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Abstract: In this paper, we introduce the Mueller matrix imaging concepts for 3D Integral 
Imaging Polarimetry. The Mueller matrix of a complex scene is measured and estimated with 
3D integral imaging. This information can be used to analyze the complex polarimetric 
behavior of any 3D scene. In particular, we show that the degree of polarization can be 
estimated at any selected plane for any arbitrary synthetic illumination source which may be 
difficult to produce in practice. This tool might open new perspectives for polarimetric 
analysis in the 3D domain. Also, we illustrate that 2D polarimetric images are noisier than 3D 
reconstructed polarimetric integral imaging. To the best of our knowledge, this is the first 
report on Mueller matrix polarimetry in 3D Integral Imaging. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Polarization imaging techniques are receiving increasing interest because they provide a way 
to overcome the intrinsic limitations of standard light intensity imaging [1,2]. Whereas 
conventional cameras record the intensity of the electric field, polarimetric measurements 
provide information related to the direction and phase difference of the electric field and the 
ratio between fully polarized and unpolarized light at each point of the scene. This is possible 
because of the recent availability of polarization image sensors (see, for instance [3–5]). 
Based on the well-known Mueller matrix theory, it is a relatively straightforward task to 
implement polarimetric Mueller imaging techniques using standard polarization equipment 
plus a CCD camera [6–10]. Polarization based imaging might be much more sensitive than 
conventional imaging. These techniques could have high impact in fields such as machine 
vision, target detection in turbid media or underwater imaging, provided they are adequately 
implemented according to the requirements of each particular problem [11–13]. For example, 
in machine vision applications, one of the required capabilities is the ability for plane depth 
discrimination within the scene. For this particular case, besides using polarization imaging, it 
may be appropriate to take advantage of other imaging techniques such as 3D Integral 
Imaging (InIm) [14–25]. In summary, to enhance the overall capabilities of the entire imaging 
process, it can be sometimes useful to have a 3D image acquisition step with a subsequent 
polarization-based imaging and processing stages. In this way, the specific advantages of the 
two techniques are jointly considered. 

In the present work, we propose Mueller matrix imaging using 3D integral imaging. The 
Mueller matrix for the 3D scene is generated and used in several scenarios. For instance, we 
show that reconstructed 3D information displays less noise than the corresponding 2D 
images. Moreover, it is possible to select a particular plane where the in-focus polarimetric 
information is calculated. Also, provided that the 3D Mueller matrix InIm is known, we show 
that it is possible to generate polarimetric landscapes corresponding to any arbitrary synthetic 
polarimetric illuminations which may be difficult to produce in practice. 
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The paper is organized as follows. In section 2, we review basic concepts on Stokes 
imaging acquisition and Mueller matrix calculation. In section 3, we describe the optical 
setup and introduce the scene used in the experiments. The proposed imaging model is tested 
in section 4 and we compare the experimental Stokes images with those obtained with the 
proposed model. In next section 5, we use synthetic light in order to artificially produce 
polarimetric images that cannot be easily generated in practice. Finally, we present our 
conclusions in Section 6. 

2. Review on Mueller matrix imaging 

The Mueller matrix formalism [6] can be applied to 3D scenes illuminated by quasi 
monochromatic light. This assumption is based on two facts that hold in our experiments: i) 
the illuminating light has an almost parallel beam configuration, ii) the acquisition camera 
detects the light scattered by the scene in a certain well-defined direction. Thus, the 
directional character of both the illumination and the light detection, suggests that the light we 
collect at each pixel of the camera is the result of an overall interaction of the incident beam 
with the scene that can be modelled on a Mueller matrix basis. Therefore, we need to 
determine the Mueller matrix that fully represents each single pixel of the detected images. 
Eventually, the suitability of our central assumption can only be tested and confirmed by 
experiments. This is the main objective of the present work. 

