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Reduction of low frequency active 
sonar  c lu t t e r  through image processing 

S. Dugelay and D.A. Abraham 

Executive Summary:  

One of the problems encountered in using low frequency active sonar for the 
detection, classification and localization of low Doppler submarine targets in 
shallow water is the large number of false clutter detections from sea bottom 
features. These detections can overload automatic tracking and classification 
algorithms. This report investigates the potential for image processing algo- 
rithms exploiting information from multiple beams to reduce the number of 
clutter detections by associating them over bearing and range and then dis- 
counting those too large to be a submarine. Application to real data has 
shown reductions greater than 80% from the number of target detections on 
all beams using a standard automatic detection algorithm to the number of 
submarine-like objects in the range-bearing image. Work in clutter reduction 
for low frequency active sonar is on-going at  SACLANTCEN. 
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Reduction of low frequency active 
sonar clutter through image processing 

S. Dugelay and D.A. Abraham 

Abstract: Large numbers of false clutter detections arise in the use of low 
frequency active sonar for the detection of low Doppler submarine targets in 
shallow water. Traditional detection algorithms operate individually on each 
beam output searching for targets at all ranges. Detection algorithms such 
as the Page test [:I.] are designed for target echoes that are extended in range 
owing to the multipath propagation of shallow water channels and reflection 
off of the target. However, the target echo and bottom features may extend 
over multiple beams either physically or by bleeding through the sidelobes of 
the beamformer. This indicates that detections need to be associated across 
bearing or the detector must be designed to account for targets and clutter 
that are spread over multiple beams. 

This report considers the detection/association issue from an image process- 
ing perspective, applying a Markov random field (MRF) model to  the image 
formed from the range-bearing sonar data. The Markov random field model 
exploits a priori information such as the distribution of the reverberation, min- 
imal information about the distribution of the target echo and the relationship 
between each range-bearing cell and its neighbouring cells. Maximum a pos- 
teriori (MAP) estimates of the labeling of each range-bearing cell (i.e., target 
or reverberation) are obtained rapidly through an iterative algorithm with an 
initialization provided by the Page test detector output. The objects in the re- 
sulting range-bearing image are then tested according to their size, ruling out 
any too large to be submarines. Application to real data has shown a reduction 
of greater than 80% from the number of Page test detections over all the beams 
to the number of submarine-like objects in the MRF-MAP image. 

Keywords: clutter reduction o detection o segmentation o classification o 
Markov random fields o image processing 
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Introduction 

One of the problems encountered in the detection and classification of submarines 
in shallow water using low frequency active sonar is the large number of false clutter 
detections from sea bottom features. Too large a number of clutter detections from 
each ping will overload subsequent signal processing such as tracking and classifi- 
cation algorithms. In this study, we investigate the potential for image processing 
algorithms to reduce the number of clutter detections. Image processing has, as an 
advantage over single beam detection algorithms, the ability to associate detect ions 
occurring on multiple adjacent beams. 

Direct application of standard image processing techniques to active sonar data is 
not necessarily trivial as the sonar image obtained hom beamforming towed array 
data is in an irregular polar grid of rangebeam cells as opposed to a rectangular 
grid. The goal of this report is to determine if image processing is indeed a useful 
tool in submarine detection and discrimination. Certainly, for many other under- 
water applications, image processing is now a crucial step in interpretation and for 
geological applications, several techniques have been applied using data &om various 
sensors: 

Blonde1 et al. [2] used textural information contained in TOBI (Towed Ocean 
Bottom Instrument 3OkHz) images. This approach is not based on any phys- 
ical properties of the phenomena or geometry of the sonar. Artifacts cannot 
therefore be taken into account. 

Linett et al. [3] proposed a segmentation method based mainly on textural 
analysis either by fractal methods or spatial analysis for high frequency sonar 
data. 

Jiang et al. [4] developed a method of hierarchical Markov models for sidescan 
sonar images extracting textural features. 

IFREMER developed a Markovian model combined with angular reverberation 
for low-frequency (13kHz) multibeam echosounder images [5 ] .  

We can also cite the following authors for their work in minehunting using image 
processing methods: 
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Pipelier [6] proposed a method for a sidescan minehunting sonar based on 
Markov random fields. This study demonstrated the interest of using Marko- 
vian models for image segmentations although the model employed was kept 
very simple and required more development. 

Thourel [7] also utilized Markov fields combined with a multiresolution or mul- 
timodel approach for minehunting applications. While background intensity 
data are considered to follow a chi-squared distribution law, mine shadows are 
assumed Gaussian distributed. 

Stage and Zerr [8] took advantage of the high resolution present in minehunting 
sonar images in order to compute local statistical properties around a pixel. 
This introduces an average filtering process slightly degrading the image but 
which in their case was not detrimental. The method developed detects ob- 
jects by checking if they belong to the background or not; i.e. if their local 
statistical distribution reasonably follows the distribution of the background 
(a chi-squared distribution in intensity) or not. 

It is to be noted that most recent applications have been constructed using Markov 
random fields (MRF): the main advantage of Markov random field theory is that it 
is a simple mathematical model that allows different levels of interpretation. High 
frequency applications (in geology) have a tendency to base their method on textu- 
ral analysis or averaging schemes. In the present case, textural information is un- 
known or unavailable and poor resolution renders averaging dangerous; only Markov 
random fields seem to have a probabilistic theoretical background solid enough to 
incorporate a priori knowledge and to produce reliable results. Unfortunately, a 
literature search revealed very little in applying image processing to the acoustic 
detection of submarines. 

We will determine if it is possible to discriminate targets from strong bottom fea- 
tures, while working in a noisy environment. Short descriptions of the sonar system 
geometry and data acquisition are necessary if an adequate method is to be devel- 
oped; this will be described in Section 2. Images are of course greatly dependent 
on the acquisition system itself, and the construction process; we briefly discuss 
this process in Section 2.2. Section 3 describes the application of Markov random 
fields to the active sonar clutter reduction problem including the modifications re- 
quired and results demonstrating the viability of the approach on real data. Finally, 
our conclusions will summarize the problem and proposed solution, giving way to 
numerous future prospects in the final section. A brief review of the most impor- 
tant image processing techniques is presented in Annex A, where their constraints, 
disadvantages, and applicability to the current problem are discussed. 
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Brief description of the sonar 
and data acqi~isition 

2.1 The sonar and preliminary data processing 

The data analyzed in this report were collected using the TVDS source and the 
Centre's low frequency towed line array. The transmission waveform was a 2.29 
second hyperbolic frequency modulated (HFM) waveform sweeping from 460 to 565 
Hz. The data received from 128 sensors spaced one meter apart were beamformed 
using Hanning shading on the array to beams spaced so that the beampatterns 
overlapped 3dB down from their main response axis at 700 Hz, resulting in 86 
beams spanning from forward to  aft endfire. 

