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Project Overview 
 
The project titled “Stochastic Resonance and Perceptual Decision Making Under Inattention,” supported 
through Grant FA9550-15-1-011 from the Air Force Office of Scientific Research, is comprised of two different 
studies led by Principal Investigator (PI) Hakwan Lau, Professor of Psychology at the University of California, 
Los Angeles, concerning perceptual decision-making. The first study investigates the capacity of the visual 
system to detect objects in naturalistic scenes. The second study recorded eye gaze with an infrared camera to 
conduct investigations with subjects attending directly at fixation (overt attention) or attending to objects in the 
visual periphery (covert attention) in experiments using naturalistic stimuli. Finally, we modeled behavioral 
data with large-scale neuronal network models. This report will provide a comprehensive summary of the 
significant work accomplished for the project. 
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1 Background and Introduction 
 

Physiological and behavioral studies suggest that visual information processing in the unattended 
periphery is typically poor, characterized by limited spatial resolution and low sensitivity for processing 
various features (Carrasco, 2011, Corbetta and Shulman 2002, Petersen and Posner 2012, Treisman and 
Kanwisher 1998, Lu and Dosher 2004, Dosher and Lu 2000). Yet in everyday life one gets a sense that 
subjective vision is relatively uniform across the visual field; we do not experience a striking lack of 
details in the unattended periphery (Lau and Rosenthal 2011, Cohen and Dennett 2011). We have recently 
developed a psychophysical paradigm to behaviorally characterize this puzzling phenomenon (Rahnev et 
al., 2011). Essentially, under lack of attention, we are over-confident as to what we see, and the brain uses 
a liberal criterion for detecting objects. 
 We have proposed a formal model (Rahnev et al., 2011) to explain this phenomenon, and to account 
for the psychophysics data (Rahnev et al., 2011). In this detection theoretic (Green and Swets, 1966) 
model, attention reduces the trial-by-trial variability of the internal perceptual response in the brain, in 
addition to boosting the gain of the response (i.e., the total amount of signal). An additional assumption, 
based on previous empirical findings (Gorea and Sagi, 2000), is that human observers use a single unified 
(or unique) criterion for detection of both the attended and unattended signal (Figure 1). Because the  
 

Figure 1. Attended (top) versus unattended (bottom) detection. Shown here are probability 
distributions with internal response strength on the horizontal axis, in a situation when sensitivity d’ is 

matched between the conditions, cued (attended) and uncued (unattended). The red and blue curves 
represent the situations when the target is not presented (i.e. baseline noise), and when the target is 

presented, respectively. The distributions are wider in the unattended case because it is assumed that 
the variability is higher. That the mean of the blue curve is further shifted to the right in the unattended 

is to reflect the fact that a higher contrast stimulus was needed to match sensitivity d’ between 
attended and unattended. Using the same detection criterion (solid black line) for both attended and 
unattended leads to a more liberal detection strategy in the periphery. I.e. there are more true hits as 

well as false alarms. 
 
distribution of the internal perceptual response is more spread out for the unattended stimuli, the single 
unified criterion means that detection is compromised for both the attended and unattended targets, 
leading to conservative detection for the attended stimuli and liberal detection for the unattended stimuli. 
This occurs because the "optimal" decision criterion is different in the attended and unattended case; optimality 
as in defined as maximizing overall accuracy rate. In this experiment where the target and non- 
target are equally likely, the optimal criterion in each condition is at the midpoint between the two distributions, 
i.e. they should be different between the attended and the unattended conditions. However, human observers 
seem to use a single criterion that is applied to both conditions. This results in a suboptimality for both the 
attended (cued) and the unattended (uncued). 
 The same principles for the model described above are also applicable to discrimination tasks. As is 
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customary in detection theoretical modeling (Macmillan and Creelman, 1987), discrimination can be 
treated as equivalent or similar to detection. In detection a criterion is applied to determine target from 
noise in detection, while in discrimination the criterion is applied to determine one target from another. In 
addition to asking subjects to discriminate between the two stimulus alternatives (a left tilted or right 
tilted grating pattern), Rahnev et al (2011) also asked subjects to provide confidence/visibility ratings 
associated with their responses. In detection theoretic modeling (Macmillan and Creelman, 1987), 
confidence/visibility ratings can be thought of as generated by placing additional criteria on the side of the 
main decision criterion (see Figure 2). By imposing the same set of criteria for both the attended and 
unattended conditions, the model accounted for the observed overconfidence in the unattended (high 
variance) condition. 

Figure 2. Discrimination and confidence/visibility ratings within the signal detection framework. As 
in detection, subject set a central criterion to discriminate between two distributions of internal responses, 
driven by two the stimulus alternatives respectively. To give a confidence or visibility rating response, one 

can place two other “flanking” criteria, such that responses getting into the extreme region will be 
considered higher confidence or high visibility. To have more levels of confidence or visibility ratings one 

can set more criteria. As in Figure 1, the unattended case has wider distributions because internal variability 
of the perceptual response is assumed to be higher. When the same set of decision criteria are applied to 
both the attended and the unattended, the attended to lead to higher confidence/visibility ratings: because 

the wider distributions means more trials will get into the high ratings zone. 
 
