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Abstract
The recent advancement in lithium-niobite-on-insulator (LNOI) technology is opening up new opportunities in
optoelectronics, as devices with better performance, lower power consumption and a smaller footprint can be realised
due to the high optical confinement in the structures. The LNOI platform offers both large χ(2) and χ(3) nonlinearities
along with the power of dispersion engineering, enabling brand new nonlinear photonic devices and applications for
the next generation of integrated photonic circuits. However, Raman scattering and its interaction with other
nonlinear processes have not been extensively studied in dispersion-engineered LNOI nanodevices. In this work, we
characterise the Raman radiation spectra in a monolithic lithium niobate (LN) microresonator via selective excitation of
Raman-active phonon modes. The dominant mode for the Raman oscillation is observed in the backward direction for
a continuous-wave pump threshold power of 20 mW with a high differential quantum efficiency of 46%. We explore
the effects of Raman scattering on Kerr optical frequency comb generation. We achieve mode-locked states in an
X-cut LNOI chip through sufficient suppression of the Raman effect via cavity geometry control. Our analysis of the
Raman effect provides guidance for the development of future chip-based photonic devices on the LNOI platform.

Introduction
The monolithic lithium-niobite-on-insulator (LNOI)

platform has attracted significant interest for the realisa-
tion of next-generation nonlinear photonic devices and
the observation of new nonlinear dynamics due to its large
χ(2) (r33= 3 × 10−11 m/V) and χ(3) nonlinearities (n2=
1.8 × 10−19 m2/W)1–16. The LNOI platform is creating
new opportunities for large-scale integration of optical
and electronic devices on a single chip, as it combines the
material properties of lithium niobate with the integration
power of nanophotonics. By leveraging recent advances in
the fabrication of ultra-low-loss lithium niobate (LN)
nanowaveguides and microring resonators1, researchers
have demonstrated Kerr optical frequency combs

(OFCs)2–4, broadband electro-optic combs5, highly effi-
cient second harmonic generation6–8 and multiple-
octave-spanning supercontinuum generation (SCG)8,9.
LN is known as a Raman-active crystalline material with
several strong vibrational phonon branches in different
polarisation configurations17–23. There has been evidence
of Raman scattering in LN discs or whispering gallery
resonators24,25 fabricated by mechanical polishing26. The
Raman effect in integrated photonic devices not only
enables Raman lasers for the generation of new fre-
quencies at low optical powers27–34 but can also lead to
nontrivial nonlinear interactions through tailoring the
dispersion properties, such as the interplay between the
Raman effect, and both χ(2) and χ(3) effects, impacting Kerr
comb formation, electro-optic comb formation and
supercontinuum generation35–41. Recent work by Hans-
son et al. has shown that aligning the cavity free spectral
range (FSR) to the Raman gain can allow for the gen-
eration of an octave-spanning Raman frequency comb42.
The LN photonic circuit is particularly appealing for

© The Author(s) 2020
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Marko Lončar (loncar@seas.harvard.edu)
1Department John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138, USA
2Department of Applied Physics and Applied Mathematics, Columbia
University, New York, NY 10027, USA
Full list of author information is available at the end of the article.
These authors contributed equally: Mengjie Yu, Yoshitomo Okawachi

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/lsa
http://orcid.org/0000-0002-1939-1422
http://orcid.org/0000-0002-1939-1422
http://orcid.org/0000-0002-1939-1422
http://orcid.org/0000-0002-1939-1422
http://orcid.org/0000-0002-1939-1422
http://orcid.org/0000-0001-6877-7316
http://orcid.org/0000-0001-6877-7316
http://orcid.org/0000-0001-6877-7316
http://orcid.org/0000-0001-6877-7316
http://orcid.org/0000-0001-6877-7316
http://creativecommons.org/licenses/by/4.0/
mailto:loncar@seas.harvard.edu


microresonator-based Kerr frequency comb generation,
since the presence of a large second-order nonlinearity
χ(2) offers advantageous functionality for a fully on-chip
optical clock and metrology, a key element missing from
current mature silicon nitride or silica technologies. Due
to the large Raman gain in a crystalline material, a strong
interplay between Raman scattering and four-wave mix-
ing (FWM) has been observed in materials such as dia-
mond and silicon36, and strategies have been proposed to
suppress these interactions by controlling the FSR36,39,43.
However, Raman scattering and its influence on soliton
mode-locking remain largely unexplored in dispersion-
engineered monolithic LNOI devices.
In this paper, we demonstrate multi-wavelength Raman

