
Risk-Aware Graph Search with Dynamic
Edge Cost Discovery

Journal Title
XX(X):1–13
c�The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Jen Jen Chung1, Andrew J. Smith2, Ryan Skeele3 and Geoffrey A. Hollinger2

Abstract
In this paper we introduce a novel algorithm for incorporating uncertainty into lookahead planning. Our algorithm searches
through connected graphs with uncertain edge costs represented by known probability distributions. As a robot moves
through the graph, the true edge costs of adjacent edges are revealed to the planner prior to traversal. This locally revealed
information allows the planner to improve performance by predicting the benefit of edge costs revealed in the future and
updating the plan accordingly in an online manner. Our proposed algorithm, Risk-Aware Graph Search (RAGS), selects
paths with high probability of yielding low costs based on the probability distributions of individual edge traversal costs. We
analyze RAGS for its correctness and computational complexity and provide a bounding strategy to reduce its complexity.
We then present results in an example search domain and report improved performance compared to traditional heuristic
search techniques. Lastly, we implement the algorithm in both simulated missions and field trials using satellite imagery to
demonstrate the benefits of risk-aware planning through uncertain terrain for low-flying unmanned aerial vehicles.

Keywords
Planning under uncertainty, graph search, risk-aware planning

1 Introduction

When planning in unstructured environments, there is a
greater need for fast, reliable path planning methods capable
of operating under uncertainty. Planning under uncertainty
allows for robustness when faced with unknown and partially
known environments. We introduce a method, Risk-Aware
Graph Search (RAGS), for finding paths through graphs
with uncertain edge costs (similar to Stochastic Shortest Path
Problems with Recourse (Polychronopoulos and Tsitsiklis
1996)). In the domain of interest, a robot moves through
an environment represented by a graph, and the true costs
for edges adjacent to the robot’s location are dynamically
revealed. Our method accounts for both the uncertainty in the
edge costs and the dynamic revealing of these costs. Thus,
we bridge the gap between traditional search methods (Hart
et al. 1968; Koenig and Likhachev 2005) and risk-aware
planning under uncertainty (Hollinger et al. 2016; Murphy
and Newman 2013).

Traditionally, graphs are composed of nodes and edges,
with a node representing some state and an edge representing
the transition between states. Effectively searching through
a graph with known edges has been extensively researched
and applies across disciplines in robotics, computer science,
and optimization. We aim to expand the capabilities of
graph search algorithms by allowing for uncertainty in
traversal costs and dynamic discovery of those costs,
while avoiding the blowup in computation from more
expressive frameworks (e.g., POMDPs). Our novel approach
searches over uncertain edge costs with known distributions
and properly adjusts as new information about the edge
costs becomes available. This formulation allows for
computationally efficient methods of reducing the risk of
traversing paths with high cost.

The main novelty of this work is the introduction of a non-
myopic graph search algorithm for risk-aware planning with
uncertain edge costs and dynamic local edge cost discovery.
RAGS is an online planning mechanism that incorporates
live feedback for deciding when to be conservative and when
to be aggressive. With edge costs modeled as probability
distributions, we can derive a principled way of leveraging
information further down a path. This leads to a trade-
off between revealing the true cost of a large number of
edges (exploration) and traversing uncertain edges with low
mean cost (exploitation). RAGS addresses this trade-off in
a principled way, and the result is a low probability of
executing a path with high cost.

We compare our method to A*, sampled A* (Murphy and
Newman 2013), and a greedy approach on a large number
of random connected graphs. The results show that RAGS
reduces the number of high cost runs compared to all other
tested methods. In addition to testing over random graphs,
we validate RAGS using a real-world dataset. By applying a
series of filters to satellite imagery data, we are able to extract
potential obstacles that may impede a robot moving through
the map. To deal with the imprecise nature of obstacle
extraction, we can utilize the benefits of RAGS to find paths
that are less likely to be substantially delayed. We show
examples of different cases in which RAGS finds preferable

1Eidgenössische Technische Hochschule Zürich, Switzerland
2Oregon State University, USA
3Spectrum Geomatix, USA

Corresponding author:
Jen Jen Chung, Autonomous Systems Lab, Eidgenössische Technische
Hochschule Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland.
Email: jenjen.chung@mavt.ethz.ch

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

2 Journal Title XX(X)

paths. The algorithm is run on 96 satellite images taken from
a broad set of landscapes. The resulting path costs over the
image database confirms the benefit of the RAGS algorithm
in a real-world planning domain. Finally, we conducted flight
trials using a DJI Matrice 100 quadcopter (DJI 2017b) to
demonstrate the real-time application of the RAGS algorithm
using onboard sensor feedback.

This paper is an extended and revised version of our prior
work, Skeele et al. (2016), which was presented at the 12th
International Workshop on the Algorithmic Foundations of
Robotics. The main extensions are an improved metric for
initially bounding the set of best paths to consider during
execution, extending and improving the simulations using
real-world data, and the inclusion of flight trial results
demonstrating the application of the algorithm in a real-
world environment.

The remainder of this paper is organized as follows.
Section 2 provides a review of related work and research
in probabilistic planners. We formulate the path search
problem with uncertain traversal costs and dynamic edge cost
discovery in Section 3. In Section 4 we derive a method
for quantifying path risk (Section 4.1) and present a way
to reduce the search space by removing dominated paths
(Section 4.2). The complete RAGS algorithm is presented
in Section 4.3 and we show comparisons to existing search
algorithms in Section 5. We then highlight the utility
of RAGS by demonstrating its effectiveness for planning
through various terrain captured from satellite imagery in
Section 6 with flight trial results presented in Section 7.
Finally, in Section 8, we draw conclusions and propose future
directions for this line of research.

2 Related Work
Planning under uncertainty is a challenging problem in
robotics. An underlying assumption in many existing
planning algorithms is that the search space is not stochastic,
that is there is high certainty in the search space. Under
this assumption, researchers have developed many powerful
algorithms like A* (Hart et al. 1968) and RRT* (Karaman and
Frazzoli 2011) that perform efficient point to point planning
over expected costs (see Latombe (2012) and LaValle (2006)
for surveys). These algorithms are efficient for problems
with deterministic actions and a well-defined search space,
but are often not well suited to planning under uncertainty.
Recent work has explored ways of incorporating uncertainty
into similar planners in field robotics applications (Hollinger
et al. 2016; Bohren et al. 2011).

Reasoning probabilistically in robotic planning allows
performance to degrade gracefully when encountering the
unexpected. Notable work has been done on incorporating
uncertainty from sensors into the state estimation of the
system (Kalman 1960; Kurniawati et al. 2008), or in the
path planning itself (Chaves et al. 2015; Bry and Roy 2011).
However, uncertainty can lie in both the state and the world
model, so we must address both sources of uncertainty to
plan effectively.

Prior work in uncertain traversability of graph edges has
focused on a binary status of the edge. This family of
problems is a variant of the shortest path problem known
as the Canadian Traveler Problem (CTP) (Papadimitriou and

Yannakakis 1991). The CTP is inspired by drivers in northern
Canada who sometimes have to deal with snow blocking
roads and causing delays. The focus of CTP, and variations
like it, is to plan paths/policies when graph connections are
uncertain. A slight variation, known as Stochastic Shortest
Path with Recourse (SSPR) (Polychronopoulos and Tsitsiklis
1996), adds random arc costs. Our problem formulation,
similar to the CTP and SSPR, provides local information
during traversal. This is also consistent with the algorithm
PAO* for domains where there is a hidden state in the graph
(Ferguson et al. 2004). The hidden state relates this work to
Partially Observable Markov Decision Process (POMDPs)
(Monahan 1982), which provides an expressive framework
for uncertain states, actions, and observations. In our case,
we assume there is only uncertainty in the transition costs,
which avoids the computational blowup often found in large
POMDPs.