Let us briefly summarize the Mueller matrix formalism, adapted to our situation. The 
Mueller matrix of a sample illuminated by partially polarized quasi monochromatic light 
describes the changes in the state of polarization of the light when it is reflected from the 
sample, assuming the validity of a linear system scheme. The input and output data are the 
four Stokes parameters of light. Thus, the corresponding 4x4 Mueller matrix ( , )i jM  at pixel

( , )i j , satisfies 

 ( , ) ( , )out inpi j i j=S M S  (1) 

where ( )0 1 2 3, , ,
Tinp inp inp inp inpS S S S=S and ( )0 1 2 3( , ) ( , ), ( , ), ( , ), ( , )

Tout out out out outi j S i j S i j S i j S i j=S are the 

Stokes vectors of the illumination source and the recorded light, respectively. In particular, 
note that we assume the scene is illuminated by a source with a constant polarization state, i.e. 
not dependent on the pixel. To determine the 16 parameters of matrix M, a suitable number of 
measurements to solve the system of linear equations in Eq. (1) is required. The Mueller 
matrix could be calculated using a maximum of four well-selected states of polarization. 
However, this approach requires the use of wave plates with tunable phase difference [26]. In 
order to find accurate results and due to the inherent experimental inaccuracies, over-
determination in the system of linear equations may be necessary. Accordingly, we illuminate 
the scene with 6 polarization states (L1 to L6) that correspond to the following set of Stokes 
parameters (Table 1): 

Table 1. Polarization States of the Input Illumination 

 L1 L2 L3 L4 L5 L6 
S0 1 1 1 1 1 1 
S1 1 0 0 −1 0 0 
S2 0 1 0 0 −1 0 
S3 0 0 1 0 0 −1 

Input states of polarization L1, L2, L4 and L5 describe linearly fully polarized light in the 
0°, 45°, 90° and 135° directions respectively. States L3 and L6 correspond to right and left 
circularly polarized sources. These six input polarization states are selected because they are 
simple to produce in the laboratory by using a polarizer and a quarter wave plate. Any 
polarization state on the sphere of Poincaré can be determined as a combination of states L1 to 
L6. 
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For each illumination L1 to L6, we take 6 snapshots (image captures) that enable the 
measurement of the 4 output Stokes parameters as follows. The first 4 snapshots are

0 (L ; , )kI i j , 45 (L ; , )kI i j , 90 (L ; , )kI i j , and 135 (L ; , )kI i j , where 0 (L ; , )kI i j is the measured 

light intensity when an ideal linear polarizer (at an angle of 0° with the X axis) is placed 
before the detector, and Lk  stands for the k state of polarization (k = 1,…6, as in Table 1). 

45 (L ; , )kI i j , 90 (L ; , )kI i j , 135 (L ; , )kI i j  are the measurements for linear polarizer at an angle of 

45°, 90° and 135°, respectively. The output Stokes parameters are determined in the usual 
way: 

 1 0 90

2 45 135

(L ; , ) (L ; , ) (L ; , ),

(L ; , ) (L ; , ) (L ; , ).

out
k k k

out
k k k

S i j I i j I i j

S i j I i j I i j

= −

= −
 (2) 

Similarly, we take 2 more snapshots (L ; , ), (L ; , ),RC k LC kI i j I i j  whose intensities are 

transmitted through a quarter-wave plate plus a linear polarizer at angles suitable for allowing 
passing right (or left) circularly polarized light. Then, we define: 

 3 (L ; , ) (L ; , ) (L ; , )out
k RC k LC kS i j I i j I i j= −  (3) 

(L ; , )out
o kS i j , can be equivalently computed in three ways, as 

 

0 0 90

0 45 135

0

(L ; , ) (L ; , ) (L ; , ),

(L ; , ) (L ; , ) (L ; , ),

(L ; , ) (L ; , ) (L ; , ).

out
k k k

out
k k k

out
k RC k LC k

S i j I i j I i j

S i j I i j I i j

S i j I i j I i j

= +

= +

= +

 (4) 

Due to the experimental character of our work, we have considered more convenient to 
define: 

 0 0 90 45

135

1
(L ; , ) ( (L ; , ) (L ; , ) (L ; , )

3
(L ; , ) (L ; , ) (L ; , )).

out
k k k k

k RC k LC k

S i j I i j I i j I i j

I i j I i j I i j

= + + +

+ +
 (5) 

The degree of polarization (DoP) for illumination Lk at each pixel ( , )i j  of the output is: 

 ( ) ( ) ( ) ( )
( )

2 2 2

1 2 3

0

L ; , L ; , L ; ,
DoP L ; , .