The data from each beam were matched filtered, basebanded so that the center of 
the waveform band (512.5 Hz) shifted to zero Hertz, and decimated to a sampling 
frequency of 125 Hz. The resulting data are nearly statistically independent from 
sample to  sample in range and provide a range sampling interval of 6 meters assuming 
750 m/s for the tweway speed of sound. The data were then normalized using a 
trimmed-mean order statistic normalizer [9] with leading and lagging windows each 
consisting of 100 samples and removal of the upper and lower quarter of the combined 
auxiliary data. 

As the beamformer was designed with 3dB overlap in the beampatterns at 700 
Hz, we expect a larger degree of overlap at lower frequencies. Evaluation of the 
beampatterns indicated that a point target arriving on the main response axis of a 
beam is attenuated by approximately 6 dB on adjacent beams and 35 dB two beams 
away. Thus, we expect that submarines with high target strength will be detected 
on up to  three adjacent beams even at  far ranges or angles away from broadside 
where the range-bearing cell centers may be separated by distances greater than the 
physical extent of the submarine. The correspondence between beam number and 
main response axis is depicted in Fig. 1 where zero degrees indicates forward endfire. 

- 3 -  NATO UNCLASSIFIED 

 

Report no. changed (Mar 2006): SR-272-UU



NATO UNCLASSIFIED 

Beam number 

Figure 1 Beamformer main response angles as a function of beam number. 

2.2 Image construction 

The image construction process is greatly dependent on the constraints imposed by 
the beamforming. Our major priority is constructing an image where samples have 
been transformed as little as possible. This means that we would like for example to 
avoid geometric transformations such as projections from a polar coordinate system 
into a cartesian coordinate system and interpolation. We also would like to avoid 
having to average samples falling into the same pixel. Such transformations can 
be incorporated into an image processing technique, but in this tentative study, we 
want to keep matters fairly simple and straightforward. 

A representation of physical reality would be a "fan-view" image. This supposes 
geometric transformation of the data and interpolation. A priori knowledge of pixel 
distributions may then be lost. Such techniques introduce inter-pixel correlation 
which we want to avoid. We also want to keep the resolution of the time series 
(6m). Therefore, the easiest and most convenient representation is simply a bearing 
vs. range representation for each ping as shown in Fig. 2, where the varying dis- 
tance between adjacent range-bearing cells is accounted for in the image processing 
algorithm. This representation is useful for detecting objects in a single ping and 
conveys a global view of the area in one take. 
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Beams 
From the physical scene viewed in one ping to a beams per ping representation 

Figure 2 Bearing us. range representation 

A similar representation can be produced for a closer look at a particular beam when 
multiple pings are available: pings vs. range for one beam, as shown in Fig. 3. This 
kind of image is useful in tracking a feature. Static features if detected by the same 
beam will appear moving due to the motion of the transmit and receive antennae. 
Since we have knowledge of the ship's speed and direction, it is possible to determine 
whether a target is indeed moving or static. 

Finally, a combination of both representations produces a temporal bearing vs. range 
image as seen in Fig. 4. This is particularly useful if one is detecting objects and 
estimating relative motion at the same time. 

2.3 Image description 

In this section, we will enumerate the most - important image characteristics which 
make the low frequency active sonar problem unique in itself, and therefore demand 
specific modelling. 

From the description of the construction process above, it is clear that an important 
characteristic of the image is that it does not translate the real physical view of the 
scene but conveys a distorted view. Indeed, pixels which are neighbours in the image, 
are in fact situated meters apart in reality. Also, the separating distance depends on 
range and bearing. It will be necessary to keep this in mind when applying image 
processing techniques. 
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ping 1 

ping 2 

ping 4 

Range f Beam n 

From the physical scene viewed in one beam over several ping 

pings to a pings per beam representation 

Figure 3 Pings us. range representation 

sonar 
direction 

Figure 4 Temporal bearing us. range representation 
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Secondly, we may observe a spreading effect of a feature dependent on range as is 
demonstrated in Fig. 5. At close range, a bottom feature may encompass several 
beams because of its size. At further ranges, the distance between beams increases, 
and the feature will not be seen in as many beams. This spreading effect can be 
estimated and it should be particularly useful when classifying targets based on their 
shape. 

Finally, no information is readily available on target pixel intensities or probability 
distributions. We will assume that background pixels are independent and that 
intensities reasonably follow a chi-squared distribution with 2 degrees of freedom 
(i.e., Rayleigh distributed reverberation amplitude). The hypothesis of such a law 
is not rejected by the statistical Kolmogorov-Smirnov test [lo] on the real data 
processed for this report. 

Figure 5 Spreading effect 
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A Markov random field solution 

Markov random field theory is a branch of probability theory for analyzing the 
spatial or contextual dependencies of physical phenomena [ l l ,  12, 131. Its most 
interesting characteristic is the ability to define a local model when in reality it 
is global. In particular, this allows dictating that a pixel will only depend on its 
neighbours while adequately modeling the global relationships of the pixels within 
the image. In this section, we will introduce notations and definitions relevant to 
image processing [4, 5, 6, 7, 11, 12, 13, 14, 151; then, we will expose the application 
of MRF theory to low frequency active sonar data. 

3.1 The  theory of  Markov random fields 

3.1.1 Sites and labels 

The goal of segmentation is to affect a label to each pixel of the image. The la- 
belling problem is then specified in terms of sites and a set of labels. Let S = 
{s = {i, j}  11 5 i 5 m, 1 < j < n} be a set of sites. Its elements correspond to the 
locations at which the image is sampled (in the present case, we have a regularly 
spaced lattice). This set can be conveniently re-indexed by a single number k, where 
k takes on values in {1,2, . . .  N )  with N  = m x n. 

