 1, pulsed CW), confirmed the results of Pollak [73] 
and D'Antonio and Hill [64], who obtained approxi- 
mately a Rayleigh curve. For x,: 1, a Gaussian curve 
was found to be a good approximation. 

Also the spatial autocorrelation of amplitude and 
phase fluctuations has been studied, both theoretically 
[36] and experimentally 1671. Small correlation dis- 
tances in X, Y, and Z direction have been considered. 
It was found that the correlation in Z direction decreases 
much faster than in X direction (which is the direction 
from transmitter to receiver). 

An important conclusion &in be drawn from all these 
studies: both theory and experiment demonstrated the 
presence of a distinct correlation between the scattered 
field at  one or more receivers and the state (period, 
roughness) of the ditfracting surface. For the reflection 
ooefficient, such a correlation has not been found (see 
Liebermann's third conclusion, Sec. IV-A). 

B. Surfaces with Two Types of Roughness 
At the surface of the ocean the roughness can very 

often be considered as a superposition of several types 
of roughness: "the typical sea surface is comprised of 
'swell,' 'sea', and 'ripple' " [37, p. 5991. In three 
papers, a model with ditferent types of roughness 
(large-scale plus small-scale) has been developed. 
Kur'yanov [39] and Beckmann [27] supposed them to 
be independent and demonstrated the relative impor- 
tance of the small-scale irreaularities. - 

Correlated roughnesses, with a normal distribution 
(four-dimensional), representing a statistically isotropic 
surface, have been analyzed by Hayre and Kaufmam 
[37]. They calculated the mean scattered power in an 
arbitrary direction when a plane monochromatic wave 
was incident. For a slightly rough surface, this scattered 
power contains two terms: a specular and a muse  one, 
the latter containing the effect of both types of rough- 
ness plus their combined effect, in a rather complicated 
way. These dects are expressed in second-order quan- 
tities (variances and correlation co&cients). A mod- 
erately rough surface produces additional terms of a 
more complicated structure. The result of the last case, 
the "extremely" rough surface (but the Kirchhoff 
approximation is used and hence the surface cannot be 
too rough), can be interpreted as if the surface consisted 

of three independent proaases: small-scale, l a r g d e , '  
and a combined roughness. 

C. Surfaces with a Sublaye 
Below a wind-driven surf-, air bubbles are often 

formed. Moreover, at  sea sound speed can vary with 
depth and biological objects can also be present just 
below the surface. Consequently, the scattering of sound 
waves from the boundary can be accompanied by a sub- 
surface scattering. In particular, Russian authors have 
tried to find out under what conditions this layer effect 
can become so important that it "screens" the surface 
scattering. In most cases, this is done via a modified 
Rayleigh approach. Glotov and Lysanov [33,343 
assumed a homogeneous layer of air bubbles whose 
diameters are small compared with the incident wave 
length. Lysanov [I41 characterized the inhomogeneous 
layer by the index of refraction r ( ~ )  and also studiU3 
the effect of a layer for which the sound speedis a* 
tion of depth [15]: 

In this last case, the scattering possegses a resonany 
character: the reflection coefficient shows peaks "when- 
ever the scattered wave turns out to be a natural vib* 
tional mode for the given layer" [ I s ,  9.701. 

D. "Doppler" and Other Frequency EiIoct6 
Many papers deal with surfaces that are independest 

of time. But a simple obsewation a t  sea shows that-@ 
realistic description of its surface is not pohls'ble d t h o ~ t  
introduction of the time variable. Because of the time 
dependency of the ocean surface, the transmission of a 
monochromatic wave results in a received s i g d  that 
shows random fluctuations in amplitude and phs34, 
when they are recorded as a function of time (see also 
Sec. IV-A). Since the phenomenon is due to movement 
of the surface elements, the terms "Doppler effect" or 
"frequency smear" are also used. 

When a sinusoidal surface (wavenumber K) moving 
with constant speed u isconsidered, as has been done by 
Gulin [8], the scattered waves of order m are Doppler 
shifted over a frequency COD that is given by 

I t  follows from thii formula that the specularly reflected 
wave (m=O) is not influenced by the Doppler dect. 
This is correct, as the specular reflection m e s  frcun the 
"average" (flat) surface. 
This case may sam nomewhat theoretical since the 

ocean surface has a spectrum of sinmidal waves rather 
than a single wavelength. But Liebennann stated that 
"monochromatic radiation wil l  be preferentially sa$r 
tered according to the familiar Mraction grating form- 
ula" [71, *. 9321: for a given geometry, the s&- 
of a monochromatic wave is mainly produced by tb 
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surface wave of length A., where 

i.e., the scattering has a resonant character. This fact 
is also mentioned by Eckart (Eq. 28). Measurements 
made by Liebermam [71] have confirmed his state- 
ment, and formulas derived by Marsh also indicate that 
"the reverberation spectra will be narrow and centered 
at frequencies w f  WD" [44, p. 18361. 

Parkins [52] stydied the spectral density of the waves 
scattered from a Gaussian surface described by the 
Neumann-Pierson directional wave spectrum, for two 
csses: the slightly rough surface (low frequency or low 
sea state) and the very rough surface (high frequency 
or high sea state). This study has recently been extended 
to the coherence of acoustic signals that are reradiated 
by the sea surface. "The reradiation from a slightly 
rough surface is found to be principally a rdection: In 
the specular direction, there is a coherent, monochro- 
matic reradiation, which becames partially coherent as 
the direction of observation becomes off-specular and 
scattering becomes important. In the off-specular direc- 
tion, the reradiation is still monochromatic, but there is 
a Doppler shifting away from the frequency of the 
incident radiation. When the sea surface becomes very 
rough and there is only ditIuse. scattering, there is no 
direction in which coherent radiation can be observed. 
In this case, the time variation is a sinusoid whose am- 
plitude and phase change slowly at  a rate determined by 
the wind velocity and the angles of incidence and 
observation" [53, p. 1231. 

E. Geometrical Shadowing 
The phenomenon of "shadowing" of certain surface 

areas by other parts of the boundary, which can occur 
when the surface irregularities are large with respect to 
the wavelength of the incident radiation and a t  small 
grazing angles, has been treated separately. The papers 
devoted to this phenomenon are concerned with the 
calculation of a "shadowing function," based on the 
statistics of the surface, with which the scattering area 
has to be weighted. TWO papers have been found in 
which the shadowing function is applied: in one ex- 
plicitly [27], in the other implicitly' [68]. The latter 
one is discussed in Sec III-B-2. 

The starting point in this area of investigation is the 
article by Beckmann [79]. His method, extended by 
others, can be explained with the aid of Fig. 7, in which 
a plane monochromatic wave is incident on a rough sur- 
face with incident angle e. The shadowing function S is 
the probability that the point f(0) is illuminated. 
Beckmam found for this function the general formula 

where q(x)dx is the probability that f (0) is shaded by f 

FIG. 7. GePmetry for the shadowing of a =dam rough surface 
(two dimensional). 

in the interval (x,x+dx), given it is not shaded by f in 
(0,~). This probability is put approximately equal to 
the probabiity that f will interrupt the ray directed 
towards f(0) in (x,x+dx) with slope greater than that 
of the ray, i.e., cote. Hence, the integrand in Eq. 42 
contains two conditions: one on the surface elevation f 
in (x,x+dx) and one on the slope 5'. Although these 
quantities are correlated, Bedunam treated them as in- 
dependent "so as not to complicate matters." The re- 
sulting error "turns out to be zero for symmetrical 
distributions" [79, p. 3851. For a surface with Gaussian 
correlation function, he obtained 

S(0) = exp[-4 td.erfc(a cot8/2h)]. (43) 
I t  is important to note that in Beckmam's calcula- 

tion of S(B) only the elevation f (0) of the surface obser- 
vation point has been considered. But the slope fl(0) 
also plays a role: if its value is larger than cote the point 
will certainly be shaded. This fact has been recognized 
by Wagner 1832. He calculated S(8) for given f(O) and 
{'(O), using Bedunann's method. He found, instead of 
Eq. 42, 
S C ~ I  m,r (011 

=erp[-[ q(x)a;lu~cofl-f l(o)l. (4.4) 

To obtain S(B), Eq. 44 has to be averaged over all 
possible values of height and slope. Wagner performed 
this operation while maintaining the correlation between 
these quantities. 

A simplified method for the evaluation of the integral 
in Eq. 44 has been published by Smith [82]. He 
neglected the correlation between height and slope, but 
obtained for Gaussian @ results that do not difTer sig- 
niticantly from the more complete solution of Wagner 
(see Fig. 8). 

Shadowing in the case of backscattering has been 
simulated on a digital computer by Broclrelman and 
Hagfors [m]. Their shadowing function R(8) puts 
special emphasis on those surface elements that are 
perpendicular to the line of sight of the observer. This 
merent concept of shadowing, which is based on reflet- 
ing facets, caused serious disagreement with B e h a m  
[SO, p. 626: DiscwJMn]. 
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BROCKELMAN and HAGfORS. Rd. 80 

\ \ '  
WAGNER. Rd. 83 

a? -.....,.. SMITH. Rd. 82 

Angle of Incidence e -4 

1 In Fig. 8, we have combiied some results of the papers 
mentioned. The disagreement between Bedunann's 
theory and the computer "experiment" is especially 
large for the rougher surface (h/a= 1). It is also clear 
that Wagner is in excellent agreement and that the 
aimpliged approach of Smith is very useful. 

F. The Inverse Problem 

The p~esent section deals with the problem of how 
the surface correlation function and related 
parameters can be derived from the properties of the 
scattered field. Eckart [31] was the first to touch upon 
this "inverse problem." He observed that the surface 
wave spectrum F (the Fourier transform of Qi) could in 
theory be measured for low frequencies via o (see Eq. 
28). "Unfortunately, it is necessary to vary the direc- 
tional parameters a and as well as the frequency of the 
incident radiation. This may be difiicult in practice" 
[31, p. 5681. Even mdre disappointing is the result for 
high frequencies: in that case u does not contain the 
function @ but only the variances of the slopes. 

Proud, Beyer, and Tamarkin [55], who have slightly 
modified the Eckart theory, expressed a([) as the ratio 
of two empirical functions: one is related to the scat- 
tered intensity as a function of frequency; the other 
describes the source radiation pattern. The formula 
holds for a smooth ,surface: I kr, cos81<<1. The 
authors showed "that in theory one can form an esti-' 
mate of the reflecting surface correlation function f m  
acoustic measurements alone. It was shown, further- 
more, that all the information about the surface is con- 
tained in the backscattering" [55, #. 5521. 

A very simple experiment to perform a spectral analy- 
sis of a rough surface has been described by Liebermam 
[71]. He used the fact that the scattering of a mono- 
chromatic wave from a rough surface irr resonant: for a 
given geometry and incident wavelength, it is mainly a 

FIO. 8. The rhdowhg function S(d) 
for a liurfnee with G a d a n  comktfon 
function; S(6) is the probability that an 
arbitrary d a c e  point b illuminated by a 
plane w8ve with m e  of i n d d ~ ~ ~ e  0. 

narrow band of surface waves that produces the scatter- 
ing. Hence, "a 'spectrum' analysis of surface rotqhnm 
can be obtained by slowly varying the frequency of the 
incident monochromatic radiation and the 
magnitude of the scattered radiation" C71, p. 9323 
M d  [ 4 4  provided the c o m d i n g  formulas for 
the two-dimensional case and showed how the rever- 
beration spectrum and the surface wave spectrum are 
related. 

Medwin [72] analyzed the speculat d o d i o n  from 
a wind-driven surface at normal incidence and for 
several values of the roughness parameter X, as dehd 
by Eq. 6. He found that measurement of the spocuMy 
dected intensity makes it p d b l e  to predict tho rma 
wave height if * l O . l ,  and the rms surface slop if 
x'y 10. 

0. Stuface of the O o e ~ l  
1. siujm Hdig# a d  SCopac 

In all studies that deal with a mdom Muface, it is 
assumed that the surface elevation and slopes can be 
considered as Gaussian processeq stationary chi h e )  
and homogeneous (in space). It has become c b r  fnnn 
measurements that this assumption, although made 
mainly for computational reamm, M fortunately not too 
far fmh reality. Kinsman [85] recorded wave beigbt 
with a capacitance pole and computed the probability 
density function of the surface dbpkementa The sur- 
face slopes have been studied by Cox and Munk [843 
Their method consisted "in photographing from a plane 
the sun's glitter pattern on the sea surface, and trandat- 
ing the statistics of the glitter into the statisticd of tht 
slope distribution" [84, p. 838). 

As for the correlation functio~ of tho surface rough- 
ness, mainly two types have been appli4 m e l y  the 

1 1224 Vollgw 47 Numbor 5 (Port 2) 1970 



R E F L E C T I O N  A N D  S C A T T E R  I N G  A T  T H E  S E A  S U R F A C E  

ones given in Eqs. 36 and 37. They have been chosen for 
their relative simplicity in the evaluation of integrals. 
Moreover, the first one is not too bad for "swell," a 
narrow band type of waves. More realistic, however, 
s e e m  the introduction of the theory of a surface wave 
spectrum, which is very well explained by Kinsman 
[85], among others. In this theory the surface rough- 
ness is considered as the combined effect of a band of 
surface waves that travel in all directions over the sur- 
face, each of them having its own wavelength. For the 
deep ocean the waves are gravity waves; their wave- 
number K is related to the frequency a. via 

The surface wrrelation function *(g) for an aniso- 
tropic surface can be described in terms of the energy 
spectrum function Avw.,a), where a represents the 
direction of travel of the waves with frequency w.. These 
functions reduce to @Go> and AP(w,) when the surface is 
isotropic. The relation between A'(wJ and (Pb) can 
easily be found. A plane wave with frequency w, and 
direction a arrives at two observation points, situated 
on the X axis at distance p, at times that differ by an 
amount T, such that 

Here u is the frequency-dependent wave velocity, 

which follows from Eq. 45. The contribution of this 
wave b equals exp(-iw,~) ; this has to be averaged 
over all possible directions and weighted with the energy 
spectrum A2(w,). The final result is 

a formula applied by MarsharshC41, 42,431. 
There is some disagreement in the literature about 

the explicit form of the function AZ(ws). At least part of 
the discrepancies ca.n be explained by realizing that the 
measurements on which the empirical formulas for 
A2(ws) are based have not all been made in seas with 
the same state of development. We have already ob- 
served that this fact also plays a role in the different 
outwmw for backscattering measurements (see Sec. 
N-B). When a constant wind starts creating waves on 
the sea surface, the stationary situation (that is, a 
"fully aroused sea") is not reached immediately but 
after a certain lapse of time. Before that moment, the 
sea is partially developed and has a wave spectrum that 
is different from that of the completely developed sea. 
When the wind stops, or when the waves travel outside 
the "fetch" where they have been generated, their 
spectrum changes from broad-band ("sea") to a narrow- 
band and low-frequency spectrum ("swell"), because 
the low frequencies outrun the high ones (cf. Eq. 47). 

An excellent account of the generation and propagation 
of ocean waves is given by Kinsman [85]. 

Marsh [41,42] applied the Neumann-Pierson model 
for Az(ws), in which the wind speed o appears as a 
parameter : 

v is expressed in centimeters/second and C=4.8X10" 
cmP/s6. Parkins [52,53] used the anisotropic version 

and C=3.05 m2/s6. In Ref. 43 Cp. 240) Marsh stated': 
"Arguments have been presented that a more satis- 
factory form of the equation is 

where C= 7.4X 109, an absolute, dimensionless con- 
stant." This formula "contains no dependence on wind 
speed$ and is intendzd to apply to the fully developed 
sea." Still another spectral form is proposed by Pierson 
and Moskowitz [87] : 

with C-8.1OX109. 
The meaning of "fully developed sea" or "fully 

aroused sea" can be understood with the function 
A'(w3. I t  is a sea whose spectrum, for a given wind 
speed, contains components of all frequencies 0 5  w. < 00, 

each with the maximm energy of which it is capable 
under the given wind. The total energy in a fully 
aroused "Neumann sea" can be found by integration 
of Eq. 51 over w, from 0 to 00 [85, p. 3901. With Eq. 
48, it can be seen that this integral equals 2@(0), or 2W. 

VI. SUMMARY 

(1) Scattering and reflection of sound waves by the 
sea surface is dependent on time, on frequency of inci- 
dent waves, and on the geometry of transmitter and 
receiver. No theoretical models have been found in 
which these three basic variables are considered simul- 
taneously, except the quasiphenomenological model 
(Middleton). This latter model, however, has a serious, 
disadvantage: it is based on quantities that have to be 
found by experiment. 

(2) Almost all scattering theories are only valid for 
smooth surfaces (small slopes). Of these theories, the 
Eckart approach has been applied most freqbently, 
because of its relative simplicity. The Rayleigh pro- 
cedure, and its generalization for random boundaries 
(Marsh), is based on a seriously criticized assumption. 
For very smooth surfaces, however, its results are 
comparable with those of other theories. 

(3) The Uretsky theory not only covers the scatter- 
ing at  smooth boundaries, but also gives a fairly good 
prediction for rough boundaries. Unfortunately it has 
been developed only for a sinusoidal surface. 
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(4) The surface elevation and slopes are generally 
assumed to be stationary Gaussian processes. Measure- 
ments at sea have indeed shown the validity (with 
limitations) of this assumption. 

(5) The most realistic way to incorporate the correla- 
tion functions of surface height and slopes is via the 
theory of the surface wave spectrum (Neumann- 
Pierson). 

(6) The scattering of a monochromatic wave a t  a 
random surface is resonant: the scattering is mainly 
produced by a small band of surface waves that fit the 
incident radiation (~iebermahn). 

(7) The backscattering contains all statistical in- 
formation about the surface. An acoustical determina- 
tion of the surface statistics is therefore possible, in 
theory. 

(8) A large quantity of experimental data has been 
collected at  sea and by using model tanks. The influence 
of several parameters has been studied: wind velocity, 
frequency of incident radiation, grazing angle, etc. The 
data indicate three mechanisms: reflection by wave 
facets near normal incidence, scattering by small air 
bubbles below the surface at small grazing angles, and 

scattabg by irqdarities that are small compared 
with the incident wavelength in the intermediate re- 
gion (Urick). 

(9) No correlation has been found between the height 
of a random surface and the reflection coefiicient. The 
second-order statistical moments of the Mracted field 
(spatial correlation functions, intensity, etc.), however, 
show good correlation with the surface irregularities. 

The author is grateful to Dr. J. L. Uretsby and Dr. 
M. Briscoe for their encouragement to publish this sur- 
vey. The study of the papers by Marsh & d. [4W3) 
has been facilitated by the assistance of G. Wittek, 
from the Max-Planck-Institut fiir Str6mungsforschung, 
Mttingen, W. Germany, who worked a t  Saclantcen 
during the summer of 1968. 

Millar (National Research Council, Canada stated in a 
rivate communication, that "it is possible to J6r that the 

&aY1eigh ass~mptiqn is valid if hKCO.448 and invalid (L k 
Pebt and Csdllhac) If kK>0.448." See also [17a . 

t A  Green's function Gr(r/r') expresses the eld a t  t due to 
a monochromatic'unit point source at  r'. 

t? 
$But it has a lower limit that depends on o 

8-1. 

Appendix A : Amplitude CoeBcients for a Sinusoidal Boundary 
(Absolute Values) 

c = C O S ~ ,  s = sine, c,= case,, sm = sine, (from La Casce 
and Tamarkin-Ref. 69). 
RayZeigh 

AO= J0(2hkc)++(~-c-$hkJ1(2hk~), 
A-I= Jl(2hkc). 

Eckart 
Ao= Jo(2hk~), 
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2.3 Literatme up to the middle of 1973 

2.3.1 General considerations 
During the four years that have elapsed since the preparation of [2.2], the interest 

in the subject has maintained its high level. The general conclusion that "most papers 
give a very incomplete description of the phenomenon of scattering and reflection of 
sound waves at the ocean surface" [2.2, p. 12111 is still valid, but there is a strong 
tendency towards a more complete, and also a more realistic approach to the problem. 
This is evidenced by the following facts: 
1. Deterministic models (sinusoidal or other periodical boundaries) are almost 

entirely replaced by models in which the sea surface is a random process. 
2. Point sources, both omni-directional and with a certain beam pattern, have taken 

the place of the plane wave sources. 
3. In many theoretical models the time variation of the sea surface is taken into 

account. The broadband case is covered by treating the surface as a random, 
linear, time-varying filter. 

4. The statistical properties of the ocean surface are more and more expressed in 
terms of the surface wave "energy" spectra. 

5. Theoretical models and experimental studies are no longer restricted to the 
determination of amplitude and phase fluctuation, scattered intensity or scattering 
strength, but also deal with subjects like Doppler effect, time correlation of the 
scattered field, and spatial correlation. Sometimes, in experimental work, the 
statistics of the sea surface are measured concurrently with the acoustical quantities. 

6. Shadowing and multiple scattering are incorporated in some of the theoretical 
studies. 

One article has to be named explicitly in this sub-section: the review paper by HORTON 
[2.3]. This article does not contain more information than the survey I made [2.2], 
although it is slightly more up-to-date. Its interest lies in the fact that it considers the 
literature in a wider context, from a point of view aimed more at application, and 
guided by a large experience in the field. 

2.3.2 Sinusoidal and other periodical boundaries 
Theoreticians are still intrigued by the possibility of solving, once and for ever, the 

diffraction problem for a periodical boundary. HOLFORD [2.5] obtained "An Exact 
Solution" by differentiation of the Helmholtz equation. This differentiation allowed 
him to employ the work of URUSOVSKII, who studied surfaces that are not of the 
pressure release type. His analysis also leans heavily on the work of URETSKY (Section 
2.2, [24, 25]), which he criticizes in passing because of its process of truncation and 
matrix inversion. 

The discussion on the Rayleigh assumption is continued by ~ L A R  [2.6]. 
It may also be noted that in two articles the sea surface is explicitly considered to 

consist of a set of sinusoidals 12.35, 2.481. 



2.3.3 Random boundaries 
An often encountered assumption, namely that the Fraunhofer approximation 

can be used when source and receiver are distant enough from the surface (because 
then they are in the "far field"), is discussed in a paper by MELTON and HORTON 
[2.23]. They show that in practical cases the far-field condition is often not satisfied, 
so that the Fresnel approximation is superior. Comparison with experimental data 
[2.40] confirms this. The implications of the Fresnel correction are investigated by 
MCDONALD and SPINDEL [2.21]. 

As the Fraunhofer approximation leads to simpler formulae than the Fresnel 
approach, application of the former is very tempting, notwithstanding its limitations 
[2.12]. One method to overcome its drawback has been suggested by CLAY, as was 
already pointed out in Section 2.2 (p. 1219). It consists of subdivision of the scattering 
area into surface units for which the Fraunhofer formula can be used. In this way the 
Eckart theory, still attractive for its relative simplicity, is again applicable [2.10,2.33]. 
The Eckart model is also still in use without division of the surface [2.30,2.48]. 

As for the sound source, most theoretical papers deal (for simplicity) with incident 
plane waves, or sometimes with an omni-directional point source. But point sources 
of arbitrary directivity can be handled in a relatively simple way by expansion of their 
sound field in an angular plane wave spectrum. This is demonstrated by CLARKE 
[2.9], in a study of the coherent part of the reflected field. 

A new aspect in the literature on random boundaries is the application of filter 
theory to the surface scattering phenomenon. In this view the sea surface is considered 
as a linear, random, time-dependent filter [2.12, 2.21, 2.28, and 2.491. Its impulse- 
response function, its frequency-transfer function, or any other system function, can 
then be used to describe the scattering, of course in a statistical sense. With this 
concept, subjects like Doppler spread and time smear of the surface channel are 
investigated. 

The quasi-phenomenological model of MIDDLETON (see Section 2.2 - Part 1II.C) 
has been extended to include "the often critical effects of absorption in the medium, 
multiple specular reflections, and nonzero velocity gradients" [2.24, p. 35 - abstract]. 
My criticism on this approach, expressed in Section 2.2 Cpp. 1219 and 1225) and 
regarding its practical limitations, are commented in [2.25, p. 861. It is claimed that 
"in the light of the recent works (...), earlier comments on this practical limitation 
to the usefulness of our theory (. . .) seem no longer in force". One of these "recent 
works" can be found in the open literature, namely 12.271 together with [2.28]. 

It is admitted [2.25, p. 871 that the model applies better to volume reverberation 
than to surface scattering. Hence I maintain my doubts about the usefulness of the 
quasi-phenomenological approach, as far as surface reverberation is considered. 

Two more phenomenological approaches have been published [2.14 and 2.291. 
Especially ROEBUCK'S paper [2.29] is interesting, because it is one of the rare studies 
that use the Kirchhoff formula (time domain) instead of the usual Helmholtz integral 
(frequency domain). 



2.3.4 Experimental results 
The collection of data at sea seems unlimited, as so many parameters (e.g. wind 

speed, wind direction, sea state, grazing angle, type of sound source, transmitted 
frequency) can be varied. In general there is good agreement between new data and 
existing results, and between the theoretical predictions and experimental outcomes 
[2.34,2.36,2.37,2.39,2.43,2.47,2.48, and 2.511. In particular the work of ANDREYEVA 
[2.34] should be mentioned, because it compares the data of many authors. 

Experiments in model tanks are also described [2.38, 2.40, 2.42, 2.45, 2.48, 2.49, 
2.51, 2.531. They have the advantage that the parameters are easier to control. 

Although the measurement of backscattering strength [2.34, 2.35, 2.37, 2.38, 2.39 
2.40, 2.47, 2.491 and forward scattered intensity [2.36, 2.42, 2.451 is still receiving 
much attention, we can discover the tendency towards the experimental verification 
of theories for more complex quantities like correlation functions in time and space 
12.43, 2.45, 2.48, 2.51, 2.521. 

The theoretical models that are used in comparison with the data for scattered 
intensity are mainly based on Eckart's work (Kirchhoff approximation) or on the 
derivations of BECKMANN and SPIZZICHINO [2,40, 2.42, 2.483. FUNG and LEOVARIS 
[2.40] describe an improved Kirchhoff theory that fits the data better than the ordinary 
Kirchhoff model. 