 This intriguing phenomenon potentially represents a simple and straightforward case of stochastic 
resonance (McDonnell and Ward 2011, McDonnell and Abbott 2009, Schwarzkopf et al 2011) By 
“stochastic resonance” we mean it in the broad sense, i.e. a situation in which the presence of 
noise/variability improves signal detection, as measured here by hit rate (“Target” trials passing the 
criterion). In some terminology this can be referred to as “stochastic facilitation” (McDonnell and Ward 
2011), and does not imply frequency-specific modulation of signal-to-noise ratio. We speculate that, 
given the relatively poor signal-to-noise ratio for unattended stimulus perception and the fact that 
detection criteria may not be flexibly controlled for different stimuli presented simultaneously (Gorea and 
Sagi, 2000), the relatively high variability in unattended stimuli perception may in fact be helpful in 
promoting detection success. That is, the high variability inherent in unattended processing helps to push 
the signal across a somewhat rigid threshold. This may paradoxically be a good strategy for the brain to 
encode unattended stimuli with high noise/variability, given its limited signal-to-noise ratio. 
 Whereas stochastic resonance has been a controversial concept in biological systems (McDonnell 
and Abbott 2009, McDonnell and Ward 2011), here we have a behaviorally relevant case that is relatively 
tractable with current methodology. With this, our project has explored the important issue of how the human 
brain may capitalize on its intrinsically noisy processing to achieve statistical optimality, given the 
ubiquitous task of detecting objects in the environment and deriving decision confidence appropriately in 
perception. 
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Specific Objectives 
 

The overall purpose of this project is two-fold: first is to empirically investigate to what extent the 
phenomenon of stochastic resonance under lack of attention generalizes to naturalistic stimuli and 
different contexts, and may work under different mechanisms (Specific Objectives 1 & 2). The second, 
which is the more ambitious goal, is to try to understand the neurobiological mechanism behind this 
intriguing phenomenon, by means of computational modeling (Specific Objectives 3) 
 
This project has three specific objectives: 
 
Specific Objective 1: Naturalistic Stimuli 
 

In this study we employed naturalistic stimuli taken from short video clips of actual 
battlefield-like scenes. We use state-of-the-art computer graphics technology to manipulate  
visual stimuli to insert visual “targets” which subjects have to detect or discriminate. The experiments are 
intended to be similar in structure as those in Rahnev et al (2011), and the main manipulation is to make 
the setting more naturalistic and ecologically valid. 
 
Specific Objective 2: Overt Attention (Central vs. Peripheral Vision) 
 

In everyday setting, when we deploy our attention to particular location, two things happen. First 
we typically direct our eye gaze towards the target, and second we also mentally focus on the target. 
Psychologists have long distinguished these two forms of attentional selection. Under overt change in eye 
gaze (i.e. overt attention), essentially the difference between the attended objects and the unattended 
objects is that the former falls onto the fovea of the retina and the latter falls onto the periphery. In the 
previous experiments in Rahnev et al (2011) eye movements were carefully controlled, as we focused on 
the effects of covert attention (i.e. shifting of mental focus in the absence of eye movements) in isolation. 
Here we tested whether overt attention may have similar effects. That is, if we compare foveal versus peripheral 
vision, and see if under peripheral vision subjects may show liberal detection bias and over- 
confidence in discrimination, just as they did in Rahnev et al (2011) under the lack of covert attention. 

Because this experiment required the careful control of eye movements we ran this in the 
laboratory where eye gaze is recorded with an infrared camera. However, as in the experiments in 
Specific Objectives 1 we also used naturalistic stimuli (i.e. battlefield like scenes). 
 
Specific Objective 3: Computational Modeling 
 

We modeled behavioral data with large-scale neuronal network models. We capitalized on the existing 
knowledge about the biophysical properties of single neurons (Dayan and Abbott, 2001), and used computer 
simulations to evaluate the behavior of a large-scale network as informed by realistic neuronal connection 
profiles. Similar large-scale networks for perceptual decisions have been proposed (Dayan and Abbot 2001, Ma 
et al 2006), and they provided a theoretical platform for the present work. Our strategy was to construct multiple 
versions of network models with different architecture, and use information-theoretic model comparison 
methods (Dayan and Abbot 2001) to decide which model can most parsimoniously account for the observed 
behavioral data. 
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2 Summary of Major Accomplishments 
 
2.1 Year One Accomplishments 
 
During Year One (April 15, 2015 – April 14, 2016), our research team began work on preparing experiment 
equipment and developing an experiment interface. The research team also conducted several pilot studies, 
administered a questionnaire and designed a biologically plausible recurrent leaky competing accumulator 
network model. Postdocs Brian Odegaard and Megan Peters presented preliminary findings at conferences.  
 
Specific Objective 1: Naturalistic Stimuli 
 
Research Development 

 Established online platform.  
 Administered a questionnaire to address whether there may be individual differences in the degree of 

phenomenological inflation in the periphery.  
 Recruited 93 subjects.  

 
Experimental Accomplishments  

 Conducted several pilot studies with artificial stimuli to determine subject reliability using these online 
methods. Obtained preliminary results.  

 Investigated the differences between central and peripheral vision in summary statistical processing by 
implementing a task in which observers had to judge whether the average orientation of a group of lines 
was to the right or left of vertical.  

 
Research Dissemination  

 Postdoc Brian Odegaard attended the Computational and Systems Neuroscience (COSYNE) Workshop 
in Snowbird Utah (February 29 – March 1, 2016). Odegaard organized a workshop entitled “Recent 
Innovations in Attention Research: Linking Models, Mechanisms, and Behavior,” which discussed the 
above and other research findings, ideas, and motifs from both behavioral and computational 
investigations of attention as well as relevant neurophysiological findings.  

 
Specific Objective 2: Overt Attention (Central vs. Peripheral Vision) 
 
Research Development 

 Purchased an eye tracker to use for this series of experiments: the REDn Eye Tracking System from 
SMI (Binocular 60Hz REDn Camera Unit).  

 Worked on assembling the eye tracker device and addressing technical considerations to allow for online 
data collection of both behavioral and physiological variables in our experiments.  

 Worked with the software developer kit for the SMI unit to create different experiments that interface 
with MATLAB and can potentially be combined with a new EEG system to be purchased in May 2016.  

 
Specific Objective 3: Computational Modeling 
 
Research Development 

 Designed a biologically plausible recurrent leaky competing accumulator network model to perform a 
perceptual decision-making task and rate confidence based on the stimulus’ detectability.  

 Validated the model with multi-unit recordings from Rhesus macaques.  
 Reevaluated a previously published dataset to assess performance differences between a ‘detectability’ 

heuristic model and the optimal Bayesian ideal observer (which ignores stimulus detectability).  
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 Presented and validated the Confidence as Detectability (CaD) model: a normative Bayesian framework 
accompanied by a recurrent neural network implementation that utilizes tuned normalization using a 
series of simulations.  