Planning over the expected cumulative cost is another
relevant variant of the shortest path problem (Hou et al.
2014). Risk-Sensitive Markov Decision Process are one
approach to such stochastic planning problems. These
solutions address cases where large deviations from the
expected behavior can have detrimental effects (Carpin
et al. 2016). Previous approaches have used a parameter
for risk aversion to solve Risk-Sensitive MDPs (Marcus
et al. 1997). Like these techniques, we aim to avoid large
deviations from the expected value while planning for low
costs; however we also look to exploit local information
available during execution. We build on work in risk-
aware planning (e.g., Risk-Sensitive MDPs), which deal
with probability distributions over outcomes. Other risk-
aware planning techniques in the literature use bounding of
likelihood (Sun et al. 2015) by minimizing the path length
with respect to a lower bound on the probability of success.
This is similar to work in Feyzabadi and Carpin (2014),
which instead bounds the average risk. These algorithms
define reasonable ways of assigning a value for trading off
between risk and a primary search objective like distance, but
they do not incorporate dynamically revealed information as
part of the search.

The stochastic edge cost problem has been approached
using an iterative sampling method when dealing with
uncertainty in terrain classification (Murphy and Newman
2013). In this prior work, the edge values between landmarks
are sampled from modeled cost distributions, and A* is
used over each sampling to generate a list of paths. The
paths most frequently taken are considered the most likely
to return low cost paths, which yields a method (sampled
A*) that we test our algorithm against. In our work, we
derive a formula for reducing the risk of a path based on the
uncertainty of the traversal costs themselves, which allows
for a more expressive framework than heuristic searches and
reduced computational requirements compared to sampled
approaches.

3 Problem Formulation
In this paper, we consider the problem of planning
and executing a risk-aware path through an uncertain
environment where knowledge of the true traversal costs are
revealed only as we arrive within some proximity of an area.

Prepared using sagej.cls

Geoff Hollinger
“conforms->confirm” for verb agreement with the plural noun costs

Geoff Hollinger
Processes (plural)

Geoff Hollinger
provides -> provide

Chung et al. 3

This planning scenario can be described over a graph with
edge costs initially represented by some set of distributions,
with the true edge costs identified as we arrive at the parent
node of each edge during the path execution. Throughout
this paper we use the term “risk” in its general sense to
describe the uncertainty of an outcome, i.e. committing to
any particular path from start to goal has an associated risk
since the true cost of the traversal is unknown at the start of
execution. The generality of the RAGS formulation is such
that the cost can represent any metric, e.g. travel time, path
length, energy expenditure or probability of collision/failure
(as in SSPR), as long as the outcomes can be modeled as a
distribution. Although we focus on a path cost minimization
objective in this paper, we note that this formulation
could represent informative path planning objectives by
considering the equivalent maximization problem (Meliou
et al. 2007). We now formulate the path search problem with
uncertain edge costs and introduce notation that will be used
throughout the paper.

Consider a graph G = (V, E) where the cost of
traversing edge E 2 E is drawn from a normal distribution
N �

µ

E

,�

2
E

�
. The cost of a path P ⇢ E is the sum of the edge

traversal costs, each of which are normally distributed. Thus
the total path cost is drawn from N �

µP ,�
2
P
�
, where µP =P

P µ

E

and �

2
P =

P
P �

2
E

. This formulation is similar to
that of the random network used in Polychronopoulos and
Tsitsiklis (1996).

Assumption 1. The true edge costs are drawn as i.i.d.
samples from the respective cost distributions when queried.

An important implication of Assumption 1 is that although
multiple paths may share a subset of edges, all paths can
be treated as having independent cost distributions. This
is analogous to a problem where traversal costs are not
fixed, but instead vary over time, and edge costs are queried
upon arrival at the parent node. This assumption simplifies
the computation of risk and dominance (shown later in
Section 4) without significantly changing the nature of the
problem.

Given any pair of start and goal vertices in the graph,
V

s

, V

g

2 V , the task is to traverse the graph along the acyclic
path of least risk. More precisely, since each edge transition
prunes the available set of paths to the goal, the path of least
risk retains the highest probability of traversing the overall
least-cost path as each transition is executed from V

s

to V

g

.
The decision at each vertex can be formulated by

considering the next available transitions and their associated
path sets. For example, say edge connections exist between
the current vertex V

t

and each of the vertices in the set
V
t+1 = {A,B,C, · · · }; furthermore, m acyclic paths exist

from vertex A to V

g

, while n acyclic paths exist from vertex
B to V

g

, etc. Let A be the set of random variables A

i

, i =
{1, · · · ,m}, where A

i

⇠ N �
µ

Ai ,�
2
Ai

�
represents the cost

distribution of path i from vertex A to V

g

(see Figure 1). Let
c

Ai be a sample of the random variable A

i

and let c
A0 be

the known cost of transitioning between V

t

and A, then the
lowest-cost path from V

t

to A and onwards to V

g

has cost:

c

Amin = c

A0 + min
Ai2A

c

Ai . (1)

Similar statements can be made for path sets B, C, · · ·. To
traverse the path of least-risk, each edge transition must

A1

A2

B1

B2

Bn

Am ~ ! µAm
,σ Am

2()

~ ! µBn
,σ Bn

2()

Start Goal

A

B

!

!

A0

B0

Figure 1. Setup of pairwise comparison for sequential lookahead
planning. Given the path cost distributions, we can directly compute
the probability that traveling from Start to Goal through A will
ultimately yield a cheaper path than traveling via B.

select the next vertex V 2 V
t+1 such that the following

probability holds,

P

�
c

Vmin < c

V

0
min

� � 0.5, 8V 0 2 V
t+1 \ V. (2)

That is, transitioning to vertex V results in a higher
probability of executing a lower cost path than transitioning
to any other neighboring vertex V

0.

4 Risk-Aware Graph Search (RAGS)
4.1 Quantifying Path Risk
The pairwise comparison P (c

Amin < c

Bmin) describes the
probability that the lowest-cost path in the set A is cheaper
than the lowest-cost path in the set B. Given Assumption 1,
this probability can be expanded to,

P (c
Amin < c

Bmin) =

1Z

�1

P (c
Bmin = x) · P (c

Amin < x) dx.

(3)
We can now express each term in the integral according to
the path cost distributions of each respective set. Let,

f(x,A) = P (c
Amin < x) ,

g(x,B) = P (c
Bmin = x) .