When explicit formulae for the sea surface correlation functions are needed, the 
exponential and Gaussian attenuated cosine functions are still encountered [2.45]. 
There is an increasing awareness, however, of the necessity to describe the sea surface 
by its wave spectrum. Consequently, the (concurrent) measurement of such spectra 
becomes part of the experiments 12-37, 2,47, 2.48, 2.49, 2.511. The directional wave- 
number spectrum is gaining the interest of experimentalists. DUNN [2.39] describes 
a new buoy for its measurement. 

A new type of "experiment" is introduced by BOURIANOFP and HORTON [2.35]. It 
consists of a computer simulation of backscattering from a two-dimensional "sea". 
The conclusions are not very satisfactory, but continuation and improvement of this 
type of work seems promising. 

Azimuthal dependence of backscattering is measured by RBBVES et al. 12.471. They 
used a three-axis gyrostabilized transducer with a very narrow beam, and found no 
azimuthal dependence for wind speeds above 9 knots. An explanation is sought in 
the formation of sub-surface bubbles. 

The idea of treating the surface scattering phenomenon from a communication 
standpoint is also gaining popularity among experimental workers. Thus the impulse 
response of the wind-driven surface appears as the subject of measurements [2.51]. 

2.3.5 Special subjects 
A. Amplitude and phase fluctuations 

The mean value and variance of AA/Ao and A$, random quantities &fined accord- 



ing to CHERNOV r2.2, p. 12211, are calculated by MBLTON and HORTON [2.23], with the 
Fraunhofer as well as with the Fresnel approximation. They showed that the Fresnel 
approximation is superior to the Fraunhofer approach only for the prediction of 
amplitude fluctuations. 

B. Surfaces with two types of roughness 
A paper by HUANG [2.18] deals with this subject. Its main improvement over older 

work lies in the implication of the surface slope distribution. It is found that swface 
slope, incident angle, and acoustic wavelength play a dominant role, the latter being 
most important. "The effect of the small irregularities on the surface is to broaden 
the angular distribution of the scattered acoustic wave at high frequency" [2.I8, 
p. 16081. 

C. Surfaces with a sub-layer 
A model study by BUDDRUSS [2.38] c o n h s  the results of G m v  and LYSANOV 

[2.2, p. I2221 that after a eertain concentration of air bubbles is reached, the surface 
is completely screened. 

D. "Doppler" and other spreading effects 
An interesting article has been published by RODBRICK and CRON [2.48]. They 

investigated the frequency spectra of forwardscattered sound from the ocean d m  
in three ways : 
1. a theoretical study; 
2. a model-tank experiment; 
3. an ocean experiment. 

Their theory for a travelling sinusoidal, bawd on Eckart's scattering integral, is 
confirmed by the model-tank experiment. Their ocean trials agree with the conclusion 
of PARKINS [2.2, p. 12231 that the important parameter for frequency spread is the 
power spectral density of the ocean waves. 

Transmitting CW-pulses of 750 and 1500 Hz simultaneously, they found that: 
"(1) Both amplitude and phase modulation are present. (2) The frequency 
spectrum consists of a carrier equal to the original transmitted frequency, 
with sideband frequencies related to the ocean spectrum and peaked at the 
frequency of maximum energy on the surface. (3) For all conditions for the 
ocean experiment, the frequency spread is less than 1 Hz, and under low 
sea state conditions, the spread is about 0.2 Hz" [2.48, p. 7651. 

These results are further supported by the latcst work of PARKINS [2.26], and by 
that of FORTUIN [2.12]. 

Other spreading effects, such as the time smear in the channel, are observerl by 
SPINDEL and SCHULTHEISS [2.51]. 



E. Geometrical shadowing 
Two papers, one by LYNCH [2.19] and one by LYNCH and WAGNER [2.20], deal 

with geometrical shadowing and multiple scattering. Their shadow-corrected theories 
hold for high frequencies, retain curvature effect, show that "the neglect of multiple 
scattering effects in the theory of high-frequency scatter from random rough surfaces 
is manifested as a nonphysical energy loss or gain" [2.20a, p. 8161, and satisfy the 
law of energy conservation for near grazing incidence. 

The shadowing function, earlier derived only for incident plane waves, has been 
calculated by HARDIN [2.54] for a random surface that is illuminated by a point 
source. He analyses the effect of source height and surface variability, and shows 
that WAGNER'S expression for the shadowing function (see Section 2.2, p. 1223) can 
be obtained as a limit of his analysis. 

The statistics of specular points on a Gaussian surface, important when very high 
frequencies are transmitted, have been studied by SBLTZER [2.55], for a corrugated, 
a composite and an isotropically rough surface. His digital simulation indicates that 
SMITH'S shadowing formula (Section 2.2, [82]), provides the best approximation. 

F. The inverse problem 
No papers have been found that throw new light on the inverse problem. 

G. Surface of the ocean 
There is a growing interest in the proper statistical characterization of the sea 

surface. For acoustical purposes not only the wave-frequency spectrum, but also the 
directional wave-number spectrum is important. More and more effort is put in the 
measurement of the latter [2.60, 2.61, 2.641, but a satisfactory method has yet to be 
found. 

For a fully developed sea, surface correlation functions in time or space can be 
obtained by integration of an empirically established surface wave spectrum. This is 
done by FORTUIN and DE BOER 12.591 for the Pierson-Moskowitz spectrum and the 
Neumann-Pierson spectrum. They find little differences in the correlation functions. 

In most work on the characterization of the sea surface it is assumed that the surface 
statistics are bivariate Gaussian. Measurements made by SPINDEL and SCHULTHEISS 
[2.63] seem to indicate that this may not always be realistic. 

The literature on reflection and scattering of underwater sound waves from the 
ocean surface (and on related subjects) that appeared before the middle of 1973, has 
been analyzed in this chapter. It is found that the phenomenon is still considered as 
an important and interesting problem. As a complete description is yet missing, work 
is going on in this field, theoretical as well as experimental. The theoretical models for 
the prediction of the scattering are becoming more sophisticated and more realistic, 
the data collection more complete and refined. 
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CHAPTER 3 

DESCRIPTION OF THE SEA SURFACE 

When wind is blowing over the surface of the sea, a complicated mechanism of 
interaction between air and water causes the formation of surface waves. Many 
studies have been made to investigate this phenomenon, and many models have been 
proposed to describe it, but a description that covers all aspects is not yet available. 

Attempts have been made to characterize the sea surface with only one parameter, 
especially the wind speed. But the time during which a certain constant wind has been 
blowing (the "duration") and the size of the area over which it has been blowing (the 
"fetch") also play an important role. This has lead to the concept of a "fldlydeveloped 
sea", over which the wind speed and direction have been constant long enough for 
the wave system to contain the maximum amount of energy it can possibly have: an 
equilibrium has been reached. Clearly, this is mainly a theoretical construction: 
winds of constant speed and direction do not last very long, artainly not in large 
areas. Nevertheless, the idea of a "fully-aroused sea" has produced useful results. 

A very good introduction to the subject is given by KINSMAN [3.1]. More recent 
insights are presented by PHILLPS [3.2]. Both authors point out that the sea surface 
is a random process, in space as well as time. This process, z = C(R, t), is not Gaussian 
(there is a certain skewness of the waves, and waves of intinite height have Zero 
probability), but in many respects it may be assumed to be Gaussian (Assumption I),  
as measurements have indicated (see Section 2.2-V.G.). This is an important result, 
because it signifies that the surface can be described statistically by only two quanti- 
ties, namely mean value and correlation function. 

The process ( is homogeneous and stationary (Assumption 3). From this it follows 
that the mean value can arbitrarily be set at zero: 

and that the wrrelation function depends not on the actual observation positions and 
times, but only on their differences: 

The normalizing constant h2 (so that d(0, 0,O) = 1) is the variance of the surface 
elevation. The spatial argument of d has two components, because the surface is 
anisotropic. 



In the following not only the surface elevation C will be encountered, but also the 
slopes c, and ry, the time derivatives C, and C,, and the second order space derivatives 
C,, C, and CYp. As C is Gaussian (Assumption 4), it can be shown [3.3, pp. 145-1471 
that these derivatives have Gaussian statistics too. Their mean values equal zero 
when the elevation has zero expectation, i.e. when (3.1) is valid. 

Once the correlation function of C is known, those of Cx, C,, C,, Cxx, Cxy, Cyy, Cn 
can be found by differentiation. Indicating the combination (R,, t , )  by the subscript 1 
and (R,, t2) by 2 (c.f. (3.2)), we have: 

In these formulae @ stands for @(r, q, 2). The variances follow from these equations 
by letting (Rl, ti) and (R,, t,) coincide after the differentiation. 

The actual shape of the function dr depends on the duration of the wind that gener- 
ates the waves, on its speed, and on the fetch. The determination of Q is the subject 
of many oceanographic studies, as can be seen from [3.1] and [3.21, and as is also 

,', 
indicated in Chapter 2. 

Of the many proposed models to describe the surface statistically, one using the 
"surface wave spectrum" seems the most realistic approach. This theory considers 
the surface "as the combined effect of a large band of sinusoidal waves that travel 
over the surface in very many directions, each having its own speed and hence its own 
wave number. In this way the idea of a surface wave energy spectrum has been 
formed" [3.4, p. 61. A brief outline of this theory is given in Section 3.2. 

The correlation functions in time and space can be expressed as integrals over 
the wave spectrum. This is shown in Section 3.3. The Pierson-Moskowitz spectrum, 
at present the best spectral function (Assumption 6), is discussed in Section 3.4. 
Numerical results that are obtained from it, are collected in Section 3.5, for later use. 

3.2 Surface wave spectrum tbeory 

The theory assumes that the surface can be characterized by a spectral function 11 
that depends on wave number, wave frequency and wave direction. But for small- 
amplitude deep-water waves, the dispersion relation 



reduces the spectrum to $(o,, a). A problem is caused by the anisotropy of the surface. 
There is evidence that a directionality law of the type cod(al2) has to be used, 
where s is frequency-dependent and ranges from 1 to 5. Nevertheless, for simplicity, 
a cos2(a)-law is often assumed (Assumption 9, in which case3 13.1, pp. 389, 3991 

and O follows from [3.1, p. 3781 

{t; cos (a) + q sin (a)} - a.,z . I 
The space-correlation function (two different points observed at the same time) 
and the time-correlation function (one observation position at different times) follow 
from (3.8) as special cases. 

, ;A-. 

3.3 Correlation fmnctions in time and space 

3.3.1 The time-correlation function 

When the two observation points coincide, we find readily from (3.8) that the time- 
correlation function is proportional to the Fourier cosine transform of the wave 
spectrum : 

m 
O(O,O, z) = (2h2)-' j d o ~ ~ ( o , )  cos (a,z). 

0 

In Section 3.5 we will use this relation together with an empirical formula for A'(@ 
to compute @(O, 0,z). But the inverse of (3.9) is also interesting: when the temporal ' 

correlation of the sea surface elevation at one position is measured (and this measure- 
ment is not too  cult in practice - see for instance [3.5]), the wave spectrum can 
then be obtained via the formula 

a The spectral function As(%) is frequently called "energy spectrum", a name derived from wmmuni- 
cations engineering and obtained by considering the process C as an electrical signal. The propea 
name, however, is v a r h e  spectrum. 



OD 

A'(CUJ = 2 j dz < l(R, t)C(R, t +z) > cos (og), 
0 

as follows from (3.2). ? 2 Another property of (3.9) worth mentioning regards the variance hZ. Apparently, 
this quantity can be obtained by integration of the variance spectrum: 

This follows from (3.9) by putting z = 0. 

3.3.2 The space-correlation function 

If the observation times coincide the results become more complicated, as we are 
now dealing with a two-dimensional function. But it turns out that this function 
can be expressed in terms of two onedimensional functions, which reduces the 
computational work considerably. 

Putting z = 0 in (3.8) and integrating over a, we get 

%p(e, tl, 0) = [ ~ z ~ i ( ~ ) + ( l l z - ~ ~ ~ z ( ~ ) l ~ - z -  , ,... , (3.12) 
I .  

The functions 1, and I2 are to be found byazeighted integration of A'(u~:  

For a fully developed sea the Pierson-Moskowitz spectrum [3.6]: 

where C = 8.10 x and v > 0, is the best empirical formula available at present 
(Assumption 6). With this function, for which a curve is shown in Fig. 3.1, DB Born4 

Ir. J. G. DE BOER worked as a Summer Research Assistant mdea my supavbion at the Saclant 
ASW Research Centre during the summer of 1%9. . .-. , 



Fig. 3.1. The surface wave frequency spectrum as proposed by P ~ s ~ s o l ~  and Moaowrrz r3.4 for a 
fully developed sea. 

13.41 has calculated the time-correlation function @(0,0, z) and the space-cornlation 
function @(t, q, 0), by solving numerically the integrals (3.9), (3.13) and (3.14). His 
results have been published in a condensed form 13.71. The parts that we need in this 
study are summarized in the next section. 

3.5 Numerical d t s  derived Zrom the Pierso~Mdowitz spectrmn 

3.5.1 The variance of the sea surface elevation 

The variance hZ is the most elementary quantity to characterize the surface. Its 
value can be found by integration of the surface wave spectrum. Combination of 
(3.1 1) and (3.15) yields : 

3.5.2 The time-correlation function 

As was suggested by P-N and Mos~owrrz [3.6], it turns out to be convenient 
to normalize the time difference z with respect to the wind speed via the relation 

This is a dimensionless quantity. Sample values for the correlation functionS 

Strictly speakin& @(O,O,mr) and Qi(O,O,m) are different fuuctions. But s h e  there is no chance fat 
confusion, we use the same symbol for both. A similar argument holds for the qmceunmktbn 
function. 



n - 
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Table 3.1 The tim6correlation function @o,O,t~), derived from the Pierson-Moskowitz spec-, 
for t~ = 0(0.5)30 (see Fig. 3.2). 

ZN RO,O,tN) rN @@,O,~N) ZN R090,w) 

0.0 1.000000 
0.5 0.831970 10.5 -0.130653 20.5 -0.021439 
1 .O 0.435359 11.0 -0.131462 21.0 -0.017792 
1.5 -0.013626 11.5 -0.115366 21.5 -0.014609 
2.0 -0.381110 12.0 -0.088852 22.0 -0.009173 
2.5 -0.597637 12.5 -0.055724 22.5 -0.004494 
3.0 -0.650945 13.0 -0.023009 23.0 -0.000685 
3.5 -0.568268 13.5 0.007122 23.5 0.004313 
4.0 -0.397249 14.0 0.030089 24.0 0.005633 
4.5 -0.189753 14.5 0.046436 24.5 0.007958 
5.0 0.009200 15.0 0.053584 25.0 0.009160 



@(O, 0, T,), derived from (3.9) and (3.15), can be found in Table 3.1 ; a curve is 
plotted in Fig. 3.2. 

The variances of the time derivatives (, and (,, follow readily by differentiating 
(3.9) and solving the new integrals, as is indicated by (3.5). The result is (see Appen- 
dix A) 

3.5.3 The space-correlation function 

Normalization of the distances with respect to the wind speed is also convenient 
here. Following again PIERSON and Mos~owrrz [3.6] we put 

so that (3.12) reduces to (see footnote on page 63) 

We note that the normalized distances are dimensionless. The functions Li and L,, 
proportional to ZI and Z2, and calculated with (3.13), (3.14), and (3.15), are presented 
numerically and graphically, in Table 3.2 and Fig. 3.3, respectively. An impression 

Table 3.2 The auxiliary fu11ctions &(x) and L,(x), derived from the Pimn-Moskowitz spectrum, 
for x = 0(1)40 (see Fig. 3.3). 



NORMALlZED CORRELATION DISTANCE 

Fig. 3.3. 
The auxiliaty functions &(x) 
and 4(x), for the Pierson- 
Moskowitz spectrum (Table 
3.2); - &(xh --- 
~(XI. 

1 Fig. 3.4. The spaa-mdafion function of the we surface, rkived from the Pkgmn-Moskowitz 
; spednrm. The normalized andation distances am 2810' times the actual distances; is the down- 
/ wind, the cross-wind direction [3.4, 3.71. 

of the complete correlation function is given in Fig. 3.4. From this last figure, the 
spatial correlation can only be studied qualitatively, because it depicts a three- 
dimensional surface in a twodimensional plane. It is therefore worth considering the 
cross-sections in the down-wind and the cross-wind directions (Fig. 3.5). Obviously, 
the cross-wind correlation is stronger than the down-wind correlation. 

From the curves in Fig. 3.5 we can derive estimates for Ld, and L,, the "effective 
correlation distances" in down-wind and cross-wind directions. To this end we define 
the effective correlation distance as the distance at which the normalized correlation 
function has dropped to the value e-'. With this criterium we find 



1I) 

a5 

0 

-0.5 

NORMALIZED DISTANCE {, NORMALIZED DISTANCE q~ 

Fig. 3.5. The ~ r r o l a t i c m  fumti008 in (a) down-wind aad (b) crona-wind direotion, derived 
from the Piason-Moalcowitz tqwchm [3.4,3.7]; the narmaliasd distances Ue thm the 
distmlcca. 

L,,,,, = 0.125v2 (m), 

L, =. 0.250u2 (m). 

The variances of the spatial derivatives can be obtained in the way given by (3.3) 
and (3.4). The following results are found (see Appendix A for details): 

and 

in which the X-axis coincides with the down-wind direction and the Y-axis with the 
cross-wind direction. The restriction v # 0 is important for (3.24) and is originated 
by the fact that a(€, q, 0) is not defined for u = 0. This behaviour for v -, 0 is a serious 
defect of the Pierson-Moskowitz formula. On physical grounds, of course, we know 
that all derivatives vanish for v = 0, because the surface reduces then to a flat plane 
for which z = 0. 

This chapter deals with the statistical properties of the sea surface. Correlation 
functions in time and space are described, tabulated and plotted; they are derived 
from the Pierson-Moskowitz spectrum. Related quantities, required later on, are 
also computed. 
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4.1 Inhduction 
I 1 ,. * :*--a% 

The active element in the communication channel from transmitter to receiver is 
formed by the upper boundary of the ocean. In Chapter 3 we assumed that the sea 
surface is a random, time-dependent process (Assumption 3). Hence, the filter is 
random and time-variant too. 

When certain average filter characteristics are known, it becomes possible to 
compute the average output behaviour of the channel for any known input signal. 
The determination of those filter characteristics is consequently an important object. 

As the filter is time-variant, the system functions depend on two variables, e.g. 
time and frequen~y.~ The filter system functions, which enable us to express the out- 
put signal y(t), or its spectrum, in terms of the input signal x(t), or its spectmm, arc 
consequently two-dimensional. This represents an important difference with the time- 
invariant filter, where one independent variable is sufEcient. 

Two effects are, generally speaking, present in the output signal of a time-variant 
filter as compared with the input: time spread (also called delay spread or dispersion) 
and frequency spread (or Doppler spread). Time spread is not a consequence of the 
filter's time-dependency: it also occurs with timaindependent filters. It becomes 
noticeable when short pulses (i.e. signals with a broadband character) are transmitted: 
different frequencies are delayed differently so that the pulses are stretched or smeared 
out in time. Frequency spread, on the other hand, is indeed caused by the tima 
dependency of the filter. This effect can be observed when the input signal is a pure 
tone (i.e. a signal with a very narrow spectrum): the amplitude and phase are subject 
to fluctuations so that new frequency components are generated, both slightly higher 
and lower than the input frequency. 

The two cases mentioned above are extremes: one deals with a signal short in time 
and long in frequency, the other with just the opposite. An arbitrary signal will 
therefore be spread both in time and frequency. 

Time and frequency spread are important for the behaviour of the communication 
channel. They can be analyzed by means of the system functions. The most common 
ones are discussed in Section 4.2, after which they are used to describe the input- 
output relations (Section 4.3). In both sections we have assumed that all system func- 
tions have Fourier transforms with respect to both variables. Later on we will see 

@ A third variable can be distb&&ed in our case, namely the geometry of tranamitta and ra~iwr. 
But the character of this variable differs so strongly from time and frequency that its siOnigcanco will 
be discussed separately in Chapter 9. 



that for the sea surface sound channel this is not true, so that certain system functions 
lose their meaning. 

For a random filter, time and frequency spread are stochastic phenomena, which 
can only be described statistically. Thus a statistical characterization of the system 
functions is required. The most complete description in this respect would be given 
by their probability density functions, but there is little hope of finding these. We will 
therefore content ourselves with the first and second statistical moment, i.e. with 
mean values and correlation functions. Some details are presented in Section 4.4. 

Finally, we remark that the random time-variant filter is assumed to be linear 
(Assumption 10). m s  means that the superposition principle is valid: all signals may 
be decomposed into their frequency components, the effect of the filter on each of 
them may be evaluated, after which the total effect can be found by summation. 
The Fourier transform and its inverse will thereby play an important role, as will the 
two-dimensional versions, when correlation functions are analyzed. For later reference 
we give here the definitions we have adopted: 

a. Simple Fourier Transform 

w 

F(w) = dt f (t) exp (iwt), - w 

f (t) = 2- dcuF(~)) exp ( - i d ) ;  2z -, 

F(o) is the Fourier transform off (t), the inverse transform of F(w) is f (t). 

b. Double Fourier Transform 

F(ol, w2) is the double Fourier transform of f(tl, t2), the inverse of F(wl, co2) is 
f(t1, t2). 

4.2 System frmctio~~~ for linear timevarging 81tm 

4.2.1 The impulse response 
There are several ways to describe the impulse response of a time-varying filter 

[4.1,4.2]. In this study we have adopted the definition that h(z, t) is the response 



I ( t - t o )  TIME-DBPENDBNT 
FILTER - h(t-to,t) 
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o t o  Fig. 4.1. 
The response of a timb 
dependent filta to a unit 
delta pulse; Mt-t*t) = 0 
for t < t, becauw of 

~m causality. 

measured at time t to a unit impulse applied at time 1-2, where z 3 0. Physically, 
this means that when a unit delta-pulse is applied at the input at time t = to, i.e. 
x(t) = 6(t - to), the output is given by y(t) = h(t - to, t). This time spread is illustrated 
in Fig. 4.1. 

In general, for an arbitrary input signal, the impulse response can be interpreted 
as a weighting function by which the signal inputs in the past must be multiplied to 
determine their contributions to the present output 14.1, p. 1011. The total output is 
then obtained by summation: 

m 
y(t) = j dzh(z, t)x(t - t). 

0 

Only the past of x(t) gives a contribution (2 2 0). This reflects the fact that the filter 
cannot weight portions of the input signal that have yet to occur. 

4.2.2 The transfer function 
The filter can also be described by the transfer function H(w, t), which is the Fourier 

transform (with respect to 2) of the impulse response: 
m 

H(w, t) = dzh(z, t) exp (im), - m 
1 h(z, t) = - j dwH(o, t) exp (- iwz), 
2n -, 

If in (4.5) the input signal is harmonic, i.e. x(t) = exp (-iot), then 

y(t) = H(w, t) exp (- iwt) 



follows by using (4.6). This indicates an important property of the transfer function: 

response of the filter to cxp (- iwt), at time t , H(w, t) = exp (- iwt) 9 

it permits the application of monochromatic sources (with variable frequency), in 
accordance with the mathematical formulation of the scattering phenomenon, which 
is most conveniently performed in the frequency domain, via the Helmholtz integral 
(Chapter 5). 

4.2.3 The spreading function 

A more unconventional system function is obtained by taking the Fourier transform 
of h(r, t) with respect to t [4.3, p. 25-51 : 

OD 

E(r, 62) = j dth(z, t) exp (i62t). - m 

This is the spreading function. It gives the spectrum, with D as frequency variable, 
of the time variations of the impulse response. 

'f.. 4.2.4 The bi-frequency function 

Also H(w, t) can be transformed with respect to t. In this way the bi-frequency 
function e(w, a) is found: 

Spreading 
Function 

Impulse Response 

h(T,t) 

e(w,R) 
El-Frequency Functlon 

Fig 4.2. Relations between systan functons. 



(0 

e(o, 62) = j dtH(o,t ) exp (iat). - m 
Its significance will become clearer, when input-output relations are discussed 
(Section 4.3). The same result is obtained by Fourier transformation of the spreading 
function, with respect to z. 

4.2.5 Relations between system functions 

The four system functions mentioned in the preceding sub-sections arc intemlated 
via Fourier transforms. This is illustrated in Fig. 4.2, by means of a general diagram. 
We emphasize that in the derivation we have assumed that the various Fourier trans- 
forms indeed exist. In practice it may happen that this assumption is not correct. The 
system function under consideration is then not &fined. 

The most elementary relation has been encountered in (4.8): an harmonic input 
signal of the type x(t) = exp (- iot) yields an output signal y(t) = H(o, t) exp(- lot). 
An arbitrary input signal x(t) can be decomposed into its spectral components, 
according to (4.2) : 

1 40 = - doX(w) exp (- icut); 2n -, 

the spectrum X(o) may be regarded as a weighting function. As each component 
exp (-iot) causes at the output of the filter a signal H(o, t) exp (-bt) and since 
linearity is assumed (Assumption lo), we can add the response of all components, 
with their proper weight. So we get 

y(t) = 1 j ~"x(~)H(Q), t) exp ( - iw). 2% -- 

It may be noted that this is not the inverse Fourier transform of X(cu)H(o, t), 
because that product is not independent of time. 

Equation (4.13) relates the output signal to the input spectrum. This can be illustra- 
ted by returning to the example of Sub-Section 4.2.1, where the input signal was a 
unit delta pulse at time t = to. Such a signal, x(t) = 6(t - to), has the spectrum X(o) = 
exp (iot,), as results from (4.1). Substitution into (4.13) yields then, together with 
(4.7), the output fit) = h(t - to, t). 

A relation between input and output signal has been mentioned already in (4.9, 
the convolution integral for time-variant filters: 



m 

y(t) = dzh(z, t)x(t - z). 
-0 

Again, when x(t) = 6(t - to), we h d  y(t) = h(t - to, t). 
The inverse of (4.10) can be put into (4.14); it gives 

m m 

y(t) = dz j d 8 4 t  - z) exp (- i8t)E(z, 62). 
-m -m 

The quantity x(t-z) exp (-ifit) may be considered as a time and frequency shifted 
version of x(t). The output signal y(t) is formed as a sum of such components, weighted 
with E(T, 8). Apparently, E(z, 62) determines the spread in time and frequency the 
signal will suffer in the channel. For this reason it is called "spreading function". 