A label represents an event that may occur at a site. Let L be a set of labels. In 
the discrete case, a label assumes a discrete value in a set of M labels: 

The labelling problem is then to assign a label from the set L to each of the sites 
in S. As an example, in the case of edge detection in an image, the problem is to 
assign a label xi from the set L = {edge, non - edge} to  site i E S where elements 
in S index the image pixel. The set 

is called a labelling of the sites in S in terms of the labels L, x, E L. In the 
terminology of random fields, this is also called a configuration. A configuration, or 
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labelling, can correspond to an imags, an edge map, or an interpretation of image 
features in terms of object features, and so on. When all the sites have the same label 
set, the set of all possible labellings, called the configuration space, is the following 
cartesian product: 

c l = L x L . . . x L = ~ ~  - 
N times 

3.1.2 Neighbourhood system and cliques 

The inter-relationship between pixels is described through a neighbourhood system 
associated with the set of sites S. The neighbourhood system V is defined as: 

where vi is the set of sites neighbouring i. The neighbouring relationship has the 
following properties: 

1. a site is not a neighbour to itself: i @ vi 

2. the neighbouring relationship is mutual: i E uj j E vi 

The pair [S, V] constitutes a graph where S contains the nodes and V determines 
the links between the nodes according to a neighbourhood relationship. A clique c 
for [S, V] is defined as a subset of S: 

1. c is a single site c = {i) or 

2. two elements of c are neighbours according to the neighbourhood system V 

A clique is in fact either a single site, or a set of sites in a neighbourhood which 
are linked to each other via the neighbourhood system. These sets will be useful, 
for example, if we want to distinguish links between vertical neighbours, horizontal 
neighbours or diagonal neighbours. 

The order of a clique corresponds to the number of elements contained in the clique: 

C1 = {i 1 i E S} 
Cz = {{i,j} 1 j Evi,  i E S} 
C3 = {{i, j, k} ( i, j, k E S are neighbours to one another} 

In Fig. 6, we present two neighbourhood systems and the associated cliques on a 
lattice of regular sites. The type of a clique on a regular lattice is determined by its 

- 9 - NATO UNCLASSIFIED 

 

Report no. changed (Mar 2006): SR-272-UU



NATO UNCLASSIFIED 

size, shape and orientation. As the order of the neighbourhood system increases the 
number of cliques grows rapidly and so do the involved computational expenses. In 
many cases, whatever the neighbourhood system, only second order cliques will be 
considered. 

It is also possible to define cliques on an irregular lattice where the neighbourhood 
system may be defined as a disc. In Fig. 7 is an example of irregularly spaced sites, 
a neighbourhood for one site (marked by the dashed circle), and the corresponding 
cliques. Note that the set {m, i, f )  does not form a clique because f and m are not 
neighbours. 

3.1.3 Markov random fields: definition 

Let X = {XI, X2, .  . . XN) be a family of random variables defined for the set S ,  
where each variable Xi takes a value xi in L. The family of variables X is called 
a random field and we define x = {xl, 2 2 ,  - .  XN) E S1 as a configuration of X ,  
corresponding to a realisation of the field. For a discrete set of labels L, P (Xi = xi) 
is the probability of the variable Xi taking the value xi, and the joint probability is 
given by P ( X  =x) = P ( X 1  = x l , . . .  , X N  =xN) .  

Definition: 

X i s  said to be a Markov random field ( M R F )  o n  S with respect t o  the 
neighbourhood system V if and only if: 

where xs-{i) denotes the set of labels at the sites S - { i ) ,  and xui = 
{xj\jJj E vi) are the labels of the neighbourhoods of i. 

The first condition imposes positivity and can usually be satisfied in practice. The 
second condition (Markovianity) describes the local interaction between pixels: only 
neighbouring labels have direct interactions on each other. It is always possible to 
select a sufficiently large V, so that the Markovian property holds; the largest of 
neighbourhoods consisting of all other sites, any field X is an MRF with respect to  
such a neighbourhood system. An MRF is said to be homogeneous if P (xilxui) does 
not depend on the position of the site i in S;  it is said to be isotropic if P (xilxu,) 
does not depend on clique orientation. 

-NATO UNCLASSIFIED - 10 - 
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Neighbourhood systems 

I 
4 connection I 8 connection 

neighbourhood I neighbourhood 
I 

( Corresponding cliques I 
I 
I 

I 

First order Second order I First order Second order 
clique cliques I clique cliques 

Figure 6 Neighbourhoods and cliques on a regular lattice 

First order cliques a a @ @ 

Second order cliques 

Third order cliques 

Figure 7 Neighbourhoods and cliques on an irregular lattice 
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3.1.4 Gibbs random fields 

A set of random variables W is said to be a Gibbs random field (GRF) on S with 
respect to a neighbourhood system V if and only if its configurations obey a Gibbs 
distribution in the following form: 

where Z = CWEn e - ) ' ( ~ )  is a normalizing constant called the partition function, 
T is a constant called the temperature which will be assumed to be 1 unless stated 
otherwise, and U (w) is the energy function. The energy is a sum of clique potentials 
over all possible cliques C: 

The temperature T controls the sharpness of the distribution. When the temperature 
is high, all configurations tend to be equally distributed. Near the zero temperature, 
the distribution concentrates around the global energy minima. 

3.1.5 Hammersley- Clifford theorem (energy minimisa tion) 

The Hammersley-Clifford theorem establishes the equivalence between the local 
property of a Markov random field and the global property of the Gibbs random 
field. The theorem states: 

Let V be the neighbourhood system associated with the set of sites S .  
Then, W is  a MRF with respect to V i f  and only i f  W is a GRF. 

3.1.6 Baye 's framework (MAP) 

In most images, neighbouring pixels generally display similar intensities; when tex- 
ture is present, relations or particular orientations are discernible. These regularities 
describe correlations or likelihoods. According to Baye's theory, when both the a 
priori distribution and likelihood function of a pattern are known, the best that can 
be estimated from these sources of knowledge is the Baye's labelling. 

P ( X  = x) is the a priori probability, P (Y = y(X = x) the probability of Y condi- 
tional on X. Baye's formula then gives us the a posteriori probability: 

NATO UNCLASSIFIED - 12 - 
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In applying MRFs to active sonar data, X are the labels assigned to each range- 
bearing cell and Y are the corresponding normalized intensity data. 