lasing in an X-cut high-Q LN microresonator with Raman
frequency shifts of 250 cm−1, 628 cm−1, and 875 cm−1 via
pumping with the transverse electric (TE) polarisation
and a shift of 238 cm−1 with the traverse magnetic (TM)
polarisation. The dominant Raman oscillation occurs in
the backward direction with respect to the pump, and the
backward Raman gain coefficient is measured to be
1.3 cm/GW for the 250 cm−1 Raman shifted line for the
TE polarisation and 0.07 cm/GW for the 238 cm−1 Raman
shifted line for the TM polarisation. In both cases, a 1.5-μm
pump is used to excite the sample. To our knowledge, this
is the first characterisation of multi-wavelength Raman
lasing on a monolithic LN chip. In addition, we investigate
the effects of the Raman process on Kerr comb generation
and soliton mode-locking for both polarisations and show
that the Raman effect can be controlled to enable mode-
locked Kerr comb formation for the TM polarisation.

Results
LN is a uniaxial material with its crystal axis along the z

direction, as shown in Fig. 1a. LN devices are fabricated
on an X-cut thin-film wafer, where the x-axis is normal to
the wafer plane. LN has two Raman-active phonon sym-
metries: the A symmetry polarised along the z-axis and
the E symmetry polarised in the degenerate x–y plane19,21

due to the atomic vibration. Furthermore, both transverse
(TO) and longitudinal (LO) optical phonon modes exist.
An X-cut wafer allows access to both TO and LO modes
in both symmetries. The selection rules of Raman scat-
tering depend on the wavevectors and polarisation of the
pump and Stokes fields17–20. Two different cavity geo-
metries are used in our experiments (Fig. 1b, c), where the
TE-polarised light is mostly parallel to the crystal axis in
the racetrack geometry and the TM-polarised light is
parallel to the non-polar axis (x-axis).

Characterisation of Raman scattering
The experimental setup for Raman characterisation is

shown in Fig. 1d. We inject an amplified continuous-wave
(CW) pump laser centred at 1560 nm into a monolithically

integrated LN racetrack microresonator [Fig. 1b]. The
device is cladded with silicon oxide with a top waveguide
width of 1.2 μm and an etch depth of 450 nm on an 800-
nm-thick LN thin film. The racetrack design allows for
two long straight waveguide regions to maximise the
interaction with the TO optical phonon mode for the TE
polarisation. The FSR of the microresonator is 30 GHz,
which is within the Raman gain bandwidth19. The
intrinsic Q of the resonator is ~1.5 × 106 for both the TE
and TM modes (see Supplementary Information). We
record the Raman emission spectra in both the forward
and backward directions using an optical circulator and
two optical spectrum analysers at various pump powers
in the bus waveguide. For the TE polarisation, we
observe several Raman oscillations [Fig. 2a] with fre-
quency shifts of 250 cm−1 (7.5 THz), 628 cm−1

(18.8 THz), and 875 cm−1 (26.2 THz), corresponding to
the optical phonon branches of A(TO)1, A(TO)4, and A
(LO)4, respectively. The 1st Stokes peak (250 cm−1) has
the lowest pump threshold of 20 mW with a high dif-
ferential conversion efficiency of 46%, as shown in Fig.
2b. To our knowledge, this is the highest quantum
conversion efficiency reported in an LN material. As the
pump power increases, a mini-comb starts to form
around the 1st Stokes peak due to the anomalous group
velocity dispersion (GVD). This mini-comb prevents the
first Stokes line from monotonically increasing with
power. In addition, cascaded Raman peaks form
~1691 nm at 170 mW of pump power in the forward
direction. Notably, strong spectral peaks at 1691 nm are
also observed in the backward direction, largely due to an
FWM process where the dominant 1st Stokes line acts as
the pump. The 2nd and 3rd Stokes peaks appear as the
pump power reaches 200 mW and 400 mW, respectively.
The efficiency of the Raman effect is higher in the
backward direction, which is phase-matched44; this is
particularly true for microscale waveguides that feature a
non-negligible longitudinal electric field component45.
This asymmetric gain can also be attributed to strong
polaritonic effects that affect the phase-matching con-
ditions in the forward direction24,46. We estimate the
Raman gain gR of the 1st Stokes line to be 1.3 cm/GW
based on33. For the 2nd and 3rd Stokes peaks, we are
unable to extract the Raman gain due to the presence of
Kerr and other Raman processes influencing the pump
power. Previously, the Raman gain of the corresponding
mode in bulk LN was reported to be 12.5 cm/GW at
488 nm by Bache23, 8.9 cm/GW at 694 nm by Boyd21,
and 5 cm/GW at 1047 nm by Johnson & Chunaev et al.22,
in good agreement with our measurement based on the
relation gR ∝ (λp λs)

−1, where λp is the pump wavelength
and λs is the Stokes wavelength29. Similarly, we char-
acterise the devices using a TM-polarised pump, where
the light polarisation is along the x-axis. As shown in
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Fig. 3, only one Raman oscillation is observed with a
frequency shift of 238 cm−1 [E(TO)3] at a threshold
power of 340 mW, which corresponds to a Raman gain of
0.07 cm/GW.