The spectrum of yo)  can be expressed in terms of the input spectrum and the bi- 
frequency function: 

This formula has been obtained by Fourier transformation of y(t) with (4.1), 
followed by substitution of (4.13) and the inverse of (4.1 1). It indicates that the output 
at frequency o is not determined merely by the input at that frequency, but by 
components in a frequency band around o. The width of that band and the weight of 
each component are given by the bi-frequency function. 

The simplest way to illustrate the foregoing statement is to take a purely harmonic 
input signal: x(t) = exp (- ioot), or X(o) = 2z6(o - a,). Putting this into (4.16) gives 
Y(o) = e(oo, o-coo), which clearly shows the described frequency spread. A sche- 
matic form of this can be found in Fig. 4.3. 

I I Frequency .. wo u Fig. 4.3. 
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monic input signal of radial 
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For later reference it is useful to summarize the input-output relations for the two 
special cases that we have discussed: 

A. A unit delta pulse at the input, 
B. A purely harmonic input signal. 

This summary is given in Table 4.1. 

Table 4.1 Input-output relations for a thedependent filter. 

input output 

A Unit Delta-Pulse 
x(t) = 4t-to) 
X(w) = exp (iwto) 

B HarmonicInput 
x(t) = exp (-iw,t) 
X(w) = 2n*-wo) 

4.4 Statistical properties of the filter 

4.4.1 General 

It has already been remarked that the filter we are studying has a random character. 
Consequently, the system functions have to be regarded as random functions of two 
variables. Their description has to be limited to statistical properties, of which only 
mean value and correlation function are simple enough to find. 

In general, the mean value of the system functions is non-zero. But in many statistical 
analyses it is convenient to deal with processes or functions that do have zero mean 
value. This applies to our filter for the first part of the investigation. Hence, we 
temporarily split the filter into two parts: a deterministic part (equal to the mean value) 
and a random part (which is obtained from the true random filter by singling the 

,,+ rand;rhfiIter km 
non-zero mean 

deterministic 
filter 

Fig 4.4. 
random filter N-i.,ith,?- OUT Decomposition mean value into of (B) (A) a determiuistic a random filta filter with and a n o n m  random 

zero mean filter with zsro mean value. 
(8) 



deterministic part out). These two fdter pieces, if considered as separate "black boxes", 
have to be connected in parallel, as is sketched in Fig. 4.4. In formula, with the fre- 
quency response as an example, we have then 

:! 

where the subscripts d and r indicate respeC€ively "deterministic part" and "random 
part". 

Similar decomposition relations hold for all the other system functions. This is 
due to two facts: (1) they are all related via Fourier transforms, and (2) the Fourier 
transform is a linear operator. An interesting result therefore follows immediately: 
Fig. 4.2 and all the input-output relations remain formally valid when the system 
functions are given either the subscripts d or r. This signifies that the deterministic 
part and the random part may be treated separately. . 

A possible statistical approach to an arbitrary random filter can now be outlined 
as follows: first, one considers the mean value of any system function and deals 
with it as a fixed part; second, one subtracts the mean value and studies the properties 
of the remaining random part. Nevertheless, it should be remembered that the filter 
is not really divided in two parts. For the analysis of correlation functions it is often 
better to consider the filter as a whole. 

4.4.2 The stationary filter 

In Chapter 6 and following chapters we will see that the random filter we are 
studying is stationary in time. This has an important consequence: Fourier trans- 
formation of h(z, t) and H(u, t) with respect to t is impossible, and the scheme of 
Fig. 4.2 degenerates into an elementary relation: 

h(r, t) o H(u, t). 

Spreading function and bi-frequency function have thus lost their significance. 
Formally, (4.18) is also correct when h and H carry the subscript d or r. 

4.4.3 Mean values 

Due to the stationarity of the filter, the time-dependency will disappear when mean 
values are computed in (4.18). Hence this relation reduces to 

hxz) ++ HA@). 
8 : 

4.4.4 Filter correlation functions I.,.. 

The system functions are functions of two independent variables. So the correlation 
functions depend in general on four, because they are defined as an average (conjugate) 



product. For the impulse response, for instance, we have the following definition: 

while the other possible correlation functions, that is B,, B, and BE, are defined in a 
similar way. They a re in t e rco~~ ted  by double Fourier transforms (see (4.3) and (4.4)), 
a property that can - for the general case - be derived from Fig. 4.2. The corresponding 
diagram is shown in Fig. 4.5. 

Modifications occur again, when the stationarity of the filter is taken into account: 
BE and Be are no longer defined, and Bh(zl, r2, ti, t2) and Ba(wl, 01, tl, t2) reduce 

Fig. 4.5. Relations bctwtan system correlation functions, m e. 

Fig. 4.6. Relations b.tween sysbm correlation functions, when H(cu,t) is statiomw in time. 
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to B;(zl, z2, At) and Bi(al, a,, At), where At = t1 -t,. Fourier transformation of .. 
BL and Bf, with respect to At will turn out to be possible (see Chapter 8). This leads 
to the functions B&, z,, a )  and B;(al, a,, a). B i  is the double Fourier transform 
of BL with respect to wl and a,, and vice versa. It can easily be shown that a similar 
relationship exists between BL and B:. In this way the primed functions are related 
*according to the diagram of Fig. 4.6. For simplicity we have dropped the primes, 
bearing in mind that BE and Be are not the correlation functions of E and e, because 
these functions are not defined. 

, ,2 . > :  

The basic properties of time-variant linear filters are described in this chapter. 
Input-output relations are derived and discussed. Since the filter is random, the mean 
values and the correlation functions of the system functions are also considered. 

The mean values are non-zero. Therefore the filter is divided into a deterministic 
part and a purely random part, connected in parallel. 

Also the consequences of stationarity in time are analyzed. It is found that various 
relationships simplify or disappear, because spreading function and bi-frequency 
function are no longer defined. 

4.1 T. KAILATH, "Channel Chamaxhtion: Timavariant Dispersive cham&", in Lcctwes on 
Comnudcutlon System ZYteory, E. J. BAOHDADY, Ed. (McGraw-Hill, New York, 1%1), Chaptar 
6. 

4.2 P. A BBLLO, " C h a m t ~ t i o n  of Randomly Time-Variant Linear Channels", Trans. IEEE 
Communication Systems 11,360-393 (1%3). 

4.3 K. A. S~TRAND, "Mathematics of the Timevarying Channel", Lecture at the Nato Advancad 
Study Institute on S~J& Procasing (Enschede - The Netherlands, 1968). 
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THE SEA SURFACE AS A RANDOM FILTER 

5.1 Introduction 
In this chapter we are faced with the task of finding an expression for one of the 

system functions of the underwater communication channel from transmitter to 
receiver via the surface. The most convenient system function to deal with appears 
to be the transfer function H(o, t), because the problem can then be formulated in 
the frequency domain7 (by means of the Helmholtz integral), and monochromatic 
sources can be used (see (4.9)). 

Physically, the derivation of a formula for H(o, t) consists in sol'ting the wave 
equation (Helmholtz equation) 

with the boundary condition p 5 0, since the sea surface is a pressure release surface 
on which the sound pressure has to vanish (Rrmmption 2). This is done in Section 5.2, 
which is a reprint of a paper that I published in the Journal of the Acoustical Society 
of America [5.2]. It also contains some preliminary results of a statistical analysis; 
a more complete treatment can be found in the Chapters 6-10. 

The result of Section 5.2 is rather complicated: H(w, t) is expressed thm as a six- 
fold integral which renders the analysis of this system function somewhat problematic. 
In Section 5.3 a simplification is applied in such a way that H(w, t) can be written 
as a series of surface integrals. In addition to the fact that these double inkgrals are 
more suitable for a detailed analysis, they allow a simple physical interpretation. 

When w is sufficiently large, the surface integrals can be solved approximateIy by 
application of the method of stationary phase. Section 5.4 is &voted to tbis subject. 
It also contains a comparison of the first few terms, and derives the conditions for 
which the whole series can be represented by the term of zero order. These results, 
here produced as a side-issue, will turn out to be useful later on in this study. 

The wave equation (5.1) is, strictly speaking, only valid when the boundary is 
time-independent. Its use in combination with a time-varying surface such as the 
upper boundary of the Ocean has hence to be justified. For this justification we refer 
to Section 5.5. Part of this section is a reprint of a paper that I published in the 
Journal of the Acoustical Society of America [5.3]. 

7 A formulation in the time domain via the impulse repollst function is @Ma (KhhWfcr 
fonnula [5.1, p. 36D, but will not be used here. 



5.2 Derivation of a formula for the transfer function 

The Sea Surface as a Random Filter for Underwater 
Sound Waves 

SACLANT ASW Rnrwd Cdrq Lu Spssio, Zldy 

When underwater sound warn propqate from a tmumittu to a receivery part of the energy & the 
receiver after re8ect.h and scattering from the sea surface. This boundary effect can be called the isnPJss 
rUp0nt6 of the sea surface if the incident sound field ia c r u d  by a delta pulse. In this paper thp Helmholtz 
diffraction integral is used together with a perturbation technique for the derivation of a formula for the cor- 
nspondiag transfer function. The d t  is a random function that depends on the frequency of the kcident 

I wave, on time, and on the sour~tmeiver  configuration. Its validity is limited by three assumptions: (1) the 
medium b ideal (constant velodty, no subsurface layer), (2) source and receiver depth are many times 
larger than the surface elevation, and (3) the bottom ia infinitely far away. For veky high frequencies the 
formula indicatw specdm teflection from each d a c e  "highlight." In the Fraunhofer domain, the transfer 
function redma to a p d a r  r&ction with phare hctuatiom Some rwultcl of a statistical d y s h  are 
included for tht frequency dormin. 

LIST OR SYMBOLS 

correlation function 
sound speed in ideal medium 
specular path length from T to R 
path length from T to R via the surface 
frequency of incident radiation 
free space Green's function 
gravity acceleration 
transfer function 
impulse res* function; standard deviation 

of surface elevation 
(- 111 
wavenumber vector in the plane K,=O: 
K- ( ~ S " , O )  

wavenumber of incident radiation 
integral operator 
integer 
outward surface normal 
integer, order of F m e l  ellipse 
perturbation 
pressure (time dependent) 
pressure (time independent) 
pressure, due to the boundary 
pressure in unbound medium 
vector in thedimensional space : (R = (z, yp) 
vector in the plane s = O  : R = (z,y,O) 
receiver 

distance 
surface; spectral density function 
transmitter 
time 
volume 
wind speed 
distance to the average surface 
distance to the random surface 
horizontal distance 
vertical distance 
semimajor axis of Fresnel ellipse 
fraction 
Dirac delta function 
constant 
surface profile 
difference in Y coordinate 
angle with vertical, angle of incidence 
Werence in X coordinate 
source distribution; correlation diswce 
time difference 
correlation function of surface elevation 
angle with horizontal, grazing angle 
roughness parameter 
auxiliary function; proportional with the n o d  

derivative of the total field at the bouhdary 
phase 
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w angular frequency of incident wave 
w, frequency of surface wave 
Subscripts 
D Doppler 
F ,frequency correlation 
N normalized 
n order of Fresnel ellipse 

R receiver 
S spatial correlation 
s point of stationary phase,.specular point 
2" transmitter; time correlahon 
s Z direction 

s on random surface 

INTRODUCTION the relative position of source and receiver are param- 
In studies of reflection and scattering of underwater 

sound waves from the sea surface, two .assumptions 
are often encountered that make the phenomenon 
describable in terms of plane waves: (1) transmitter 
and receiver have a narrow beam, and (2) they are far 
away from the surface. Another useful simplification, 
the Kiichhoff approximation, is possible when a 
monochromatic sound source of sufficiently high 
frequency is considered. A detailed survey of these 
approaches can be found in Refs. 1 and 2, together 
with an analysis of other currents in the existing 
literature. 

Although these simplifications are useful to gain 
insight into the phenomenon. their drawback is evident 
when the path-from transrhitter to receiver via the 
surface is considered as a communication channel, or a 
filter. A broad-band source is then required, and, as 
this is often an explosive charge, the plane-wave 
assumption also becomes invalid. 

The broad-band source should possibly have a flat 
frequency spectrum, so that impulse response and 
transfer function of the sea surface can be investigated. 
An experimental procedure has therefore been developed 
a t  SACLANT ASW Research Centre that consists of 
firing explosive charges and recording ,the surface- 
reflected signals after passing them through a filter 
that boosts the high frequencies in such a way that the 
spectrum of the explosive pulse approaches that of a 
delta pulse? 

The theoretical counterpart of this experimental 
technique is formed by a description of the scattered 
field, in which the characteristics of the sea surface and 

of &tta and receiver. ThPsZ3 u d  th receiver 0 are 
placed in fhe plane y=O but this caunw no loss 
of f tqe wind dirgtion can make u 
ub~tnry angle mth the X ant. 

eters (see FG. 1 for the geometry). Such a d d p t i o n  
is the subject of this paper. I t  is derived with the 
Helmholtz integral as a starting point, and Meecham's 
method4 is applied to obtain an estimate for the normal 
derivative of the sound field at  the surface. The result 
is a formula that connects the scattered field at  an 
arbitrary point below the surface with the random 
process that describes the surface elevation in time and 
space. Consequently, it presents the scattered field as 
a random process. Useful information can hence only 
be obtained by means of .statistical operations (e.g., 
mean value, correlation function-both in time and in 
space). Thii will be the subject of a subsequent study. 
Nevertheless, some preliminary results are included 
here. 

Although we are eventually interested in the impulse 
response h(r,t) of the random sea surface (i.e., the 
response measured at  time t to a unit impulse applied 
at time t-r), we prefer to formulate the problem in 
the frequency domain and study the transfer function 
H(w,t) first. The functions h and H are each other's 
Fourier transform6: 

An important advantage of the use of H(w,t) is that it 
enables us to apply a monochromatic source (with 



L. F O R T U I N  

Moreover, we have p(~o)=G(6io-cR~), so that Eq. 5 
yields 

a 
$(@a) =L \\a~k(~It,&*)-(ifO*) 

4.x an 

Fro. 2. The nea d a c e  S and the auxilhy d a c e  9. S' can 
t to wmht of two parts: a part S just below S, and 
infinitely for away, that maken S' a d d  dace. 

variable frequency) of the type 5-p exp(-iot), since6 

response of the filter to exp(-wt) 
H(@,f) = 

exp(-iot) 
(2) 

I. THE SCATTERED FIELD 
A. Solution of the Wave Equation 

Since we are only interested in the surface effect, 
we assume the medium to be ideal. We require a solution 
of the wave equation [suppressing the time dependency 
exp(-d)J 

( a + ~ ) p - o ,  (3) 
with the boundary condition p-0 (pressure release 
surface). The field at  the receiver can be thaught of as 
the sum of pol the field that would exist in the absence 
of boundaries, and. pb, the boundary effect: 

It is the second term that we are interested in. 
A generalized version of the Helmholtz integral can 

be derived from Ref. 6 by application of Green's 
t h m 7  : 

The second term is recognized as the undisturbed wave 
po(if~). Hence by combination of Eqs. 4 and 6, we 
arrive at  an expression for the scattered field: 

This formula has an interesting physical meaning. It 
shows that one can imagine that the transmitter 
induces elementary sources on S, and that these 
radiate omnidirectionally. The d e c t  at  the receiver of 
one of them, that is GI((RR,(Ro*), has to be weighted 
with ap(ao*)/an, the normal derivative of the total 
field a t  the boundary. This derivative depends on the 
position of the unit source relative to the transmitter 
and on the slope of the surface at  that position. The 
total effect pb is obviously obtained by summation over 
all sources. 

B. Ddvative of the Field at the Boundary 

Before Eq. 7 can be used for the calculation of the 
scattered field, the normal derivative of the total field a t  
the boundary has to be known. It is here that difficulties 
arise for a surface that is not perfectly flatIs because then 
ap/an is unknown. However, an integral equation for 
the desired function can be found if we consider an 
observation point on the boundary; here also the 
difTraction integral (Eq. 7) holds. If we then use the 
boundary condition of zero total pressure, a Fredholm 
equation of the first kind is found for the derivative: 

The surface element dS can be written as 

=p(a) if if is on or inside the closed surface St, where 8 is the angle between the vertical axis and the 
(5) surface normal n at Ro(x0,yo). For convenience we 

=O ' ififisoutsideS. define a function + : 
As is shown in Fig. 2, the c l o d  surface S can be 
thought to consist of the parts S" and S"'. The latter a 

+(R) --p(a*) / k  c&(R). 
does not contribute to the surface integral (Som-. an (10) 
merfeld's radiation condition) and St' approaches the 
sea surface S, on which the total pressure vanishes. The scattered field is then determined by the following 
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I 
The random function * has to be solved from Eq. l l b  
and substituted into Eq. lia. Examination of Eq. l l b  
shows that .this integral equation has a somewhat 
peculiar kernel: I t  depends not only on RO and R1, as 
it would in a regular case, but also on the surface 
elevation a t  the positions RO and RI. To illustrate this 
statement, we write out the kernel in full: 

where 

The dependence of Ck on Sl and fo has an important 
consequence: An exact solution for 9 cannot be found. 
.However, its approximation is possible'by means of a 
perturbation method. 

C. Perturbation Method 

Equation l l b  can be solved exactly when l = 0  
(perfectly plane surface), because then the kernel 
becomes a regular one. This fact leads us to consider 
the irregular kernel Ck((Rl8,(Ro9 as a disturbed version 
of Ck(R1,Ro). If the disturbance is small, a perturbation 
technique can be applied to approach the exact solution. 

The perturbation method starts by substitution into 
Eq. l l b  of 

, where P represents the disturbance : 

If the condition P<<Gk(Rl,Ro) is satisfied, we may apply 
Meecham's perturbation method,' so we put P a r P ,  
with t -+ 1, and try to find a solution of the forms 

Substituting this expansion into Eq. lib, together with 
Eq. 14, and equating. equal powers of r, gives a set of 
equations for the q,: 

~ ~ u a t i o ' n  17s can be solved easily (see Sec. I-D). Its 
solution, substituted into Eq. 17b with m=O, yields a 
similar equation for *I. Solving this and using the 
result in Eq. 17b with m= 1, we find an equation for 
* I ,  and so on. In this way the terms 9, of Eq. 16 can 
be calculated successively. 

D. Invenion of the Integral Equations 

The integral equations for the functions 9, are 
Fredholm equations of the first kind; As their kernel is 
a Green's function, we expand it in eigenfuncti~ns~~J~: 

where K.= (P -P) , .  Substitution of this expansion 
into Eq. 17a and exchange of the order of integration 
yields 

Both the integral over K and the one over RO can be 
considered as two-dimensional Fourier integrals. The 
desired function Po can hence be obtained in three 
steps: (a) transformation of -ph (b) multiplication of 
the result by -i2rK., and (c) inverse Fourier trans- 
formation. In this way we h d  

This is the solution of Eq. 17s. The terms qH1(m2O) 
are obtained if po is replaced by the right-hand side 
of Eq. l7b. 

It may be useful to remark that 90 can also be derived 
from Eq. 17a without the expansion of Gk(Rl,&). 
This function namely depends on the difference RI-Ro, 
so that Eq. 17a can be considered as a convolution 
integral. Application of the Fourier transfor111 and its 
inverse then yield an expression identical to Eq. 20. 
This is the method used by Meecham.' 
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E. Conditio~w for the Perturbation Method 
Figure 3 indicates the surface area that contains the 

points (Rim and (Ro*. For simplicity, a'cross section in 
the plane y=O is shown, but the points may have 
arbitrary positions. 

First we consider the distance r between the points. 
A formula is given in Eq. 13. If we put 

then we can write 
r = ro+&o. 

An expression for Are can be found by series expansion 
of r: 

&o= @i-t0)'/2r0 if d*s/r&l. (23) 
For large YO the condition &O<<YO is always satisfied. 
However, if YO- 9, it can only be met if A r o  goes to 
zero faster than YO. The square of the surface slope is 
then approached, and we arrive a t  the condition4 

According to Kinsmantn the slope of the, sea-surface 
waves cannot exceed the value 2/7, so that the condition 
on the slope quadrature is easily satisfied. 

Next we examine the perturbation P. Using Eqs. 12 
and 22 in Eq. 15, we get 

because A~O<<YO. The condition P<<Gr(R,Ro), to which 
the perturbation method is subject, is hence satisfied 
if the phase difference between the paths PlPo and 
Pip4 in Fig. 3 is much less than 1 rad: k&o<<l. 
Following Meecham,' we investigate this inequality by 
distinguishing three regions for kro, the phase difference 
between Pf and PO': 

Region 1. The condition kAro<(l' is .rewritten as 
(kro)(Ar~/r~)<<l. This is satisfied, because both factors 
are small compared to unity. 

FIG. 3. Two points at the surface: PI and 
PI are arbitrary points with position vectors 
(RI* and Re*; PIP@= I (R18- (Rr 1 =I, PI'PI' 
= IR1-RoI-n. 

Region 2. For kro>>l the situation is more compli- 
cated. With Eq. 23 the condition kAro<<l leads to 

This inequality is hard to examine, as f l  and t o  are 
random quantities. We replace it therefore by its mean 
value, and find the condition 

The spatial correlation function of the surface, 
can be calculated .when the sea-surfa& spectrum is 
known. For the Pierson-Moskowitz s p e c t r d  this 
calculation has been done by De Boer."J6 Hi results 
%re used in Fig. 4 to draw a cross-wind and a down-wind 
curve for (1-a)-'. The condition expressed in Eq. 27 
means that kh can only assume values below or very 
close to these curves. Obviously the down-wind case is 
in this respect more critical than the cross-wind case. 
In principle, the condition implies a frequency limitation 
depending on the horizontal distance between the two 
surface points under. consideration. However, in 
practice there is the fact that integration over the whole 
XY plane can be replaced by integration over a limited 
area-the effective scattering domain-the size of which 
decreases with the incident wavelength. This signzes 
that in Fig. 4, for a certain value of kh, the distance YO 
does not have to assume all values between zero and 
infinity (in which case the "forbiddenJ' area above the 
curves would be entered when kh>l), but only those 
between zero and the nlaximum size of the effective 
scattering area, say, 2a,, the length of the Fresnel 
ellipse of order n. 

To investigate the importance of the frdquency 
limitation in practical cases, we have plotted in Fig. 5 
the normalized values of 2a, for which kh> 1 as a 
function of kh, together with the curves for (I-*)-'. 
The parameter values n= 1, 2, 3, 2~-=50 m, XB=O, 
50, 100, 150, and 200 m, k=6, 60, and 600 (i.e., f = 1.5, 
15, and 150 kHz), and v= 1, 2 ,s  and 10 m/sec are used. 
Values for v are required to calculate h. Many of the 
212, points lie below these curves, but not all of them. 
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Especially for n>2 and XR> 150 m we find points in function of RI: 
the prohibited zone. However, the condition on kh 
(Eq. 27) is not very strong: if kro is large enough, kh i 
may even be greater than (1-*]-&. We condude hence Y ~ ( R J ) - ~  /lma//.I1 
that in region 2 the condition kA.ro<<l is satisfied in 

1 practice. 
Refion 3. When kro is neither much smaller nor much 

larger than 1 (0.11 hol10), we apply the same reason- the terms of the series expansion of can be written 8s 1 ing as in region 1 and find 

This inequality emphasizes the importance of Eq. 24. 5 L (-i//dll.(~*)~.&t)*-~(b)] 
Collecting the results of the foregoing investigations, 

we conclude that the perturbation method used here 
is subject to only one important condition, the one on (m>O)* (30) 

' the slope quadrature. The inverse operator L-1 follows readily from 'Eq. 17s: 

h Convergence of the Perturbation Series 
Defining an integral operator L that acts on a 

FIG. 4. The upper limit for kh. The am-wind and down-wid curves of [1-9(r()rt are calculated foi.the Piason-Bhbdb 
sea-surface frequency spectrum, with data from Ref. 14. The horizontal stale is nomalid with respect to the w i d  rpsed : ruvL%JI'. 
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a, (Normalized) 
Re. 5. N v . 1 ~  of &, the kn of the b e 1  ellipse of orda r, va kb. The plotted tr are cakuhted with &. 5b 

d ~ d . l l ~ f ~ ~ m , ~ ~ - 0 ~ ~ , l 1 0 0 , t ~ ~ m m , ~ - ~ ( 0 , a ~ ~ u d ~ - ~ , 2 , ~ , ~ d  10mEm-sim ** 
[l-*(r~)lu. 0: n-1; 8:s-2;El:r-3. 

About the quantity R h o  we can remark that (a) it 
is never negative if k10, (b) it equals zero for Rl=Ro, 
and (c) it tends to zero when I RI-Rol + 0. We 
know also that k&o(<l, so there must exist a positive 
constant co such that 

In view of this inequality we can derive from Eq. 30, 
with the definition of L-I, an important relation: 

q,(Ro) < -&o*-I(Ro) for m>O. (33) 
If this were an equality, the perturbation series would 

be a geometric one, convergent as s<l,  with sum 
90(1+ito)-~. Each of the terms of the true series is 
smaller than the cor'responding term in this geometric 
series. Therefore, the perturbation series converges even 
more rapidly, to a value that is about qo, because 
&<I, when k&o(<I. Consequently, if t.$e condition for 
the applicability of the perturbation method is satisfied, 
the convergence of the Series i~ guaranteed at the same 
time. The convergence is even so fast that the first 
term of the series is a very good approximation of the 
exact solution of the integral equation. Hence, from 

now on, we can take 

G. Tmnsfer Fonction of the sea m c e  

We are now ready to write the h a l  formula for the 
scattered field, by substitution of Eqs. 34 and 20 into 
Eq. Ila. The result is rather complicated: 

Some simplification is possible, as for the Green's 
functions. They depend on the distances WT and so* 
from T and R, respectively, to the random boundary 
(sa Fig. 6). However, as ZT and.& are much largu 
than the surface elevation, these distances are about 
equal to WT and WI, their values for t=O. Therefore, 
we expand wr and WR, and have 
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Fxo. 6. The distance from T and R 
to the nuface. If k and Za are much 
larger thsn 5,- and wa are approxi- 
mately equal to WT and WR. 