A cost function C(x, 2) is defined as a measure of the discrepancy between the field 
of labels and its estimation, and thereby characterizes the risk associated with this 
estimation. The optimal estimator is obtained by minimizing the risk R(2): 

The cost function C(x, 2) is chosen according to preference; two popular choices are 
the quadratic cost function: 

where ((a - b( (  is the distance between a and b, and the (0 - 1) or 6 cost function 

where 6(a, b) = 1 if a = b and 0 otherwise. The maximum a posteriori estimator is 
the estimator that penalizes all incorrect configurations in the same way using the 
(0 - 1) cost function. Then the MAP estimate is found by: 

zwt = argmin R(Z) 
2en 

= argmaxP(X=2i . (Y= y) 
sen 

= a r g m a x P ( Y = y ( X = x ) P ( X = x )  
sen 

3.1.7 Optimization algorithm 

The number of possible configurations makes it impossible to calculate the probabil- 
ity for each configuration and taking the optimal solution. Therefore, optimization 
algorithms have been developed. These algorithms can be divided into two cate- 
gories: deterministic or stochastic. In this study, we have constrained ourselves to a 
deterministic algorithm: ICM (Iterated Conditional Mode [14]), where the temper- 
ature T is equal to 1. The main advantage of this algorithm is its speed to converge 
to a solution. The optimal solution is found if initialization is correct. This is in fact 
the biggest drawback of this approach since the algorithm needs an initialization 
fairly close to the global solution in order to converge to it. Nevertheless, in our 
case, a good initialization is generally feasible. The general outline of the algorithm 
is the following: 

Draw an initial configuration x(O) as close as possible to the optimal configu- 
ration, 
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Scan the set of sites S. Each site s, at  iteration n is characterized by its state 
(n+l) xP) and the configurations x t )  in its neighbourhood v,. Its new state x, 

corresponds to that minimizing the conditional energy ~ ( l l x p ) ,  r E v,), 

Continue scanning the image for a determined number of iterations, or until a 
stop test has been fulfilled. 

3.2 Applying theory t o  experimental data 

3.2.1 The  problem and image characteristics 

Our objective in the proposed processing of the range-bearing sonar image is the 
removal of clutter objects too large to be a submarine. This is accomplished by a 
segmentation process which detects objects within the image that are distinct from 
the background, folloured by a pre-classification that separates these objects as either 
target-like or clutter. The latter step is not fully a classification as it can only rule 
out objects according to a size criterion, and is thus called 'pre-classification'. To ac- 
complish these tasks we first describe the pertinent assumptions and characteristics 
of the image: 

it is reasonable to assume a chi-squared distributed background with two de- 
grees of freedom (i.e., Rayleigh distributed reverberation amplitude), 

due to the representation, the image is inhomogeneous and anisotropic, 

submarines are considered as small objects, hence shape and size are a useful 
discrimination feature, 

without removal of the displacement caused by motion of the tow ship from 
ping to ping, bottom features appear to be moving in the pings-per-beam 
image, though in a known manner. 

In the next section, we will explain how this information has been introduced into 
the model in order to achieve the goal. 

3.2.2 Modelling the energy terms 

Let us remember that the goal of the segmentation is to maximise the maximum a 
posteriori (MAP) probability. Given Baye's formula, maximising the MAP proba- 
bility requires maximisation of the product of the a priori probability P (X = x) and 
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the conditional probability P (Y = y ( X  = x).  P (Y = y) is a constant which does 
not enter the maximisation process. 

We are therefore looking to model two probabilities: 

the conditional probability, which will be identical for both the single ping 
image and the consecutive pings for a single beam representation, and 

the a priori probability, which will enable us to incorporate a priori knowledge 
on interactions between pixels, and therefore depends on the representation 
mode. 

These probabilities will both be modelled using a Gibbs distribution. The maximi- 
sation of the product of the two probabilities is then equivalent to the minimisation 
of the sum of the two energy functions U(Y = ylX = x) (the conditional energy) 
and U(X = x) (the a priori energy). 

(A) The conditional probability 

Only information on the background is available beforehand if we want to implement 
an unsupervised segmentation process. We therefore need to  construct a conditional 
probability that will test if a pixel is indeed in the background or not. The quickest 
and most efficient way of obtaining this information is thresholding. The idea is 
to say that if the intensity of a pixel is sufficiently close to the mean of a chi- 
squared distribution with two degrees of freedom, then it is most likely a part of the 
background. 

The conditional probability is then constructed in the following manner. First note 
that the probability that a variable Y following a chi-squared distribution be corn- 
prised between 0 and y is given by: 

What we need to know is the threshold value yt when the probability of Y taking a 
value larger than yt is "small". If we define "small" as cr then yt can be calculated 
from the following equation: 

The conditional probability is then defined as follows: 

If y < yt then 
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If y > yt then 

where X is the field of labels, X = 0 corresponds to the background label, and 
X = 1 to the object label. 

The most delicate step will be defining p and q. We could define p equal to a if we 
knew that histograms of the background pixel values and the object pixel values were 
separate. The problem arises when we allow histograms to overlap, and moreover 
when we do not have access to the histogram of the object pixel values. 

To set some ideas, we have estimated histograms of the background amplitude, and 
that of the objects after a Page test detector [:I.] has been applied to the signal 
in each beam, and we have plotted them in the same graph (Fig. 8). Clearly, 
although estimation may be somewhat uncertain when it comes to the histogram 
of the detected objects, pixels with intensity lower than the threshold may in fact 
belong to an object. The value a defined for a chi-squared distribution may then 
not be adequate for the conditional probability we want to model. 

We have found, empirically, that values for p and q of 0.6 and 0.8 seem to ade- 
quately model our conditional probability. That is, if the intensity is lower than the 
threshold, then the pixel is most likely to be a background pixel but there is still a 
good chance of it being in an object. Whereas, if the intensity is higher than the 
threshold, then surely the pixel cannot be from the background and the probability 
that it is indeed coming from an object is high. 

From eq. (5) and eqs. (14-17), we then have, ignoring the constant terms, the fol- 
lowing conditional energies for each label: 

If y < yt then 

If y > yt then 
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Amplitude 

Figure 8 Histograms of the pixel amplitudes from background and objects detected 
by the Page test. 

(B) T h e  a priori probability 

The role of the a priori energy is to model the possible interactions in a clique. In 
this study, as in most studies, cliques are restricted to a maximum order of two; so, 
we are left to deal with interactions between two pixels or single sites. This energy 
may also be used to correct for any geometrical artifact resulting from the image 
construction process. This means that even though the image may not be a physical 
representation of the scene, real physical information can still be incorporated into 
the model. The a priori probability is generally modeled as a counting function called 
the Ising model [15].  This means that the process will count the number of different 
labels in the pixel neighbourhood and this energy term will act as a homogenizing 
function. In Fig. 9 is a schematic example of a pixel and its neighbourhood, and 
the role of homogenizing function. The pixel the process is trying to classify is the 
center one, X,, which is labelled with a cross. It has 3 "cross" neighbours and 5 
"circle" neighbours. The pixel will tend to be labelled as a circle, unless its intensity 
is too far away fiom the "circle" intensity; then, it will stay as it is. Neighbouring 
pixels (Xt, t E v,) may also be weighted depending on their position for example, or 
correlation. The energy term for each class then counts the number of neighbouring 
pixels labeled with that class and weighted by their influence: 

U(X, = I )  = -a ln (c,) - /3 ctb(xt, I )  
tev, 
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Figure 9 Using neighbouring labels 

X 
X 

where I equals either 0 for background or 1 for an object, a and P are respectively 
homogenizing parameters for the first order and second order cliques, c, and ct 
are weighting coefficients depending on the clique and, 6(a, b )  = 1 if a = b, and 0 
otherwise. In this study, a and p are equal and increased every iteration from 0.5 
in steps of 0.1 until convergence. This allows acceleration of regularisation without 
wiping away small features too quickly, slowly moving from a conditional probability 
dominant model to an a priori dominant model [14, 51. 