Since each of the path costs are drawn from normal
distributions, then

f(x,A) = 1�
mY

i=1

1
2erfc (d(Ai

)) , (4)

g(x,B) =
nX

j=1

2

64 1p
2⇡�Bj

exp
⇣
�d(B

j

)
2
⌘
·

nY

k=1
k 6=j

1
2erfc (d(Bk

))

3

75 ,

(5)

where d (⇣
i

) =
x�c⇣0�µ⇣ip

2�⇣i

.
As an aside, note that f

0(x, ·) = g(x, ·). Thus, using
integration by parts, we can show that

P (c
Amin < c

Bmin) = 1� P (c
Bmin < c

Amin) ,

Prepared using sagej.cls

Geoff Hollinger
semi-colon

4 Journal Title XX(X)

x
0 5 10 15 20 25 30 35 40

f
(x

;A
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E,ects of Path Set Size, Means and Variances on f(x;A)

7A0
= f20g;<A0

= f5g
A1 = fA0;A0g
A2 = fA0;A0;A0g
7A3

= f20; 10g;<A3
= f5; 5g

7A4
= f20; 40g;<A4

= f5; 5g
7A5

= f20; 20g;<A5
= f5; 2g

7A6
= f20; 20g;<A6

= f5; 10g

Figure 2. The plot of f(x,A), probability of the cost of the path
being less than x, for seven path sets; A0 has a single path with cost
drawn from N

�
20, 52

�
. This plot shows the effects of including

additional paths to the set whose costs are drawn from varying
distributions. This figure is best viewed in color.

confirming that these two events are indeed complementary.
Equations (4) and (5) give some intuitive insight into the

calculation of path risk. This formulation performs a trade-
off between the number of available paths in each set and
the quality of the paths in each set, the latter represented
by the means and variances of the path cost distributions.
For example, f(x,A) calculates the probability that the best
path in A has a path cost less than x (the plot of f(x,A)
is shown in Figure 2 for µA0 = {20} and �A0 = {5} as
well as six other path set variants). From Equation (4), we
note that as m!1, f(x,A)! 1, 8x 2 (�1,1). This is
shown in the solid curves plotting f(x,A0,1,2) in Figure 2
(black, dark blue and light blue, respectively). Path set A1

has twice as many paths (of equal means and variances) as
A0, while A2 has three times as many. The curves show
a trend towards an earlier and more rapid transition to 1
as m increases; however the difference between f(x,A2)
and f(x,A1) is much smaller than the difference between
f(x,A1) and f(x,A0), suggesting that adding more paths
results in diminishing returns in terms of driving f(x,A)!
1, 8x 2 (�1,1).

Other trends can be observed when adding paths of
varying cost distributions to the set. A3 includes a second
path with lower mean and equivalent variance to A0.
The corresponding f(x,A3) (red, dot-dashed) is shifted
significantly to the left of f(x,A0), causing the transition
towards 1 to occur much earlier. On the other hand, the
addition of a second path with higher mean and equivalent
variance results in almost no change to the curve, as shown
by the overlap between f(x,A4) (yellow, dashed) and
f(x,A0). Adding a path with equivalent mean but a lower
variance results in the plot of f(x,A5) (purple, dot-dashed),
which shows a much more rapid transition to 1 compared
to either f(x,A0) or f(x,A1). However, the addition of
a path with equal mean and higher variance increases the
overall uncertainty associated with the path set, as shown by
the shallower gradation in the probability curve of f(x,A6)
(green, dashed). Furthermore, this means that although the
transition towards 1 begins at lower values of x, as x!1,

f(x,A6)! 1 more slowly than for f(x,A1) or f(x,A5).
Indeed, the cross-over occurs at the mean, x = 20. For x <

20, f(x,A6) lies above both f(x,A1) and f(x,A5), after
this point, their ordering reverses.

This analysis motivates a bounding approach that
compares the values of path cost means and variances to
retain only the most relevant paths for the calculation of
Equation (3). Bounding the path set is especially desirable
since the computation of each pairwise comparison has
complexity O�n2

m

�
, where n and m are the sizes of the

path sets under consideration.

4.2 Non-Dominated Path Set
Existing graph search algorithms, such as A*, use a total
ordering of vertices based on the calculated cost-to-arrive
to find a single optimal path between defined start and goal
vertices. In contrast, an implementation of RAGS requires
two sweeps of the graph, since an initial pass is required to
gather cost-to-go information at each node for quantifying
the path risk at execution. If all possible acyclic paths
between start and goal are to be considered, then this initial
pass is exponential in the average branching factor of the
search tree. To reduce this computation, we introduce a
partial ordering condition based on the path cost means and
variances to sort the priority queue and terminate the search.
This bounds the set of resultant paths to be considered during
execution by accepting only those that exhibit desirable path
cost mean and variance characteristics.

As discussed in Section 4.1, the addition of paths with
higher mean costs to the existing path set results in little
improvement in the overall risk of committing to that set.
Similarly, adding paths with higher variances on the path
cost results in a slower convergence of f(x,A) to 1. In
our prior work (Skeele et al. 2016), we used a simple
comparison between the path cost distribution properties to
bound the path set by removing all paths with strictly higher
means and variances. However, since we consider costs
defined by normal distributions that are evenly distributed
about the mean, a path with high cost variance has an
equal probability of resulting in both more or less expensive
traversals. Furthermore, these probabilities are greater than
that of a path with the same mean cost but a lower cost
variance. Thus, naı̈vely penalizing paths with high variance
can result in a loss of optimality. In this work, we update
the partial ordering criterion from Skeele et al. (2016) to
formally trade off path cost mean and variance according
to our probabilistic definition of path risk introduced in the
previous section.

In practice, the partial ordering considers whether a path
is dominated by an existing path, either in the open or closed
set. For any two paths, A and B, between the same set of
start and end vertices, we can consider the probability that
the cost of traversing A is lower than the cost of traversing
B,

P (c
A

< c

B

) = 1� P (c
B

� c

A

 0).

Since both path costs are represented by normal distributions,
then c

B

� c

A

⇠ N �
µ

B

� µ

A

,�

2
B

+ �

2
A

�
, such that,

P (c
A

< c

B

) = 1� �

µ

A

� µ

Bp
�

2
B

+ �

2
A

!
,

Prepared using sagej.cls

Chung et al. 5

where � (·) is the cumulative distribution function of a
normal distribution. Here we introduce the domination
threshold, dthresh 2 [0.5, 1), such that if P (c

A

< c

B

) >
dthresh , then we say that A dominates B. That is

A � B , 1� �

µ

A

� µ

Bp
�

2
B

+ �

2
A

!
> dthresh .

Expanding � (·), this becomes

A � B , µ

A

< µ

B

+
q
2 (�2

B

+ �

2
A

) erf�1 (1� 2dthresh) .

(6)
The inverse error function term in Equation (6) produces

a value between (�1, 0], which scales the contribution of
the distribution variances in the path domination comparison.
The effect of this is such that as dthresh ! 1, the right hand
side of the inequality in Equation (6) goes to �1, and the
number of dominated paths goes to 0. In other words, the
number of paths in the non-dominated path set grows to
contain all possible paths from start to goal as dthresh ! 1.
On the other hand, when dthresh = 0.5, the non-dominated
path set reduces to those paths with optimal mean cost. This
is formalized in Lemma 1 and Theorem 1 below.

Lemma 1. Given the graph G = (V, E) as defined in
Section 3, the non-dominated path sets PND and P 0

ND
are generated by using domination thresholds dthresh and
d

0
thresh , respectively. If dthresh  d

0
thresh , then PND ✓ P 0

ND .

Proof. Proof by contradiction: If PND * P 0
ND , then there

exists a path B where B 2 PND and B /2 P 0
ND . It follows

from Equation (6) that there exists a path A such that the
following inequalities hold true:

µ

A

< µ

B

+
q
2 (�2

B

+ �

2
A

) erf�1 (1� 2d0thresh) ,

µ

A

� µ

B

+
q
2 (�2

B

+ �

2
A

) erf�1 (1� 2dthresh) .

Giving,

erf�1 (1� 2dthresh) < erf�1 (1� 2d0thresh) .

Since erf�1 is a strictly increasing function, then

1� 2dthresh < 1� 2d0thresh) dthresh > d

0
thresh ,

which contradicts the required condition.

Theorem 1. For any dthresh 2 [0.5, 1), the non-dominated
path set includes the A* path calculated on the mean of the
edge cost distributions.