The random term in these expressions is important for exponential. This assumes the value 1 if f ==OJ in nhich 
the phase of G k ,  but not for the amplitude. Equation 35 case pa reduces to the speculee r&+on. 
ca.n therefore be changed into Aa a consequence of the xmhmatical formbti011 

in the frequency domain, pa can be ngudcd the 
response of. the surface to a colltinuout? s i g d  of the 
form exp(-id). As the time dependency has been 
sugpressed throughout the analysis, we d u d e  fran 

XexpCiK. ( R e - R i ) ~ k ( R i J ~ ~ ) G ~ ( ~ ~ J R e )  Eq.-2 that 
pb(o\.) -H(@&. x ~ (  - i k [ ( Z ~ m ~ ) r ( R d f  ( Z B / W B ) ~  (Ro)]). (37) 

(* 
The dependency of Pe on frequen* and t h e  hU, 

The random character of f i b  is concentrated in the last hen&, to be incorporated. The f r M p e ~ l c ~  vai* k 

Fro. 7. Signal from an &a- 
water ~ l o s i o n  Pfta Idection 
from the nu surface (Xr- 2200 m, 
k-Za-100  m, o-12 knots, nu 
state 2). Tht arrows indicate 
rpeculu r&ctiona from facets. 
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present via the wavenumber k in K,, in the Green's II. SOME PROPERTBS OF THE 
functions, and in the ~hase of the random factor. SCATTERED FIELD 

The t&e variable -needs a bit more consideration. 
We want to observe the scattered field.at time t. This 
field is built up by elementary waves, :transmitted at 
the surface points Ro. Each wave needs a time t = WR/CO 
to reach the receiver. Consequently, f(R0) has to be 
evaluated at time to=t-WB/CO. In the same way a 
time tl=f~- I R1-RbJ/co can be assigned to ~(RI).  
(If the dective scattering area is small vtith respect to 
WT and WB, we can take approximately tl=to.) The 
complete formula for the transfer function of the sea 
surf& then becomes 

Section I has produced a description of the acattenx& g 
field that is not subject to strong restrictions on, ' 
receiwtransmitter geometry,, on sea state, or on 
incident sound frequency. The price for thii general 
validity of Eq. 39 obviouily is its great complexity. 
A detailed analysis is, therefore, a study in itself. 
However, some properties of H(k,t) can be found 
relatively easily, if we consider sound frequencies so 
high that the integrals in Eq. 39 may be approximated 
via the stationary-Qhw method. 

where 
to = 1- WR/CO, 
tl-to- I RI-ROI/CO. 

WT and WB are defined by 
WT(RJ = (xl+yI+ZTI)$ 
WR(R~) =[(Xa-xo)'+~~?++Za']~. 

A. M111tipath Effect 
When k is sutiiciently high, we enter the Frequency 

domain where the ray theory is valid. The surface can 
then be considered as a. combination of locally flat 
areas, or facets. I t  will act as a rough mirror, and each 
facet on the surface where the slope hsa the correct 

(39) value will produce a local specula reflection. ,This 
effect occurs when the first few Fresnel zones are smaller 
than 'the facet. I t  has been observed at sea .when 

(40) impulsive underwater signals are reflected by the sea 
surface (Fig. 7). Mathematically, this multipath effect 
can be seen in Eq. 39 via a generalization of the method 
of s t a t h y  phe?"is generalization is straight- 
forward from the one-dimensional to the six-dimensional 

(41) case, but somewhat lengthy. It is hence omitted 

Pro. 8. The frequency comlstion function Bs for conatant fa; x-2 kh cod. ia the roughnws parameter. 
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here?' I t  indicates that each surface point where the 
slope has the geometrically correct value yields ' a  
contribution of the specdar type exp(ikD)/D. 

B. Fraunhofer Mdlraction 
At lower frequencies or for a very smooth surface, 

the analysis in Sec. 11-A indicates that there will be 
only one point of stationary phase : the point of specular 
reflection Ra= (X.,Y,), with X,=XRZT/(ZT+ZR) and 
Y,=O. The random factor in Eq. 39 then reduces to a 
constant that can be taken out of the integrals. The 
transfer function is then given by 

where 
$ = 2k cos8,S (R,;ta). (43) 

Comparing this result with the transfer function of the 
perfectly ffat surface, we conclude that the random 
boundary has introduced a phase fluctuation $, with 
zero mean value and with the same type of probability 
density function as the sea-surface elevation. For a 
Gaussian sea surface, the mean value of the scattered 
field and the correlation functions in frequency, time, 
and space can readily be calculated. An important role 
is played by roughness parameters of the type 

1. Mean Valuc 

This is the coherent part of the scattering. It  is propor- 
tional with the specular reflection, and the proportional- 
ity factor decreases with growing roughness, either 
because the incident frequency increases, the incident 
angle decreases, or the variance of the surface elevation 
becomes greater. Note that the mean value does not 
depend on the surface correlation properties. 

For this type of correlation we consider coinciding 
receivers and equal observation times. Two frequencies 
are transmitted simultaneously: a variable fl and a 
fixed j p .  .The normal i i  correlation function becomes 

and on fdf~ scale we find curves with a Gaussiin 
shape. Some are plotted in Fig. 8 for XZ= l,10, and 100. 

Coherent transmission is possible in a frequency band 
around fr in which BF is close enough to unity. In thib 
band all frequencies are affected by the rough surface 
in the same way, so that the shape of signals transmitted 
in this band remains unchanged. Then pulse elongation 
wiU not occur. If we accept the 3-dB points as the limits 
of the coherent band, we get B ~ l 0 . 5 ,  so that the useful 

bandwidth equals 2Af1= 2.36 f%/Xt, a quantity in- 
dependent of ft, but dependent on wind speed and 
geometry. 

The choice of fi and ft is not arbitrary, as the 
Fraunhofer approximation has to be valid. Adoptingthe 
usual assumption 'that the scattering is mainly coming 
from the first Fresnel zone and accepting relative path 
differences of up to lo%, we get the condition 

In order to illustrate the foregoing remarks we 
consider two examples : (a) XR = 100 m, (b) Xe = 1000 
m, both with 0-5 m/sec or h=9 an (Piuson-Mosko- 
witz spectrum) and Zr=Zs= 100 m. 

Exampk (a): From Eq. 47 we obtain 12168 Hz, 
whereas 2Af =3.54 kHz. 
Erumpk (b) : Now f 2 3750 Hz and 2A f = 15 kHz. 
Comparing these two examples, we see that a t  longer 
range the coherent bandwidth increases as the surface 
appears more smooth. However, the condition for the 
applicability of the Fraunhofer approximation shifts 
this coherent band to higher frequencies. 

3. T h e  Cowelution and DoppIc* SQread 
When coinciding receivers and a single incident fre- 

quency are taken, the input signal to the random 
filter is of the type exp(-a), and its response equals 
E(u,t) exp(-kt), as follows from Eq. 2. With Eq. 42 
we see that this output signal is proportional with a 
harmonic oscillation that suffers from a random-phase 
fluctuation. This random-phase modulation broadens 
the frequency content of the signal: Instead of only the 
frequency w, it also contains some energy in .a band 
around o. This effect is caused by the movement of tho 
surface elements. I t  may hence be called "Doppler" 
spread. 

Quantitative insight into thii phenomenon can be 
gained via the time-correlation function of the filter 

and its Fourier transform, the spectral density S(Q). 
Strictly speaking, BT has no Fourier transform because 
if 7 +00 ,  then B~=exp(-x")#O. However, we can 
substract this .constant and transform it separately, 
the result being a delta pulse. 

'A useful simplification is possible when the surfam 
is s&ciently smooth. For X10.625 the spectral density 
is approximateIy18 

The integral is reco-d as the frequency spectrum 
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- 4  
H H' Rc E i m l e  with radius De, 

i n  the plane y = 0 

Pro. 9.. Receiva ~~ fa 
o /  \. \- ' t h e r p . t u l - o f *  

X scattered ficid: (a) d v e n  on m 
average wavefront in the p h  

(b) 9'0, (b) v v e n  on an a- 
wavefront m the pbmc r-uu?st, 
and (c) mceivbn in the dhctm 

. - 0fproP.grtioa 

I .  

Circle with radius D o c o s c p ,  
i n  the plane z = Do sincp- ZT t 

/ 

Cirole with radius D o  

of the surface waves AX(w,)P so that 

We are now ready to discuss the statistical proper.ties 
of the output signal when a monochromatic signal of 
the type exp(-iwt) is applied to the input. The time- 
correlation function of such an output signal e q d  
BT(T) exp(-b~). The p 3 r a l  density function is 
hence obtained by a shift of S(Q) over a frequency w : 

souiPui(il) 
~sfil,(Q-w) - 2r exp(-*)[b(Q-w)+ (xt/4P)A1(n-o)]. (51) 

The delta pulse indicates the specular reflection: 1t is 
monochromatic and has the same frequency as the 
incident wave. Its importance decresses when the 
roughness is growing and at the same time the inco- 
herent part becomes more pronounced. This incoherent 
part consists of two side bands. For a smooth surface 
they have the same shape as the surface-wave frequency 
spectrum. Experiments made by Roderick and Cron* 
confirm this. For a fully developed sea (Pierson- 
Moakowitz spectnun) the strongest surface-wave fre- 
quency equals w,=8.77 g/o, so that f ~ = =  14/u Hz is the 
most important Doppler frequency. Hence the Doppler 
spread amounts to only a few hertz, independent of u. 



AT, degrees 

FIG. 10. The vertical transversal correlation function Bs (A ,p). The rdvera arc laced on an average wavefront, in the p k  y -0, 
at podtiom given by the angh p and p+Ap [see Fig. 9(a)f; ZT-100 m, 1-7.5 &. 
This makes the Doppler effect more important a t  in a plane Z-const, and (c) in the d i d o n  d 
lower incident frequencies. propagation. 

Figure 9 presents the three transmitter-receiver am- 
4. Spatid Cmelation figurations and the pertinent parameters. ' S i n a  the 

TO study some aspects of the spatial correlation of m a n  wind direction a n  be chwn asbiitraril~* 
the scattered field, we consider two receivers in three geometries are perfectly They are, how-, 
different relative positions: (a) on an average wave- restricted by the Fraunhofer conditions. 
front in the plane Y =O, (b) on an average wavefront Formulas for the spatial correlation functions ort 

a ,  degrees 

FIG. 11. The horizontal transvend correlation function Bs a,p). The receivm are kad on an average wavefront, in the p b  
i-mnst; thei~ positions are determined by the angle p and Fig. !I@)]; b - d m ,  f-7.5 Uib 
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p, metres 
Fro. 12. The longitudinal correlation function B s k , ~ ) .  The rcceivus are placed on a line in the direction of propagation; their 

positions are defined by 9 and p [see Fig. 9(c)]; ZT-100 m, f-7.5 La. 

easily derived from Eq. 42. For a single incident fre- 
quency w and equal observation times at  both receivers, 
we get the following: 

a. Vertical Transversal Correldion 

where y=sin(p+Ap)/sinP and t=Z~lcotp-cot 
((~+AQ) 1, for small receiver spacings; 

b. Horizontal Transoc~sal Corrckrlion 

with € = Z ~ I c o t ~  (1-cw)I and rl=Zrlcot(p sinal. 

where T = p / c ~ .  
For large values of AQ, a, or p the influence of the 

surface correlation functions vanishes and the correla- 
tion functions tend to a constant. Only for small 
receiver spacings does @ play a role. 

Numerical examples are shown in Figs. 10-12, for an 
incident sound frequency of 7.5 kHz, a transmitter 
depth of 100 m, .and wind speeds of 3 and 5 m/sec. 
The shape of the surface correlation function is hard 
to recognize in these results. In general, it can be said 
that an increasing roughness, either due to larger values 
of 9 or of o, results in a decrease of the spatial correla- 
tion. However, in case b two effects are present when 
cp is growing: (1) the apparent roughness increases so 

that poorer correlation can be expected; (2) the specular 
points corresponding to a certain receiver spacing ap- 
prwch each other and the surface correlation function 

therefore becomes more influential. Clearly in Fig. 11 
the second effect is stronger than the first. In the 
limiting case (p=90°, the receivers coincide for any a, 
and Bs= 1. 

The longitudinal~curves (Fig. 12) indicate that good 
correlation is maintained even at receiver distances of a 
few hundred meters, when X<2. This is due to the 
high sound speed. 

III. SUMMARY 

Underwater sound waves are randomly scattered and 
reflected by the sea surface. When the incident field is 
caused by a delta pulse, this boundary effect can be 
called the "impulse response of the sea surface." I t  is 
random and time variant. 

An expression for the transfer function of the filter 
that can be thought to represent the sea surface has 
been derived using a generalized version of the Helm- 
holtz diffraction integral. The normal derivative of the 
total field a t  the boundary-a random function re- 
quired for the evaluation of the Helmholtz integral- 
has been approximated by means of a perturbation 
method. We have shown that for the upper boundary 
of the ocean it su5ces to take the leading term of the 
perturbation series. 

The resulting expression for the transfer function is 
rather complicated. It depends on the frequency of the 
incident wave, on the observation time, and on the 
geometry of source and receiver. Its validity is only 
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restricted by the assumptions that no subsurface layer 
of aii bubbles is prksent, that source and receiver 
depth are large campared with the surface elevation, 
and that the bottom is infinitely far away. 

For frequencies so high that the' fist  few Fr+el 
mnes are small campared with the surface facets, the 
formula indicates that specular rdection occurs at 
each surface point where the slap has the value 
required by geometrical optics. 

For lower 4kquencies, in the domain of Fraunhofer 
Mractiop, .there exists ofly a virtual point of reflec- 
tion: the specular p j n t  for the av-ge surface. The 
&ect of the random boundary is then a phase distor- 
tion of the specular reflection. 

A detailed analysis of the statistical properties of 
.the sea-surface tranafer function is at present under 
way. Its results wil l  be reported later. Some prdimhry 
results are included, however, regarding mean value, 
and frequency, time and spatial correlation functions, 
for frequencies in the domain where the Fraunhofer 
approximation is valid. 

Thanks are due to W. Wijmans for supplying 
Fig. 7. 
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5.3 Simplilication of the formula for E(m, t )  %p ' .? 

5.3.1 The basic formula I : - .YZ _.'- ,; 
- ,  

We start our analysis with Section 5.2, Eq. (35). This equation gives an expression - I 

for the scattered field at the receiver that can be interpreted as the transfer fmction '':- -., . 
of the random ater we are studying. It may be written as: 

%. . . - - 4 

where 

The first expression states that H can be obtained by a weighted summation of the 
effects of unit scatterers at the surface, the weighting function Y being given in (5.3). 
Physically, this weighting function is proportional to the normal derivative of the ' - 
total field at the boundary. First we will concentrate our attention on this quantity. 

5.3.2 The weighting function !P ,.e.s + -. 
In (5.3) appears the Green's function Gk(94$, 1,)s which is the field that would be , $. 

caused at the surface point el, by a unit point source at 41, (i.e. by the transmitter), 
if the surface were absent. It represents a spherical wave and can be written as (see 
Section 5.2, Eq. (12)): 

Gk(W?, W ~ )  exp [ik~T(R1)I/~T(R1), 
where 

WAR,) = [R: + (z, - 1(~1))~1+. 

Substitution of (5.4) into (5.3), together wi@ R1 = R,+ Q and R, = R, leads to 

It is impossible to continue the analysis without using approximate methods. We 
therefore apply a generalized version of the stationary phase method? and find 

with w, = w f l )  being the distance between the transmitter and the surface point 

a For the one-dimensional case this technique is dmcxibed in r5.4, pp. 752-7531; the gumabation to 
more dimensbps is treated in [5.5]. 



Pi& 5.1. 
Dietancas from an arbitrary surface point to 
tranamittm and &wr, and from its prowon on 
the average surface z = 0. 

LIP (see Fig. 5.1). Also C, C, and C, have to be evaluated at the point R. In the deriva- 
tion of (5.7) we have used the inequalities (2 << 1 and C: < 1, which follow from (3.23). 

Details of the calculation can be found in Appendix B. There it is also shown that 
a better approximation, only subject to the condition 

can be obtained if in (5.7) the amplitude fluctuations outside the square root are 
neglected and only the phase fluctuations are retained. This simplifies the formula 
for Y into 

ikZ, Y(R) = - J (;,"L-.YF exp (ikw,) 1 + 2 
21~ w; 

where WT = (RZ + z;)*. 
The question of how good this approximation is, is difficult to answer because the 

exact solution is not known. The method of expanding Y in a series and estimating 
the error that is made when all the terms after the d" are suppressed, offers no 
solution because of the complexity of the formula for Y. However, the analysis made 
in Appendix B indicates that (5.9) differs less than 20flrom the exact solution for 
surface points inside an ellipse with semi-minor axis equal to 3.6 ZT and semi-major 
axis 6.4 ZT, the major axis of this ellipse being orientated perpendicular to the wind 
direction. It is also shown that Y is most si&cant inside this ellipse. 

The condition (5.8) is easy to satisfy. For ZT we will have a value of at legst 100 m, 
so that has to be smaller than 1 m. From (3.16) we see that for v < 10 m/s the 
standard deviation of C is given by h < 0.368 m, so that 3h ( 1 m. Since the prob- 
ability that lCl2 3h is only 0.270/,, the condition (5.8) cannot cause any problem. 

5.3.3 The transfer function 
With the foregoing results we return now to the transfer function. Using (5.9) in 

(5.2), and putting at the same time 



G,(91,, @) = exp (ikwR)/wR ' - 

with (see Fig. 5.1) 

WR = WR(R) = (IRR - R12 + {zR - C(R))~)*, 

the transfer function can be written as a surface integral: 

The square root makes this somewhat difficult to handle. But for R < 9 ZT this 
root can be expanded into a converging power series (see Appendix B). For H we 
have then 

M 

H = Ho+Hl+H2+ ... (5.13) 
with 

ik exp [ik(wT + wd]  Hl(a, t) = -JJdR 
2z (xCx + YC,)' 

w,zwR 

etc. 
The significant domain of integration lies inside the circle with radius R < 9 2,. 

~n 'that domain the power series expansion of [I +2(%CX+yCy)/ZT]+ is convergent. 
The function with which each term is multiplied, i.e. the integrand in (5.14), is 
smooth and has no singularities. Hence the series expansion of H is also convergent. 

The physical interpretation of the expressions for H,, HI, Hz, etc. is very much 
the same as the one given in Section 5.2 for Eq. (7). Again we find that the transmitter 
induces elementary sources at the surface that reradiate the received energy omni- 
directionally. For an arbitrary source on the boundary the distance to the transmitter 
equals wT and the distance to the receiver is w,, as is depicted in Fig. 5.1. Hence the 
phase delay at the surface amounts to kwT and at the receiver it is k(wT+ wlp). The 
weight of the sources for Ho depends only on the surface elevation (via w d ,  whereas 
for HI, H2, etc. the slopes are also involved. 

5.4 Behatiour of H for high frequencies 

5.4.1 Purpose of the unalysis for high frequencies 
For later use it will be convenient to have approximate versions of H,, Hl and H, 



that are valid when k is so large that the stationary phase method can be applied to 
solve the integrals in (5.14X5.16). As a side-issue that for the moment has only 
restricted value, we derive these approximations in this section, and discuss some of 
their properties. 

5.4.2 The stationary phase method 

Applying the stationary phase technique on the integrals for Ho, HI and H2, we 
readily see that, for a surface with gentle slopes, there is only one point of stationary 
phase, namely the point of specular reflection. By "gentle slopes" we mean that C, 
and I ,  satisfy the following relations. For XR w 0 their absolute values do not e x 4  
the value a, for XR 2 100 m they are not larger than p and y, where a, p, and y are 
constants that depend on the geometry of transmitter and receiver: 

and ZTSR being the larger of ZT and ZR. Details of the derivation of these conditions 
are collected in Appendix C. There it is also shown that the formulae for Ho, HI,  and 

I H2 reduce to . . -. ? -  

Ho(w, t) = - D, ' exp (ikDo - i2k cos en, 

H~(CO, t) = - + -2eL:~o(a, t), 
when 

21~~,,1 tane, G 0.1 
and 

It should be remembered that in these equations the surface elevation and its 
derivatives have to be evaluated at the position R, and at time t,, as in Section 5.2, 
Eqs. (42) and (43). It is also worthwile noting that Ho(o, t) is the same as H(k, t) 
in those equations. 

The foregoing results were derived under the condition that k is "suEciently large". 
The frequency range in which (5.18X5.20) hold, could probably be established by 
an analysis of the stationary phase integration such as is described in [5.6]. But such 
an analysis will be very complicated, and since the formulae for Ho, H,, and H2 are 
only used here for comparison, we will not attempt such an investigation. 



An indication about the degree of reliability of the stationary phase approximation 
can be obtained by letting C + O  in (5.18)-(5.20): H, becomes 

which is the exact solution for C = 0, whereas all terms of higher order vanish. 

5.4.2 The convergence of the series expansion for H 
In Sub-Section 5.3.3 we found that the convergence of the series Ho +HI + H, + . . . 

is guaranteed if R < 9 2,. We can now give more signiscance to that statement 
because we have seen that the main contribution to Ho, HI, Hz, etc. comes from the 
specula point. With that knowledge we can write that the convergence is guaranteed 
i fXag9 ZT, or tanea<9. 

This result has only formal value. It states that the expansion (5.13) is convergent 
as long as X, 9 9(ZT+ZJ, but it does not indicate how many terms are needed to 
approximate H with a certain accuracy. However, the formulae for Ho, HI, etc. are 
subject to condition (5.21), and if this condition is satisfied, we have automatically 
that 

Ho >HI >Hz> (5.24) 

Hence Ho is the leading term of a convergent series, and the higher order terms 
represent only corrections of relatively small importance, if 21Cx,yl tan 8.9 0.1. 

5.4.3 Significance of v a n a n m  conditions 
The results obtained in Section 5.4 are accompanied by four conditions on the 

slopes of the surface: in (5.17) the maximum acceptable values are given, and (5.21) 
requires the slope to be less than 6, where 

s = 0.051tan e,. 
Furthermore, we have the condition on the slope quadrature (Cf < 1 and CZ < 1) 
that played a role in Section 5.2. 

The slope of the sea surface is a random quantity with zero mean value and - for 
the Pierson-Moskowitz spectrum - with variances equal to 0.003 in down-wind and 
0.001 in cross-wind direction. These values are three orders of magnitude smaller 
than one, so that the condition on the slope quadrature is amply satisfied. 

The standard deviation of the slopes is at most about 0.05. In (5.17) we see that a 
is never smaller than 0.05, so that also the condition < a is observed. 

The behaviour of fl, y and 6 as functions of XR and ZR is more difEcult to analyze. , I 

But we can easily see that ,s 

y 3 o.l~/tane, = 38. (5.26) 



Fig. 5.2. Curws enclosing the arcas m which both aud d are larger than a given value nr dots 
indicate the d v a  pitions that ate used in Tables 6.1 and 7.1). 

Hence it is suflicient to require that the slopes are smaller than /3 and 6. Curves 
for constant jl and 6 can be plotted. For a certain value /3= 6 = m, two curves are 
found that enclose a region where both /3 and 6 are larger than m. In Fig. 5.2 such 
regions are indicated for several values of m. The curves in that picture can be used 
in two ways: 
1. For a given geometry the value of m can be read; it is the smaller of j? and 6, 

and our results are only valid if IC,,yI < m for the chosen receiver position. 
2. If the maximum value of the surface slopes is known, say equal to mo, the area 

of receiver positions for which our formulae are valid can be found inside the 
curve for which m = mo. 

We note that in the second case the region of validity is decreasing when m goes up. 
The condition (5.22) for the second derivatives of the surface elevation is less 

important than the one on the slopes, because it only a&&s the amplitude of H and 
not the convergence of the series expansion. From Appendix C it can be learned 
that Ho will have a modulus 

instead of A = Di',  if (5.22) is not satisfied. Also the higher order terms have that 
factor, and so it does not infiuence our conclusions. 



5.5 Justification of the use of the Helmholtz equation 

The wave equation in a medium with a timadependent boundary 
Leonard Po* 

SACLANT ASW Rcocrrreh Centre, La SpaQ Italy 
(Readved 19 October 1972; revised 1 Jhmber 1972) 

It is shown that the Helmholtz quation is not exactly comct for a medium with a timedependent boundary. 
The equation can be used with very good approximation when the time-derivative of the surface elevation is 
much smaller than the speed of the waves through the medium. For underwater sound waves, reflected and 
scattered by an ocean swface that can be d e s c n i  by the Pierson-Mcwkowitz spectnrm, this meam that the 
wind speed .has to k much leu than the sound speed. 

Subject Chificatioa 13.2, 13.4. 

LIST OF SYMBOe 
amplitude 
sound speed 
standard deviation of surface elevation 
(- 1)) 
wavenumber of radiation 
pressure (time dependent) 
pre88ure (time independent) 
pressure, due to the boundary 
p~ in unbounded medium 
vector m horizontal plane 

time 
wind speed 
direction cosines 
surface profile 
density 
time difference 
correlation function.of surface elqvation 
angular frequency of incident wave 
frequency of surface wave 

INTRODUCTION Before treating the case of a timedependent surface, 
The propagation of sound waves through the ocean we consider the "frozen" boundary for komparison. 

is, governed by a wave equation. In case of a mono- 
chromatic source this wave equation is usually written .A. The Time-hdependent Sltrface 
as' 

(a+% -0, (1) 
the so-called Helmholtz equation. This equation is 
exact when the boundaries of the medium in which the 
waves are propagating are independent of time. How- 
ever, in case of a timedependent boundary, such as 
the ocean surface, the Helmholtz equation can only be 
used when the boundary changes slowly enough. It is 
the purpose of this paper to derive a condition for the 
validity of Eq. 1 in that case. Also, the significance of 
the derived condition will be discussed. 

If the sound murce is monocluomatic, 0 can be 
written as D(t) = U @(id), where U is independent 
of time. We have then 

and 

so that Eq. 3 changes into 

I. THE CONDI'I'ION FOR THE VALIDITY UBinB Eq. 6 and dropping the time-factor exp(iwt), 
OF THE HELMHOLTZ EQUATION Eq. 1 is found without any approximation. 

It is convenient to deal with the velocity potential 
0 rather than the sound Dresswe 5. For sound waves 8. The Time-V&t Surface 
of small amplitude these two quan%ties are related by The movement of the surface causes the sound field 
the equation 

$=poaD/at. 
The velocity potential satisfies the equation2 

to depend on time in a more complicated way than ,in 
(2) the foregoing case. To illustrate this we refer to the 

Doppler effect that is present in the scattered field, 
hence also in the total field d and so in 0. For this 

(3) reason U is now a function oftime. 