 
Research Dissemination  

 Postdoc Megan Peters presented findings through “Separable calculations underlie decisions and 
confidence judgments: Tuned normalization, detectability, and confidence in perceptual decision-
making” at the COSYNE Workshop in March 2016 and “A Neuronal Network Model of Perceptual 
Confidence Supports the Empirical Link Between Consciousness and Metacognition” at the ASSC 
Annual Meeting in June 2016.  
 

2.2 Year Two Accomplishments 
 
During Year Two (April 15, 2016 – April 14, 2017), our research team developed and extended an online 
experimental paradigm, integrated the SMI REDn Eye Tracking System, collected data and launched several 
online experiments. Our research team also extended the computational modeling work. We presented our work 
at a symposium and published a commentary.  
 
Specific Objective 1: Naturalistic Stimuli 
 
Research Development 

 Created an experimental paradigm using an internet testing platform to investigate the capacities of the 
visual system to both detect and discriminate objects in naturalistic scenes. 

 Integrated the SMI REDn Eye Tracking System (purchased during Year One of this grant) with this 
task, which enabled us to not only track subjects’ eye position at every moment while they are driving in 
the simulator, but also to control stimulus presentation based on where the eyes fixate at a particular 
instance.  

 
Experimental Accomplishments 

 Collected data in several different experiments that evaluate how both eye position and attention 
influence detection and discrimination capacities in the periphery. 

 Launched several online experiments for larger numbers of subjects (N > 30) to investigate the visual 
system’s capacity for naturalistic object detection and identification, in order to better understand the 
degree of perceptual detail that is represented in the visual periphery. 

 Conducted several online tasks that evaluate how effectively visual observers can detect changes in the 
periphery, as well as discriminate objects that have changed. 

 
Research Dissemination  

 Research team presented results by leading a symposium at the Vision Sciences Society in St. 
Petersburg, Florida, in May 2017.  

 Research team published a brief commentary on the importance of a study which implemented a 
binoculary rivalry paradigm of subjective awareness (Giles et al., 2016).  

 
Specific Objective 2: Overt Attention (Central vs. Peripheral Vision) 

 
Research Development 

 Developed an extension of the online paradigm described in Specific Objective 1, where we include a 
cue (i.e., a line) that denotes the position that needs to be attended to before the first presentation of 
images are shown, as well as a second line (presented after the images) which denotes the actual location 
that will be probed. 
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Experimental Accomplishments 

 Experimentally manipulated observers’ focus of attention to examine how attention influences detection 
and discrimination capacities in these tasks. 

 
Specific Objective 3: Computational Modeling 
 
Research Development 

 Extended our work using the biologically plausible recurrent leaky competing accumulator network 
model to perform a perceptual decision-making task and rate confidence based on the stimulus’ 
detectability. 

 Demonstrated that the biologically plausible mechanism can reproduce even counterintuitive behaviors 
reported in the literature. 

 Used electrophysiological recordings to show that that tuned normalization exists in monkey superior 
colliculus. 

 
2.3 Year Three Accomplishments 
 
During Year Three (April 15, 2017 – April 14, 2018), our research team conducted additional experiments and 
used results from the prior year to refine some of these experiments. We also submitted a paper for review and 
began drafting a manuscript for eventual journal submission.  
 
Specific Objective 1: Naturalistic Stimuli 
 
Experimental Accomplishments 

 Conducted two experiments to investigate how subjects detected colorful stimuli in the unattended 
periphery in a naturalistic environment.  

 
Specific Objective 2: Overt Attention (Central vs. Peripheral Vision) 

 
Research Development 

 Used findings from Specific Objective 1 to effectively isolate covert attention, to study how this process 
functions when covert attention is correctly allocated to different locations (valid condition) and 
incorrectly allocated to different locations (invalid condition). 

 
Experimental Accomplishments 

 Conducted two additional experiments to investigate whether metacognitive impairments and decisional 
biases would emerge in tasks which exploit two well-established phenomena in the visual surround: 
crowding and summary statistics. 

 
Research Dissemination  

 The research team submitted a paper on these experiments to a journal.  
 The research team started preparing an additional paper in reference to the work done on this Specific 

Objective. 
 
Specific Objective 3: Computational Modeling 
 
Research Development 

 Refined the model, reduced the number of free parameters to constrain data fitting and optimized the 
code in preparation for sharing it upon publication.  
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2.4 Year Four Accomplishments 
 
During Year Four (April 15, 2018 – April 14, 2019), no new experiments were conducted. The research team 
published two papers, a review and revised and resubmitted another paper. We also presented our findings at a 
conference.  
 
Specific Objective 1: Naturalistic Stimuli 
 
Research Dissemination  

 Published two papers in peer-reviewed journals.  
 Presented at the Vision Sciences Society Annual Meeting in May 18-23, 2018.  

 
Specific Objective 2: Overt Attention (Central vs. Peripheral Vision) 

 
Research Development 

 Reviewed the “Rich versus Sparse” debate about how to explain the seemingly rich nature of visual 
phenomenology while accounting for impoverished perception in the periphery.  

 
Research Dissemination  

 Published the review in Current Opinion in Psychology. 
 
Specific Objective 3: Computational Modeling 
 
Research Development 

 Refined the model, reduced the number of free parameters to constrain data fitting and optimized the 
code in preparation for sharing it upon publication.  