Proof. Let path B be the A* path calculated on the
mean, which has the lowest total mean cost, µ

B

=
µmin . According to Equation (6), when dthresh = 0.5, the
domination condition is given by µ

A

< µ

B

. However, by
definition, for all paths A, µ

A

� µmin . Thus the A* path
calculated on the mean of the edge cost distributions will be
contained in the non-dominated path set for dthresh = 0.5. It
follows from Lemma 1 that this path will be included in all
non-dominated path sets for dthresh 2 [0.5, 1).

From a practical perspective, the purpose of the
domination threshold is to determine the cutoff point for
deciding which paths are included in the non-dominated path
set and which are excluded. For example, with a domination
threshold of 0.6, all paths in the non-dominated set have at
least a 60% probability of incurring a lower cost than any
path excluded from the set, i.e. if path A dominates path
B, then path B has < 40% chance of being the better path.
As we increase the domination threshold, more paths are
included in the non-dominated set, reducing the chances that
the true best path is excluded from the set. However, at the
same time, these newly added paths to the non-dominated set
also have a successively lower probability of actually being
the best path. In our comparative experiments in Section 5
we show that beyond a certain domination threshold, there
does not appear to be value in adding more paths to the
non-dominated path set, i.e. the additional paths serve to
confound the online decision making rather than provide
useful options.

4.3 RAGS Dynamic Execution
Given the non-dominated path set, path execution can
occur by conducting edge transitions at each node to select
the path set of least risk according to Equation (2). The
true edge transition costs, which become available for
all neighboring edges to the current node, are included
by directly substituting the known value of c

V0 into
Equation (1).⇤ The pseudo code for the complete RAGS
algorithm is provided in Algorithm 1; an initial sweep of
the graph is conducted to search for the non-dominated path
set, and a second sweep is conducted during execution to
incorporate edge cost information as it is received.

The initial sweep, shown in lines 1-17 of Algorithm 1, is
similar to the A* procedure with three notable exceptions.
First, in lines 8-9, if the current node contains a path from
start to goal, then it is included in the non-dominated path set.
Second, in line 14, each child node of the current expanded
node is checked against the ancestor list to explicitly exclude
looping paths. Furthermore, a child node is also excluded at
this point if it is found to be dominated by any node in the
closed set with the same end vertex. Third, in line 16, the
initial sweep is terminated either when open set is empty or
when the next node to be expanded from the open set is found
to be dominated by any node in the current non-dominated
path set.

The RAGS online execution begins by constructing the
directed graph formed by the non-dominated path set
(line 18). Beginning at the start vertex (line 20), each edge
transition first considers the set of all neighboring vertices
(line 23), and computes a total ordering of the possible
traversals according to Equation 3 (line 24). It is here that
RAGS incorporates the observed costs of the next transitions
if that information is available. The edge traversal to the
best vertex from this set is executed (line 25), and this loop
continues until the goal vertex is reached.

⇤Note that knowledge of the true neighboring edge costs is not required for
RAGS to formulate a path. The immediate transition costs c

A0 and c
B0 can

be included as distributions in Equation (3) to determine a path from start to
goal. Dynamic replanning is only necessary if new edge cost information is
discovered.

Prepared using sagej.cls

Geoff Hollinger
semi-colon

6 Journal Title XX(X)

Algorithm 1 RISK-AWARE GRAPH SEARCH

// INITIAL SWEEP
1: Initialize open, closed, PND ; . Initialize open and closed sets, and non-dominated path set
2: V

s

 start, V
g

 goal
3: N

s

 ;, N
s

.append(V
s

) . Initialize start node
4: open.push(N

s

) . Place the start node in the open set
5: while open 6= ; do
6: N0 open.pop() . Current search node
7: closed.push(N0)
8: if N0.getVertex() = V

g

then
9: PND .push(N0) . Non-dominated path to goal found

10: else
11: V

t+1 getNeighbors(N0,G) . Expand the current node
12: for V in V

t+1 do . Assess all neighboring vertices
13: N N0.append(V) . Compute child node
14: if notAncestor(V,N0) ^ nonDom(N , closed) then
15: open.push(N) . Open set sorted according to dominance
16: if ¬nonDom(open.top(), PND) then . End search if all nodes in the open set are
17: break dominated by the non-dominated path set

// PATH EXECUTION
18: GND PND . Directed graph formed by non-dominated path set
19: N ;
20: V0 V

s

21: while V0 6= V

g

do
22: N .append(V0)
23: V

t+1 getNeighbors(N,GND)
24: Vordered ComparePathSets(V

t+1,GND) . Total ordering of vertices from Equation (3)
25: V0 = Vordered.pop() . Execute edge traversal

5 Comparison to Existing Search Algorithms
We compared RAGS against a naı̈ve A* implementation,
a sampled A* method, and a greedy approach. Naı̈ve A*
finds and executes the lowest-cost path based on the mean
edge costs and does not perform any replanning. The greedy
search is performed over the set of non-dominated paths
and selects the cheapest edge to traverse at each step.
The sampled A* method searches over graphs constructed
by sampling over the edge cost distributions and executes
the path that is most frequently found. To provide a fair
comparison, the planning time of sampled A* (related to the
number of sampled graphs it plans over before selecting the
most frequent path) is limited to the time RAGS needed to
find a path. We chose A* to compare against as a simplified
solution to the problem and sampled A* because the method
was previously introduced in a similar domain Murphy and
Newman (2013) . The greedy approach provides a baseline
for comparison to a purely reactive implementation.

The search algorithms were tested on a set of graphs
generated with a uniform random distribution of 100 vertices
over a space 100⇥ 100 in size and connected according
to the PRM* radius (Karaman and Frazzoli 2011). Edge
costs were represented by normal distributions with mean
equal to the Euclidean distance between vertices plus an
additional cost, c

E

⇠ N �
µ

E

,�

2
E

�
. The mean over each

edge cost distribution was drawn from a uniform random
distribution, µ

E

⇠ U (0, 100), while the variance was also
drawn from a uniform distribution �

2
E

⇠ U �0,�2
max

�
, where

�

2
max

= {5, 10, 20} for each unique set of graph vertices and

mean edge costs. Note that a minimum cost of the Euclidean
distance was enforced in the following experiments. The
start vertex was defined at V

s

= (0, 0), with the goal at
V

g

= (100, 100). Figure 3a gives an example of a randomly
generated graph, with edge variance shown in blue-yellow
scale (darker blue lines having a smaller variance). In
Figure 3b the non-dominated path set is shown in red, and
the RAGS path is shown in black.

In Figure 4 we show the resulting path costs for 100
trials over a single graph configuration, where each trial
drew new edge costs from the distributions as described
above. For this set of experiments RAGS used a domination
threshold of dthresh = 0.60 to compute the non-dominated
path set. Of the four tested path planning methods, naı̈ve A*
is the only technique that always executes the same path.
This is because the A* path is calculated according to the
mean edge costs, which are fixed for each graph. Naı̈ve A*
performs relatively well in the mean but is prone to incurring
expensive traversals. For example, the most expensive A*
path in Figure 4c costs 83.5% more than the optimal path,
while this number drops to 62.3% for RAGS. RAGS is able
to mitigate against severely high cost outcomes by trading
off the means and variances of available routes as well as
maintaining more future path options, demonstrating the
benefits of risk-aware planning. Furthermore, the difference
between the path cost results for the greedy planner and
RAGS shows that although the initial sweep for the non-
dominated path set can remove the most severely expensive
path options, the more sophisticated decision making used

Prepared using sagej.cls

Geoff Hollinger
100 x 100 units in size. I assume it’s just “units” and not any particular unit?