* In the reprinted part it is wrongly stated that p represents a time-independent pressure. In reality, p 
ie tim~Amumdmt hilt d m  nnt inclilde the hnrrnnnic factnr exd-ir11t). Hence a t )  = d t )  e d - i r , ~ t l .  
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ConsequentIy, instead of Eqs. 4 and 5 we find: For realistic values of the windspeed, this condition is 

(8) 
easily met. Details can be found in Appendix A. 

aO/at= (ioU+au/a't> =(kt), 

B. The Complete Condition 
and this result substituted into Eq. 3 does not produce F,, we the ~ ~ u p h o f ~  form& 
Eq. 7. However, if the inequality (Ref. 1, Eqs. 42.and 43) and tind for apoint dose to the 

[au/atl<<l~ul (10) surface (ZB = &) : 
is satisiied, Eqs. 8,and 9 may be repl@.by Eqs. 4 $60) = -4iRDo-iZk COQB,{,(t)YDo, (18) 
and 5, and Eq. 7 does follow. SO this is a su$dent Do=[XRa+(zT+'&)a]~. The k t  wave for that condition for the validity of the Helmholtz equation point.is time-independent and given by 
in the case of a time-dependent boundary. In that case 
Eq. 6 also holds, so that the.conditioii can be written popexp (iRd)/d, (19) 

I t  should be noted that 9 is the total sound field: 
p=po+pb. As the incident field po is independent of 
time, we get 

I ~ P ~ / ~ ~ I < < w I P O + P ~ I ,  (12) 
where w>O. 

If either /PO I<<l$al or I$ol>>lps [, this condition 
is certainly satisfied when 

But if 1 ~ 0 1  and lpbl are of tke same order of mag- 
nitude (as occurs close to the boundary), we have to 
observe the complete condition (Eq. 12) instead of 
the reduced condition (Eq. 13). The significance of 
both conditions is discussed in Sec. 11. 

IL SIGNIFICANCE OF THE CORDITIORS 
A. The Reduced Condition 

In Ref. 1 [Eq. 39) a'formula is given for the scat ted 
field that is derived'from the Helmholtz equation. The 
time dependency .is concentrated in the factor 

where yr  and YB are constants, smaller than or equal 
to 1. Replacing pa by F in Eq. 13, we find theinequality 

This fonnula may be r e p 1 4  by' 

as 3 is a stationary prows and YT, y a l l .  The left- 
hand side of this inequality is hard to deal with, because 
it is a randoin quantity. Therefore, we replace it by its 
meanvalue or its standard deviation. In both cases we 
M, for a sea-surface elevation +at is Gaussian and 
that can be described by the Pierson-Moskowitz wave 
$pectnun' 

K<l&o. (17) 

where ~ = [ x B ~ + ( Z T - ~ ) ~ ] ~  If llOW We C 8 l l  
put Do=d and 

follows. This result into Eq. 12 'yields 

Also this inequality haa to be analyzed statistically. 
Using the mean-square criterium, plus some results of 
Appendix A, we obtain the condition 

Very low values of the windsped (and consequartly 
of h) need not be considered because the surface looses 
then its time dependency, and our problem diesppears. 
Hence we assume that the quantity between squam 
brackets in Eq. 22 has at least the value lo-& (following 
from k G  1, a- 1 m/sec and cos0, ~0.6). Then we find 

This condition is far more restrictive than the one found 
in the previous section, but still easy to satisfy. 

We have shown that for a medium with a time- 
dependent boundary the well-known Hehholta qua- 
tion holds only appmxiinately. We have also d* 
a sui5cient condition to which its use is subje :  The 
time derivative of the surface elevation has to be much 
sknaller than the speed at which the waves are propa- 
gating through the medium. 

This condition has been analyzed statistically for 
the random sea surface. Using the Pierson-Moekowitz 
spectrum to describe the surface elevation, it is found 
thatthewindspeedhastobemuchsmallerthanthe 
sound speed. This condition is very weak and easy to 
satisfy. Hence we d u d e  that it is permitted to uw 
the Helmholtz equation in studies on sound ~ 1 ~ 8 t k h g  
from the time-variant ocean surface. 
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Thanks are due to Prof. ir. E. W. Grbeveld (Td- f (Q) - 2C&diT1 exp(-Qb/24WQ), (As) 
nical University Twente, Enschede, The Netherh.nds) where u is the unit step function. ~ ~ t ~ d  value and 
for pointing out the problem discussed in this paper. v ~ a n c e  are readily by inwtion: 

APPENDIX A: MEAH VALUE AHD VARIANCE OF E(Q) m~(2hj l i ,  
I %/at 1 E(P) = 2. ( ~ 6 i "  

It is assumed that the sea-surface elevation ( is a 
stationary p m  Ga- pdbavfity d&y. s h h t i d y l  tbe COltditi0n =<GO means that we 
I t  can then be shown (Ref. 5, p. 147) that also the quire 
random process a(/& is stationary and Gaussian. Its 2d<c1 (A71 
mean value equals zero, and its variance is given by With Eq. A4 thii yields 

2 - ((at/er)s) - -r{$(~,o,~)] . (AI) o<<s*/5co= loco. . .  kc: - 
r-0 

The codation function CP can be expressed in terms 
of the surface-wave spectrum As(oa) (Ref. 6, p. 15) : 

For As we take the Pierson-M0SLowit.z spectrum (Ref. 
4, p. 167.9). The integsaI can then be solved analytically : 

Next we turn to the random process Q= 1 af/a:l. 
Its probab'ity density follows from Ref. .7, pp. 130, 

'L. Fortuin. 'The Sea Surface an a Random Filter for 
Underwater Sound Waves," J. Aamt 'Soc. Am. 52, 302. 
(1972). 

'B. B. Baker d E:T. Copron. Thc'lldatkoM~I lbory elf 
H u m ' s  mndpk (Clamdon, Oxford, Englad, 1953). p. 
8. 

'The mnc result follow if we suWtute the Fnunhofer 
formula (Ref. 1, Eq. 42 and 43) in@ Eq.. 13. 

*L. ~onuin ud J. G. be  oar, 'Qp0ti.l ud ~mgonl 
Correlation of the Scll S h , "  J. Acast Soc. Am. 
49, 1677 (1971). 

'P. B~C-, ~ h l r  01 ~pplid m b a b u i ~  n- 
(Jimmm Bnce, urd World, New York, 1968). 

'J. 0. de Boer, "On the Correlation Functions in T i  and 
SpWX d Wind-GClI~tad &Ull W8~~"~~tCCll Tech. 
Rep. 160 (15 Dcc. 1969). 

'A. Papoul'i Probability, Random Variabla and Stockastic 
Rocarc-s (McOrrw-Hill, New York, 1965). 



In the foregoing paper we have derived the condition under which the original 
differential equation f , . ,  : > ;  * " * 4  , .>2,.- ,? % 

. A  

I .  ' 

v2U = ~ ; ~ a ~ U / a t ~  (5.28) 

is approximately equal to the Helmholtz equation 

and we have stated that the use of (5.29) instead of (5.28) is justified if that condition 
is fulfilled. An important objection can be made against this reasoning: the fact that 
two differential equations are about equal does not at all mean that their solutions 
are very close. Indeed, a small perturbation in a differential equation may be integrated 
into a large disturbance of the original solution, so that the two solutions thus obtain- 
ed are far apart. 

A better justification has been found if we solve (5.29), and can show that this 
solution also satisfies (5.28). This will be done in the remaining part of this section. 

In Section 5.2 we solved the Helmholtz equation for p, with the boundary condition 
p = 0. We found p = p o  +p6, where po is the solution for a space without boundary: 

and pb is the boundary effect: 

In that analysis U and p were related via 

U - (icupO)-'(po + pb) exp ( - icut). 

Hence (5.29) is satisfied, if 

The differential equation for po is easily checked: V2po is equal to -k2fjo, and the 
time dependency of po is only present in the factor exp ( - iw t ) ,  so that a2jjo/at2 = 
- 0 2 ~ , .  This shows that for Po, (5.29) and (5.28) are identical. 

For pb the situation is more complicated. For V2pb we need to differentiate with 



respect to XR, YR and ZR (because L?tR is the point at which we check the solution) 
and this dependency is only present in Gk(L?tR, e0). The time dependency of IT, is 
contained in both Green's functions : 

1 1, 

with to = t- WR/co and tl = to - IR, -Rol/co, and in the factor exp (- iot). The 
approximation made in (5.35) is based on Assumption 11. 

Turning now to the differential equation for j& in (5.34) and assuming that in 
(5.31) the order of differentiation and integration can be exchanged, it is suEcient 
to demonstrate that 

Gk(91i, 4tT) exp (- iot) V 2 ~ k ( ~ R ,  W:) = 

The left hand side is easy to calculate: we find -k2GkST~, ,  exp (-jot). For the 
right hand side we employ (5.35) and obtain 

Therefore (5.36) is true if 

and 

Condition (5.38) is the same as Eq. (15) of the first part of this section. It is true, 
for the Pierson-Moskowitz spectrum, if v<10 co. Hence (5.38) is always amply 
satisfied. Condition (5.39) can be replaced by 



In Chapter 3 we found < > = 0.4 for the Pierson-Moskowitz spectnun. There 
fore (5.39) is well fulfilled if o 2 0.1 radianlsec. 

Finally, collecting results, we arrive at the conclusion that the use of the Helmholtz 
equation is justified in studies that involve the time-variant sea surface, because such 
a boundary changes slowly enough with time. 

5.6 Summary 

Starting from the Helmholtz equation with boundary condition of zero total 
pressure, an expression for H(a, t) has been derived. It is a six-fold integral that can 
be reduced to a convergent series of surface integrals, when the surface slopes are 
gentle enough (I[,l< +cotan@). These surface integrals are examined for high 
frequencies. The first one is shown to be a good approximation for the whole series, 
if the first and second derivatives of the surface elevation do not exceed certain limits 
that depend on the geometry of transmitter and receiver. This approximation of zero 
order reduces to the exact solution when [ +O. For C # 0, it can be improved by 
addition of the corrective terms Hi and H,. Further improvement is possible, at 
least in principle, by adding more terms, but the algebra will become quite formidable. 
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the deterministic part of the filter 





THE DETERMINISTIC PART O F  THE FILTER 

t.8. % - ,a. 6.1 Introduction I -  

After the derivation, in Chapter 5, of an expression for one of the system functions 
of the random flter, we are ready to embark on a statistical study. The fist step, 
the determination of the filter's k e d  part, will be made in this chapter. 

This fixed part, also called deterministic or coherent part, is represented (see Section 
4.4) by the mean value of a system function. We have chosen the transfer function H 
for this purpose. Its deterministic part is called H,,. 

Further simplification of the formula for His possible, starting from the one derived 
in Chapter 5. This is shown in Section 6.2. The calculation of H, is treated in Section 
6.3; some remarks about absorption are ma& in Section 6.4. 

6.2 Further simplilication of H 

Starting point for the present analysis is the approximation 

with H, and HI given as surface integrals, in (5.14) and (5.15). This truncation of the 
series for His  justified, at least in the upper part of the frequency domain, when (see 
(5.18)-(5.20)) 

For 1CX1 < 0.05 (Pierson-Moskowitz spectrum), this means tan 8, < 10 or 8, < 84O. 
It allows for any geometry of transmitter and receiver, as long as the grazing angle 
is larger than 6". 

Examination of (5.15) reveals that the mean value of HI equals zero, since < c, > = 
<C, > = 0. Hence, as at present we are only interested in the mean value of H, we 
may write 

ikZ, exp [ik(wT + wd] = -jjdR 
21c w:wR 

The distances w, and w, depend on the surface elevation C(R). This can be seen 
in (5.5) and (5.1 1). The dependency can be expressed more conveniently if we use the 
following approximations (see Fig. 5.1) : 



They are valid with an m o r  less than I%, because Zr and ZR are much largez 
than C (Assumption 11). 

In the argument of the integrand it is important to conserve the random process 
C, but in the modulus we can go one step further and put wR tw Wp Therefore H(w, t) 
may be written as 

ikZT exp [ikD - ikytp, t')] H(W, t) = - $$ d~ 
21c w; WR 

9 

where 
D = D(R) WT + WR, 

The surface elevation has to be evaluated at time tl< t, in order to take into account 
the travel time required in going from the surface to the receiver. 

In (6.5) the random character of H is represented by the phase term -ikyC. Con- 
sequently, H,, the mean value of H, involves the characteristic function r6.1, p. 1531 
of C(R, t'). This process is stationary and Gaussian (Assumptions 3 and a), with zero 
expectation and variance h2, so that its characteristic function equals exp (-+k2hZy2). 
Thus we find from (6.5): 

This integral will be evaluated numerically. But before doing so, it is usefui to 
consider the outcome when the stationary phase method is applied. This technique 
produces a simple result: 

which equals the mean of Ho as given in (5.18). Formula (6.8) is interesting, but of 
little use - as long as it is unclear for which frequencies it holds. 

The integrand in (6.7) is a complex function; this makes the integral less suitable 
for numerical calculations. For this reason we compute the Fourier transform of Hd, 



that is the impulse response function hdz). Using (4.2), together with [6.2, Vol. I, 
p. I5(11) andp. 73(19)], we get 

(T' - 7)' exp [- -1. 
Two new functions of R appear in this formula: 

Table 6.1 Transmitter-& c o ~ t i o n a  and wind 8 p d 1 ,  used for the nlrmsricol a h l a t h  
of Ha. 

XR in m 1 2 5 10 

0 case 01 case 02 case 03 case04 
100 11 12 13 14 
200 21 22 23 24 
500 31 32 33 34 
lo00 41 42 43 44 
2alO 51 52 53 54 
MOO 61 62 63 64 

The numerical calculation of hd with (6.9) and (6.10) produces an interesting result: 
for all cases listed in Table 6.1 the numerical value of hd does not differ significantly 
from the stationary phase approximation, i.e. from the Fourier transform of (6.8). 
This signifies that we have, with good approximation, 

where b, and z, are the values of b and z' at the specular pointi0: 

An illustration is presented in Fig. 6.1, where we have plotted h,, given by (6.1 l), 
together with the results of numerical integration for all cases, on normalizad scales. 

l@ Some authors (e.g MCDONALD and SPINDBL [6.3, p. 7503) call b, the "Rayldgh -". 
Usually this asme is given to the quantity ub, =2 kh cos 8, @IKWANN and ~ c i w o  16.4, 
p. 101, HORTON and MBLTON [6.5, p. 3001, Vmammmmm and TUTBUB 16.6, p. 11023). Then it 
is identical to our r o u g h  parameter X. 



The foregoing results also mean that (6.8), although derived for high frequencies, 
can be used for all frequencies from 0 to a. Hence we arrive at an important and 
very useful conclusion: for the deterministic part of the filter, the stationary phase 
approximation can be used in the whole frequency domain, if we limit ourselves to 
moderate wind speeds (v g 10 m/s) and grazing angles (cp 2 8.5"). In terms of the 
roughness parameter x = 2kh cos 8, (see Section 5.2, Eq. (44)) we have hence: 

1 .o 

0.5 

H h )  = - D, ' exp ( i k ~ ,  - +x2), 

It would be interesting to compare this result with an analysis of (6.7) by means of 
an extended stationary phase integration technique, for instance the one developed 
by JONES and KLINE [6.7]. The question whether discrepancies at low frequencies 
have been smeared out by the Fourier transformation could then also be answered. 
But as such an analysis is very complicated, it will not be attempted here. 

Finally we elaborate on the meaning of (6.1 1): the deterministic part of the filter 
delays a unit delta pulse and changes it into a pulse with a Gaussian shape. The 
delay is proportional to the specular path length, the width of the pulse depends 
linearly on the cosine of the specular angle of incidence and on the variance of the 
surface elevation, whereas the pulse height is inversely proportional to that variance. 

0 -3 M'l -2 -1 0 I 1 I'M-,.. 2 3 

TN 

I Fig. 6.1. 
The impulse rapom function of the fixed 

D,,*~~(T~) part of the filter, on normalized scales: 

6.4 Absorption 

1 

Up to this point we have neglected the absorption in the medim This phenomenon, 
which can become important enough to be taken into account in practice, can be 
built into our model by series connection of an absorption ater. This has been 
discussed in Chapter 1. 

stationary phase approximation 
(6.11), . numaical integration (6.9); ZN = 
(t- %Yb* 



Such an absorption filter is time-independent and has the transfer function 

Ha(o)  = exp ( - w 2 ~ c a ) ,  

with Ca = 4.5 x 10-l3 dB/m (at a temperature of 20" C) and L the travelled distance, 
in meters. Thus by incorporating the absorption, the complete formula for H, 
becomes : 

Hd(w) = - D o  ' exp (ikDo -ix2 - D0caa2).  

Its Fourier transform is easily obtained and differs from (6.1 1) only in one respect: 
b, has to be replaced by b:, where 

Table 6.2 Values for b,, b', and b',/b, for the wind speeds and the transmitter-receiver confi@mtions 
of Table 6.1. 



Both b, and b: are functions of wind speed and geometry. In Table 6.2 we have 
listed the values they assume for the cases of Table 6.1, and also their ratio bgb,. It 
can be seen that the absorption becomes influential for the longer ranges (X, 3 1000 
m) and the lower windspeeds (v < 2 m/s). 

The fixed part, or mean value, of the transfer function has been investigated in 
this chapter by considering the surface integrals derived in Chapter 5. The first one 
(H,), integrated numerically after the mean value of the integrand has been calculated, 
produces the same result as the stationary phase integration, for wind speeds less 
than 10 mlsec and a grazing angle larger than 8.5". The second one (H,) is identically 
zero due to the statistical properties of the sea surface, the third and higher order 
terms produce results that are negligable compared with < Ho > for p 6". Hence 
an important result is found: for many realistic combinations of geometry and wind 
speed, the deterministic part of the filter can be described with good approximation 
by the formula that follows from the stationary phase integration (i.e. the specular 
point formula). 
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THE RANDOM PART OF THE FILTER 

7.1 Introduction 

The second step in the statistical analysis of the filter regards its random part. It 
is defined, as has been pointed out in Chapter 4, as that portion of the filter that 
remains after the fmed part has been removed. Again any system function could be 
used to describe it, and once more we have chosen the transfer function, that is H ,  
in order to be consistent with the foregoing chapters. 

A formula for H, is derived in Section 7.2; its average value equals zero (as a 
consequence of the way in which H, has been defined), its variance is considered in 
Section 7.3. For the evaluation of this variance, numerical integrations are required. 
Results are presented in Section 7.4. Conclusions about the best way to approximate 
H, can then be drawn, which is the subject of Section 7.5. 

7.2 Derivation of a formula for H, 

A definition of H, follows readily from (4.17): 

H,(o, t) = H(o, t) - H&, t). 

In Chapter 5 it was found that in practical cases Ho is a very good &st approxima- 
tion of H, whereas in Chapter 6 we have shown that H, is time-independent. 
Thus we can write 

bearing in mind that improvement might be obtained by addition of HI, Hz, etc. 
Expressions for Ho and H, have been derived in the previous chapter. Applying (6.5) 
and (6.8) to (7.2), we find 

; a  

If the stationary phase approximation is used, this simplifies into 

H,(w, t) = - (ikDO) {exp [- i2k cos 8,((R,, t$] - exp ( - 2k2h2 cos2e$}, (7.4) Do 

with t, = t -ZR~J(Zr + ZR) and T, = Do/co. 



7.3 The wiana of H, 
Using the fact that C(R, t') is Gaussian and stationary (Assumptiom 3 a.nd #), we . -. . 

derive easily from (7.3) . s 

where the subscripts 1 and 2 refer to R1 and R2, respectively. 
The integrations over R1 and Rz are coupled via the surface correlation function 9. 

If @ were equal to zero, the coupling would disappear and the double surface integral 
would be cancelled by the second term; the variance would then vanish. This property 
can be used to simplify the expression for the variance. 

If we use the indentity 

in (7.5), we get 

< l ~ , ( c u , t ) l ~  > = exp [ik(Dl - DJ] x 

x {exp [-+k2h2(y: -27 l~Z@t2+yljl  - ~ X P  C-3k2h2(~:+~g)1)- (7.7) 

In this expression it is easy to see that the integrand tends to zero, when R, and Rz 
are so far apart that 9 vanishes. Hence, if we introduce centrwf-masscoordinates 
and relative coordinates: 

I 

.'I . 
we h d  an integral over Q that has as integration domain the area S, around the 
origin in which @ # 0. We now suppose S, to be so small that: (1) ti -ti - 0 for 
any Q inside this area, (2) Dl  and D2 may be replaced by a Taylor expansion up to 
the first order term, around the point R, as follows, 



and (3) WT and WR can be replaced by their values at R. These approximations are 
correct with an error not larger than 2%, if 

Replacing &,, and q ,  by the effective correlation distances, this yields for the 
most representative surface point R = Rs, 

in which ZTSR is the smaller of ZT and ZR. 
In (3.21) and (3.22) we have the effdve correlation distances for the Pierson- 

Moskowitz spectrum. Using those values in (7.1 I), together with a minimum of 100 m 
for ZTPR, the condition turns out to be equivalent to v2 < 160 m2/s2, or v 4 12.6 m/s. 
This condition is always observed, because v will be at most 10 4 s .  

Returning now to (7.7) we see that the time-dependency disappears, and we get 

2 2 2  x (exp [- k2h2y2{1 - @(Q, O))] -exp(- k h y )). (7.12) 

In this formula we need to substitute Q(Q, O), the spatial correlation function of 
the surface elevation. The results of Chapter 3 could be used in full detail, but both 
surface integrals would then have to be evaluated numerically. Rather then under- 
taking this formidable task (for a rigorous examination the geometry, the sound 
frequency, the wind speed and its direction would have to be varied, and for each 
combination of these parameters a four-fold integration would have to be performed), 
we seek to do the integration over Q analytically. To this end we approximate Qyq, 0) 
in the following way: 

Ye, rl, 0) = 1 for I&! 9 Ldw and 111 9 L,, 
= 0 otherwise, 

the effective correlation distances Ldw and L, being given in (3.21) and (3.22). It 
may seem from (7.13) that we are restricting ourselves to a wind blowing along the 
X-axis, but the cross-wind case follows by exchanging Ldw and L,. Next integrating 
over Q, we obtain a relatively simple answer: 

X (1 - exp (- k2hZy2)) sinc (kDAdW) sinc (Id)&0*). (7.14) 



Fig. 7.1. The variance of H, (normalized) versus k, for 16 combinations of wind speed and geometry 
of transmitter and receiver; - stationary phase approximation (7.15), numerical integration 
(7.14); ZT = 650 my ZR = 100 m. * 



In this formula sinc (x) is a shorthand notation for sin (x)/x r7.1, p. 231. 
The corresponding stationary phase approximation follows from (7.4): 

With the roughness parameter x = 2kh cos 8, (see Section 5.2, Eq. (44)), this can 
be written as 

7.4 Numerical r d t s  

In (7.14) we see that the variance of H, is not only a function of frequency, but it 
depends also on wind speed (via h, Ldw and L,) and on the geometry (via ZT, ZR 
and XJ. For a numerical integration, actual values have to be chosen for these 
parameters. Several combinations have been analyzed, namely the cases of Table 7.1. 
The computer results are plotted in Fig. 7.1, together with the pertinent stationary 
phase curves, derived from (7.15). The vertical scale has been normalized by multi- 
plication with D;. 

Table 7.1 Transmitter-receiver c o ~ t i o n s  and wind speeds, used for the n w i c a l  calculation 
of the variance of H,. 

o in mls 

XR in m 1 2 5 10 

0 case 01 case 02 case 03 case04 

Another way of presenting these results is shown in Fig. 7.2. There the roughness 
parameter x is used as the independent variable, and the curve is described by (7.16). 
Both figures show an important property of the variance of H,: in practical cases it 
can be represented satisfactorily by the stationary phase approximation (7.15), over 
the whole frequency range from 0 to a. 

The physical meaning of Fig. 7.2 is interesting and simple to see: 
1. For x c 0.1 the variance of H, is practically zero, and as also its average equals 

zero, the random part has no influence on the characteristics of the filter. In 
other words: the filter is entirely coherent, with a transfer function given by (6.13), 
and there is only specular reflection. 



2. For x > 2 the deterministic part has vanished (see (6.13)) and the filter is totally 
incoherent. No specular reflection occurs, there is only random scattering. . . 

? 3. In the intermediate region 0.1 < x < 2, both the deterministic and the random 
part play a role, and there is specular reflection as well as random scattering. 

7.5 Approximation of H, and H 

In the preceding d o n  we reached the conclusion that the stationary phase 
approximation is useful to describe the variance of H,, over the whole frequency 
range from 0 to a. Compared with the correlation functions of H, in time, frequency 
and space, this variance is merely a special case: it is the value of the correlation 
functions for equal frequencies, equal times, coinciding receivers and coinciding 
transmitters. 

It seems reasonable to suppose that the stationary phase approximation maintains 
its validity when correlation in frequency, time and space is considered (Assumption 
12). Accepting this supposition, we can take (7.4) as the starting point for the calcula- 
tion of the correlation functions of H, and consequently of H. As for the latter one, 
with the foregoing supposition the formula for the transfer function of the random 
filter as a whole becomes very simple. Taking (7.4) and adding H, as given in (6.13), 
we get 

H(a, t )  = - D; exp [i kDo - 12k cos OX(&, tJ]. 

As this approximation &pends only on the random surface at the specular point, 
we call it the specularpoint approximation. Formula (7.17) will be used for the analysis 
of time, frequency, and space correlation of the scattered field, in the following 



chapters. When necessary, we will multiply H by Ha as given in (1.1) to take the 
absorption of the medium into account. The incorporation of the absorption has an 
important consequence: it guarantees the existence of the Fourier transform with 
respect to o. During the analysis in the *domain, however, we will often meet 
cases in which 02D,C, is very small, because C, has such a low value (- 4.5 x 10'13 
dB/m). We can then simply use (7.17). 

7.6 Summary 

In this chapter the variance of the transfer function, describing the random part 
of the filter, has been examined. Numerical integration produced a result similar to 
that found for the mean value: for many practical combinations of wind speed and 
geometry, the variance of H can be presented satisfactorily by the specular point 
formula. 

These results for mean value and variance have been generalized into the assump- 
tion that also the correlation functions of H in time, frequency, and space can be 
described by a specular point formula (Assumption 12). In this way a simple expression 
has been obtained as the starting point for the calculation of these functions. 