 
Research Dissemination 

 Revised a paper on the computational model to reflect more recent findings and resubmitted the paper.  
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3 Experimental Facilities & Study Procedures 
 

3.1 Specific Objective 1: Naturalistic Stimuli 

We used a modern game engine to create a simulated driving environment in which participants (as 
drivers) had to make judgments about the colors of pedestrians’ clothing in the periphery. In our first 
experiment, on each trial, we asked observers whether an individual wearing a shirt with a specific color 
(yellow) had been presented at a specific location. In our second experiment, on each trial, we asked observers 
whether an individual wearing a shirt with a particular color had been presented at a specific location, but in this 
experiment, we varied the target color randomly from trial to trial. We integrated the SMI REDn Eye Tracking 
System (purchased during Year One of this grant) with this task, which enables us to not only track subjects’ 
eye position at every moment while they are driving in the simulator, but also to control stimulus presentation 
based on where the eyes fixate at a particular instance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. (a) Basic settings of experiment. (b) Tracking participant's eye movement. Blue circle on screen is gaze point. Stimuli will 
not present when participant is not looking at traffic light. (c) Stimuli present when participant is looking at traffic light.

The basic paradigm is shown below (Figure 4a, from Sligte et al., 2010), and involves an initial 
presentation of images in the periphery, a delay period, and a second presentation of images. Observers have to 
respond whether or not a change occurred for any of the items, and on some trials, select which item was 
originally presented from an “identification display” (Figure 4a). Critically, on some trials, a “retro-cue” occurs 
to label certain positions that subjects are required to remember. By evaluating the timing of the cue, we can 
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track the fidelity of peripheral object representations in subjects’ working memory. By integrating this existing 
task with psychophysical measures that quantify overall performance (i.e., d’ (Green & Swets, 1966)) as well as 
how effectively confidence judgments distinguish between correct and incorrect answers (i.e., meta-d’ 
(Maniscalco & Lau, 2012)), we can quantify both perceptual sensitivity and metacognitive sensitivity for 
peripheral object representations in this task. 
 

 
Figure 4. Our basic online object detection/identification paradigm, based on Sligte et al., 2010. 

3.2 Specific Objective 2: Overt Attention (Central vs. Peripheral Vision) 

In different versions of the experiments described in Specific Objective 1, we experimentally manipulate 
observers’ focus of attention to examine how attention influences detection and discrimination capacities in 
these tasks. Overall, measuring how these mechanisms operate in our naturalistic driving setting will allow us to 
determine how attention may differentially impact the capacities for object detection and discrimination in the 
visual periphery. Similarly, we have also developed an extension of the online paradigm described in Specific 
Objective 1, which allows us to assess the effects of how valid (i.e., correct) attentional allocation (when the 
first and second lines point to the same location) facilitates object detection and discrimination capacities, as 
well as how invalid (i.e., incorrect, or when the first and second lines point to different locations) attentional 
allocation impairs performance.

Using eyetracking, we were able to ensure that subjects were fixating on the center of the screen in our 
driving task, while individuals were presented in the periphery. This ensured that we could effectively isolate 
covert attention, to study how this process functions when covert attention is correctly allocated to different 
locations (valid condition) and incorrectly allocated to different locations (invalid condition). It remains 
possible that even stronger differences in criteria may be found when naturalistic stimuli are presented in the 
center (overt attention) vs. the periphery (covert attention), as has been done in previous studies using artificial 
stimuli (Solovey et al., 2015). 

To better understand what it means when people say they see the target more often, and to better 
understand how this phenomenon relates to central (i.e., overt attention) and peripheral (i.e., covert attention) 
presentation, we conducted two additional experiments during Year 3 to investigate whether metacognitive 
impairments and decisional biases would emerge in tasks which exploit two well-established phenomena in the 
visual surround: crowding and summary statistics.  
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3.3 Specific Objective 3: Computational Modeling 
 

We used a standard desktop computer for this Specific Objective. We proposed that confidence is 
central to conscious phenomenology: it turns out that empirically, in humans as well as in monkeys, confidence 
in perceptual decisions critically reflects the subjective saliency and detectability of the stimulus. This finding 
explains and supports the theoretical validity behind the long tradition in psychophysics of using confidence 
ratings as a proxy for measuring subjective awareness in perception. It also calls into question the Bayesian 
Brain Hypothesis, according to which confidence is an optimal readout of perceptual reliability (e.g., Pouget et 
al., Nat Neuro, 2016). 

Motivated by previous empirical results, we designed a biologically plausible recurrent leaky competing 
accumulator network model to perform a perceptual decisionmaking task and rate confidence based on the 
stimulus’ detectability. The basic idea is that decisions themselves should weigh all evidence favoring possible 
stimulus alternatives (e.g., “Is this a dog, cat, or monkey?”), but the primary factor in confidence ratings is the 
detectability of the stimulus choice you made (i.e., “I chose cat. How much ‘cat evidence’ is there to suggest I 
am not hallucinating?”). This model reproduces a number of studies’ findings in psychophysics (e.g., Rahnev et 
al., Nat Neuro, 2011; Maniscalco, Peters, & Lau, Att Percep Psychophys, 2016) and neuroimaging (Cortese et 
al., submitted). We also validated the model with multiunit recordings from Rhesus macaques. Finally, we 
applied this logic in reevaluating a previously published dataset (Peters & Lau, eLife, 2015), and show that a 
‘detectability’ heuristic model performs better than the optimal Bayesian ideal observer (which ignores stimulus 
detectability). We proposed a single, normative framework to account for these findings, and additionally 
provided a recurrent neural network implementation. 

Finally, we applied this logic in reevaluating a previously published dataset (Peters & Lau, eLife, 2015), 
and show that a ‘detectability’ heuristic model performs better than the optimal Bayesian ideal observer (which 
ignores stimulus detectability). We proposed a single, normative framework to account for these findings, and 
additionally provided a recurrent neural network implementation. 