Chung et al. 7

(a) (b)

Figure 3. A sample search graph is shown in (a). The mean cost is the sum of the Euclidean distance plus a random additional cost. Edge
variances are represented using a scale from blue to yellow on the graph. The darker (more blue) the edges, the less variance there is on the
cost. The non-dominated path set (red) and the executed RAGS path (black) shown in (b) demonstrate the algorithm’s ability to account
for both the path cost distributions as well as the available path options to goal. Not only does it favor traversing edges with balanced mean
costs and variances, it also trades off against the number of remaining path options to the goal.

P
at
h
co
st
p
er
ce
n
ta
ge
ab
ov
e
op
ti
m
al

0

2

4

6

8

10

12

14

R
A
G
S

N
aB1
ve
A
*

Sa
m
pl
ed
A
*

G
re
ed
y

<2max = 5

(a)

P
at
h
co
st
p
er
ce
n
ta
ge
ab
ov
e
op
ti
m
al

0

5

10

15

20

25

30

35

40

R
A
G
S

N
aB1
ve
A
*

Sa
m
pl
ed
A
*

G
re
ed
y

<2max = 10

(b)

P
at
h
co
st
p
er
ce
n
ta
ge
ab
ov
e
op
ti
m
al

0

10

20

30

40

50

60

70

80

90

R
A
G
S

N
aB1
ve
A
*

Sa
m
pl
ed
A
*

G
re
ed
y

<2max = 20

(c)

Figure 4. Path search results over 100 samples of one graph configuration (unique vertices and mean edge costs); edge cost variances are
drawn uniformly between 0 and {5, 10, 20} for the three plots (a)-(c), respectively. RAGS computed the non-dominated path set according
to a domination threshold on dthresh = 0.60. The difference in cost of the executed path and the true optimal path as a percentage of the
optimal path cost is shown. Note that the true optimal path cost can only be calculated in hindsight.

in the RAGS plan execution contributes significantly to the
overall success of RAGS. Due to the myopic nature of its
planning, greedy is fallible to arriving at vertices with few
path alternatives that all turn out to have high cost. RAGS
does not suffer from the same performance decay since it
accounts for the full path-to-goal cost distribution at each
decision instance. The greedy results suggest that similar
replanning strategies based only on the immediate edge cost
updates may suffer from similar one-step lookahead myopia
if downstream risks are not incorporated into the planning.

The sampled A* approach can account for variability in
costs along the edges as long as it can sample enough paths.
However, like naı̈ve A*, this method is similarly prone to
risky paths that yield high-cost outliers because it cannot
incorporate dynamic local information in the way that RAGS

does. In fact, for this set of trials, sampled A* produced the
poorest path choices compared to all other methods. This is
partly because the domination threshold for these trials was
set relatively low, and so the number of equivalent Monte
Carlo graphs used by sampled A* was also relatively low.

The collated results from 100 unique graph configurations,
with each graph sampled 100 times, are shown in Figure 5.
Figure 5a shows the final path cost performance for a range
of domination threshold values, dthresh 2 [0.50, 0.75]. As
the domination threshold is increased, the performance of
greedy planning on the non-dominated path set deteriorates
rapidly. On the other hand, the performance of sampled
A* improves as dthresh increases. This is largely because
the computation time for RAGS increases as well, allowing
sampled A* to use a larger number of Monte Carlo graph

Prepared using sagej.cls

Geoff Hollinger
Best viewed in color

8 Journal Title XX(X)

Domination threshold pthresh

0.5 0.55 0.6 0.65 0.7 0.75

P
at

h
co

st
p
er

ce
n
ta

ge
ab

ov
e

op
ti
m

al

0

2

4

6

8

10

12

14

16

18

20

Path Costs

RAGS
NaB1ve A*
Sampled A*
Greedy

(a)
Domination threshold pthresh

0.5 0.55 0.6 0.65 0.7 0.75

C
om

p
u
ta

ti
on

ti
m

e
(s

)

0

0.2

0.4

0.6

0.8

1
Planning Times

G
ra

p
h

sa
m

p
le
s

0

20

40

60RAGS
NaB1ve A*
Sampled A*
Greedy

(b)
Domination threshold pthresh

0.5 0.55 0.6 0.65 0.7 0.75

N
um

be
r o

f p
at

hs

0

50

100

150

200

250
Path Set Size

RAGS
Sampled A*

(c)

Figure 5. (a) Final median path cost performance, (b) computation times and (c) path set size across varying domination thresholds for
�

2
max

= 10. In (a), the bars indicate the average first and third quartiles over the 100 graphs (each sampled 100 times). Note that the curves
are slightly offset along the x-axis to aid clarity. In (b) and (c), the error bars show the 95% confidence intervals.

samples to determine the final executed path. For dthresh 2
[0.5, 0.65], RAGS outperforms naı̈ve A* but begins to
perform poorly for larger values of the domination threshold.
This confirms that the additional paths introduced into the
non-dominated path set at higher thresholds are less likely
to produce better paths. In fact, these results indicate that
those paths become confounding factors during the online
path execution. RAGS is most beneficial at lower values of
dthresh since it is able to identify the critical subset of paths
that ultimately provide the best path options when traversing
a graph with fluctuating edge costs.

Figure 5b shows the path search and execution times
for each method and the total number of Monte Carlo
graph queries performed by sampled A*. Graph search
and execution was calculated on a 2.1GHz Intel R� Core

TM

i7-3612QM laptop. The computation time for the greedy
planning method on the non-dominated path set closely
follows that of RAGS, indicating that the majority of the
computation cost is incurred during the initial sweep rather
than during the online path execution. As expected, the
computation time for A* planning is stable and the number of
Monte Carlo graphs queried by sampled A* is proportional
to the RAGS computation time. By comparing Figures 5a
and 5b we can see that sampled A* requires over 50 Monte
Carlo samples of the graph in order to improve upon the
performance of RAGS.

The number of paths stored in the non-dominated path
set for increasing dthresh values are also plotted against the
number of sampled A* graphs in Figure 5c. Note that all
paths in the RAGS non-dominated set are unique, whereas
the sampled A* paths may not be. RAGS is able to consider
a significantly larger set of possible paths compared to
sampled A* for two main reasons. First, sampled A* needs to
draw values from all edge cost distributions and run the A*
search for each Monte Carlo query. In comparison, RAGS
only runs a single search through the graph during the initial

sweep and leverages the path domination metric to handle the
node expansion ordering throughout. Second, as mentioned
above, the RAGS online execution is relatively fast compared
to the initial sweep. This is due in part to the natural path
set pruning that occurs during execution, where after each
edge traversal, the remaining path segments to goal in the
non-dominated set successively shrinks, thereby making the
calculation of Equation (3) faster.

6 Satellite Data Experiments
We also applied RAGS to a real world domain using satellite
data. In robotic path planning there is often prior information
available on the environment, but this information is not
necessarily reliable. An example of this is using overhead
satellite imagery to provide prior information for path
planning. In these trials, we collected and filtered satellite
images to identify potential obstacles for a low-flying UAV.
To convert the image into a useful mapping of obstacles, we
filtered the satellite images to identify trees. The filtering
process begins by applying a Gaussian filter to locally
homogenize the images. Then the trees were extracted from
the filtered images based upon pixel color; an example
satellite image input and the resulting obstacles are shown
below in Figures 6a-6b.