7.1 P. BBCKMANN and A. ! b z z x c ~ ~ o ,  l%e Scattering of ~ t t o ~ H e  Wbrw h m  
Surfaces (Maanillan, New York, 1963). 
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TIME AND FREQUENCY CORRELATION 

As a result of the foregoing chapters, we have found that in practid cases the filter 
can - with good approximation - be described by: 

H ( a ,  t) .P -DO exp [ikD, - i2k cos OX(&, t a ,  

This represents a random function of time and frequency. The random character 
is contained in the function C; the statistical properties of this Gaussian process 
were discussed in Chapter 3. For very large distances H has to be multiplied by H, 
the absorption function (see Sub-Section 1.2.2); H, can also be invoked at high 
frequencies to guarantee the existence of Fourier transforms (see Section 7.5). 

Fig. 8.1. Some system correlation functions and their spedal vdom. 



As 5 is stationary in time, the time correlation of H depends only on the time dif- 
ference At and not on the actual times. Hence the diagram of Fig. 4.6 is applicable 
for the calculation of the various system correlation functions. 

In the analysis of output signals (Chapter 10) not all correlation functions are 
needed: it turns out that BE, Be and B, are suEcient. These are treated successively 
in Sections 8.2, 8.3 and 8.4. 

Often, in practical cases, we consider either the correlation in time or the correlation 
in frequency, at the same time keeping the other variables constant or even equal. 
The correlation functions reduce then to special versions. Figure 8.1 gives a summary 
of the functions that will be examined; their formula can be found in the corresponding 
sections. 

8.2 Correlation of the transfer function 

8.2.1 A general expression for BE 
In its most general form the correlation function of H i s  given by 

BH(ol, 02, At) = < H(& t - dt)H'(02, t) > 
= Di2  exp [-&{x: -2x1xz@(0, dt) +x2} + i(ol --02)zs]. (8.2) 

The argument of this complex function depends linearly on the frequency dif- 
ference, the modulus can be characterized as a Gaussian "hat". The maximum value, 
equal to Di2, is reached at the origin of the  coordinate system; the contours 
are concentric ellipses orientated along the diagonal = x2. Their properties depend 
strongly on 9: for 9 = 1 the semi-major axes tend to infinity, for @ = 0 the ellipses 
reduce to circles. A few examples are drawn in Fig. 8.2. For 9 = 1 the correlation 
function depends apparently only on the frequency difference. This is further dis- 
cussed in Sub-section 8.2.4. 

8.2.2 Equal frequencies 
By taking equal frequencies in (8.2) we h d  that the time-correlation function of 

H can be written asi1 

Bdo,  a ,  AtN) = Di2  exp [-x2{1-@(0, AtN)}]. 

This is a function of x that tends to the value ~i~ for b0.1. For AtN+m it 
reaches the value D , ~  exp (-x2), a constant that represents the fixed part of the 
filter. 

l1 The time difference has been normalized, in accordance with Chapter 3; thus: AtN = (g/v)At. 

132 



Fig. 8.2. 
Contours for Doa Pa(w,,cu,,At) 1, for @ = 1, 
0.5 and 0. The radial frequencies cu, and cu, are 
expressed in terms of the roughness parameter 
X. 

When x is small enough, a useful simplification of (8.3) can be obtained by power 
series expansion of the exponential function; we get 

The fist term inside the square brackets represents the hed part of the Hter, the 
second stands for the random part. The time-correlation function of H, is apparently 
proportional to the time-correlation function of the surface elevation, for x less 
than 0.2. 

In Fig. 8.3-A the function BH(o ,  o ,  AtN) is plotted for some values of X,  after 
multiplication by D;. The constant value to which BH tends for large AtN reflects 
the influence of the h e d  part of the fdter. The true time correlation can be observed 



0 lo 20 
NORMALIZED 1 lME DIFFERENCE, AtN 

' 0  10 20 30 
NORMALIZED TIME DIFFERENCE, AtN 

Fig. 8.3. (A) The theamlation function of H(ru,t)for equal f i ' c q d  on a nolmalhsd time d c  
(Atr =gAt/v) with x as pammtcr; (B) the normalized thecomelation function of H&,t), with the 
inveaw of the variance of H, 0s normalizing facta. 

better if we subtract this effect and normalize the curves. This is done by defining a 
new correlation function: 

This is the normalized correlation fuction of H, and it assumes the value 1 for 
AtN = 0 and any value of X. Curves for various values of x are drawn in Fig. 8.3-B. 



The normalizing factor is the inverse of the variance of H,. Its value can be obtained 
from Fig. 7.2. An interesting result follows for small 2: 

8.2.3 Zero time difference 
In (8.2) we put At = 0, i.e. $ = 1, and get 

This &pends only on the difference between ol and a,, so that the contours of 
lBal in a x1x2-plane are straight lines (see Fig. 8.2). 

The dependency on the frequency difference only has an important consequence: 
B,,(z,, r2, O), the double Fourier transform of B A q ,  a,, 0), will contain a delta 
function (see Sub-section 8.4). 

8.3 The faaction Be(co, 0, a) 
According to Fig. 4.6, we can find Be(a, a ,  62) by taking the Fourier transform of 

(8.3) or (8.4) with respect to Atw In general, this cannot be done analytically, but 
using the Fast Fourier Transform technique on the numerical values of Fig. 8.3-A 
we readily obtain a digital representation of B,(cu, o, QN). This function, depi~tad'~ 
in Fig. 8.4, together with the normalized version CeQ, ON), characterizes the frequen- 
cy spread in the channel. The normalizing factor is again the inverse of the variance 
of H,. 

The special case < 0.2 is interesting, because an analytic expression for Be can 
then be found by application of some results of Chapter 3. First we write the Fourier 
transform of (8.4) as a cosine transform; this is possible because @(O, AtN) is even. 
Using then (3.10) we find 

with DN = vD/g. The second term between brackets is caused by the random part of 
the ater; it is proportional to the sea surface wave spectrum. The normalized version 
of Be is easily found: 

this result is confirmed by comparison of Figs. 8.4 and 3.1. 

la We have suppressed the delta function at QN = 0. It mpmmts the fixad part of the filter and is 
irrelevant here. 



NORMALIZED FREQUENCY, RN 

2n 
NORMALIZED FREQUENCY RN 

Fig. 8.4. (A) The frequency-correlation function B,(o,w,Sa~) on a normalized scale (Janr = vQ/g) 
with x as parameter; (B) the normalized correlation function, with the inverse of the variance of H, as 
normatizing factor. 

8.4 Correlation of the impulse response fnnction 

Examination of Fig. 8.1 reveals that the correlation function of h(z, t) can be 
found as the inverse double Fourier transform of B,(o,, 02, At), with o, and w2 
as the independent variables. BH is a two-dimensional Gaussian function. The Fourier 
transform can hence be found analytically (with At = 0 as a special case) and will 
have Gaussian properties too. 



We apply the operator described by (4.4) on (8.2) and take into account the nomen- 
clature of Fig. 8.1. Also using the parameter b,, defined in (6.12), we obtain for 
At # 0 (i.e. @ = 9(0, A t )  < 1): [ (T:-~@T~T~+T~)] 

Bh(rl, r2, At) = (2n~ib:Jl- dj2)-'exp - 2(1- @') 
9 (8.10) 

where T, = (2, - ~~)/b, ,  and n = 1,2. This changes into 

when A t  = 0 and consequently 9 = 1. 

Fig. 8.5. n - -2 , , Contours for 2zDeab:Bh(q,z,,At), for @ ~ 0 . 9 ,  
T1 

0.5 and 0. The time variables rl and r, are 
expressed in terms of T = (r-t;)/b,. 



The Gaussian character of Bh is clearly visible. The maximum value is reached for 
TI = T2 = 0;  it depends on 9 as ( 1  -a2)-* for 9 < 1. The contours are again con- 
centric ellipses with major axes along the diagonal Tl = T2. Examples are plotted in 
Fig. 8.5. 

A remarkable property of Bh is that for At = 0 it is only non-zero if r ,  = z,. This 
is caused by the fact that Bda1,  o , ,  0) depends only on the diference between a, 
and a,. 

If BH is multiplied with the absorption factor exp [ - ( a : + o i ) ~ , ~ , ] ,  the case 
At = 0 needs no special treatment any more. For Bh we then get a slightly modified 
version of (8.10): b, has to be replaced by bi, defined in (6.16), and 9 by @' = 
(b,/bi)29. Since b; > b, we have 9' < 1 which explains why 9 = 1 is no longer a 
special case. 

The specular point formula for the transfer function, taken as the starting point 
for the statistical description of the filter, contains the random surface elevation 
linearly in the exponent. As this random process is Gaussian (Assumption 4), any 
kind of correlation function can be calculated easily. Time and frequency correlation 
have been considered in this chapter. The results depend strongly on the roughness 
parameter X.  For x < 0.2 there is a distinct correspondence between the surface 
statistics and the filter properties (coherent scattering), which property is gradually 
lost for x increasing beyond the value 1 (incoherent scattering). 
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CHAPTER 9 

SPACE CORRELATION 

9.1 Introduction 
In Chapter 4 it was mentioned in passing that a third variable can be distinguished 

when the surface channel is considered as a random filter, namely the geometry of 
transmitter and receiver. The influence of this third variable will be investigated in this 
chapter, by looking at the spatial correlation of the scattered field. A brief analysis 
of this type of correlation has been made in Section 5.2. The material presented in 
this chapter is an extension thereof. 

A wide variety of possibilities could be considered, because now the filter functions 
depend on eight independent variables: the three coordinates of the transmitter, the 
three coordinates of the receiver, and the two variables dealt with in the foregoing 
chapter. We will not attempt to analyze the influence of all these variables; we 
restrict ourselves (see Fig. 9.1) to a fixed transmitter, radiating a constant frequency 
w, and we observe the scattered field at two receiver positions and at equal instants 
of time. This signifies that the number of independent variables on which the filter 
functions now depend has been reduced to three: the coordinates of the receiver, 
while w, t and the transmitter coordinates are merely parameters. 

Since the input signal is monochromatic, the output signal will be proportional to 
H(w, t), according to (4.9). Hence the spatial correlation as taken here is best examined 
by means of the frequency transfer function. 

A general formula for the spatial correlation function is easily derived from (8.1). 
Calling the two receivers R, and R2, placing R, in the plane y = 0 and R2 in its vicinity, 
labeling all quantities that distinguish the two receivers from each other with 1 and 2 

filter 1 m 
filter 2 w 

Fig. 9.1. Spatial correlation of the scattered sound field; (A) geometry of transmitter and teceivets 
(for simplicity both receivers are drawn in the plane y = 0, but R, can have a non-zero y-component), 
(B) blockdiagram. 



respectively, and assuming the average wind direction to make an angle a, with the 
positive X-axis (0 < aw < 42), we obtain: 

x exp C- t{d - 2 W  rl, ~ ) X I X ~  +xiIl, 
where x, = 2kh cos Om, 

€ = Kz sin (awl + (XS, -X,,) cos (awl, 
tt = Kz cos (a,") - (Xsz - XS1) sin (a,"), 

z = Its1 -fs219 
and 

withn= l,2. 
An important property of (9.1) can be noted immediately: if 4, q, and/or z are so 

large that @ equals zero, the spatial correlation function reaches a constant value 
that is in general non-zero. This value is due to the deterministic part of the filter. 
For the analysis of the spatial correlation this constant level is irrelevant. Hence we 
subtract it, which means that we will examine the spatial correlation of H, instead 
of H. Furthermore, in (9.1) only the second exponential function is important 
for the spatial correlation, because the other elements merely describe an amplitude 
and a phase shift. Therefore we drop them and so we are concerned with the reduced 
space-correlation function, defined by 

This function will be analyzed in two steps: in Section 9.2 we consider the spatial 
correlation on and across an average wave front (c.f. Section 5.2), and after that we 
investigate the correlation in X, Y, and 2-direction, in Section 9.3. To distinguish 
the various correlation functions that appear in this way, they will carry a descriptive 
label. 

For sufficiently high frequencies the concept of wave fronts is often used. They are 
surfaces of constant phase. For a perfectly flat boundary these surfaces are spheres 
with the image T' of the transmitter T as centre. When the boundary is random these 
spheres will be distorted, in a stochastic manner. The extent of this distortion is 
analyzed statistically in Section 9.4. 



9.2 Correlation on and across an average wave front 

In this section we are concerned with the receiver positions that are already discussed 
in Section 5.2 (page 312-Fig. 9). This time, however, we assume the wind direction 
to be arbitrary: whereas in Section 5.2 the average wind was blowing along the X-axis, 
it now makes an angle a, (with values between 0 and 4 2 )  with that axis. 

9.2.1 Vertical transversal correlation 
The receivers are placed on an average wave front, in the plane y = 0. Their 

positions are conveniently expressed in terms of the angles q and Aq (see Section 
5.2, Fig. 9a). Then (9.4) can be written as 

where = 2kh sin (q), x2 = 2kh sin (q + Aq) and 

e? = zT[cot (q + A q) - cot ( d l  cos (a,), 
q = -ZT[cot (q + Aq) -cot (q)] sin(&). 

We have put r = 0, because the difference in travel time between R, and R2 is only 
depending on the surface elevation at the specular points, whereas C and q depend on 
the coordinates of these points. This makes the influence of r an effect of second 
order. 

Examination of (9.5) reveals that Cv, is not even in Aq. This is caused by the fact 
that the transfer function (see (8.1)) is not stationary in q. 

In order to investigate CvT as a function of Aq and q, we have to chose the para- 
meters ZT, k, v, and &. Some resultsi3 are shown in Fig. 9.2. The following conclusions 
can be drawn: 
1. When the surface roughness increases either because v or k is augmented, or both, 

the Aq-range in which some correlation can be expected, becomes narrower. 
2. The correlation range for the cross-wind case is about twice as large as the Ap 

range for the down-wind case. This corresponds to the property of the sea sufsa 
that Lm - 2Ld, (see (3.21) and (3.22)). 

3. For x < 1, the spatial correlation function CvT has the same shape as the spatial 
correlation function of the surface elevation (c.f. Fig. 3.5). This is c o n f b d  by 
(9.5), which reduces for x,, x2 < 0.2 to CvT(Aq, q) - X~X~@(C, q, 0). Especially 
for low values of cp this effect can be noted. 

la We have restricted ourselves to negative values of Av. This causes no loss of genedW becam 
when Aq> 0, we simply exchange the receivers R, and &. 



Fig. 9.2. The vertical t t ~ l l ~ v d  correlation function C v ~ ( A p , p ) ,  with p  as parameter, (A) in 
down-wind direction, (B) in cross-wind direction (ZT = 100 m). 





Fig. 9.3. The horizontal tnuwersal correlation function CHT(U,~.I), with cp as parameter, (A) in 
down-wind direction, (B) in cross-wind direction (ZF = 100 m). 





9.2.2 Horizontal transversal correlation 

The receivers are placed on an average wave front in a horizontal plane. Their 
positions are given by the angles cp and a (see Section 5.2, Fig. 9b) and the correlation 
function becomes 

with x = 2kh sin (cp) and 

= 2, cot (cp) [cos (aw -a) - cos (a,)], 

With the same justification as in the previous sub-section we have put z % 0. Results 
can be found in Fig. 9.3. The conclusions that can be drawn from the curves there are 
about the same as in the preceding sub-section. The main Werence is that the down- 
wind and cross-wind cases have exchanged their role, due to the passage from vertical 
to horizontal transversal correlation (see Section 5.2 - Fig. 9). The curves for cp = 90" 
are not plotted, because CET degenerates into a constant (CET = 1 -exp (-x2)) for 
that value of cp. This follows from (9.7) and (9.8) in a straightforward way. 

9.2.3 Longitudinal correlation 

The receivers are placed in the mean direction of propagation: R1 on a sphere with 
radius D,, Rz on a sphere with radius Do+ q. Their position is further determined 
by the grazing angle cp (see Section 5.2, Fig. 9c). The specular points coincide, so 
that 5 = q = 0. The time difference is not neghgible any more, because now it is 
directly coupled to the receiver positions. For the correlation function we h d  

c,(Q, cp) = exp [- x2{1 - @(O, 0, r)}l- ~ X P  [ -x21, 
where s = g/c, and x = 2kh sin (9). This formula is illustrated by Fig. 9.4. There we 
see that: 
1. The correlation function becomes more peaked when the roughness increases 

(when k, v, or cp is augmented). 
2. The shape of the time-correlation function of the sea surface elevation can be 

recognized, especially for small values of x ( X  c 1). 
3. The distances over which there is some correlation are large, due to the fact that 

we are considering the propagation in the mean direction of propagation, and 
the propagation speed is high. 

An interesting case arises when the observation times are not taken equal but 
differ by exactly the amount z, i.e. at R1 the scattered field is observed at time t, at 



3 0 

-P (km) 
Fig. 9.4. The longitudinal correlation function CL(e,v), with as parameter, for Zp = 100 m. 



Wz the observation takes place at time t + t. The observer travels then with the wave, 
md the propagation delay from R, to R2 is compensated. Hence we get 

which is independent of Q, and equals the variance of H,(a, 2). 

9.2.4 Correlation between two arbitrarily placed receivers 
Up to this point we have been discussing the correlation of the scattered field in 

the three orthogonal directions that were suggested by the concept of average wave 
fronts. These average wave fronts are spheres; hence we have been worlung in a 
polar coordinate system (p, Q, a), and we have considered successively the correlation 
m the direction of Q, a, and Q. 

The question arises whether the spatial correlation between two arbitrarily placed 
receivers can be expressed in terms of the correlation functions CvT, CHT, and CL. 
In order to find an answer, we assume that the first receiver has the coordinates 
(Q,, Q, 0) and the second one (Q, + Q, Q + AQ, a). The specular points are then given 
by 

xa1 = ZT w~(Q)* 

Y.1 = 4 
and 

x,2 = ZT cot(Q + AQ) ms (a), 

so that (c.f. (9.6) when a = 0 and (9.8) when AQ = 0): 

Next we return to (9.4) and write 

C(%,, a ~ 2 )  = CO(Q, AQ, a) - exp [-3{~:-2~~,rl,z)x1~2+ X%-~XP [-3(x?+~f)l. (9.14) 

The relative coordinates € and q are given by (9.13), and z = q/c0. For sufficiently 
small values of p, AQ and a, we can expand Co in a Taylor series around the point 
for which q = AQ = a = 0, i.e. the position of the fist receiver. This expansion yields 
(in symbolic notation): 



The derivatives of Co have to be evaluated at the point (0,0,0). Therefore we 
4 .  ,7, - write: 

.i . pa.. - GAl 
CO(Q,AQ,~) = 1-exp(-x2)+ 

This result indicates that the spatial correlation between two arbitrarily placed 
receivers can indeed be expressed in terms of CYT, CaT and CL, when small displace- 
ments are considered. Unfortunately, it is mainly of fonnal value only and does not 
enhance our insight in the spatial correlation of the scattered field, unless a special 
case is considered. To illustrate this point, we examine the first two terms of the 
series. The calculation of the coefficients is a matter of straightforward, but tedious 
algebra. The results are collected in Table 9.1. We note that the coefEcient of AQ is 
not zero; this shows that C,, is not even in AQ. 

For AQ = 0, we have only second order terms, so that 

the contours of constant correlation in the (Q, a)-plane are consequently ellipses, for 
small q and a The coefficients m, and ma follow from Table 9.1 and Chapter 3. 
For the Pierson-Moskowitz spectrum we obtain: 

It is easy to see that Imel <lmJ. The aforementioned contours are consequently 
very long and narrow ellipses, with major axes in the Q-direction. 



9.3 Correlation in cartesian coordinates 

9.3.1 The general formula 
In experiments it often happens that an array of hydrophones is hanging vertically 

from a ship, or that the array is towed in more or less a horizontal position. The 
data so obtained produce information about the spatial coherence of the scattered 
field in X, Y, or-Z-direction. Some formulae are derived in this section, and some 
curves are plotted, to facilitate the comparison with such experiments. . 

In general the coordinates of the two receivers differ by an amount Q. If e is small 
compared to the other distances that determine the geometry of R, and R,, we can 
base the formulae for the correlation functions on the geometry of R, (the receiver 
in the plane y = 0), with Q = (Ax, Ay, Az) as a (small) deviation. R, is further deter- 
mined by Z, and XR. For simplicity we take ZR = Z,, and investigate the range 
dependency of the spatial correlation. 
The specular points are again very close together; hence we neglect the time dif- 

ference z. From (9.4) we derive @ 

where { and 1 are &fined in (9.2) and 

The quantity y is the ratio between the roughness parameters as "seen" by the 
receivers. Its complete formula is 

y(Ax, Ay, Az) = 

Simplification of y, and also of t and q, results when the correlation in X, Y, or 
Z-direction is considered. 

9.3.2 Horizontal correlation in X-direction 
The correlation function C(Ax, 0, 0, X,) E C@x, X d  follows from (9.19) with 

y = y(Ax, 0,O) and 



Fig. 9.5 shows some graphs for C,, with acoustic wave number, wind speed, and 
range as parameters. They indicate that: 
1. The correlation function of the sea surface elevation can be distinguished clearly, 

especially for values of x less than 1. This also results from (9.19) by series expan- 
sion of the exponential functions, for x < 0.2. 

2. The correlation in case of cross-wind is stronger than for a wind blowing along 
the X-axis. This can be understood by realizing that the sea surface is approxi- 
mately a "wash board" with the waves extending in the direction of the mean wind. 

3. When the apparent surface roughness x is increased by growth of k or decrease of 
range, the correlation functions become more peaked. This indicates loss of 
coherence. 

4. When the true surface roughness increases as a consequence of higher wind speed, 
the correlation functions become less peaked. This is caused by the changing 
character of the sea surface. 

9.3.3 Horizontal correlation in Y-direction 
Putting Ax = Az = 0, the correlation function C(0, Ay, 0, XR) E C,(Ay, XR) is found. 

Its formula is given by (9.19), this time with y = y(0, Ay, 0) and 

Some curves are presented in Fig. 9.6. They show the same tendencies as Fig. 9.5, 
with only one exception: the correlation is stronger for a wind blowing in the direction 
of the X-axis than for a wind blowing in the direction in which the spatial correlation 
is observed, i.e. the Y-axis. 

9.3.4 Vertical correlation (in 2-direction) 
Finally we examine C(0, 0, Az, XR) = C,(Az, XR). This function is described by 

(9.1 9) with y = y(0, 0, Az) and 

An impression about the khaviour of C, can be obtained from Fig. 9.7. Again 
we see that with increasing x the curves become more peaked. The shape of the sea 
surface correlation function is less easy to detect. The correlation for a, = 90" is 
better than for a, = 0". 



-AX (m) 
Fig. 9.5. 'Tb cadation W o n  CJAxJd, with XR as paramta, (A) in down-wind dirsction, 
(B) in tmmx-wind direction (ZT = ZR = 100 m). 





-AY (m)  
Fig. 9.6. The correlation function CJAyXR), with XR as parameter, (A) in down-wind direction, 
(B) in cross-wind direction (Zz, = ZR = 100 m). 
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Fie. 9.7. The carrelation function C,(AZJR.), with XR as pammcr, (A) indown-wind direction. (B) 
in cross-wind direction (ZT =ZR = 100 m). 
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9.4 Wave b n t  distortion 
With a perfectly flat surface the reflected waves have spherical wave fronts that 

are concentric around the point Try  the image of the transmitter T, with radius Do. 
This follows from (8.1) by putting 5 = 0. 

When the reflecting surface is random, the surfaces with constant phase are corru- 
gated spheres, according to (8.1) with C # 0 (see Fig. 9.8). For not too extreme values 
of 5, they may still be considered as originating from the centre T', but the distance 
rw, from T' to a point P on the wave front is now a random function of the direction 
T'P. As (in statistical sense) there is rotation symmetry with respect to the Z-axis, 
it is sufficient to study the random wave fronts in the plane y = 0. 

Along a wave front the phase is constant, say equal to kc. Mathematically, the 
surface can therefore be described (for y = 0) by the equation 

The average wave fronts are spheres, with radius C, as for the flat boundary. The 
standard deviation depends on cp: 

as it should, because for larger grazing angles the surface appears rougher. It may also 
be noted that a, is independent of r,. This means that after the spherical incident 
wave front has been distorted by the random boundary, its randomness remains , 

untouched by the spherical spreading. Only the scale over the sphere is expanded as 
time goes on, but each "trough" and "crest" retains its depth or height, in accordance 
with the assumption of an ideal medium. But it should be emphasized that this result 

Fig. 9.8. 
Corrugation of wave front. The 
average wave front is a sphere with 
centre at T', the distorted wave 
front has a variance that incrtases 
with y. 



can only be true locally and temporarily. A physical reasoning, based on Huygens' 
principle, quickly shows the limitation of this "frozen" wave front: each point on 
the wave front acts as a secondary source, and each "ray" is propagating in a direction 
perpendicular to the wave front, so that the shape of this equi-phase surface is 
continuously changing. 

In (9.25) the second term on the right hand side represents the corrugation of the 
wave front. Its correlation properties are easily found. Considering, as in Section 9.2, 
the correlation on and across the average wave front, we get: 

Vertical Transversal Correlation 

cAAp, cp) = 4h2 sin (q, + 4 )  sin (cp)@t€, q, 01, 
with t and q given in (9.6); 

Horizontal Transversal Correlation 

c~rr(a, 9) = 4h2 ~ 2 ( 9 w o ,  b 01, 
with ( and q defined in (9.8); 

Longitudinal Correlation 

with z = glc,. 

The most remarkable property of these correlation functions is their linoar 
dependency on the correlation function of the sea surface elevation. For small values 
of Ap and a, t and q are proportional to Ap and a. This can be seen in (9.6) and, 
(9.8). The properties of the wave front corrugations are therefore closely related to 
the properties of the sea surface. These were discussed in Chapter 3. Finally we note 
that the correlation functions of the wave fronts are frequency-independent. 