We have decomposed the energy of eq. (22) into two terms: the first order clique and 
the second. First, let us deal with the second order clique term. Here, we will re- 
introduce the distances which have been dropped in the image construction process; 
that is, the influence of a neighbouring pixel will be weighted by a relative inverse 
distance in the real physical scene as depicted in Fig. 10. As the distance between 
beam centers increases with range, we will in reality introduce higher relative weight- 
ing between pixels in the same beam as the weighting between pixels in different 
beams decreases with range. Note that this concept then implies an inhomogeneous 
Markov random field [5] .  Two types of cliques have been distinguished: cliques for 
intrabeam pixel links (i.e., vertical second order cliques) and cliques for interbeam 
pixel links (i.e., horizontal and diagonal cliques).The weighting coefficients are then 
given by the following equations: 

x o o  
X 
0 

Intrabeam links 

0- 
0 

Interbeam links 

where & is the starting range of the data (in this case & = 6000m), Ago is the 
minimum interbeam distance (i.e., at broadside), Rs is the range of the pixel s, 
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Beams 

Neighbourhood in 
the image 

Corresponding region 
in the scene 

Figure 10 Weighting the influence of neighbouring pixels 

is the interbeam angle between the beam B, and the beam Bt, and d(R, 8) is the 
interbeam distance a t  range R for a beam separation 8. 

As for the first order clique, we have modeled this term with the following consid- 
erations. We do not want small objects to disappear too easily, since targets can be 
seen in as few as three pixels. This means small objects (surrounded by background) 
must have a chance of surviving. On the other hand, a small cluster of background 
pixels, surrounded by object pixels should disappear quite easily with the homog- 
enizing term. As illustrated in Fig. 11, this can be seen as a Markov chain from 
iteration to iteration [ll, 161: 

a at iteration n the pixel has been affected a label and is considered to be in 
state z?) either background (0), or target ( I) ,  

at  iteration n + 1 we can define the following transition probabilities: 

We have decided to consider that transition probabilities are determined once and 
do not vary as  the segmentation process iterates. We have chosen poo equal to 0.5 
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and pll equal to 0.9. These values are purely heuristic; further study would be 
needed to determine their influence on the final result. All that can be said is that 
pll determines, in a way, the smallest detectable object. The weighting coefficient 
for first order cliques is then written as: 

c, = [Poo~(,8=o) + ~ 0 1 6 ( ~ ~ = 1 ) ]  6(1=0) + [ ~ l o 6 ( ~ ~ = 0 )  + ~ l l ~ ( x , = l ) ]  6(1=1) (29) 

where 1 is the argument of eq. (22) and x, is the previous value of the state of s. 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

States of one pixel from iteration to iteration may be modeled as a Markov chain 

Markov chain transition 
probabilities 

Figure 11 Markov chain process for each site 

(C) Pre-classification 

The only pertinent information on the objects that we can reasonably exploit is the 
size; either by saying it is too wide, too high, or just too big. This is simply a matter 
of scanning the segmented image, counting the width, height and area of each object, 
and declaring if it is of a reasonable size to be a submarine or not. Submarines can 
be as small as the Croatian modified UNA class vessel [17] measuring 22.5m long 
and 3.4m wide, or in a similar range the Russian Losos class submarine, the type 
of vessel responsible for violating Swedish waters, measuring 29.2m long by 3.9m 
wide. In the best case, these submarines will appear in the image as two or three 
pixels. On the other hand, the largest submarine, the Russian Typhoon reaches 
an impressive 171.5m long and 13m wide. Depending on the target's aspect angle 
it can, for example, at broadside be seen in as many as three beams and two time 
samples; the area then covered is at least six pixels. At forward or aft endfire, it could 
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also be detected in a single beam, and at  least 28 time samples1. Pre-classification 
must therefore consider these type of cases; if it is based solely on area, it may then 
misclassify thin objects. The scheme is then to say that "round big" objects are 
most likely not submarines; "round big" objects being more than 3 pixels wide in 
beams and 3 pixels long in range. We have also checked that a point target cannot 
be seen in more than three beams at long ranges: so, targets which are spread over 
more than three beams are automatically rejected. However, even at long ranges, a 
target may appear in three beams owing to the spacing of the beams for the data 
processed - the beams were spaced so that their beampatterns overlap 3 dB down 
from their main response axes (MRAs) at 700 Hz. If a point target is exactly on 
the MRA of a beam, it will appear 6 dB down at the output of the matched filter 
on the adjacent beams and over 30 dB down two beams away. 

3.3 Results and conclusions 

We have tested the method on a set of ten normalised data files; note that no 
submarines are actually contained in these files. Each file corresponds to  a ping 
of data acquired between 6km and 36km at 6m intervals (5000 samples). We will 
present a close-up of an interesting zone for one segmentation but main results will 
be displayed in a table. 

For all segmentation results, a 3 beam by 5 range cell neighbourhood window was 
used, and the Page test was applied to each beam signal in order to  obtain a correct 
initialisation for the segmentation algorithm. In Table 1, we have summarized several 
stages in the detection and classification process: 

for each beam, we applied a Page test detection algorithm to the beam signal 
and counted the number of targets detected (first column: Page test); we then 
had "segmented" signals for each beam 

we then constructed the image using the "segmented" signals and counted the 
number of detected objects (second column: Image), 

using the previous image as a segmentation initialisation, we applied the seg- 
mentation process and counted the remaining number of objects after homog- 
enization (third column: Segmentation), 

finally, using size criteria, we discarded some objects considered too big and 
counted the last remaining potential targets (last column: pre-classification). 

'Note that these estimates are particular to the sonar system in use and do not account for 
the spreading of the target echo in time that results from propagation through a shallow water 
environment. 