It was recently proposed that the absolute magnitude of responsecongruent evidence (i.e., stimulus 
energy/detectability favoring the chosen stimulus alternative) is disproportionately weighted in confidence 
judgments(Zylberberg et al., Front Int Neuro, 2012). We also recently showed that confidence judgments can be 
well described both by an ideal observer and a Bayesian observer that takes into account stimulus detectability 
(Peters & Lau, eLife, 2015). Following this work, we present the Confidence as Detectability (CaD) model: a 
normative Bayesian framework accompanied by a recurrent neural network implementation that utilizes tuned 
normalization (Lee & Maunsell, PLoS ONE, 2009; Ni et al., Neuron, 2012) to represent the degree to which a 
neuron codes for balance of evidence versus stimulus energy magnitude, which contribute differentially to 
perceptual decisions and confidence judgments. In a series of simulations, we showed that this model can 
explain all of the abovementioned findings with a single set of parameters. Importantly, using the 
“detectability” of a stimulus in judging confidence may not be suboptimal in the real environment, when the 
task is to judge not only which of innumerable stimulus alternatives is most likely to be present, but also 
whether a stimulus is present at all. 

We hypothesized that the detectability of a stimulus constitutes an important component of confidence 
judgments, in addition to balance of evidence favoring the stimulus alternatives. We first implemented this 
decision strategy with Bayesian hierarchical inference: rather than marginalize over stimulus energy, as is the 
traditional approach, our Bayesian observer first makes a guess sˆ at the most i,j probable stimulus intensity i to 
have generated the current data d for each stimulus alternative j, via sˆ i,j = argmaxi p(d|Si,j ) with p(d|Si,j 
) N(si,j , ) . The observer then makes its discrimination decision among the stimulus alternatives via 

 

Confidence is defined as the probability that the selected stimulus alternative is correct,  . This  
observer captures human behavior well(Peters & Lau, eLife, 2015), showing that detectability is important to  
confidence judgments. 
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 How might this be implemented at the neural level? We proposed that the absolute stimulus energy and the  
balance of evidence favoring the various stimulus alternatives are respectively represented by neurons that  
possess lesser or greater degrees of divisive normalization (i.e., tuned normalization [Lee & Maunsell, PLoS  
ONE, 2009; Ni et al., Neuron, 2012]). Thus, extending previous work (Usher & McClelland, Psych Rev, 2001;  
Wang, Curr Op Neurobio, 2012) in this model the evolution over time of a neuron’s firing rate in response to a  
stimulus is 

 
 

factors of interest, representing the amount of tuned normalization (i.e., lateral inhibition) unit i receives and  
timuli; when  

  
inhibitory influence from unit i to other units. Note that Eq. 2 represents a simplified form: only two units  
possessing opposing stimulus preferences are present, and time scales and steps are set to 1 for convenience. 
 

 
 
with V and W representing the relative contributions from more or lessnormalized units, respectively. We  
initialize the network with parameters drawn from the literature (Usher & McClelland, Psych Rev, 2001) and  
reasonable perturbations thereof(Lee & Maunsell, PLoS ONE, 2009; Ni et al., Neuron, 2012), and test its  
predictions for decision and confidence judgment behavior with varying stimulus inputs. The recurrent network  
implementation of the CaD model explains the following findings: 
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4 Results & Discussion 
 

4.1 Specific Objective 1: Naturalistic Stimuli 
 

We proposed using an internet testing platform to investigate the capacities of the visual system to both  
detect and discriminate objects in naturalistic scenes. To initially quantify subject reliability for judging visual 
stimuli across different parts of the visual field, we investigated the differences between central and peripheral 
vision in summary statistical processing. We hypothesized that the visual periphery may possess a greater 
capacity for accurate summary computations than central vision in some instances, and that this superior ability 
relates to why we think we see more than we actually do outside the fovea. We implemented a task in which 
observers had to judge whether the average orientation of a group of lines was to the right or left of vertical.  
 Our results showed that with coherent stimuli, sensitivity for average orientation discrimination was 
better in the periphery. However, as the task difficulty increased, peripheral superiority quickly diminished 
relative to performance at the center. Subjects also exhibited higher levels of metacognitive efficiency (indexed 
by meta-d’/d’) for central compared to peripheral vision, indicating distorted awareness of this ability in the 
periphery. Finally, to address whether there may be individual differences in the degree of phenomenological 
inflation in the periphery, we administered a questionnaire with our relatively large sample (N=93). We found 
little support in the psychophysical data for evidence of direct correlations with subject reports of peripheral 
phenomenology. These results indicate that while overestimation of perceptual abilities influences peripheral 
phenomenology in specific cases, underestimation of some unexpected capacities exists, too, and these may be 
general phenomena existing in most subjects.  

In our first experiment, on each trial, we asked observers whether an individual wearing a shirt with a 
specific color (yellow) had been presented at a specific location. Results showed that observers exhibited higher 
numbers of false alarms (i.e., saying a yellow shirt was present, even when it was not) in unattended locations in 
the visual periphery, compared to locations that were fully or partially attended. This provided evidence that 
participants adopted more liberal criteria for making detection judgments when the target was unattended and 
presented in periphery. This tendency to use liberal detection criteria in unattended or peripheral locations has 
been shown previously in artificial settings (Rahnev et al. 2011; Solovey, Graney, and Lau 2015). Here, we 
confirmed the hypothesis that this detection bias extends to more naturalistic stimuli and tasks.  

 

 
Figure 5. Results from investigating detection capacities in a simulated driving task. (A) The percentage of correct responses 
across attention conditions. While subjects exhibited the best performance for valid attention trials and the lowest performance for 

invalid trials, the conditions were not significantly different from one another. Bars represent averages, error bars represent SEM. (B) 
da and ca across attention conditions. davalues were quite consistent across attention conditions. ca under inattention (i.e., invalid trials) 
was significantly lower than ca in the valid or baseline conditions, providing evidence for a liberal detection bias. Bars represent the 

average values across subjects; error bars represent the standard error of the mean. **p < .01, NS: not significant. 
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In our second experiment, on each trial, we asked observers whether an individual wearing a shirt with a 
particular color had been presented at a specific location, but in this experiment, we varied the target color 
randomly from trial to trial. Results showed that subjects used relatively conservative perceptual criteria (i.e., 
were relatively reluctant to say a color was present) when making detection-related judgments in this 
experiment, regardless of the amount of attention that was allocated to a given location. This finding indicates 
that our results in the first experiment were not due to a sheer confirmation bias at the decisional level. The 
signal detection theory model which predicts liberal detection criterion in the periphery applies to situations 
when there is an a priori well defined stimulus dimension on which subject can place the criterion to do the 
detection. If the feature to be detected can only be known after the stimulus is gone, there is no method one 
could use to put the criterion in the same place for both the cued and uncued over many trials (which is the 
assumption in the model by Rahnev et al., 2011, and Solovey et al., 2015). As such, we did not predict the 
inflation effect in experiment 2, and this is exactly what we obtained. 