The spatial correlation of the scattered field is studied in this chapter, for a fixed 
transmitter that radiates a harmonic signal with frequency a. Various possibilities, . 
as for the receiver positions, are considered: vertical transversal correlation (two 
receivers on an average wave front, in a vertical plane), horizontal transversal correla- 
tion (two receivers on an average wave front, in a horizontal plane), longitudinal 
correlation (two receivers in the mean direction of propagation), and correlation in 
X-, Y-, and 2-direction. It is found that the space-correlation functions reflect the 
shape of the surface correlation function, for small values of x (X < 1). For larger 
values this effect is lost, and the correlation becomes very poor (incoherent mtterhg). 
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CHAPTER 10 

STATISTICAL PROPERTIES O F  OUTPUT SIGNALS 

10.1 Introduction 

After the analysis of the statistical properties of the various system functions, the 
questions arise what characteristics the output signals of the random filter have in 
time and frequency and how they are related to those of the filter. The answers to 
these questions, which may be of interest for the experimentalist who uses the under- 
water sound channel for communication purposes,14 will be given in this chapter, 
for three different types of input signals. First, in Section 10.2, we will give our 
attention to monochromatic input signals. After that, in Section 10.3, the input 
signals will be delta pulses. Finally, arbitrary input signals will be considered briefly, 
in Section 10.4. 

Mainly the first and second order statistical moments will be investigated, but in 
some occasions it will also be possible to say something about probability density 
functions. 

An important restriction is caused by the stationarity (in time) of our filter: only 
two system functions are defined, namely H(o, t) and h(z, t). This means that for the 
second moments the scheme of Fig. 4.6 has to be applied. 

10.2 Monochromatic input signals 

10.2.1 Random expressions 
We recall some results of Chapter 4 (Table 4.1) and write them in a more complete 

form, expressing the fact that a monochromatic signal not only depends on time, but 
also on the input frequency coo. So we have at the input 

~ ( t ,  a,) = exp (- ioot), 

L ( a ,  cool = 2nd(o - a,), 

and at the output 

y(t, a,) = H(oo, t) exp (- iw,t). 

The time function y(t, a,) is, according to (8.1) and. (l0.2), a time-shifted and 
phase-modulated version of x(t, a,) : 

l4 Similar questions can be posed about the characteristics in space. 



y(t, coo) = - DO1 exp [- ia0(t -TJ- i2k0 ws OJ,(tJ. 

It is stationary in time, due to the stationarity of C. Its spectrum is hence not &fined. 
. I ,  - 

10.2.2 Mean values 
Using the results of Chapter 6 we get from (10.2): 

< y(t, co,) > = H h o )  exp ( - iaot). 

Comparing this result with the input signal, we see that the filter has introduced 
the factor Hdo,). From (6.13) it follows that this factor, apart from the spherical * 
spreading represented by Di l ,  describes a frequency-dependent attenuation with a 
Gaussian shape, and a time &lay 7, = Do/co. . . 

V 

10.2.3 Second order moments in general 
C 

In the most general case we have at the input a number of monochromatic signals !,; 
of the type x(t, on) = exp (- io,+ cp,) with n = 1,2, . . ., and observe the output signal, f 

that is the combined effect of the input signals, at two different instants of time - 
(t and t'). It can be shown easily that no loss of generality occurs when only two 
frequencies (ol and oz) are assumed to be applied at the input. The block diagram 
for this situation is sketched in Fig. 10.1. . . 

The output of the random filter, before the delay and multiplication, is equal to 
f(t) =fit ,  ol)+y(t, oz), so that the second moment consists out of four correlation 
functions of the type <At, w1)y'(t1, oz) >. An expression for such a correlation 
function can be obtained from (10.2). It can be evaluated by using the results of 
Chapter 8. We have 

I .. _ 
t 

: x - ,  

k. 

of which special cases can be derived rapidly. 

- = Fig. 10.1. "4 
Time and frequency correlation . - * 
of the output signal, for purely 
harmonic input signals with 
atlgth f r e q d  W, and w,. 

- 
H(w,t) 



10.2.4 Time correlation 
When only one frequency is presented at the input (a1 = o2 = oo) and when the 

output signal is sampled at two instants of time, At units apart, we can construct (see 
Fig. 10.2) the time-correlation function of y. In formula we have 

< y(t, oo)yo(t - ~ t ,  a,) > = BB(oO, a,, At) exp (- ioOAt) (10.6) 

which is a phase-shifted version of B, for constant o. Fig. 8.3 gives a qualitative 
description of the time correlation of the random part of the output signal. For 
x < 0.2 the time correlation of the surface elevation is linearly present in the output 
of the Nter; for x > 2 the output signal is almost uncorrelated, unless At is very small. 

10.2.5 Frequency correlation 

Fig. 10.2. 

For coinciding instants of time, the second moment of the output signal in Fig. 
10.1 involves correlation functions of the type < y(t, w1)yg(t, 0 2 )  >. A formula 
follows from (10.5) by putting t' = t :  

H(o.t) 

The argument is linear in a, and o2 and is therefore not very relevant. The modulus 
is plotted in Fig. 8.2 (@ = 1). 

As in Section 5.2, we can investigate the "coherent bandwidth". To this end we put 
o2 = constant = o (the "center frequency") and o1 =a+ d o  into (10.7) with the 
following result w 

, - 

Time correlation of the output signal, for a 
purely harmonic input; the output signal is 
sampled at two times, At units apart. DELAY . . 

< fit, o + Ao)yo(t, o) > = B d o  + Am, cu, 0)  exp (- idcut). 

With (8.7) this becomes 

< y(t, o + Ao)y0(t, a )  > = D i 2  exp [-+x2(~w/o)2  - iACO(t -231. (10.9) 

The modulus is drawn in Fig. 10.3 with A o / o  as variable and x as parameter. The 
Gaussian curves of Section 5.2 are found once more. 



RELATIVE FREQUENCY DEVIATION, AU/W 

Fi 10.3. Curves for the "coherent bandwidth" of the output, for monochromatic input signals. 

Quantitative insight into the "coherent bandwidth" can easily be gained by consid- 
ering the 3-dB points, i.e. the values of A m  for which the curves of Fig. 10.3 have 
decreased to the level 0.5. A bandwidth equal to 2Af = 0.188 co(h cos Oh-' follows. 
This is only dependent on wind speed and transmitter-receiver geometry. Taking the 
same combinations as in Table 6.1, we can compute the value of 2Af. Results are 
collected in Table 10.1. They indicate that at longer range the coherent bandwidth 
increases, whereas an augmenting wind speed causes this bandwidth to decrease. 
This can be understood by looking at the apparent surface roughness, expressed in 
the parameter X :  the roughness decreases with range and increases with wind speed. 
As an example we take v = 5 m/s, X, = 1000 m, and f = 7.5 kHz. A coherent band- 
width of 5.1 kHz is found, which means that signals with a frequency content ranging 
from 5 to 10 kHz are received without too much loss of coherence. 

Table 10.1 Some values of the coherent bandwidth (2Af = 0.188 co(h cos 83-1) as function of wind 
speed and transmitter-receiver configuration (all frequencia in kHz.). 

These values hold for Z p  = 650 m and ZR = 100 m. 



10.2.6 The variance spectrum of y 
In (10.6) we have a formula for the time-correlation function of y(t, oo), when a 

single frequency oo is applied at the input. The Fourier transform of this timesorrela- 4 ,  

tion function is equal to B,(oo, oo, w-a,), as can be seen from (10.6) with (4.1) 
and Fig. 4.6. It is the variance spectrum of the output signal. 

For the evaluation of B,(oo, w,, o-o,) we have - in general - to employ Fig. 
8.4-A: the variance spectrum of y is simply obtained by shifting the origin of the : '. 
curves to the angular frequency a,. However, when lo 6 0.2, we can apply (8.8), 

q :+ - T - 
getting T i  

(10.10) B X O ~ , U ~ , U - ~ ~ )  = ~ ~ ~ [ S ( O - w ~ ) + ~ ~ h - ~ ~ ~ ( w - w ~ ) ] .  , .i - - 
' i  

This last result indicates clearly that, in the coherenti5 frequency domain (X  < 0.2), 
the Doppler spread in the channel is simply related to the surface movements: a single 

, ' input frequedcy oo causes an output signal with a variance spectrum that is composed 5 
of two side-bands with the shape of the surface wave spectrum, centered at cu,. For 
increasing roughness, though, this property is gradually lost, and the spread in the , ?. channel increases. A qualitative illustration of this statement is presented in Fig. 10.4. -. \ - 

B) OUT 1 x.1 

Fig. 10.4. 
The variance spectrum of the 
output for a harmonic input sigaal 
with radial frequency me 

The dominant surface wave frequency occurs, according to Fig. 3.1, at a, = 8.771~ 
radians. This gives the side-bands in Fig. 10.4-B a frequency off-set of about 1.410 
Hz. Table 10.2 lists some values. 

l6 The word coherent has more than one significance. In general it means that the random filter part is 
negligable (X< 0.1). Here it indicates that the correlation function can be simpMed by series 
expansion of the exponential function (X<0.2). When used in connection with bandwidth, it 
merely refers to the fact that the signal distortion remains within acceptable limits. 



Table 10.2 Valws of the freqwncy o f f 4  of the sidebands gemrated by the movement of the 
surface (x < 0.2). 

wind speed 
(mls) 

10.2.7 The variance of y 
The variance of a complex quantity z is defined as r10.1, p. 2411 

v = E{~Z-E{Z)~~). (10.11) 

For y this gives 

v(a0) = D O ~ C ~  - ~ X P  ( - ~31. 
This result follows from (10.3), (10.4), and (10.6) with At = 0. 

10.2.8 Probability density functions 
We return to (10.3), the formula for y(t, a,). Dropping the factor -D,', which 

represents the phase inversion caused by the surface and the spherical spreading and 
which is of no importance in the present analysis, we are dealing with a vector of 
unit length and with a phase that fluctuates randomly (see Fig. 10.5) about the mean 
value g, = oo(t -z>. The phase fluctuation is described by 

Fig, 10.5. 
The random vector y (after normalization), 
repmenting the output signal caused by a 
harmonic input signal (see (10.3)). 



it has a Gaussian probability density function: 

This expression is correct and useful when the phase fluctuations are small e x ) ,  
but when I A q l >  a radians (which is likely to happen when xo Z a) the probabilities 
in the intervals . . ., (- 511, - 379, (- 3n, - a), (a, 34 ,  (3a, 579, . . . have to be added to 
the probability in ( -a ,  a) because a A q  in one of these intervals is not distinct from 
A q  in the central interval. It is easy to see that in this way AQ tends to be distributed 
uniformly : 

1 fAr(Aq)=E if -14 A r c n  I for Xo >a.  
= 0 otherwise 

An illustration is given in Fig. 10.6. 

Fig. 10.6. The probability density function of Aq, (A) for ~ ~ ( n ,  (B) for X,>n; dp is eapressed in 
radians. 



10.3 Delta palses at the input 

10.3.1 Random formulae 
At time t = to a unit delta pulse is applied at the input. From Table 4.1 we have 

then 
x(t, to) = Kt - to), 

X(w, to) = exp(iwto), 

and at the output 

I y(t, to) = h(t- to, t), 

m 

Y(o, to) = j dt h(t - to, t) exp (iot). 
-aD 

The random output signal y(t, to) is a delta pulse, as follows from Fourier trans- 
formation of (8.1) with (4.7): 

The average arrival time equals to+z,, the actual time fluctuates around that 
instant in a random fashion with Gaussian distribution (zero mean value, and standard 
deviation 6,). 

10.3.2 Mean values 
It follows from (10.17) that 

< ~ ( t ,  to) > = hAt - to), 

< Y(w, to) > = H,,(o) exp (iot,). 

So in the mean we have a Gaussian pulse at the output, centered at t = to +z, (see 
(6.11)). This Gaussian shape is caused by the Gaussian distribution of the random 
arrival time of the output delta pulse. The average output spectrum is identical to 
the transfer function of the deterministic part of the Uter, with a phase shift of ato. 

10.3.3 Second order moments in general 
Two delta functions are applied at the input, one at time t1 and the other at time 

t2. The output signals are measured at the instants of time t and t', the spectra are 
observed for the frequencies o and o'. In this way we can study < y(t, tl)y(tl, t2) > 
and < Y(o, t)Y'(w', t2) > . First we derive their formulae 



< Y(w, t,)~*(w', t2) > = exp [i(wtl - w't,)] 

The integral for < YY' > cannot be written in terms of BH, because the third varia- 
ble of B, contains the integration variables z, and z2. For this reason we shall con- 
centrate our attention on the time-correlation function. - .  

k ". 1-3 
10.3.4 Time correlation 

When tl = t2 = to we can study the time correlation of the output signal from 

with (8.10) and Fig. 8.5. The observation times t and t' have to be taken close to 
to + z, to find some correlation. 

Two input delta pulses, observed at the output at time t, give a correlation function 

This function is zero, unless t, = t2 = to (see (8.11)), in which case it assumes the 
value infinity. In practice this correlation function is therefore of little interest. 

10.4 Arbitrary input signals 

For an arbitrary input signal x(t), with spectrum X(w), the output signal and its 
spectrum can only be described by using the input-output relations of Chapter 4: 

= j dw X(W)H(W, t) exp ( - iwt) 
2n -, 

and 
m m 

Y(o)  = j dt j dz x(t - z)h(z, t) exp (iwt). 
- w  -00 

Average values result from these expressions when the system functions are replaced 
by their mean values. For the second order moments we can derive complicated 
integrals that involve the system correlation functions B,, Bh and Be. They can only 
be evaluated when x or X is specified. 



The question of what statistical properties the output signals have, has been ans- 
wered in this chapter for 

8 Cl - harmonic input signals, 
- delta pulses at the input. 

The results can be summarized as follows. 

10.5.1 Harmonic input signals 
A harmonic or monochromatic input signal x(t, o) = exp (-iot) produces an 

output signal that differs from the input only in one respect: it has a phase that 
fluctuates randomly. In the domain of coherent scattering (X 9 0.2) it is quasi- 
harmonic. The distribution of the phase fluctuations is Gaussian, but in the domain 
of incoherent scattering (X > 2) it is practically uniform. 

The mean value of the output signal shows a decrease in amplitude that is frequency- 
dependent : 

The standard deviation of the complex amplitude is given by 

a(o) = DO '(1 - exp (- ~3 ) ' .  
For x < 0.2 the time correlation of the surface elevation is directly present in the 

output signal, whereas the surface wave spectrum can be distinguished in the output 
variance spectrum. These properties are lost with increasing roughness. Loss of 
coherence with increasing roughness is also indicated by the fact that the "coherent 
bandwidth" becomes narrower as x gets larger. 

10.5.2 Delta functions 
An input signal x(t, to) = S(t - to) gives at the output a delta pulse with an arrival 

time that fluctuates around the value to+z,, with Gaussian distribution (see Fig. 
10.7). The average of this fluctuating delta pulse is a Gaussian pulse: 

Also the correlation function has a Gaussian character. Its significance is lost when 
one delta pulse is transmitted and the output signal is observed at one instant of 
time only. 

< y(t, a) > = - D, ' exp ( - +X2)x(: - z, a). 



Fis. 10.7. 
The output y(t,t,) whUl 
the input signal is a delta 
function: x(t,to) = d(t-tJ. 

10.1 A. PAPOULIS, ProbabUity, Ron&m Vmhbks and Stockastic Proawes NOW 
York, 1965). 
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CHAPTER 11 

DISCUSSION OF THE RESULTS 

The foregoing chapters have produced theoretical results that can be divided into 
two parts. First of all, we have found that the stationary phase approximation (also 
called specular point approximation), although basically developed for high frequen- 
cies, can be used over a broad frequency range when practical cases are considered. 
This conclusion is based on an analysis of mean value and variance of the transfer 
function of the surface channel. In the second place the correlation in frequency, time, 
and space of the scattered field has been examined for many combinations of trans- 
mitter-receiver geometry, wind speed, and wind direction. A rather large number of 
drawings and tables has beeli the result. Two types of sound source have been used 
in that examination: the monochromatic and the broadband (impulsive) transmitter, 
both radiating omni-directionally. Also the receivers have been assumed to posms 
equal sensitivity in all directions. 

In order to be able to express a judgement about the validity and use-s of 
the above mentioned theoretical results, experimental data are required for com- 
parison. Several reasons, however, make it di@cult to find material that is suitable 
for comparison : 

1. Ensembles of data would be required for the computation of statistical averages. 
But at sea these ensembles are hard to collect, because fixation of the geometry 
(stable platforms) is almost impossible. As a consequence, this fact puts a limita- 
tion on the confidence level of experimental data.16 

2. Unless explosives are employed, the sound sources are not usually o m n i ~ o n -  
ally radiating. 

3. At sea the geometry can be held approximately constant when backscattering is 
measured. But then we are limited to the mono-static case (X, = 0). 

4. Another way to fix the geometry, and - in addition - to control all other para- 
meters involved, consists in model tank experiments. However, for this kind of 
experiment only directional sources and receivers are available. For the purpose 
of comparison with our model, we have to select the data dealing with specular 
scattering and reflection. Moreover, there is the basic question about the useful- 
ness of model studies for the prediction of surface wattering and reibction in the 
true ocean. 

5. Our model employs the Pierson-Moskowitz spectrum and its derivatives to 

" The validation of data, necessary before reliable statistical conclusio~u can be drawn, & 
recently beem taken into account [11.1]. This could be done became it co- a 8tudy of a lab 
surface whae the transmitter and d v e r  could be &idly 0xed. 



characterize the sea surface. That spectrum applies to a fully developed sea, and 
needs the wind speed as an input parameter. In many experiments at sea the 
environment is described very poorly, e.g. by sea state or wind speed, without 
indication about the state of development of the surface waves. 

These remarks suffice to explain why the amount of experimental data available 
to check our theoretical work is small and incomplete, notwithstanding the fact that 
many experiments have been reported (see Chapter 2). Summarizing the difliculties, 
it can be said that of the existing literature on field work only those papers may be 
useful that deal with 

a. Explosive sources ; 
b. Directional sources, together with the measurement of specular scattering; 
c. Directional sources, together with the measurement of backscattering in a mono- 

static geometry. (This is a special case of specular scattering, namely with 0, = 0). 
Another possibility for comparison is offered by the theoretical results of other 

workers. But again we have to search for theoretical models that involve omni- 
directional sources, or directional transmitters in combination with the specular case. 
Moreover, agreement with the results of other theories does not necessarily signify 
agreement with reality; it only enhances the confidence that one can have in our 
theory as a tool for the prediction of the scattering phenomenon. 

In this chapter both experimental and theoretical material will be employed to 
back up our theoretical results. This verification will take place in three steps: First 
of all the validity of the specular point approximation will be checked (Section 11.2), 
then the mean value of some system functions will be discussed (Section 11.3), and 
finally the correlation functions in time, frequency and space are examined (Section 
11.4). Also a few other subjects deserve some comments; these can be found in 
Section 11.5. Finally, in Section 11.6, we will try to answer the question of which of 
our results can be verified best by experiment. 

11.2 The validity of the specular point formula 
The analysis of mean value (Chapter 6) and variance (Chapter 7) of the transfer 

function H(o, t) of the sea surface leads to the conclusion that (a) numerical integra- 
tion over the whole surface (this is basically the Helmholtz integral, in which the 
scattered field is expressed as a weighted summation of the contributions of omni- 
directionally radiating point sources induced at the surface) and (b) approximation 
of the surface integral by means of the stationary phase method, yield about the same 
results. This is somewhat surprising given the complexity of the underlying theory, 
although we have to admit that at one stage of the analysis the stationary phase 
technique has been used, namely in the approximation of Y, the weighting function. 

As a consequence of the foregoing conclusion, the &st and second order statistical 
moments of H can be described, in many practical cases, by relatively simple formulae : 



Mean value 

= -Do exp (ikDo -ix2); 

Confirmation of (11.1) can be found in the theoretical work of many authors: 

BECKMANN and SPIZZICHINO [I 1.2, p. 811 gave a formula for the average normalized 
specular reflection that is equal to (1 1.1) when the factor D, exp (ikDo) is dropped, 
They also derived a formula for the mean coherently scattered power [11.2, p. 881 
that is - apart from a normalizing factor - equal to IHd12. 

CLARKB [11.3] computed the coherent acoustic intensity at the receiver after 
acoustic energy is radiated by a transmitter with arbitrary directivity and reflected 
by a rough random surface. His results r11.3, p. 2901 reduce to 

for an omni-directional source that radiates unit total power. This is equal to lHdI2. 
VENK~SANOPOULOS and TUTBUR [11.4, p. 11021 found an expression proportional 

to (1 1.1) when considering the first-order statistics of the surface channel. 
BOYD and DBAWNPORT [11.5, p. 7941 assumed a directional source and f o d  a 

formula for the mean scattered pressure that is proportional to (1 1.1). 

The theoretical models used by these authors are all based on the Kirchhoff 
approximation, or on the variant developed by Eckart (see Section 2.2-IIIB.l). So 
we arrive at the conclusion that the theory here presented leads, in first approximation 
(i.e. using only Ho), to the same result as the Eckart theory. This agrees with the state- 
ment of SPINDEL and SCHULTHBISS [11.6, p. 18171 that Eckart's scattering model gives 

E{H(w, t)) = exp (-2k2h2 cos28J (1 1.4) 

Two points of difference can be noted, however: 
1. The validity of our results is not restricted to high frequencies, but includes in 

practice the frequency range from 0 to m. This is important, because only then 
is Fourier transformation of H(w, t) allowed. 

2. The way in which these results have been derived is entirely different: instead of 
making an a priori assumption about the derivative of the total field at the 
boundary (aplan = 2apo/an, the Kirchhoff approximation), we have maintained 
so much rigour in our analysis that we obtained the Eckart results only as a first 
approximation. Improvement is possible by adding more terms of the series for 
H, or by studying H from (5.12), without series expansion. This last possibility 
may prove difficult in practice, because the statistical moments require integration 
over the joint probability density function of C, C, and C,. 



The variance, as given in (1 1.2), can be regarded as the intensity of the incoherently 
scattered field. Addition of (1 1.2) and the square of (1 1.1) shows that the total amount 
of scattered power is proportional to ~ i ' ,  and independent of time and frequency, 
and of the surface statistics. This result can be derived in a more straightforward 
way by looking at H, the sum of H, and H,. Within the present approximation its 
formula is given by (8.1): 

H ( a ,  t) = -DO exp [ikDo - i2k cos OJ(R, tJ]. 

Formula (11.5) describes a spherical wave that suffers from phase distortions. Its 
average intensity at a point on a sphere with radius Do equals 

this is the same as the intensity on such a sphere in the case of a perfectly flat boundary, 
which signifies that our theory does respect the law of energy conservation. It also 
says that the surface focussing has no preferred direction. Experimental work perform- 
ed at the SACLANT ASW Research Centre by WIJMANS [11.7] confirms this, at least 
for not too large values of h, and also ADLINGTON [11.8] reported that the scattered 
energy is independent of grazing angle and wind speed. + 

Specular reflection has been measured by WBLTON et al. [11.9]. Their results show 
that there is no dependence on grazing angle and hardly on frequency. They do find, 
on the other hand, that the surface statistics (i.e. h) have some influence. A possible 
explanation of the discrepancy between this last result and our model may be found in 
the fad that the surface slopes are not included in Ho, the approximation of H 
on which our simplified model is based. 

WELTON and his co-workers [11.9] also investigated the influence of the geometry. 
They found a (l/Do) - law (geometrical acoustics) rather than a (w,wd-' - depen- 
dency. This proves the validity of what they call the "image solution" and what we 
have named "specular point approximation". 

From the foregoing discussion our approximation emerges as a valid and useful 
way to describe the first and second order statistical moments of the scattered field. 
Nevertheless, physical arguments can be found that suggest its breakdown under 
certain circumstances : 
1. When the frequency of the incident sound is high and the slopes of the surface are 

steep enough, there can be more than one surface point that produces specular 
reflection. This so called "multipath effect" has been found experimentally (also 
for slopes that are allowed in our model) and is discussed in Section 5.2. 
It is not predicted by (1 1.1) and (1 1.2), but it could be included to a certain extent 
in our theory via HI, H, etc., the terms in the expansion of H that were discarded 
in Section 5.4 and that involve the surface slope. 



, ' 

2. In Section 9.4 it was indicated that the specular point formula predicts "frozen" 
wave fronts. But this comes in confict with the well-known physical fact that the 
sound rays are propagating along paths that are perpendicular to the wave fronts. 
Hence it can only be true locally, and during a short time. 

11.3 Mean values of system fanctioas 

The expectation of system functions is not a quantity often encountered in experi- 
mental studies: only one paper has been found that deals with this subject, namely 
the one by SPINDEL and SCHULTHBISS [11.6]. It describes a model tank experiment 
with a wind-driven surface, and the measurements were concentrated on the impulse 
response of the surface channel. Typical results for the average impulse response 
function are copied in Fig. 11 .l. They indicate a Gaussian pulse, as predicted by the 

( 0  (b) 
Fig 11.1. Ensemble averages of the impulse response, found -tally by S m  and 
SCHULTHBISS [11.6]; (a) cross-wind, (b) down-wind direction. 



Fourier transform of Hd (c.f. (6.1 I)), followed by one or two smaller peaks. This tail 
shows that our model is not complete. This point is also brought out in the analysis 
of Hd, where the agreement between (1 1.1) and the data is reasonably good but not 
perfect. It should be noted, however, that the experimental surface had a wave spec- 
trum with a peak at ,., 6 Hz. This is much higher than at sea (see Table 10.2), so 
that perhaps the experiment falls outside the validity domain of our model. 

As for the leading Gaussian pulse, (10.27) gives us an estimate for the width. The 
turning points of the curve for < y > occur at T = f I, where T = (t - to - za)/ba. If 
we define the width as the time that elapses between these two points, we get a 
pulse width in real time equal to 2bs. Looking in Table 6.2 we see that for low wind 
speeds, values of the order of a few pseconds follow. This agrees pretty well with 
Fig. 11.1. 

11.4 Examination of correlation Tunctions 

11.4.1 Time correlation and frequency spread 
In this sub-section we are dealing with the results that were derived in Chapter 10 

for harmonic input signals. Their essence is described in Sub-section 10.5.1, together 
with Figs. 8.3 and 8.4. 

In the case of a monochromatic input signal, our theory predicts an output signal 
with a time-correlation function in which the time correlation of the surface elevation 

TEMPORAL CORRELATIONS 
SOUND ENVELOPE 

Fig. 11.2. Comparison between the measured tim6correlation functions of the scattered sound 
field and the surface elevation (from MEDWIN and CLAY [11.11]; their parametererg equals 2~) .  



can be distinguished clearly (see Fig. 8.3). The similarity between both correlation 
functions is better the lower the value of 2. This theoretical result is completely 
confirmed by the experimental work of GULIN and MALYSHEV [11.10] for 2 = 0.52, 
0.74 and 1.4 and a sea surface with swell, and by that of MEDWIN and CLAY [ l I . I l ]  
for = 0.9, 1.1 and 1.4 and a large laboratory "sea". Fig. 11.2 gives an illustration. 