L ; ,

out out out
k k k

k out
k

S i j S i j S i j
i j

S i j

+ +
=  (6) 

For each pixel ( , )i j , we define two 4x6 matrices as follows: 

 

1 1 1 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

inp

 
 − =
 −
 

− 

V  (7) 

and 

( )
0 1 0 2 0 3 0 4 0 5

1 1 1 2 1 3 1 4 1 5

2 1 2 2 2 3 2 4 2 5

3 1 3 2 3 3 3 4 3

(L ; , ) (L ; , ) (L ; , ) (L ; , ) (L ; , )

(L ; , ) (L ; , ) (L ; , ) (L ; , ) (L ; , )
,

(L ; , ) (L ; , ) (L ; , ) (L ; , ) (L ; , )

(L ; , ) (L ; , ) (L ; , ) (L ; , )

out

S i j S i j S i j S i j S i j

S i j S i j S i j S i j S i j
i j

S i j S i j S i j S i j S i j

S i j S i j S i j S i j S

=V

0 6

1 6

2 6

5 3 6

(L ; , )

(L ; , )
.

(L ; , )

(L ; , ) (L ; , )

S i j

S i j

S i j

i j S i j

 
 
 
 
 
 

 (8) 
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Each component of ( ),out i jV is a Stokes-parameter image obtained when the scene is 

illuminated with a light source with one of the input polarization states shown in Table 1. 
Then, the 36 intensity images give rise to an overdetermined linear equation system that can 
be written as follows: 

 ( , ) ( , ) .out inpi j i j=V M V  (9) 

It is important to note that Eq. (9) is similar to Eq. (1), but there are several significant 
differences. First, the input and output quantities are arranged according to a 4x6 matrix. 
Second, it is worth to point out that Eq. (9) leads to a best fit estimation of the Mueller matrix 

( , ) ( , ) /est out inpi j i j=M V V , that depends on the number of measurements carried out, i.e. the 

number of columns of ( , )out i jV  and .inpV Incidentally, form the numerical point of view, 

modern computing platforms allow an optimal treatment of the mathematical equations 
involved in Eq. (1), so that finding matrix ( , )est i jM is relatively straightforward. 

3. Experimental setup 

In order to test the validity of our approach, we arranged an experimental setup consisting of 
a scene with several elements, illuminated with a light source that provides a fairly parallel 
and monochromatic beam. The image capture can be done with a photographic camera. 
Integral imaging can be implemented with an array of conventional 2D cameras, or a single 
2D camera with a lenslet array, or a single moving 2D camera. Or, we may use an available 
plenoptic camera. Figure 1(a) shows a sketch of the experimental arrangement, and the scene 
used in the experiments in Fig. 1(b). The scene combines several elements made of metal, 
plastic or glass and a very reflective stage; moreover, some objects are submerged in liquid. 
In what follows, we refer to plane F (objects located around 90 cm far from the camera) and 
plane N (objects located around 70 cm far from the camera) for 3D experiments. 

 

Fig. 1. (a) Sketch of the capture system (QWP: quarter wave plate, LP: linear polarizer, LED: 
light emitting diode), and (b) the scene used in the experiments. The Lytro Illum camera 
captures the perspective images for 3D reconstruction. 

Several details of the experiment are worth to discuss. First, the directional character of 
both the illumination and the detection processes is preserved. This is a requirement for the 
validity of the mathematical model we use. Note that the Mueller matrix we compute does not 
represent the scene in any general sense since it is only representative of a particular 
illumination and detection condition. Second, since we need to add or subtract experimental 
snapshots for computing the Stokes parameters, it is important that all the images we take 
have the same exposure conditions. In particular, we avoided overexposed areas. Finally, the 
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images were carefully recorded in such a way that no motion between different frames was 
detected. 