After the filtering process, the images provided a rough
estimate of obstacles that could force the vehicle to slow
down or alter its path. Unfortunately, due to the resolution
of the satellite imagery, limitations of the tree/obstacle filter,
and temporal differences between when the images were
taken, the satellite imagery cannot be used to provide a
guaranteed cost to traverse an area. For example, the obstacle
detection cannot determine the height of the detected trees to
determine if the UAV can fly above them or will be forced to
detour around them. Consequently, the imagery can only be
used as an estimate of the obstacles in the environment and

Prepared using sagej.cls

Chung et al. 9

(a) (b)

(c) (d)

Figure 6. An example of a raw satellite image (a) and the extracted obstacles shown in white (b). The mean estimated obstacle edge costs
(c) and variance (d) for the raw satellite image in Figure 6a. Lower values are black and higher values transition to red, best viewed in
color.

the additional costs the obstacles will add to the flight path.
Using the same method as before, we randomly sampled
the space to generate a connected graph of flight paths. To
estimate the costs of flight paths we calculated the mean and
variance of the detected obstacle pixels over each edge and
used these values to characterize the edge cost distributions.
This process was then repeated for every edge in the graph.
Example graph means and variances are shown in Figures 6c
and 6d. The mean pixel lightness of the obstacle map along
an edge was used to scale the Euclidean distance to generate
mean edge costs. This was used to represent a penalty for
the increased likelihood of an obstacle and a slower flight
speed. The variance in pixel lightness across an edge in the
obstacle map was directly used as the edge cost variance in
our calculations. After the edges were assigned distributions,
RAGS with dthresh = 0.60 was used to search through the
graph for a path from the top left start vertex to the bottom
right goal vertex. dthresh = 0.60 was chosen because it
allows for exploration while not growing the non-dominated
set to be too large. Actual values of the edge costs were
drawn from the distribution as the simulated robot moved
through the terrain.

6.1 Results
We compared the performance of RAGS to the three
other planning algorithms across 96 satellite images. The

images are of fields with trees of varying tree densities
and may also contain houses or other built structures.
Images were captured at different resolutions as well as at
different altitudes. The majority of the data have tree clusters
scattered throughout the image to provide interesting path
planning dilemmas. Four distinct environments are shown
in Figures 7, 8, 9, and 10. To avoid visual clutter, only the
RAGS, A*, and hindsight optimal paths are shown here.
The hindsight optimal path contains no notion of risk and is
calculated solely on the “true” edge traversal costs, which are
not observable to the planners until they reach a neighboring
node. As in the previous experiments in Section 5, for
each sample of an image, we draw the true costs from the
computed distributions and use these to evaluate the executed
paths of each planner. Compiled results for all four planning
algorithms on the satellite imagery dataset are presented in
Figure 11.

In Figure 7 the paths through an empty field are straight
from start (magenta triangle) to goal (cyan circle). As
expected, there is little variance in edge costs across the
open field, and the trajectories for RAGS and A* are
identical and follow the optimal path. In Figure 8 the two
planners, RAGS and A*, again follow identical paths in the
presence of an obstacle field with limited options. This map
results in one obvious intuitive path for the planners to find

Prepared using sagej.cls

10 Journal Title XX(X)

Optimal: 1751.9

A-Star: 1751.9

RAGS: 1751.9

Figure 7. The RAGS, A*, and the global optimal (known only
in hindsight) paths are shown in the figure with the final path
costs. The goal is to traverse from the top left start vertex to the
bottom right goal vertex. The empty field is a test case showing that
both algorithms plan direct paths as expected in an obstacle-free
environment. Note that although only the final executed RAGS path
is shown, the entire non-dominated path set is considered during the
online traversal.

Optimal: 1780.74

A-Star: 1780.74

RAGS: 1780.74

Figure 8. This test case demonstrates that both A* and RAGS plan
an intuitive path in the presence of obstacles. The planners remain
in the empty fields for the duration of the path and only enter the
forest briefly as expected.

and demonstrates their ability to plan a trajectory around
obstacles.

Analyzing the paths found in Figure 9 is more interesting
than the previous two examples. Here we start to see the
benefit of RAGS in obstacle-dense environments. The path
from start to goal is blocked by large clusters of semi-
permeable forest. A* executes a path through the center of
the cluster that has a low cost in the mean but does not allow
for easy deviations if the path is found to be untraversable.
On the other hand, the path executed by RAGS demonstrates
the nonmyopic nature of this algorithm. RAGS executes a
path that travels around the main cluster to minimize the
portion of the path within the dense section of the forest.
The executed path balances the risk of traversing high-cost
edges at the start and end of the path with the benefit of
exploiting the sections of open field in the bottom left.
Although the RAGS path length is longer than the A* path,
it ultimately achieves a lower total cost. Values are drawn
from the edge distributions to calculate what would have
been the optimal path in hindsight. The optimal path (known
only after execution) is shown in red, and we can see that it
also avoids the center route executed by A*.

Optimal: 1947.20

A-Star: 2167.33

RAGS: 2046.25

Figure 9. The RAGS path is shown traveling through an initial
cluster of trees to take full advantage of the clear route over the
open field. In contrast, A* finds a path that attempts to navigate
straight to the goal through the dense forest without consideration
of the cost variability of that region. The costs after execution show
that the RAGS path is actually cheaper due to balancing the risk of
finding a path through the initial tree cluster that connects to a less
risky path to goal. This demonstrates the benefit of RAGS, knowing
when to take risks and when to act conservatively.

Optimal: 1608.33

A-Star: 1639.72

RAGS: 1657.86

Figure 10. Paths are planned through a dense cluster of trees
surrounding the goal. Here we can see RAGS plans around the
cluster, where the path is ultimately shorter but has a higher
risk, before traversing through a less cluttered area. RAGS takes
advantage of the wide open region instead of searching for narrow
tracks within the tree cluster.

The final test case can be seen in Figure 10, here A*
actually outperforms RAGS. In this test case the hindsight-
optimal and A* path is to push through the center of the
cluster along edges with potentially higher penalties, but a
shorter Euclidean distance. The RAGS planner alternatively
takes a path that largely avoids the cluster along a safer,
though ultimately slightly higher cost, path.

The compiled results for all tested algorithms are shown
in a box plot of percentage above the hindsight optimal
in Figure 11. From the comparison on the three randomly
generated graphs in Section 4.3, we showed that the relative
performance of RAGS increases as edge variance increases.
This is accounted for by the fact that the other planning
algorithms are merely searching over the single heuristic of
mean traversal cost. If variance is low then this can be enough
to solve for a path that is close to the optimal solution.
However, Figure 11 reveals that real world data sets can
contain significant noise, and it is valuable to account for that
variability during planning.

Prepared using sagej.cls

Chung et al. 11

Figure 11. Results from satellite data experiments, using 100
samples of 96 images. Box plots represent the path cost percentage
above what would have been, in hindsight, the optimal path. The
same trends in performance are seen as with the simulated graphs.
By accounting for the uncertainties in travel cost, RAGS is able to
reduce the risk of executing expensive paths.

7 Flight Trials
In addition to the satellite data experiments, the RAGS
planner was tested on a quadrotor traversing through
an unstructured wooded environment. The quadrotor is
provided a graph representation of the environment,
consisting of the edge cost distributions calculated from
satellite imagery of the area. It then uses either A* to plan a
route, or RAGS to generate the non-dominated path set, from
the start to finish locations. The goal of the quadrotor is to fly
to the finish location as quickly as possible while avoiding
obstacles in the environment and following either the A*
or RAGS path, the latter of which is updated online given
sensor feedback. The quadrotor uses on-board sensing and
computing to plan its trajectory, detect and avoid obstacles,
and re-plan as needed autonomously and in real time while
navigating the path.