 

Figure 6. Behavioral results for Experiment 2. (A) The percentage of correct responses across attention conditions. The percentage 
of correct responses for valid trials was significantly larger than the percentage correct for baseline and invalid trials. (B) da and ca 
across attention conditions. Similar to the effect of attention on percentage of correct responses, da was significantly greater in the 

valid attention condition compared to the invalid condition. ca did not significantly differ across attention conditions, which indicated 
that participants used similar internal criteria to make perceptual judgments 

in all attention conditions. *p < .05, NS: not significant. 
 

Together, these results support the idea that in everyday visual experience, there is subjective inflation 
of experienced detail in the periphery, which may happen at the decisional level. A paper on this study has been 
reviewed and is being revised for resubmission. 

In terms of practical implications, if people tend to confirm what they expect whenever they do not attend, 
this raises an important issue regarding driving safety. Many people are optimistic and tend to expect things to 
be positive (Sharot 2011; Sharot et al. 2012, 2007), so they may tend to mistakenly detect hazards that present 
in unattended periphery as no danger, while what is actually happening is they just don’t see the hazards. 
Similar results have been found in previous studies where drivers showed conservative criteria in hazard 
detection regardless of driving experience (Ventsislavova et al. 2016; Wallis and Horswill 2007). Hazard 
detection is a special detection task, because the penalty for a miss and a false alarm is different: a miss may 
cause a crash, while a false alarm may only lead to unnecessary brakes; thus, the criterion in hazard detection 
task is closely related with driving safety. In our research, the task is to detect a pedestrian when the vehicle has 
stopped at a stoplight. However, in real driving, most of the hazards are presented while driving, which is quite 
different from our task. Future research should more systematically address how inattention affects hazard 
detection judgment while driving. Specifically, while the impact of distractions (e.g., due to phone calls and text 
messaging) on driving performance is well known (Haigney, Taylor, and Westerman 2000; Rumschlag et al. 
2015), the impact on specific aspects of the perceptual decision making process remains relatively unexplored. 
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4.2 Specific Objective 2: Overt Attention (Central vs. Peripheral Vision) 
 

We proposed laboratory testing to record eye gaze with an infrared camera, in order to conduct 
investigations with subjects attending directly at fixation (overt attention), or attending to objects in the visual 
periphery (covert attention), in experiments using naturalistic stimuli. One important question is what it means 
when people say they see the target more often. Traditionally, it is thought that much of peripheral vision is 
‘filled in’ via top-down mechanisms (Komatsu 2006). However, it has also been reported that people sometimes 
trust unreliable, filled-in percepts more than precepts based on external input (Ehinger et al. 2017), suggesting 
that filling-in may not be the complete mechanism to explain peripheral phenomenology, and that decisional or 
metacognitive mechanisms are also involved. In our study, perhaps the findings of detection bias in the 
unattended periphery can also be interpreted as congruent with this account involving mechanisms at the 
decisional or metacognitive level. Importantly, just because the effect is to be thought of at the ‘decisional’ level 
does not mean that this is unrelated to perceptual phenomenology; criterion effects can also reflect subjective 
percept (Phillips 2016; Witt et al. 2015). This interpretation is in line with previous findings that people tend to 
overestimate their ability to detect changes in change blindness experiments (Levin et al. 2000), and in a sense, 
people are not subjectively aware of their poor acuity and color perception in the periphery (Cohen, Dennett, 
and Kanwisher 2016). 

To better understand what it means when people say they see the target more often, and to better 
understand how this phenomenon relates to central (i.e., overt attention) and peripheral (i.e., covert attention) 
presentation, we conducted two additional experiments to investigate whether metacognitive impairments and 
decisional biases would emerge in tasks which exploit two well-established phenomena in the visual surround: 
crowding and summary statistics. In our first experiment using crowded stimuli, observers showed relative 
deficits in metacognitive measures (i.e., confidence judgments) (Maniscalco and Lau 2014; Fleming and Lau 
2014) for crowded compared to single stimuli. This metacognitive deficit was primarily driven by 
overconfidence in incorrect responses, which is striking given that subjects did not perform the primary 
discrimination task very well under crowding; the overconfidence is highly unwarranted. 

 
Figure 7. Crowding & metacognition experiment: average confidence for correct and incorrect trials. The light gray bars 

indicate the average confidence for correct trials for the single and crowded conditions. As can be seen in the figure, the difference 
between these conditions is not significant. The dark gray bars indicate the average confidence for incorrect trials. A clear difference 
between the single and crowded conditions is evident, and participants are significantly more confident in the incorrect crowded trials 

compared to the incorrect single trials. 
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In our second experiment using a summary statistical stimulus (groups of oriented lines), observers 
exhibited liberal detection criteria and high numbers of false alarms, showing that decisional biases extend to 
more complex stimuli than has been previously shown. Both of these findings provide experimental evidence 
that, far from perceiving the visual periphery with a high degree of fidelity (Block 2011; Haun et al. 2017; 
Vandenbroucke et al. 2014), our subjective sense of the visual surround is inflated, corroborating our finding in 
the study described above.  