Kerr comb generation and mode-locking
Next, we investigate the effects of Raman scattering on

Kerr comb formation for both the TE and TM polarisa-
tions. Mode-locked Kerr frequency combs are particularly
attractive on an LN chip for optical metrology, since the
combination of large χ(2) and χ(3) nonlinearities could
enable direct on-chip self-referencing without external
amplifiers or a periodically poled LN crystal. In order to
achieve soliton mode-locking in the presence of strong
Raman scattering, a microring with a smaller radius is
preferred to achieve FWM oscillations (the broadband
FWM gain peaks at 0.15 cm/GW)36. Here, we pump an
air-cladded LN microring resonator with a radius of
80 µm, which corresponds to an FSR of 250 GHz (Fig. 1b).
The pump power in the bus waveguide is 400mW for
both polarisations. The LN devices here are air-clad with a
top waveguide width of 1.3 µm and an etch depth of

350 nm on an X-cut 600-nm-thick LN thin film. The
cross-section is engineered to allow for anomalous GVD
for both polarisations (see Supplementary Information).
We measure a loaded Q of >1.5 × 106 for both the TE and
TM modes. Figure 4 shows the Kerr comb generation
dynamics for the TE polarisation. We measure the gen-
erated spectrum as the pump is tuned into a cavity
resonance. As power builds up in the cavity, we observe
strong Raman peaks that correspond to the phonon
branch of A(TO)4 and A(LO)4 (Fig. 4a, top), while the A
(TO)1 mode is successfully suppressed. With further
pump detuning, we observe the formation of primary
sidebands, due to the parametric gain, for Kerr comb
formation (Fig. 4a, middle) and mini-comb formation
around the primary sidebands (Fig. 4a, bottom)47. The RF
spectrum corresponding to the bottom state in Fig. 4a is
shown in 4b, indicating that the comb is in a high-noise
state. This result is largely due to the strong Raman effect
that competes with the FWM interaction and prevents
mode-locking35,36.
Figure 5 shows the comb dynamics for the TM mode.

Unlike the case for the TE mode, the Raman effect is
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Fig. 1 Experimental setup. a Schematic of the LN crystalline structure. The crystal axis is along the z-axis. b, c Orientation of the LN microresonator
on an X-cut wafer. A 30-GHz free spectral range (FSR) racetrack resonator is used for the Raman characterisation. b A 250-GHz FSR microring resonator
is used for the Raman–Kerr interactions. c The TE and TM polarisations are also indicated. d Setup for the forward (FW) and backward (BWD) Raman
characterisation. EDFA erbium-doped fibre amplifier, BPF bandpass filter, FPC fibre polarisation controller, OSA optical spectrum analyser.
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much weaker, and we do not observe a Raman oscillation
at these pump powers; this is attributed to the fact that
the Raman gain is less than the Kerr gain for the larger
FSR. Figure 5a shows the generated spectra for an
increased red-detuning of the pump. We observe the
primary sidebands [State (i)], high-noise state [State (ii)],
and multi-soliton state [State (iii)]. The RF spectra
(Fig. 5b) show the reduction in the RF noise from State (ii)
to State (iii), which strongly suggests the formation of a
phase-locked state with narrow linewidth comb lines. By
further detuning the pump laser, another phase-locked
state with a more periodic spectral modulation is observed,
which corresponds to the formation of a 5-soliton state
within one cavity roundtrip (see Supplementary

Information). However, a single soliton is not achieved in
the passive LN device. A fast switching approach, such as
electrical tuning of the cavity resonance, could be utilised
to possibly overcome the instabilities resulting from both
the thermal-optic and photorefractive effects. Figure 5c
shows the transmission measurement of the resonator as
the pump wavelength is swept through the resonance. The
output is optically filtered using a long-pass filter with a
cut-on wavelength of 1570 nm. Figure 5d shows a zoom-in
of the dashed-rectangular region in Fig. 5c that indicates
the ‘soliton step’ representing soliton formation48. The
achieved mode-locked Kerr comb generation indicates
that operating with the TM mode using an X-cut LN thin
film allows for sufficient suppression of Raman effects. In
contrast to the Z-cut LN thin film in ref. 3, where the
behaviour of self-starting or bidirectional tuning is
observed as a result of the photorefractive effect, our
microresonator is dominated by the thermo-optic effect.
Moreover, our results do not indicate the occurrence of
Raman self-frequency shifting observed by ref. 3, which
often occurs in an amorphous material. The difference in
dynamics may be attributed to a thin film with different
crystal orientations. We report the first demonstration of
soliton mode-locking in X-cut LN microresonators com-
patible with active electrode control2,5.