The quadrotor used in these experiments is the DJI Matrice
M100 DJI (2017b) equipped with a ZED RGBD camera
(StereoLabs 2017) and Nvidia Jetson TX2 Development
Board (Nvidia 2017), as shown in Figure 12†. The Jetson
TX2 uses Ubuntu 16.04 and Robot-Operating System (ROS)
Kinetic-Kame (jkay 2017). The motion of the Matrice is
restricted to a 2D plane by controlling the Matrice to a fixed
altitude of 10m AGL. The Matrice’s heading is controlled
to orient the ZED RGBD camera in the direction of travel;
effectively always facing the Matrice forward. The ZED’s
depth image, accessed via the ZED-ROS-wrapper (Brehmer
2017), is used to detect obstacles at the quadrotor’s operating
altitude. As obstacles are detected, they are inflated and
added to a 2D occupancy map at 100Hz. The Matrice then
uses the ROS navigation package to plan a path in the 2D
occupancy map from the Matrice’s current location to the
next goal vertex in the A* or RAGS route at 1Hz.

The movement of the Matrice is controlled at 50Hz using
proportional-derivative controllers for heading, altitude, and
horizontal velocities to follow the path to the next vertex.
The DJI on-board ROS SDK (DJI 2017a) is used to

Figure 12. The DJI Matrice M100 used in the hardware trials.

acquire positioning information and control the motion of the
Matrice. The Matrice’s horizontal velocity is determined by
the mean distance reading in the platform’s operating plane.
In an open environment with few obstacles the Matrice’s
velocity increases. As more obstacles are detected and
become closer to the Matrice, the platform slows down.
Using this method, the Matrice controller guides the platform
along the path between vertices. When it reaches a distance
within 3m of the intermediate goal vertex, the Matrice
queries either the A* or RAGS on-board planner for the next
vertex and repeats this process.

The hardware experiments were conducted in the
unstructured wooded environment shown in Figure 13. This
environment was chosen because it provides multiple paths
from the start location, green triangle, to the goal location,
red circle. The length of the trial was constrained by the
limited battery life of the Matrice and the foot speed of
the safety pilot. As seen in Figure 13 the Matrice executed
different paths for the RAGS and A* planners, metrics are
provided in Table 1. The RAGS planner took the slightly
longer path, 209.7m compared to 201.7m for the A* path.
However, the RAGS path can be seen to be less risky, with
fewer nearby obstacles which allowed the quadrotor to travel
at a faster speed. The Matrice was able to complete the
RAGS path in 162.7 s, compared to the A* path, which was
completed in 174.8 s. The time and distance reported is from
when the Matrice autonomously departs the starting vertex
and autonomously reaches within 3m of the goal vertex.

Table 1. Comparison of results from hardware trials between
RAGS and A*. Notice that although the RAGS path is 8.0m longer,
RAGS is 12.1 s faster as it selects a lower risk path containing fewer
obstacles.

Method Path Length (m) Travel Time (s)

RAGS 209.7 162.7
A* 201.7 174.8

We note that this experiment serves as a case study
of the performance of RAGS and does not represent a
statistically meaningful result. However, it does confirm

†The hardware flight trials conducted for this research were conducted
under Oregon State University’s (OSU) Federal Aviation Administration
Certificate of Authorization and logged in OSU’s compliance software,
Drone Complier.

Prepared using sagej.cls

Geoff Hollinger
delete “conducted for this research”

12 Journal Title XX(X)

A-Star

RAGS

Start

Finish

Figure 13. The paths taken in the hardware trials by the Matrice for the RAGS and A* planners. The RAGS path is slightly longer,
209.7m, compared to the A* path, 201.7m. However, the RAGS path allowed for a slightly higher travel speed and was completed in
162.7 s compared to the 174.8 s taken along the A* path. Notice that although the RAGS path is 8.0m longer than the A* path, it is
completed 12.1 s faster. This is because the RAGS planner accounts for risk along the path and chooses a path from the non-dominated set
with fewer obstacles, allowing the quadrotor to travel at a higher speed.

a number of properties of the algorithm in a real-world
field trial. First, these hardware trials verify that the RAGS
algorithm can be run online in real time on existing hardware
in an unstructured environment. Second, it confirms both
the trends found in the simulations, that RAGS will attempt
to mitigate risk by choosing a safer path, and our own
intuition about how the RAGS algorithm should perform, i.e.
it chooses the uncluttered path along the road over the shorter
path through the trees, which is qualitatively safer and easier
for the vehicle to traverse.

8 Conclusion

In this paper we have introduced a novel approach to incor-
porating and addressing uncertainty in planning problems.
The proposed RAGS algorithm combines traditional deter-
ministic search techniques with risk-aware planning. RAGS
is able to trade off the number of future path options, as well
as the mean and variance of the associated path cost distribu-
tions to make online edge traversal decisions that minimize
the risk of executing a high-cost path. The algorithm was
compared against existing graph search techniques on a set of
graphs with randomly assigned edge costs, as well as over a
set of graphs with traversability costs generated from satellite
imagery data. In all cases, RAGS was shown to reduce the
probability of executing high-cost paths over A*, sampled A*
and a greedy planning approach.

In addition to simulation experiments, we also imple-
mented the RAGS algorithm in a hardware demonstration
on board a DJI Matrice M100 platform equipped with a
ZED RGBD camera. Our experiments compared the A*
and RAGS flight trajectories and showed that although the
RAGS planner selected a longer path, the Matrice was able
to complete the full RAGS trajectory in shorter time than
the A* trajectory. RAGS traded off a slightly longer path in
order to maintain greater distance to the nearest obstacles. As
a result, the Matrice was able to fly the RAGS path at faster
speeds compared to flying the A* path when the platform
needed to slow down and maneuver around obstacles.

Our RAGS code is available open source at https:
//github.com/osurdml/RAGS.

8.1 Future Work

In this work, we have experimented on graphs with
edge costs represented by normal distributions. However,
the RAGS framework is designed to accommodate any
edge cost distribution function. Indeed one argument
against using normal distributions to represent costs in
path planning problems is that they result in non-zero
probabilities for sampling negative values, thus they may
be a poor representation of the true cost distribution. Other
distributions, such as the log-normal or beta distributions,
may be more accurate. However, computing the non-
dominated path set and the pairwise comparisons for general
distributions is a non-trivial task that is worth further
investigation.

Another promising extension of this work is to consider
RAGS as applied to planning for information optimization.
In this case, edge cost probability distributions would
represent environmental information, and paths would be
generated based on the amount of information the vehicle
may collect in different parts of the map. The foreseen
challenges of this work will be to manage the changes in
expected information gain on-the-fly in a principled manner,
since properties such as submodularity of the data will
mean that future observations downstream no longer reap
the gains expected at the start. We believe that incorporating
information theoretic planning into the RAGS framework
could potentially lead to wider applications in probabilistic
planning.

Acknowledgements

This research was conducted at Oregon State University and
has been funded in part by NASA grant NNX14AI10G and
Office of Naval Research grant N00014-14-1-0509.

Prepared using sagej.cls

https://github.com/osurdml/RAGS
https://github.com/osurdml/RAGS
Geoff Hollinger
 new sentence “Thus, they…”

Chung et al. 13

References
Jonathan Bohren, Radu Bogdan Rusu, E. Gil Jones, Eitan

Marder-Eppstein, Caroline Pantofaru, Melonee Wise, Lorenz
Mösenlechner, Wim Meeussen, and Stefan Holzer. Towards
autonomous robotic butlers: Lessons learned with the PR2.
In Proc. IEEE International Conference on Robotics and
Automation, pages 5568–5575, 2011.

Alexandre Brehmer. Zed-ros-wrapper. http://wiki.ros.org/zed-ros-
wrapper, 2017. Last Edited: 2016-11-28 12:05:30.