The frequency spread of the output signal is represented by the side-bands around 
the transmitted frequency. According to our theory these side-bands have the same 
shape as the surface wave spectrum when 2 is less than 0.2, and the peak frequency 
differs from the centre frequency by an amount Af equal to the peak frequency of the 
surface wave spectrum. With increasing roughness, the side-bands broaden and 
gradually lose their resemblance to the surface wave spectrum. Experimental con- 
firmation of these predictions can be found in the work of KINGSBURY [11.12] for 
0.4 < < 4 and in that of RODWICK and CRON [11.13] for = 0.4 and 0.8. 

SPINDEL and SCHULTHEISS [ll .d] studied the bi-frequency function e(o, a). Its 
correlation function shows a peak that coincides with the peak in the spectrum of 
the surface waves, which agrees with our Fig. 8.4. 

11.4.2 Frequency correlation and time spread 
Next we consider the results of Chapter 10 that were obtained for delta pulses at 

the input. They are summarized in Sub-section 10.5.2. Agreement on the basis of 
mean values of the predicted time spread (amounting to a few pseconds) with experi- 
mental data collected by SPINDEL and SCHULTHEI~~ [11.6] has been mentioned already 
in Section 11.3. For the second order statistical moments dealing with frequency 
correlation and time spread, no data have been found, which is not surprising in 
view of the remark at the end of Sub.-Section 10.5.2. 

11.4.3 Spatial correlation 
GULIN and MALISHEV [11.14] have studied the correlation in X-, Y-, and 2-direction. 

They used CW-pulses (f= 4, 7, and 15 kHz, or k E 16, 20, and 60 m"), the sea 
surface had a standard deviation h with values between 0 and 40 cm, 2, = 80 m, 
ZR - 30-60 m, and XR = 600-700 m. They concluded [11.14, p. 3681 that:" 
1. "The signal amplitude spatial correlation coefficient in the case of small values 

of the Rayleigh parameter usually takes the form of damped-oscillation functions. 
(. . .) The oscillation period is related to the average wavelength of the water waves 
on the sea surface. 

2. In the case kh > 1 a more abrupt drop in the correlation coefficient is observed, 
and the quasi-periodic behaviour disappears. 

3. The vertical spatial correlation for amplitude fluctuations, at smal l  grazing angles 
of incidence, decays much more rapidly than the horizontal correlation." 

l7 The Rayleigh pammeter is identical with X ,  the rougbncss parameter. 



This is in qualitative agreement with Figs. 9.5, 9.6 and 9.7. 
The vertical transversal correlation has been analyzed by MBDWIN and CLAY [II.Il]. 

Their results, for x = 0.15,0.4 and 1.0, show the same tendencies as Fig. 9.2. 
. . 

11.5.1 Coherence functions 
When the statistical characteristics of an acoustic field scattered by a randomly 

rough surface are studied, one of the quantities of interest is often the coherence of 
the scattered field. Usually, for stationary processes, a measure of the coherence in 
the scattered field is defined by [I 1.15, p. 5011 : 

where the subscripts 1 and 2 refer to two observations of the scattered field, and A 
is some quantity that separates the two observations. If, for instance, A = Q, we 
are dealing with spatial coherence; temporal coherence follows from A = At, whereas 
frequency coherence can be studied by taking A = Ao. 

It is also possible that the subscripts indicate input and output signal, or spectrum, 
of a filter. This is the interpretation of WIJMANS [11.7]. Still another definition that 
produces useful results is presented by NOVARINI and CARUTHWS [II.I6]. They 
compare the scattered field with the field coming from a perfectly plane surface. 

With the material presented in Chapters 8-10, any kind of coherence function can 
easily be computed. The results will not differ essentially from ours, because (1 1.7) 
provides merely a normalization of the correlation functions we have analyzed. 

11.5.2 Amplitude fluctuations 
In experiments at sea that have long CW-pulses as input signals, both amplitude 

and phase fluctuations can be observed. Only the latter are predicted by our theory 
(see (8.1)). A possible explanation of the experimental amplitude fluctuations may be 
found in the instability of the transmitter-receiver co&guration. 

11.5.3 The joint probability density of the wface elevation 
The statistical description of the sea surface employed in this study, is based on 

the assumption that the surface elevation is a Gaussian process in space and time 
(Assumption 4). But "measurements of the two-dimensional wave height probability 
distribution of wind-driven waves in a model tank", performed by S P ~ B L  and 
S C H U L ~ ,  "suggest that the use of bi-variate Gaussian statistics in acoustic scat- 
tering computational approximation may be less realistic than assuming Gaussian 
behaviour in only one dimension" [II.I 7, p. I065 - abstract]. 



11.6 Suggested experiments 

The main problem for the experimentalist who wants to study the scattering of 
underwater sound waves from the sea surface, is caused by the necessity of fixing 
the geometry of transmitter and receiver. This is so because when measuring fluctua- 
tions, he wants to be sure that these are indeed introduced by the surface, and not by 
the swinging of transducer and/or receiver(s) down below a ship, at the far end of a 
cable. Reduction of this basic problem is possible, to a limited extent, by mounting 
transmitter and receiver on the same cable so that T and R are equally effected by 
the ship movements. The possibility to study the influence of the geometry is lost in 
this way, because now 8, = 0. 

One way to solve the foregoing problem is offered by model tank experiments, but 
they have the disadvantage that one has to determine how representative they are for 
the true ocean. 

Another possibility could be found in sources and receivers that are bottom 
mounted, for instance on the continental shelf, or mounted on cables anchored at 
the bottom and kept vertical by a buoy floating on the surface. 

The simplest way to use such an arrangement is by driving it with CW-pulses of 
variable frequency, and generating ensembles of output signals by taking sets of, say, 
30 pulses for each experiment. In this way the time- and frequency~orrelation func- 
tions can be established as functions of the roughness parameter. Especially for low 
values of x this would be interesting, if concurrently the temporal correlation fundion 
of the surface is measured (or its Fourier transform, the surface wave spectrum). 

If more than one transmitter signal is available in the foregoing fixed set-up, the 
coherent bandwidth can easily be measured. This is done by transmitting simulta- 
neously two CW-pulses, one with frequency w, the other with frequency cu+Aa, 
and varying Aw after every set of pulses. 

The space-correlation functions can be mesaured by providing an array of hydro- 
phones on the receiver side. A problem is caused, however, by the requirement that 
the orientation of such an array with respect to the transmitter is known. 

The theoretical results derived in the preceding chapters have been commented on 
and compared with material found in the literature, both of experimental and theoret- 
ical nature. It turned out that our specular point formula is in essence equivalent to 
the Kirchhoff-Eckart approximation, albeit that the derivation is entirely different. 

Little experimental data is available for comparison, mainly due to the fact that 
generation of ensembles of output signals that allow for a statistical treatment is 
almost impossible. Nevertheless, for the essential results of our theoretical work, 
c o ~ t i o n  could be found, especially in the domain of coherent scattering. 

Suggestions for further experimental work have been given. A crucial point in this 
respect is the availability of a fixed geometry so that ensemblesof data can be generated. 
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CHAPTER 12 

CONCLUSIONS 

+? 
The following conclusions can be drawn from the study presented in this thesis. . $3 

They are subject, where such applies, to the validity of the assumptions listed on r f 

page 13. 

1. The phenomenon of scattering and reflection of underwater sound waves from 
the randomly rough sea surface can be successfully studied by considering the . -7 

surface channel as a random, linear, time-dependent filter. 

2. This filter can be divided into a deterministic part and a purely random part. . 
These two sections are connected in parallel. 

3. Meecham's perturbation method is a useful technique to solve the wave equation 
with the Dirichlet condition of zero total pressure on the boundary. 

4. Its result is complicated. But for wind speeds not exceeding 10 m/s and specular 
grazing angles larger than 6", the formula for the transfer function of the filter 
reduces to the same simple expression as the one that follows from the Kirchhofl- 
Eckart theory. 

5.  This Kirchhofl-Eckart formula can be applied - under the foregoing conditions - 
over the whole frequency domain of interest (0-20 kHz). It indicates that specular 
and omni-directional scattering and reflection produce identical results: only 
the specular point is important; the contribution from surrounding points 
cancel each other. 

6. The statistical properties of the sea surface can be distinguished in the output 
of the random filter, if a harmonic input signal is used and x is less than 1 : the 
time-correlation function of the output signal reflects the timc-correlation func- 
tion of the surface elevation, the output variance spectrum shows the surf' 
wave spectrum. 

7. Narrowband signals are transmitted without distortion if their relative bandwith 
2Aflf is smaller than 2.31%. 

8. A delta pulse propagating through the channel suffers only from fluctuations in 
the arrival time. These fluctuations have a Gaussian probability &nsity with 
zero mean value and standard deviation equal to 2h cos 8Jco. 



9. Also the space-correlation functions of the scattered field reflect the statistical 
properties of the surface when x G 1 : the transversal and the horizontal correla- 
tion functions have the same shape as the spatial correlation function, the longi- 
tudinal correlation function resembles the time-correlation function of the 
surface elevation. 

10. The sea surface has no preferred direction for scattering and reflection of under- 
water sound waves, when it is insonified by an omni-directional source. 

11. Available experimental data confirm the conclusions 4, 5, 6, 9 and 10. 

12. For the collection of ensembles of experimental data to check further the theoret- 
ical work here presented, it is essential to employ an arrangement of transmitter 
and receiver(s) that is rigidly fixed. Such an installation does not seem to be 
available at present. 
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APPENDIX A 

Some derivatives of C 
Formulae for the variances of the first and second order derivatives of the surface 

elevation follow from (3.3), (3.4) and (3.5) as limits : 

Before we can actually use these relations, we have to compute the spatial correla- 
tion function @ for small values of { and q. To this end we consider (3.12) and note 
that 

with I, and l2 defined by (3.13) and (3.14). 
Fig. 3.1 indicates that the spectral function A2(oa) is practically zero, when oa 2 

a, = 3glv. Therefore we can make the arguments of the Bessel functions in (3.13) 
and (3.14) as small as we want, by taking values of and q close to zero. Hence 
Jo and J, can be replaced by the first three terms of their power series expansion, 
that is [A.I, p. 3601 



. . 
a . -  . . The lkst terms of these expansions, substituted into (3.13) and (3.14), yield the 

value 2 respectively 1 (see (3.11)), so that I, and 1, may be approximated as follows: 

in which expressions the constants Z2 and Z4 are defined by 

Using now (A.4), we find 

Then we are ready to perform the operations required in (A.l) 
yield 

(A. 10) 

The calculation of I2 and I4 has to be done by substitution of (3.15) into (A.7), 
bearing in mind that the upper limit of integration equals om. We obtain 

C ' O "  
14 = - 4 4 4  j dco,w: exp (-0.7% /o,u ). 

3849' o 

(A. 11) 

(A. 12) 



These integrals can be brought in a tabulated form [A.I, pp. 228-2291 by using the 
substitution t = (u,/w,)~. Putting at the same time, for convenience, 

Substitution of these values into (A.9) and (A.lO) gives the desired results for the 
spatial derivatives: 

The time derivatives follow from (3.9) by performing the operations described 
in (A.3): 

a 

ct;i> = 33 da,A2(m,)a:. 
0 

t, 

The second one is cqdhlmt with 8g212 (see (A.7)). From (A.14) we get therefore: 

For the calculation of < c;: > we substitute (3.15) into (A.17) and get 
\. 
,;*a 

4 4 4  < C: > = -+cg2 j da,~o;~exp(-0.74g /W,U ), 
0 

which becomes 

after we have put t = g2 J0.74/(0,21;2). This yields with C = 8 x 



A.l M. and I. A STBOUN, Handbook of Mathematical Fhetioll~ (National Bureau of 
Standards, Wahhgton-DC, 1965). 



APPENDIX B 

Approximation of IP starting from the stationary phase method 

We rewrite (5.6) in the following way 

where 
$@tQ) = -Kwf?+kw,. 

This phase depends on 4 variables: 

w, is given in (5.5). When k is such that !b varies rapidly with Q and K, the integral 
will be small because the components of the integrand with different (K,, K, €, q) 
will cancel. However, this cancellation will be minimum at values of (K, Q) for which 
the derivatives of $ with respect to K and Q are zero. At these points, the points of 
stationary phase, the mutual cancellation of the sinusoidal waves in the integrand 
will be least. Consequently, for a given value of k, these points will be dominant 
[B.I, p. 3921. 

Differentiation of II. in (B.3) reveals that it is only stationary at the "point" 
P(K,, 4, e, 111, for which 

t = tt, - 0, 

K, = kCx - (2, - rxxllwl., 
K, = kCy -(Z,-rX,llwT9 

where now WT, [ and c,, c, have to be evaluated for Q = 0. According to the stationary 
phase method, + is developed in a Taylor series around the point P(K,, I$,, 0,O): 

The constants $,,, $w, . . . etc. are the 16 second derivatives of $ with respect to two 



of the four variables. Investigation of these derivatives shows that more than half of 
them equal zero; (B.5) reduces to 

With this expansion the integral for Y is then approximated in the following way: 

Y(R) = -L p)* exp (i+*) 
8n3 WT 

x j d~ j dq j du j do exp [i ($=&' + 2$&+ $,,,q2) - iut - i g  . (B.7) I 
Only small values of u, v, c, and q, both positive and negative, will be signiscant 
in the integral. The integration can therefore be taken between the limits - oo to 
+ [B.l, p. 3961. Integration over u and u yields then 4n26(5)6(q), which makes the 
integration over 5 and q very simple. The result is, after evaluation of & and @ at 
the stationary point: 

The square root can be simplified somewhat, because (:,(; << 1. Using these 
inequalities we hally obtain 

For ( = 0, this reduces to 

with W, = ( R ~  +z;)*, whereas !Po, the exact solution for the perfectly plane surface, 
is given by (see [B.2, p. 281) 

Bo(R) = Y(R) 1 = ZT(ikwT- I) exp (ik wT). 
C- 0 2n W; 

This reduces to (B.lO) if kWT> 1, which seems to indicate that our approximation 
is good in the far field. 

The question arises now how good the foregoing approximation (B.9) is, or - in 
other words - what conditions have to be satisfied for its application. In order to 



give an answer to this question we will try to find an upper and a lower limit for !P, . ,?A- 

and require that the approximate solution falls between these two limits. The error is 
then at most equal to the difference between these bounds. By chosing the pammters @ 

r L involved so that these bounds ly close together, we can keep the error within reason- , n 

able limits. A- 

We assume that kWTB 1, or k > 10/Z,. For ZT > 100 m, this means k Z 0.1 m-' . - "e 

or f 2 25 Hz. In practice this will always be true. Therefore we can write !?',, as 

ikZT 
!?'0m) = - exp (ikwT). 27c w; 

In order to gain some insight in the behaviour of 'P, we return to (5.6) and expand 
the factor exp (ikwT)/wT in plane waves. So we get as the starting point of our analysis 

The dependence of C on Q makes that the integrals cannot be solved analytically. 
Therefore we concentrate our attention on the factor F E exp [- iM,C(R+p) 1. We 
note that two domains of M have to be distinguished: 1) M < k, for which M, = 
(k2 - M~)* is real and F is a unit vector in the complex plane with random phase 
equal to M,C(R+ Q); and 2) M > k, for which M,, becomes purely imaginary and F 
is real and equal to exp [C(R+Q) d m .  

In the latter case, when M > k, it is easy to see that the following inequality holds: 

LI < jjdqex~[i~.W-K)-iM,C(R+p)] < L2 
where 

Clearly the equality signs in (B.14) hold for C = 0. 
For M C k, the situation is less simple, because now L1 and L2 are each others 

complex conjugate : 

Nevertheless, L, and L2 must indicate limiting values, since the random p b  , 2 %sit 
'b4":; - fluctuations around zero in F have been replaced by fixed valucs (compare coherent ., i~d.+ 2 



addition of unit vectors versus random or incoherent addition). This idea is contimed 
ifL, andL2 are substituted in (B.13): Y1, obtained with L1, depends now on (ZT+ ICJ), 
whereas Y2 is a function of (ZT - Ill). 

In (B.16) the integration over Q yields 4z2S(M-K). The quantities Y1 and Y, can 
therefore be calculated explicitly. Substitution of L1 and L2 into (B.13) and integra- 
tion over K, which is easy because of the selective properties of the delta fimction, 
produces 

Integrals of this type can be calculated by using polar coordinates (M, 8) instead 
of M = (M,, My). The general expression for Y1 and Y2 is then 

or, after integration over 8 and substitution of @ = e-ik with s+ 0, 

This last integral is a Hankel transform. The solution is found in [B.3, Vol. 2, , I 

p. 9(23)]: 

for a+ 0 it reduces to 

This is the general solution. For Y1 we have Z1 = ZT+ IC(R)I, and Z2 = 2,- IC(R)I 
for Y2. Defining now two distances, w1 and w2: 



and remembering the assumption kw >> 1, we have 

Next, as I(( < 0.1 ZT (Assuntption 11), we have ZT(CI ( 0.1 w:, where WT = (R2 + 
z;)*, so that (with an error less than 1%) we can write " ^ C  - *  

: : 4  

Hence 

follows from (B.23). Again we note that for (-0 both Y1 and F2 reduce to Yo. 
With these results we are ready to judge the approximate solution given -@ E.9): - 

Using the same approximations as for Y1 and P2, we have :re : e ps,f - z ~ F - ~  

- ' .+-&; The phase of Y is lying between those of P1 and Y2, for any value of k and R. 
The mean phase is about equal to kWT, the fluctuations are at most kzT({l/wr. 
These phase excursions will be 1% or less, if the condition 

'i r i is satisfied. 
Turning now to the moduli of Y1 and Y2, we see that their relative behaviour is 

governed by the expressions between curled brackets. The mean values of these 
quantities are sketched in Fig. B.1, together with their standard deviations. This 
produces the shaded areas. Corresponding curves for F are drawn as dotted lines. 
Fig. B.l leads to the conclusion that P is likely to fall outside the limits Pl and P2. 
But it also suggmts a possible improvement of the formula for P: if we take ,, ,, 

.<+ 



I VERT. UNIT: h/zT 

0 1 2 3 

Fig. B.1. i 
Relative behavim of the moduli of Pl,P* and Y. 

instead of (B.26), we have an approximation of which the mean value can be brought 
between the bounds !PI and Y2, if we see to it that the square root in (B.28) is close 
to 1. 

This last statement needs a qualitative investigation. First we require that 

in the x, y-range where (!Pol is not negligible, because the square root can then be 
expanded in a converging series, which will be useful later on. The useful x, y-range 
can be found from (B.12): the modulus IYol has a maximum equal to k(21tZT)-' 
at R = 0, and at R = 10 Z, it has decreased to 1% of that maximum. So the most 
important surface part is the area for which R < 10 Z,, and in that area (B.29) has 
to hold. This condition is certainly satisfied if * - 

Considering the mean value of the random quantities involved, together with the 
numbers &rived in Chapter 3, this yields: 

whereas the mean square criterium produces 

Equation (B.31) indicates a rhombic area with -20 Z, < y < 20 Z, and - 12 2, 
< x < 12 Z,, (B.32) an ellipse with semi-axes equal to 9 2, and 16 2,. Most of 
the area inside the circle R = 10 ZT falls inside the rombic and the ellipse, so we 
conclude that for R < 9 z,, the series expansion of dl+ 2(~C,+yc,,)/Z~ is convergent. 



As a result of the foregoing analysis we see that for 

we have 

with an error less than 2%. The mean value of this expression is equal to one, for any 
(x,  y), as was required in the discussion of (B.28). The variance increases with x2 and 
y2, as can be seen from (B.33). Taking the mean square of this expression, we have 
the condition 

This condition is of course much more demanding than (B.32). The corresponding 
limiting ellipse is consequently smaller: now the semi-axes are 3.6 ZT and 6.4 ZT. 
Inside this ellipse (B.28) is an acceptable approximation of Y. 

Finally we note that these results indicate limiting values. In most of the cases the 
errors are less. The complete formula for Y, as it emerges from this discussion, is 
found by substitution of Yo into (B.28): 

ikZT F(R) = - ~ X P  (ikIVT) ,/I + 2 xrx+ye; 
~ X W ;  Z~ s 

with WT = (R2 + z;)* and w, = [R' + (ZT - C)2]*. 
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Behavim of E for hi@ freqnencies 

In (5.12) we have the complete formula for H. It can be written as 

with 

% 
and WT = (R2 + Z;f)*, WR = (IRR - R1 + 23%. The approximation in (C.2) is based 
on lcl g 0.01 ZT, ZR (Assumption 11). 

The points of stationary phase follow byP&fferentiation of (C.2) with respect to 
x and y, i.e. from the equations - 

rJ 
&, 

, .; 

Exact solutions are difficult to obtain, except when C = C, = 5; = 0. Then x X, = 
ZTXd(ZT+ZJ and y = Y,  = 0 follows; X, and Y ,  are the coordinates of the specularA 
point. 

In order to derive a condition for which the solution of (C.3) is sufficiently close, 
to x = X, and y = 0, we suppose that x = X,+ Ax and y = Ay satisfy (C.3), and 
require that Ax and Ay are small compared with the geometry of transmitter and 
receiver. Two cases have now to be distinguished: A) XR 2 100 m, and B) XR w 0. 

A. For X, 2 100 m, we can write 

These approximations will hold with an error less than 3% if in (C.4) the deviations 
are smaller than 0.3. 



With (C.4) we can rewrite (C.3), and find as first order approximations: 

Requiring next that Ax and Ay are at most loo/, of X,, we obtain the following 
conditions for the slopes: 

Since cx and cy are exchangeable, and cosz8, < 1, this means that 

This result is subject to the conditions 

to make (C.4) valid. Using (C.5) this leads to 

In the denominator the larger of ZT and ZR has to be taken. 

B. For XR a 0 we have 

with the condition 

With (C.10) substituted into (C.3), Ax and Ay are easily found. In first approxima- 
tion we get 



These have to be small compared with ZT and ZR. Therefore 

has to be true. 
Turning finally to the condition (C.l l), we derive with (C.12): 

(C. 13) 

The quantity on the right hand side is not smaller than 0.075. So (C.14) is certainly 
satisfied, if 

According to KINSMAN [C.l, p. 111 the slopes cannot be larger than 117. Thus the 
maximum value of ~ 2 ,  + ~ 2 ,  equals 0.04, so that condition (C.ll) is always observed. 

Summarizing the results of A. and B. we find that the phase $ in (C.2) has approxi- 
mately one stationary point - namely P(X,, Yh, the point of specula reflection - if 
the slopes of the surface elevation satisfy the following relations: For XR rn 0 their 
absolute values have to be less than or equal to a, for X, 2 100 m they cannot exceed 
the values /3 and y, where a, /3, and y are constants that depend on the geometry of 
transmitter and receiver in the following way: 

In the expressions for a and y the larger of ZT and ZR has to be taken. 
Returning to (C.l) and (C.2), we expand the phase in a Taylor series around the 

stationary point: 

and get from (C. 1) : 



After evaluation of the double integral (see rC.2, p. 84) and substitution of X, 
and Y,, this gives 

H(o, t) = - k (zT+zd3 'l +"% tan ' exp [ik(DO - 2C cos 831. (C.19) 
ZTZRD; J$xx$n - $& 

The constants $%%, $%,,, and $n are the second derivatives of $ at the stationary 
point. Their complete formulae are rather complicated: 

but [g, [%C,, C: are much smaller than 1, so that some simplification is possible. If 
moreover 

and 

1CXX1,l&1, 161 < f  c0s2eJ (k + &)* 
we can write 

$=JIII - $& w k2 COS*~, (iT - +&ye 
Then (C. 19) becomes 

H(W, t )  = -DO exp [ik(Do - X  cos e$] J1 +XX tan 0,. 

Series expansion of the square root, which is permitted-in view of (C.21), leads to 
the formulae for Ho, HI, etc. given in (5.18)-(5.20). 



C.1 B. KIMMAN, WIW W m ,  %ir Generation and Propa(gation on the Ocean Swfw (Printice 
Ha& Engkood Cliffs, N.J., 1965). 

C.2 L. FOR=, ''&a and -on of U m t a  Sound Waves from the Sea Surface. I. 
An Bxpreasion for the Scattered Field", hamr ASW R e m c h  Centre, Tcchn. Rep. 181 
(1970). - 









THESES 
% 2 .A. 

1 
The Kirchhoff-Eckart theory is better than it seems. 

2 
The Doppler spread in the surface sound channel is mainly determined by the vertical 
surface movements. 

3 
The Pierson-Moskowitz spectrum is physically unrealistic because a fully developed 
sea occurs seldom, and mathematically because of the behaviour for u+ 0 of functions 
that can be derived from it. 

4 
The application of a fast digital computer is a useful way to advance a theory for the 
description of a physical phenomenon. 

It is possible to measure the velocity as function of time or position of a projectile 
inside the barrel of a gun by means of Doppler radar, if the caliber of the gun is at 
least 75% of the free space wavelength of the radiated radar signal. 

A function is sufficiently sampled if it can be reconstructed by drawing a smooth 
curve through the sample points. 

In many research projects tbe recording and reporting of results and methods are 
wrongly treated as a requirement that can wait until the project is finished. Proper 
reporting and recording form an essential aspect of a research project: they can help 
to clarify vague ideas and detect errors in an early stage. 



The informal contacts between scientists working in international organizations - for 
the total scientific output as important as the organizational relations - are usually 
established in three steps: first with persons of the same nationality, next with 
colleagues from nations with a cultural pattern similar to the own, and finally with 
others. Often the last step is not made at all. 

In Holland, but strangely enough also in other parts of The Netherlands, the teaching 
of both national history and local geography fail to create su5cient insight into and 
understanding of the difference between "Holland" and "The Netherlands". 

Persons in directorial positions always leave a chaos behind at the moment of their 
departure - in the eyes of their successors. 

11 
Italian labourers that work in The Netherlands are not representative of their country- 
men. Opinions about the Italian people should therefore not be based on the 
behaviour and appearance of these labourers. 

12 
It is an illusion to believe that the world can be improved by means of theses added 
to a dissertation. 

It is most remarkable that bathroom mirrors do exchange left and right, but not up 
and down. 
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