NATO UNCLASSIFIED 

 

Report no. changed (Mar 2006): SR-272-UU



NATO UNCLASSIFIED 

Table 1 Number of potential targets detected after different stages. 

File Page test Image Segmentation Pre-classification 

From this table, we see that exploiting spatial information by just laying down 
individual beam signals as an image already reduces the number of detections by 
approximately 30 to 35%. The segmentation process cleans up the initialisation and 
regroups detections further reducing the number of detections by 65%. Finally, the 
classification step, which is based only on size hypotheses, reduces the number of 
potential targets by approximately 22%. From the Page test to the last classification 
step, the number of potential targets has been indeed reduced from an average of 
1750 detections to an average of 310, leaving only 18% of the potential targets. 

It should be noted that a low threshold was used within the Page test and therefore 
many potential targets are detected. The threshold yt employed to define the con- 
ditional probabilities (eqs. (14) to (17)) was determined by the boundary a and was 
"compatible" with the Page test; that is, a simple thresholding of the image using 
yt gave similar results. If the Page test threshold were to be changed, yt should be 
modified accordingly; this was beyond the scope of this study and still needs to be 
investigated. 

Nevertheless, with the Page test initialisation, convergence of the segmentation pro- 
cess was quick as can be seen in Fig. 12. The convergence rate was estimated 
by counting the percentage of pixels changing label from one iteration to another 
(flips). When this percentage was small enough, the process was considered stable 
and we assumed that the global minimum had been attained. Convergence occurs 
for most of the files after only 6 iterations; this can be explained by the fact that 
the initialisation of the segmentation process is very close to the optimal solution. 

In the following figures, each stage of the clutter reduction process is illustrated 
by viewing an extract of one ping over all the beams but only 400 range samples 
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(2.4km). Figure 13 contains the normalizzd data over this region and is quite diffi- 
cult to analyse visually, though some strong features are distinguishable. Figure 14 
displays the Page test detection results which produce a reasonable segmentation; 
however, features tend to be split and the segmented image contains many detections 
which are in reality noise. The MAP estimation of the labels obtained from the Page 
test initialisation is shown in Fig. 15. Note that the image has been purged of small 
features believed to be noise and that detections are grouped, forming connected 
regions. Removal of bottom features through size discrimination (pre-classification) 
produces the final image shown in Fig. 16 where big features have been discarded 
(grey) and potential targets are depicted in black. Since pre-classification was es- 
tablished only by means of size, many small bottom features remain. This indicates 
that supplementary information such as target strength, probability distribution, 
target time series analysis, or association with known clutter (i.e., from a geograph- 
ical database or previous pings) may allow further discrimination and a greater 
reduction in the number of clutter detections. 

Segmentation results have enabled us to estimate histograms of characteristic fea- 
tures of bottom objects, such as width, height, and area. Unfortunately, most 
detected features are small and the histograms do not reveal any interesting infor- 
mation on the large bottom objects. However, study of such histograms for target 
size would be extremely interesting and useful. 

The algorithm described in Section 3.2 was designed to preserve small target like 
objects; however, this ability has not been explicitly demonstrated and should be 
considered in future research. 
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Figure 12 Convergence rate of the MAP estimation of the image pixel labels 
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Range (km) 

Figure 13 Original image of the  normalized sonar data 

Range (km) 

Figure 14 Page test detections from each beam 
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Figure 15 Segmentation of the image via MAP estimation of the image pixel labels 
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Figure 16 Segmentation and pre-classification of the image into bottom features 
(grey) and potential targets (black) 
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Conclusions and prospects 

The goal of this study was to evaluate the performance of an image processing 
approach to classify potential submarine detections. Clearly, this technique is par- 
ticularly interesting since it will take into account spatial information discarded 
with current signal processing approaches. We decided to employ Markov random 
fields which is a theory based on particularly strong probabilistic foundations and is 
well suited in modelling low frequency sonar images. We attempted to introduce all 
knowledge of the problem may it be geometrical, physical or purely intuitive into the 
solution. With all this, we can obtain reliable segmentation results. The segmenta- 
tion algorithm produces clean segmentations from a Page test detector initialisation 
in very few iterations. Convergence is indeed quick due to the good quality of the ini- 
tialisation step, and a good adequation of the model to our images. This procedure 
also considerably reduces the number of potential targets detected. 

Classification of the detected objects relies solely on size criteria; further studies 
should be undertaken in comparing actual images of submarines to those of bottom 
features. It is to be noted that no comparative study could be applied for this work 
since no such information was available. Nevertheless, with certain size hypotheses, 
results show that a good number of potential detected targets (20%) can be quite 
easily distinguished as bottom features and can therefore be discarded. Small bot- 
tom features will of course remain as potential targets. Additional discrimination 
parameters are then necessary to avoid confusion; such parameters could possibly 
be linked to the intensity of the object or the decay from beam to beam. The classi- 
fication step can also be incorporated into the actual segmentation algorithm, either 
using size criteria or maybe intensity if proven to be pertinent. The performance of 
the classification step is highly dependent on the construction of the beams and the 
range resolution. A higher resolution image obtained through greater bandwidth 
transmit waveforms and larger aperture arrays or high resolution beamforming may 
improve the classification performance as better size estimation would be possible. 
Additionally, as the data considered in this report were beamformed such that the 
suppression on adjacent sidelobes was only 6 dB, reduction of the bleeding of strong 
targets and bottom features into adjacent beams may help in rejecting bottom fea- 
tures that physically extend over only two or three beams. 

The greatest drawback of the MRF theory is its inappropriateness to real-time a p  
plications; the algorithm employed here was coded under IDL and performance 
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(time-wise) cannot be considered significantly. However, optimal coding in C and 
C++ [18] greatly reduce computational time; it is also to be noted that because of 
the particular structure of MRFs and the optimisation algorithm, it is possible to 
parallelise the algorithm, thus reducing again computational time. 

It would also be quite interesting to test stochastic optimisation algorithms, in partic- 
ular simulated annealing. This method is certainly more expensive computationally 
and time-wise; however, it can free itself completely from an imprecise initialisation 
and it can be proven theoretically that the process always converges to the optimal 
solution and not to a local minimum. 

In the future, many different approaches can be explored, either based on MRFs or 
other imaging techniques: 

Detection of motion in the multiple pings in one beam image: this is in fact 
almost readily available. Only a closer study of diagonal cliques is necessary 
to ensure reliable results. 