Discussion
In conclusion, we achieve multi-wavelength Raman

lasing on a monolithic LN chip and characterise the dis-
tinct Raman processes for different pump polarisations.
All the Raman oscillations are dominant in the backward
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direction with respect to the pump, and we report the
highest pump-to-Stokes conversion efficiency of 46% for
TE-polarised light. Operating in the normal GVD regime
using a resonator with a higher Q will enable a highly
efficient Raman laser on an LN chip. Counter-propagating
pump and Stokes fields might lead to richer nonlinear
dynamics or functionalities such as symmetry breaking49,

counter-propagating solitons and Stokes solitons50. In
addition, we observe nontrivial interactions between the
Raman effect and χ(3)-based FWM processes for Kerr
comb formation. Although the strong contribution from
the Raman effect impedes soliton formation for the TE
polarisation, we demonstrate mode-locking for the TM
polarisation through an optimisation of the cavity
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geometry. Alternatively, TE-polarised phase-locked
combs could be achieved with the help of strong electrical
driving5,41. This work provides deep insight into the
dynamics and effects of Raman scattering in the LNOI
platform, which is critical for the design and development
of chip-based nonlinear photonic devices.

Materials and methods
Device parameters and fabrication
For the Raman characterisation, we fabricate a race-

track microresonator from a commercial X-cut lithium
niobate (LN) on an insulator wafer with a thin-film LN
thickness of 800 nm. The device is cladded with silicon
oxide 750 nm in thickness with a top waveguide width of
1.2 µm and a slab thickness of 350 nm. The bending
structure is based on Euler curves to avoid mode con-
version between the transverse electric (TE) and trans-
verse magnetic (TM) modes. The two straight sections
are each 1.75 µm in length along the y-axis. The coupling
gap between the bus waveguide and microresonator is
0.75 µm, which leads to near-critical coupling for the TE
modes and 45% transmission on resonance for the TM
modes at 1550 nm (see Supplementary Information). The
FSR is 30 GHz. For Kerr comb generation, the microring
resonator is fabricated on a 600-nm-thick thin-film LN
wafer with a radius of 80 µm. The device is air-cladded
with a slab thickness of 250 nm and a top waveguide width
of 1.3 µm. The coupling gap is 830 nm, which results in
50% transmission on resonance for the TE mode and 83%
for the TM mode at 1550 nm.
Electron-beam lithography (EBL, 125 keV) is used for

patterning the waveguides and microcavities in hydrogen
silsesquioxane resist (FOX). Then, the patterned LN wafer
is etched using Ar+-based reactive ion etching by a user-
defined etch depth. The SiO2 cladding is deposited by
plasma-enhanced chemical vapour deposition. Finally, the
chip facet is diced and polished, which typically results in
a fibre-to-chip facet coupling loss of 7 dB.

Comb characterisation
The group velocity dispersion (GVD) is simulated using

commercial finite element analysis software (COMSOL)
based on the fabricated device geometry. Anomalous
GVD is achieved for both the TE and TM modes at tel-
ecommunication wavelengths (see Supplementary Infor-
mation). A continuous-wave pump laser (Santec TSL-
510) at 1570 nm is amplified by an L-band erbium-doped
fibre amplifier (EDFA, Manlight) and sent to the
microring resonator using a lensed fibre after a polarisa-
tion controller. The tuning of the laser is controlled by a
piezo controller. The output is collected by an aspheric
objective followed by a fibre collimator. A 90:10 fibre
beamsplitter is used to separate the output light into two
arms. The 10% arm is sent to an optical spectrum

analyser, and the 90% arm is sent through a home-built 4-
f shaper (effectively a bandpass filter, 1575–1630 nm) to
filter the pump. The filtered comb spectrum is sent to a
photodetector (Newport 1811, 125MHz) and a real-time
spectrum analyser (Tektronix RSA5126A). For Fig. 5c, a
functional generator with a triangular function is sent to
the piezo controller to scan the laser wavelength at 70 Hz,
and the filtered comb is collected by a photodetector
(Thorlabs, PDA05CF2) followed by an oscilloscope
(Tektronix DPO2024, 200MHz).
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