Adam Bry and Nicholas Roy. Rapidly-exploring random belief
trees for motion planning under uncertainty. In Proc. IEEE
International Conference on Robotics and Automation, pages
723–730, 2011.

Stefano Carpin, Yin-Lam Chow, and Marco Pavone. Risk aversion
in finite Markov Decision Processes using total cost criteria and
average value at risk. In Proc. IEEE International Conference
on Robotics and Automation, pages 335–342, 2016.

Stephen M. Chaves, Jeffrey M. Walls, Enric Galceran, and
Ryan M. Eustice. Risk aversion in belief-space planning
under measurement acquisition uncertainty. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 2079–2086, 2015.

DJI. Dji developer onboard sdk: Turn your aerial platform into an
autonomous flying robot. https://developer.dji.com/onboard-
sdk/, 2017a. Accessed : 2017-05-10.

DJI. Matrice 100: The quadcopter for developers. https://

www.dji.com/matrice100, 2017b. Accessed : 2017-04-
10.

Dave Ferguson, Anthony Stentz, and Sebastian Thrun. PAO for
planning with hidden state. In Proc. IEEE International
Conference on Robotics and Automation, volume 3, pages
2840–2847, 2004.

Seyedshams Feyzabadi and Stefano Carpin. Risk-aware path
planning using hierarchical constrained Markov Decision
Processes. In Proc. IEEE International Conference on
Automation Science and Engineering, pages 297–303, 2014.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2):100–
107, 1968.

Geoffrey A. Hollinger, Arvind A. Pereira, Jonathan Binney, Thane
Somers, and Gaurav S. Sukhatme. Learning uncertainty in
ocean current predictions for safe and reliable navigation of
underwater vehicles. Journal of Field Robotics, 33(1):47–66,
2016.

Ping Hou, William Yeoh, and Pradeep Reddy Varakantham.
Revisiting risk-sensitive MDPs: New algorithms and results.
In Proc. International Conference on Automated Planning and
Scheduling, 2014.

jkay. Ros kinetic kame. http://wiki.ros.org/kinetic, 2017. Last
Edited: 2016-05-23 22:07:18.

Rudolph Emil Kalman. A new approach to linear filtering and
prediction problems. Journal of Fluids Engineering, 82(1):35–
45, 1960.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms
for optimal motion planning. International Journal of Robotics
Research, 30(7):846–894, 2011.

Sven Koenig and Maxim Likhachev. Fast replanning for navigation
in unknown terrain. IEEE Transactions on Robotics, 21(3):

354–363, 2005.
Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP:

Efficient point-based POMDP planning by approximating
optimally reachable belief spaces. In Robotics: Science and
Systems, 2008.

Jean-Claude Latombe. Robot Motion Planning. Springer Science
& Business Media, 2012.

Steven M. LaValle. Planning Algorithms. Cambridge University
Press, 2006.

Steven I. Marcus, Emmanual Fernández-Gaucherand, Daniel
Hernández-Hernandez, Stefano Coraluppi, and Pedram Fard.
Risk sensitive Markov decision processes. In Systems and
Control in the Twenty-First Century, pages 263–279. Springer,
1997.

Alexandra Meliou, Andreas Krause, Carlos Guestrin, and Joseph M.
Hellerstein. Nonmyopic informative path planning in spatio-
temporal models. In Proc. AAAI Conference, pages 602–607,
2007.

George E. Monahan. State of the Art—A survey of partially
observable Markov decision processes: Theory, models, and
algorithms. Management Science, 28(1):1–16, 1982.

Liz Murphy and Paul Newman. Risky planning on probabilistic
costmaps for path planning in outdoor environments. IEEE
Transactions on Robotics, 29(2):445–457, 2013.

Nvidia. Nvidia jetson: The embedded platform for autonomous
everything. http://www.nvidia.com/object/

embedded-systems-dev-kits-modules.html,
2017. Accessed : 2017-05-10.

Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths
without a map. Theoretical Computer Science, 84(1):127–150,
1991.

George H. Polychronopoulos and John N. Tsitsiklis. Stochastic
Shortest Path Problems with Recourse. Networks, 27:133–143,
1996.

Ryan Skeele, Jen Jen Chung, and Geoffrey A. Hollinger. Risk-
aware graph search with dynamic edge cost discovery. In Proc.
12th International Workshop on the Algorithmc Foundations of
Robotics, 2016.

StereoLabs. Zed 2k stereo camera: The world’s first 3d camera
for depth sensing and motion tracking. https://www.

stereolabs.com/, 2017. Accessed : 2017-05-10.
Wen Sun, Sachin Patil, and Ron Alterovitz. High-frequency

replanning under uncertainty using parallel sampling-based
motion planning. IEEE Transactions on Robotics, 31(1):104–
116, 2015.

Prepared using sagej.cls

http://ieeexplore.ieee.org/document/5980058/
http://ieeexplore.ieee.org/document/5980058/
http://ieeexplore.ieee.org/document/5980508/
http://ieeexplore.ieee.org/document/5980508/
http://ieeexplore.ieee.org/document/7487152/
http://ieeexplore.ieee.org/document/7487152/
http://ieeexplore.ieee.org/document/7487152/
http://ieeexplore.ieee.org/document/7353653/
http://ieeexplore.ieee.org/document/7353653/
https://www.dji.com/matrice100
https://www.dji.com/matrice100
http://ieeexplore.ieee.org/document/1307491/
http://ieeexplore.ieee.org/document/1307491/
http://ieeexplore.ieee.org/document/6899341/
http://ieeexplore.ieee.org/document/6899341/
http://ieeexplore.ieee.org/document/6899341/
http://ieeexplore.ieee.org/document/4082128/
http://ieeexplore.ieee.org/document/4082128/
http://onlinelibrary.wiley.com/doi/10.1002/rob.21613/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rob.21613/abstract
http://onlinelibrary.wiley.com/doi/10.1002/rob.21613/abstract
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7798
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://ijr.sagepub.com/content/30/7/846.short
http://ijr.sagepub.com/content/30/7/846.short
http://ieeexplore.ieee.org/document/1435479/
http://ieeexplore.ieee.org/document/1435479/
http://www.roboticsproceedings.org/rss04/p9.html
http://www.roboticsproceedings.org/rss04/p9.html
http://www.roboticsproceedings.org/rss04/p9.html
http://planning.cs.uiuc.edu
http://link.springer.com/chapter/10.1007/978-1-4612-4120-1_14
http://dl.acm.org/citation.cfm?id=1619742
http://dl.acm.org/citation.cfm?id=1619742
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.28.1.1
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.28.1.1
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.28.1.1
http://ieeexplore.ieee.org/document/6365349/
http://ieeexplore.ieee.org/document/6365349/
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.sciencedirect.com/science/article/pii/0304397591902632
http://www.sciencedirect.com/science/article/pii/0304397591902632
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.7538
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.7538
http://www.wafr.org/papers/WAFR_2016_paper_76.pdf
http://www.wafr.org/papers/WAFR_2016_paper_76.pdf
https://www.stereolabs.com/
https://www.stereolabs.com/
http://ieeexplore.ieee.org/document/7027233/
http://ieeexplore.ieee.org/document/7027233/
http://ieeexplore.ieee.org/document/7027233/

	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Risk-Aware Graph Search (RAGS)
	4.1 Quantifying Path Risk
	4.2 Non-Dominated Path Set
	4.3 RAGS Dynamic Execution

	5 Comparison to Existing Search Algorithms
	6 Satellite Data Experiments
	6.1 Results

	7 Flight Trials
	8 Conclusion
	8.1 Future Work