 

Figure 8. Sensitivity and bias for detecting congruently-oriented groups of lines. Shown here are results from an experiment 
where participants were asked to detect whether a group of lines with congruent orientations were presented, in either a central or 

peripheral location. As shown by the light gray panels, using the measure da (which corrects potential unequal variance in detection 
tasks), participants were more sensitive in detecting the congruent patch of lines at the central location compared to a peripheral 
location, and yet they used a more liberal criterion ca in the periphery for indicating that a patch of lines was present. Notice that 

although sensitivity was not perfectly matched between center and periphery, usually we expect subjects to be relatively conservative 
for weaker detection, based on the Neyman-Pearson objective. Therefore, the results are striking in that it went opposite to that 

expectation. 
 

4.3 Specific Objective 3: Computational Modeling 
 

We proposed to model behavioral data with large-scale neuronal network models. During Year One,  
motivated by previous empirical results, we designed a biologically plausible, recurrent, leaky competing-
accumulator network model to perform a perceptual decision-making task and rate confidence based on the 
stimulus’ detectability. During Years Two, Three, and Four, we extended this work by refining the model, 
reducing the number of free parameters to constrain data fitting, and optimizing the code in preparation for 
sharing it upon publication. 

This neural network model incorporates a known property of sensory neurons: tuned normalization. The  
key idea of the model is that each accumulator neuron’s normalization ‘tuning’ dictates its contribution to  
perceptual decisions versus confidence judgments.  Specifically, we reasoned that highly normalized evidence 
accumulation neurons encode the balance of evidence for various perceptual interpretations (e.g., net evidence 
for leftwards or rightwards motion direction), and thus are ideally suited for making discrimination judgments. 
By contrast, less normalized evidence accumulation neurons encode evidence in favor of one perceptual 
interpretation (e.g., leftward motion) while ignoring evidence for alternative interpretations (e.g., rightward 
motion), and thus are ideally suited for implementing decision-congruent confidence computations. 
 
Model Architecture 

Intuitively, this network’s architecture can be summarized as follows. Accumulator units (with self-
excitation and leak) tuned to varying stimulus alternatives accumulate momentary stimulus evidence and inhibit 
other units that have opposing tuning preferences. Units differ in the degree to which they are inhibited: the 
more normalized units are the ones that receive stronger inhibition. A discrimination decision is made when a 
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linear combination of accumulator unit activity for a given tuning preference reaches a threshold level of 
evidence, and confidence is evaluated by reference to a linear combination of accumulator unit activity for the 
chosen stimulus alternative. Specifically, extending previous work, at each timestep we simulate the change in 
firing rate dx for each accumulation unit x with stimulus tuning preference i and normalization tuning level k 
(where i and k range from minimum values of 1 to maximum values of I and K, respectively) as: 

 
Our primary innovations in the past year focused on refining the lateral inhibition component   

 
in our model.   

 
This term for lateral inhibition can be decomposed into two components: 
 
1. Whole-population activation of inhibitory interneurons:  
 

Every accumulator unit with tuning preference j and normalization tuning level l activates an inhibitory 
interneuron with the same tuning preference j, h j , to a degree proportional to its current firing rate  . 
(Subscripts j and l are used here rather than i and k because the units subscripted with j and l are summed over 
the whole population of neurons in determining the effect of the population on a single unit with particular 
tuning preference i and normalization tuning level k, i.e. in determining ik). The summed activation across all 
normalization tuning levels l is divided by the overall number of tuning levels implemented in the simulation K. 
Thus, h j is effectively an average of the activity of all accumulator units with tuning preference j computed 
across all normalization tuning levels l. 
 
2. Inhibitory interneuron inhibition of single   units:  
 

Each inhibitory interneuron in turn inhibits each accumulator unit. The degree of inhibition depends on the 
dissimilarity in their respective tuning preferences j and i, according to the equation: 
        

 =1 (1/2 (2 ( )/ ) +1/2)  
      
where I is the number of tuning preferences implemented in the simulation.  is thus a sinusoidal function 
varying between 0 and 1 that represents the dissimilarity in tuning preference between the accumulator unit with 
tuning preference i and the inhibitory interneuron with tuning preference j.18 Tuning preference dissimilarity is 
maximal when | (i - j nhibitory interneuron have diametrically 
opposing tuning preferences, such as “motion left” vs “motion right”) and minimal when i = j (i.e. when they 
have the same tuning preference).    
      

Inhibitory interneuron inhibition of accumulator units is further modulated by . The magnitude of  is 
inversely proportional to normalization tuning level k, from a maximum value of 1 at k = 1 (full normalization 
tuning) to a minimum value of 0 at k = K (no normalization): 
      

 = 1  ( 1 /  
      
When = 0, a unit receives no lateral inhibition and is thus not normalized. When = 1, a unit is “fully 
normalized” in the sense that it receives momentary inhibition from the average activity of all units with 
opposite tuning preference (for which = 1). Intermediate levels of  reflect intermediate levels of 
normalization.   
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These components are shown in Figure 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Schematic of lateral inhibition in the model. (A) Inhibitory interneuron units. There are accumulator units with tuning 
preference j at each level of normalization tuning l. Activity in these units is integrated into a single inhibitory interneuron unit 

with the same tuning preference, InhIntj, where the weighting factor on each unit is set to a constant 1/K, where K is the number 
of normalization tuning levels (8 in this example). (B) Inhibition of accumulator units according to stimulus tuning preference 

dissimilarity. Inhibitory interneuron pools InhIntj inhibit accumulator units xik as a sinusoidal function of the similarity in tuning 
preferences i and j, Dij. For instance, for a set of I = 4 circularly arranged tuning preferences (corresponding e.g. to motion 

directions left, up, right, down), an accumulator unit with tuning preference i = 1 receives weakest inhibition from inhibitory 
interneuron pools with the same tuning preference j = 1, and strongest inhibition from inhibitory interneuron pools with the 

opposite tuning preference j = 3. Here we illustrate an example using I = 4, although in the actual simulations we set I = 2 for 
simplicity, corresponding to diametrically opposed stimulus properties, e.g. motion directions left vs. right. The overall 

inhibition strength  depends on normalization tuning level k, with more normalized units receiving stronger inhibition. 
 