Regarding the detection of the light, besides the need for a quarter-wave plate and a linear 
polarizer, a photographic camera should be used. In our particular case, we are interested in 
obtaining focused sharp images at different object planes. In the experiments, we use a 
LYTRO ILLUM light-field camera for convenience. The specs of this particular device can 
be found in [27]. It is worth to point out that this particular device provides 15x15 elementary 
views with 434x625 color pixels. Since we use a green LED, the corresponding green channel 
of the light-field files is used in the calculations. 

Subsequently, the required 3D image processing is carried out using an open code Light 
Field Toolbox that enables us to use the 3D imaging capabilities with moderate computational 
effort [28,29]. For example, with respect to the ability to focus only on a specific object plane 
at a given depth, it will be almost sufficient for us to use the LFFiltShiftSum filter. This basic 
filter is suitable for processing the images registered by the 3D camera so as to refocus it on a 
single plane, reducing the intrinsic depth of field of the photographic process. Thus, by 
selecting the object distance, we obtain quantities 

0(L ; , ),kI i j 45(L ; , ),kI i j 90(L ; , ),kI i j

135(L ; , ),kI i j (L ; , )RC kI i j and (L ; , )LC kI i j corresponding to the object distance and illumination 

Lk. Finally, the DoP of the image can be determined using Eqs. (2)–(6). We should point out 
that from the images given by the lenslets of the 3D camera, one can select the frame given 
by a single detector of each lenslet. Thus, this would lead to a conventional 2D photographic 
image. 

4. Testing the proposed model 

The proposed polarimetric 3D model is tested in this section. Assuming that the pixel to pixel 
Mueller matrix of the scene is known, we can compare the experimentally recorded images 
used to compute the Stokes values of the scene with those synthetically obtained using the 
estimated Mueller matrix. The agreement between experimental measurements and computed 
quantities should be the basic argument for the acceptance or rejection of our approach. 
Explicitly, we need to compare the estimated polarimetric images ( , )est i jV , 

 ( , ) ( , )est est inpi j i j=V M V  (10) 

with the experimental ones ( , )out i jV . The evaluation of these differences provides an 

estimate for the validity of the proposed procedure. For comparison, we use the 
experimentally measured 3D DoP ( , )out i j  and the numerically estimated 3D DoP ( , ).est i j Figs. 

2 and 3 display DoP ( , )out i j focused on planes F and N, respectively. Several areas of the 

scene display high DoP values. 

                                                                                    Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 11529

 



 

Fig. 2. Experimental evaluation of the 3D DoP ( , )out i j at plane F. The six images of the

DoP ( , )out i j have been obtained when the scene is illuminated using input polarized light 

according to Table 1 or Eq. (7). 

Note that small differences on the polarimetric landscape can be detected depending on 
the type of illumination used such as the clock on the left side facing the scene or the 
reflections on the stage. In addition, objects away from the focused planes do not provide any 
polarimetric information. For example, the characters of the label wrapped in plastic (upper 
left part of the image) clearly appear in Fig. 2 but are not visible in Fig. 3. 

 

Fig. 3. Experimental evaluation of the DoP ( , )out i j at plane N. 

Since the estimated Mueller matrix ( , )est i jM  has been determined, Figs. 2 and 3 can be 

numerically replicated using Eq. (10). Accordingly, Figs. 4 and 5 show the numerically 
estimated DoP ( , ).est i j  In order to determine how close are DoP ( , )out i j and DoP ( , )est i j  for 

the six illuminations considered, we used the Structural Similarity Index Measure (SSIM) 
[30] and the normalized correlation coefficient. Both metrics range from 0 (completely 
dissimilar images) to 1 (identical images). The results are presented in Table 2. Interestingly, 
the similarity between the experimental polarimetric images and the computational ones is 
very high. In both planes, SSIM and correlation values are around 0.8 and 0.9, respectively. 
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In our experiments, Mueller matrix ( , )est i jM  provides a reasonably accurate account of the 

polarimetric behavior of the 3D scene, according to the specific recording conditions sketched 
in Fig. 1. 