Detection of features and motion in the temporal range bearing representa- 
tion mode is probably the most promising and challenging aspect of image 
processing: we will cite Bouman and Liu [19] who worked with much success 
on segmentation of moving objects (mainly cars) in videos; their approach is 
based on a hierarchical Markov random field model. This approach gener- 
ates segmentations of each ping image into different components: detection of 
objects and detection of movement from one ping to another. 

Target tracking would consist of focusing on one particular object: this could 
be achieved by segmentation correlations from ping to ping, motion detection 
and prediction. This would be especially interesting when a target is "jump 
ing" from one beam to another. 

Correlation of segmentations from ping to ping could give information on the 
movement of the towed array. 

Hierarchical random fields have shown faster segmentations and more rapid h e  
mogenisation than other methods. Thus, when computational time is critical 
and the noise level is relatively high they may be effective. 

Techniques that may be applicable, though are not considered feasible for near-term 
solutions include: 

Wavelets are now being used more and more in image processing. They are 
well know for their capabilities in image compression. Little is known about 
their application in image segmentation, but certainly they could be very useful 
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when the noise level is very high: applying wavelets means decomposing the 
image into frequency bands, it then being possible to reconstruct the image 
with less noise. However, it may be difficult to incorporate a priori information 
into wavelet-based algorithms. 

a Neural networks could also present an alternative solution; though it would 
then be imperative to have more information on targets. 

a Fractals have recently exploded in the image processing domain and are still 
an enormous new area to explore. For example, fractal dimensions may be 
useful in connecting sea-surface reverberation to sea-surface roughness [20] 
using a scatterometer. In the present case, it is not clear whether resolution 
would be fine enough to extract pertinent fractal parameters. 

We have presented here only a few possibilities, but many more could be found 
while exploring different routes. However, it is to be reminded that most image seg- 
mentation algorithms always give segmentation results; the quality and reliability 
of the results depend on the precision with which one models the observed data. 
While some algorithms can integrate constraints, MRFs can incorporate much more 
a priori information (be it on pixel interactions, image construction or data charac- 
teristics) than any other segmentation algorithm, thus keeping a close and essential 
bond between the image and the physical phenomenon. 
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Annex A 

A review of  image processing 
techniques in general 

In this section, we will review some classical feature detection methods and inter- 
esting features for classification. In each case, we will point out the advantages and 
drawbacks, and why the methods may or may not be suitable to the low frequency 
active sonar problem. 

Image analysis basically involves the study of feature extraction, segmentation, and 
classification techniques [21]. In Fig. 17 we have listed the main methods used in 
each step as described by Jain [21]; more general information on image processing 
can be found in [ll, 22, 12, 231. It should be noted that feature extraction is a step 
that is performed for both segmentation and classification, often requiring different 
features for each task. 

Image analysis techniques 

Spatial features Amplitude thresholding Statistical 
Transform features Boundary-based approach Similarity measures 
Edges and boundaries Region-based approaches 
Shape features Template matching 
Texture 

Figure 17 Imaging techniques 
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A. 1 Feature extraction 

In this section, we will enumerate features describing a set of connecting pixels in 
an image. These features may be used in a segmentation process [12], but also 

to describe a region (shape parameters), 

to measure characteristics of an object (size, radiometry, texture), 

in post-processing, to merge regions based on similarity criteria or size, 

to classify regions, 

in an interpretation stage, to recognize an object or part of an object, 

A. 1.1 Spatial features 

The most significant spatial features are [21]: 

Amplitude features: transformations can be applied to pixels in a sliding win- 
dow such as averaging or median filtering. It  is then possible to compute 
amplitude features such as averages, variances, or still inverse contrast ratio. 

Histogram features: define hx as the histogram of the grey levels. Then, 
common features of hx are its moments, absolute moments, central moments, 
and entropy. 

In this particular case, it is recommended to avoid averaging. Indeed, due to the 
somewhat poor resolution of the image (6m in range), small features will tend to 
disappear in an averaging process, and therefore not be detected. Histograms are 
interesting when one can compare histograms originating from different features. In 
our case, only the histogram of the background is readily available before segmen- 
tation. 

A. 1.2 Transform features 

Image transforms provide the frequency domain information in the data [21]. Trans- 
form features are extracted by zonal filtering (slit or aperture) the image in the se- 
lected transform space. The usual transformation is of course the Fourier transform, 
although other transforms such as Haar and Hadamard (wavelets) are also poten- 
tially useful. These transforms are in general interesting when texture is present. 
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A. 1 .3  Edge features 

Edge points can be defined as locations between pixels where grey levels abruptly 
change [12]. These points are very useful in segmentation and identification of 
objects in a scene. Transformations such as gradient operators (Roberts, Sobel, 
Kirsch), compass operators (gradient operators in a selected number of directions), 
Laplace operators, or stochastic gradients can be applied to the image making edge 
detection easier. 

In the case of underwater acoustic imaging, these kinds of operators do not work well: 
grey levels rarely abruptly change, and the noise level in underwater applications is 
generally high (edge detectors are efficient when the noise level is low). 

A.1.4 Shape features 

Boundaries are connected edges that characterize the shape, size and orientation of 
an object. Boundaries may be represented in different ways such as chain codes, 
fitted line segments, B-Spline representations, or control points [12, 21, 231. 

Shape can also be determined by the region the object occupies. Let us define the 
following binary array 

1 if (m, n)  E R u(m,n )  = 0 otherwise 

a s  a simple representation of the region R. 

A run-length code consists of the start address of each string of Is, followed by the 
length of that string in a given direction. For each direction, we can associate a 
matrix of run-lengths Po = {pg(i, j));  the element pe(i, j )  of the matrix represents 
the number of run-lengths j pixels long (in the direction 8) composed of pixels with 
a grey level i. In a region, we can then extract different features from this dimension 
L x no matrix where L is the number of grey levels in the image and no is the length 
of the longest code in the 8 direction in the region: 

number of run-length codes 

proportion of short run-length codes 
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(32) 

RF2 = C jzpe(i, j )  SLP r=O j=l 

A projection g(s, 0) is simply the sum of the run-lengths of 1's along a straight 
line oriented at  angle 0 at  a distance s as seen in Fig. 18. This in fact produces a 
histogram of the number of pixels that project into a bin at a distance s along a line 
of orientation 0. From this histogram, features such as the first moments of g(s,  0) 
and g(s, 7r/2) will give the center of mass coordinates of the region R. We may also 

Figure 18 Projection imaging geometry 

want to  measure certain geometric attributes of a connected region R where pixels 
in R are described by their coordinates (xi, yi) such as: 

perimeter P(R);  may be computed as the sum of the distances between consec- 
utive pixels on a boundary (sum of 1s and A). The result is slightly different 
if it is estimated from inside the boundary, or outside of the region, 
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area S(R) = K or number of pixels in the region, 

radii: kin and La, are respectively the minimum and maximum distances 
from the center of mass to the boundary, 

corners: these are locations on the boundary where the curvature becomes 
unbounded, 

bending energy: this is still another attribute associated with the curvature 
[2:11, 

roundness: 7 = ~TS(R) /P~(R) ,  for a disc, y is minimal and is equal to  1, 

symmetry: commonly, there are two types of symmetry of shapes, rotational 
and mirror. Distances from the center of mass to different points on the 
boundary can be used to analyse symmetry of shapes. 