Crucially, the weighting of accumulator units in these linear combinations depends on their level of 
normalization tuning, and this weighting differs for discrimination decisions and confidence ratings. More 
normalized units are weighted more heavily for discrimination decisions, since they effectively encode the 
balance of evidence for one stimulus alternative versus the others by virtue of their normalization. By contrast, 
less normalized units are weighted more heavily for confidence ratings, since they effectively encode a more 
faithful representation of the raw magnitude of evidence supporting each decision alternative, regardless of 
evidence supporting other possible decisions. 

This development in the model allows for more a more parsimonious account of current behavioral 
findings in the literature, including such as findings from Zylberberg (2016), shown in Figure 8: 
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Figure 10. The Tuned Normalization model predicts the effect reported by Zylberberg and colleagues.19 (a) The authors showed 
that increased stimulus volatility leads to similar objective performance but increased confidence ratings, especially at low objective 

performance levels. This figure is reproduced from Zylberberg (2016). (b, c) The Tuned Normalization model qualitatively reproduces 
these effects. (d) The effect of stimulus volatility on confidence was nearly abolished in control simulations in which more normalized 

units are weighted more heavily for computing confidence, suggesting that the result in (b) critically depends on confidence being 
computed primarily from less normalized units. Cohen’s d for confidence effects in the main model simulations was ~1.5 - 6 times 

greater than in the control simulations across all levels of stimulus strength. 
 
 

We demonstrated that normalization tuning provides a biologically plausible mechanism for 
implementing confidence computations that demonstrate an overreliance on decision-congruent information. 
Our findings lead to testable hypotheses about the role of tuned normalization in a neuron’s contribution to a 
decision versus a confidence judgment: activity of more normalized units should reflect an observer’s objective 
decisions more than confidence judgments, while the opposite should be true for less normalized neurons. The 
present findings thus pave the way for noninvasive neuroscience techniques, such as spatially coarser functional 
MRI in humans, to clarify the role of normalization tuning in perceptual and cognitive decisions and 
metacognitive evaluations of these choices.  
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5 Conclusions & Future Work 
 
  

We investigated how subjects detected colorful stimuli in the unattended periphery in a simulated driving  
task. If people tend to confirm what they expect whenever they don’t attend, this raises an important issue 
regarding driving safety. Hazard detection is a special detection task, because the penalty for a miss and a false 
alarm is different: a miss may cause a crash, while a false alarm may only lead to unnecessary brakes; thus, the 
criterion in hazard detection task is closely related with driving safety. In our research, the task is to detect 
pedestrian when the vehicle has stopped. However, in real driving, most of the hazards are presented while 
driving, which is quite different from our task. Future research should more systematically address how 
inattention affects hazard detection judgment while driving.  
 We also considered how peripheral visual perception may demonstrate inflation, whereby subjective 
judgements in this region of space are marked by two behavioral characteristics: metacognitive impairments in 
how effectively confidence judgements track the correctness of responses in experimental tasks, and decisional 
biases in observers’ tendencies to assume stimuli are more likely to be presented in the periphery than what 
actually occurs. Our experimental findings showed that our subjective sense of the visual surround is inflated. 
These findings raise an important question: what may be a mechanistic explanation for inflation? Future 
investigations should aim to systematically investigate how exogenous attention and endogenous attention may 
alter the characteristics of inflation that we observed. 
 We developed a simple leaky competing accumulator neural network model incorporating a known 
property of sensory neurons: tuned normalization. The key idea of the model is that each accumulator neuron’s 
normalization ‘tuning’ dictates its contribution to perceptual decisions versus confidence judgments. We 
demonstrate that this biologically plausible model can account for several counterintuitive findings reported in 
the literature, where confidence and decision accuracy were shown to dissociate -- and that the differential 
contribution a neuron makes to decisions versus confidence judgments based on its normalization tuning is vital 
to capturing some of these effects. We confirmed the model’s biological substrate using electrophysiological 
recordings in monkeys. These results challenge the dominant model, suggesting that the brain instead 
capitalizes on the diversity of available machinery (i.e., neuronal resources) to implement heuristic -- not 
optimal -- strategies to compute subjective confidence. 
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Appendix 
 

 
Figure 1. Participants’ fixations in Experiment 1 in Li, Lau and Odegaard (2018). a Participants’ fixations at 17 ms (i.e., time of 
one frame) before stimuli (the two male pedestrians) were presented, from every trial in Experiment 1. Each black point 
represents a fixation from one of the two eyes, and fixation points from both eyes are plotted in the figure. Almost all fixations are 
on or near the stoplight in every trial. b Participants’ fixations during stimulus presentation (300 ms total) in every trial in 
Experiment 1. 
 

 
Figure 2. Perceptual sensitivity and metacognitive efficiency in an orientation discrimination task from 
Odegaard, Chang, Lau and Cheung (2018). Shown here are the results from 23 participants in Experiment 1. 
As shown by the light grey bars, participants were much less effective at discriminating the orientation of a 
tilted grating when it was surrounded by other gratings (the ‘crowded’ condition), compared to when it was 
presented alone (the ‘single’ condition). d0 is the standard detection theoretic measure of sensitivity. The 
dark grey bars show a measure of the metacognitive efficiency (the M-ratio; meta-d0 /d0 ) in both 
conditions, which indicates how effectively confidence ratings could distinguish between correct and 
incorrect judgements. As can be seen in the figure, metacognitive efficiency was impaired in the crowded 
condition compared to the single condition. 
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Figure 3. Average confidence for correct and incorrect trials task from Odegaard, Chang, Lau and Cheung 
(2018). The light grey bars indicate the average confidence for correct trials for the single and crowded 
conditions. As can be seen in the figure, the difference between these conditions is not significant. The dark 
grey bars indicate the average confidence for incorrect trials. A clear difference between the single and 
crowded conditions is evident, and participants are significantly more confident in the incorrect crowded 
trials compared to the incorrect single trials. 
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