 

Fig. 4. Numerical estimation of the DoP ( , )est i j at plane F. 

 

Fig. 5. Numerical estimation of the DoP ( , )est i j at plane N. 

Table 2. SSIM and Normalized Correlation between DoP ( , )out i j  and DoP ( , )est i j  

 Plane N  Plane F 
 

SSIM 
Normalized 
Correlation 

 
SSIM 

Normalized 
Correlation 

L1 0.80 0.92  0.83 0.94 
L2 0.82 0.89  0.83 0.91 
L3 0.83 0.94  0.86 0.96 
L4 0.75 0.85  0.77 0.86 
L5 0.80 0.90  0.82 0.92 
L6 0.83 0.95  0.86 0.97 

As discussed earlier, it is possible to select the 2D image frame provided by each lenslet. 
Using a single 2D image provided by the central lens of the microlens array, we calculated 
the DoP. This would provide a comparison between the 2D and the 3D imaging technique. 
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The results are presented in Fig. 6 for the experimental, DoP ( , )out i j ) and Fig. 7 for the 

estimated DoP ( , )est i j ). As expected, DoP ( , )out i j and DoP ( , )est i j are very similar for the 2D 

imaging. However, the amount of noise present in the DoP of 2D image is very high, and the 
DoP values seem to be overestimated if compared with the results shown in Figs. 2-5. 3D-
dimensional InIm reconstruction is obtained by weighted averaging of the different 
perspective view images, and thus noise is minimized. It can be shown that InIm 
reconstruction is optimum in maximum likelihood sense under certain conditions [31]. 

Note that 2D DoP estimation can be improved if a good quality conventional camera is 
used. Figure 8 shows the experimental DoP ( , )out i j  using a Canon EOS 400D. The results are 

less noisy; however, some areas in the background where no objects are present display DoP 
values close to 1 for certain illumination states (L1 and L4). 

 

Fig. 6. Experimental evaluation of DoP ( , )out i j using a single frame of the 3D camera. 

 

Fig. 7. Numerical estimation of DoP ( , )est i j  using a single frame of the 3D camera. 
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Fig. 8. Experimental evaluation of DoP ( , )out i j using a conventional 2D camera. 

In order to provide a quantitative comparison among the DOP images, we calculated the 
Blind Referenceless Image Spatial Quality Evaluator (BRISQUE) for the images considered 
[32]. BRISQUE is a widely used estimator for assessing the quality of an image. This metric 
evaluates the statistics of the image in order to find possible distortions. Interestingly, this 
descriptor does not perform any comparison with another image that can be considered 
perfect. Moreover, the resulting values range from 0 (best quality) to 100 (worst quality). 
Other common quality metrics such as the peak signal-to-noise ratio requires a reference 
image for calculating the mean squared error. 

Table 3 shows the BRISQUE values obtained. It is apparent that (i) 3D InIm DOP 
distributions display better image quality than the corresponding single frame ones (columns 
#2 and #3 versus #4, and columns #6 and #7 versus #8). (ii) The image quality of the 
distributions generated using the conventional camera (columns #5 and #9) is better than the 
corresponding ones generated from a single frame (columns #4 and #8). Nevertheless, any 
comparison between these two set of values is not possible because of the different 
specifications of both devices. (iii) Finally, it is worth to point out that BRISQUE figures for 
numerically estimated DOPs (columns #6 to #9) are always lower that those experimentally 
estimated (columns #2 to #5). 