Or, still we may compute moment-based features: 

1 1 K center of mass: xm = R xZl xi and ym = Yi 

orientation: first eigenvector of the inertia matrix ( ) with 

Principal orientation of the object is defined by its angle a: with the x axis: 

2c tan 2a = - 
a - b  

bounding rectangle: rectangle whose sides are parallel to the eigenvectors of 
the inertia matrix, 
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best fit ellipse: the second order moments of the best fit ellipse are equated 
to those of the object. Let a and b denote the semimajor and semiminor axes 
of the best fit ellipse. The least and greatest moments of inertia for an ellipse 
are: 

For orientation 8, the above moments can be calculated as 

C i n  = C C [(xi - xm)cos8 - (yi - ym)sin8]2 (39) 
(zi,~i)€R 

Resolving Ihin = Imin itnd IAax = I,,, gives US 

(b-a)'+4c eccentricity: E = So 

These features will be indispensable when classifying: for example, the area or 
bounding rectangle of the detected object in the single ping image will enable us to  
rule out objects which are too big to be submarines. We may also want to check 
if objects in the pings-per-beam representation are considered stationary or not; in 
this case, orientation may be a good descriptor. 

A.1.5 Texture 

Texture describes the structural pattern of a surface such as wood, sand, grass, or 
cloth. The term texture is generally used to describe a repetition of a basic texture 
element containing several pixels [12]. Textural features can be computed to  describe 
the texture such as: 

autocorrelation function 

entropy 

log contrast 

Haralick texture parameters 
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In practise, texture (in the imaging sense), is very hard to define and may vary from 
person to person depending on their perception; it is then not surprising to find 
several definitions of contrast or homogeneity for example that tend to give us a 
mathematical definition of the same visual phenomenon. However, it is definite that 
in the case of the low frequency sonar images obtained for the current application, no 
texture is present. Texture can be correlated to frequency and resolution: the higher 
the frequency, generally the higher the bandwidth (and thus resolution), the smaller 
the insonified area, and in the case of seafloor sounding, the less the penetration. 
The signal is then of "finer" quality and texture will then describe fine interface 
details such as ripples or dunes. 

A.2 Image segmentation 

Image segmentation consists of decomposing a scene into its components. The im- 
age segmentation techniques listed in Fig. 17 are briefly described in the following 
subsections. The reader is referred to [12, 2:l.l for further detail. 

A.2.1 Amplitude thresholding or window slicing 

Thresholding is particularly useful when pixel amplitudes are sufficient to charac- 
terize the object [21]. The most delicate step is choosing the threshold. Commonly, 
several approaches are used: 

1. Select the threshold from a histogram of the image. 

2. Select the threshold so that a predetermined number of samples are below the 
threshold. 

3. Adaptively choose the threshold from local neighbourhood histograms. 

4. If a probabilistic model is known for different classes, select the threshold to 
minimize the probability of error. 

In the present application, thresholding is an excellent and quick solution in a first 
approach for segmentation. Indeed, the amplitude of the pixel is the most charac- 
teristic feature in discriminating between background and object. However, if such 
a technique were to be applied alone, the obtained segmented image would be very 
noisy. It is therefore interesting to apply this method combined with a homogenizing 
process. 
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A.2.2 Boundary-based approaches 

Segmentation can be achieved by using boundary information, either by contour fol- 
lowing, connectivity, edge linking, graph searching, curve fitting, Hough transform, 
or Markov random fields. This is however rather difficult when objects are touching, 
or overlapping, or if a break occurs in the boundary due to noise or artifacts [21]. 

A. 2.3 Region-based approaches and clustering 

The main idea in this case is to identify regions that have similar features. Hence, 
clustering techniques (pixel grouping) are well adapted and can be applied for image 
segmentation [12, 211. 

One example is the region growing algorithm that merges similar regions together 
unless they are sufficiently different. The difficulty lies in defining "sufficiently dif- 
ferent". We may propose several heuristic criteria: 

1. Merge two regions together if their similarity distance is less then a threshold. 

2. Merge two regions together if there are no strong edge points between them. 

3. Merge two regions together if the number of weak boundary points over the 
length of the common boundary is greater than a threshold. We define weak 
boundary points as locations where pixels on either side have a magnitude 
difference less than a threshold. 

A.2.4 Template matching 

Objects can be detected by template matching [21]. This means that we know 
specifically the size and shape of the objects which are to be detected. In our case, 
no specific size or shape may be defined a priori. This is then an impossible approach. 

A. 3 Classification 

Classification is a phase which in reality is very close to feature extraction. We will 
use object descriptors to give them a "name". 
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A.3.1 Statistical 

It  is possible to classify an object based on statistical descriptors such as pdf of 
the pixel intensities comprised in the object, or statistics such as mean, variance or 
textural parameters. This supposes we have the same kind of a priori information 
on the different classes which are present in the image. This information is either 
learned in a training step before segmentation, or we use theoretical distributions. 
By applying statistical tests (such as Kolmogorov-Smirnov) it is then possible to 
classify the object as in a class or not. 

A. 3.2 Similarity measures 

Similarity measures will choose the most similar group to classify the object: either 
based on the mean intensity, shape features, texture, etc. For any two feature vectors 
xi and x j  some of the commonly used similarity measures are: 

T Dot product: < Xi ,  X j  > = xi X j  = (Ixill((xjcj( COS(X~, xj) 

< X i , X j  > Similarity rule: S(xi1 xi) = < Xi l  Xi  > f < X j ,  X j  > - < X i ,  X j  > 

Weighted Euclidean distance: d(xi, xj) = C [ x i ( k )  - xj(k)12wk 
k 

Normalizedcorrelation: p(xi,xj) = < x ~ , x ~ > / J < x ~ , x ~ > < x ~ , x ~ >  
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