Table 3. BRISQUE Values for the DOP Imagesa 

 DoP ( ,out i j
Plane N 

DoP ( ,out i j
Plane F 

DoP ( ,out i
Single 
frame 

DoP ( ,out i
2D 

camera 

DoP ( ,est i
Plane N 

DoP ( ,est i
Plane F 

DoP ( ,est i
Single 
frame 

DoP ( ,est i
2D 

camera 
L1 53 45 60 23 41 24 57 15 
L2 49 49 61 22 38 26 58 16 
L3 54 47 60 23 39 24 57 13 
L4 52 43 59 19 40 23 62 11 
L5 51 44 60 22 40 24 59 14 
L6 54 49 61 17 41 24 58 10 

aLower values represent better image quality. 

5. Estimation of the DoP using synthetic light 

The Mueller matrix ( , )est i jM  can be used to compute the expected output Stokes parameters 

( , )out i jS from any arbitrary input illumination inpS by simply using Eq. (1). The Mueller 

matrix formalism can be used for producing synthetic light with arbitrary states of 
polarization. This includes any state of polarization located on the surface of the Poincaré 
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sphere (elliptical polarization) or inside the sphere (partially polarized light). Sometimes, 
these polarization states are difficult to be generated in real life experiment because special 
equipment is required. For instance, in order to produce partially polarized light it is 
necessary to combine non-polarized and totally polarized light. This means that the 
experimental illumination system might become more complicated. However, once the 
Mueller matrix of the scene is determined, it is possible to calculate the full polarimetric 
information corresponding to an illumination source with any arbitrary state of polarization. 
Note that this is a general result and may include even structured illumination, i.e. sources 
with a Stokes input vector ( , )inp i jS that might change at every point of the wave-front. 

In the examples presented in Fig. 9, we calculated the DoP ( , )est i j at plane F for a set of 

partially polarized lights with inp =S (1, 0.5, 0, 0), (1, −0.5, 0, 0), (1, 0, 0.5, 0), (1, 0, −0.5, 0), 

(1, 0, 0, 0.5), and (1, 0, 0, −0.5). Natural light ( )1,0,0,0inp =S (which was not considered 

during the calculation of the Mueller matrix stage) is also considered. From the results shown 
in Figs. 2-5, it is apparent that when illuminating with fully polarized light, large portions of 
the scene maintain a high degree of polarization. Interestingly, when using partially polarized 
light few pixels on the scene appear totally polarized and thus it is possible to better 
discriminate those portions of the scene that polarize the reflected light. For example, in Fig. 
9 note the screw – in the right central part of the scene – or the small metallic paper clips in 
the upper right side of the scene. 

The last of the image series displayed in Fig. 9 shows a resulting DoP ( , )est i j image which 

is a combination of the six partially polarized sources inpS  obtained by fusion. Each pixel of 

this distribution is calculated as the maximum value of the DoP ( , )est i j set. This means that all 

the pixels of the scene with a high capability of polarizing light are shown in this image, 
irrespective of the values of the illumination state inpS . Image fusion algorithms might be an 
interesting approach for displaying polarimetric information within the context of object 
occlusion. 

 

Fig. 9. Numerical estimation of DoP ( , )est i j  at plane F using synthetic polarized light. 

6. Conclusion 

In this paper, we extended the Mueller matrix imaging concepts to the 3D integral imaging 
field. We have shown that the use of polarimetric light field information poses several 
advantages when compared with conventional 2D polarimetric imaging. 
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We have shown that it is possible to estimate polarimetric information for any single 
selected plane. We have illustrated the fact that 2D polarimetric images are noisier than 3D 
reconstructed integral imaging. This is due to the fact that integral imaging computations 
involve weighted averaging and may be statistically optimum in maximum likelihood sense, 
thus noise is substantially reduced. Also, the 3D Mueller Matrix is used to produce 
computational polarimetric information using simulated synthetic light sources. This is 
particularly useful if the required state of polarization is difficult to be generated. We have 
shown illustrative examples with natural, partially polarized, and synthetically-produced light. 
Interestingly, the results obtained in these conditions can be combined with image fusion 
techniques in order to produce polarimetric maps that cannot be obtained by using a single 
source. The proposed approach can have broad applications in micro and macro scale 3D 
integral imaging [33–37]. 
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