
W N 0 0 B 0 0 0 0 0 3 9

W O R K I N G N O T E

Performance and Setup Guide for the NOS
TCP/IP Protocol Used on HF Near-Vertical-
Incidence-Skywave (NVIS) Radio Paths

2/2000

Wickwire, Kenneth
Levreault, Robert
Bernock, Michael

Dept. No.: D620 Project No.: 03006113-GA and 03006113-MC

Approved for public release; distribution unlimited.

2000 The MITRE Corporation

Center for Air Force C2 Systems
Bedford, Massachusetts

ii

Abstract

This note describes two years of testing of the Transmission Control Protocol and Internet
Protocol (TCP/IP) protocol stack over near-vertical-incidence-skywave (NVIS) propagation
paths in Massachusetts and New Hampshire. Results of the testing bear on the evaluation of a
number of COTS and developmental systems that transfer data over high frequency (HF) radio.

Among these are systems being considered in “dual-use” HF radio configurations on board
military aircraft being modified under the US Air Force Global Air Traffic Management
(GATM) upgrade program. One use of such radio systems is communication of civilian air
traffic control and “airline operational control” data over commercial networks. A second use
is communication of encrypted military command and control data over purely military
networks. Our results provide throughput and probability of correct message delivery baselines
for both modes of use.

Our study also allows baseline performance comparison for systems that exchange data
between tactical (“short-haul”) military users over beyond-line-of-sight radio links, and for
systems that can communicate IP-addressable data among platforms being integrated into the
worldwide US military Global Grid. In the last case, the TCP/IP protocol stack we have
evaluated can itself be used in preliminary studies of direct transmission of TCP/IP datagrams
over half-duplex radio.

To aid the use by others of the shareware stack we evaluated, we have expanded the scope
of our report to include not only performance results but also selected information on how to
set up and effectively operate the stack over error-prone radio links. The report is not,
however, a comprehensive manual on configuration and operation of TCP/IP over radio.

NVIS paths are relatively short radio paths (ground distances from about 20 to 400 miles)
used for tactical military communications and various civilian purposes. Difficult conditions
are often encountered during NVIS communications. Among these conditions are multipath
interference at sunrise and sundown, high D-layer signal absorption at midday and strong
interference from long-distance broadcast stations at night. Protocol performance evaluations
over NVIS links therefore provide conservative (i.e., lower-bound) assessments of the long-
distance HF skywave communications normally associated with the concept of “shortwave”
radio.

The tests are part of an on-going, multi-year program to assess and compare reliable,
modern systems for communicating data over HF radio. Such systems comprise, at each
station, an HF radio and antenna, a controller (usually a computer) that runs a user interface,
and an HF modem that does waveform generation, signal processing and forward error
correction. The software that implements a particular data transmission protocol runs either on
the controller or in the modem or both.

iii

“Reliable” in the sense of this report means that the protocol includes an automatic repeat
request (ARQ) sub-protocol that causes a station receiving erroneous and uncorrectable data to
ask the transmitting station to repeat it.

Although the standard TCP/IP stack was not developed for use on radio channels, its
performance (in half-duplex modes) is still good enough for fielded military use and to serve as
a baseline for the performance of (non-TCP) ARQ protocols that are tailored to HF channels.
The TCP/IP stack used for these tests is the Net Operating System (NOS), a 16-bit, DOS-based
stack developed by amateur radio operators and subsequently used commercially and by the
military. By installing special software “shims” we have interfaced IP-based 32-bit Windows
95 applications such as E-mail clients and Worldwide Web (WWW) browsers with NOS and
have sent E-mail and other TCP data over NVIS links using standard Windows 95 applications.
This process is described in the note.

Because of their inability to distinguish between contention and channel errors (to be
discussed below), standard (RFC-1122-compliant) TCP/IP stacks like NOS are ill suited to
highly efficient use over radio channels. In spite of this, performance over HF links that is
acceptable in many data-communication applications can be achieved by adapting the stack’s
window- and segment-size parameters, and the HF modem’s data rate and interleaver settings,
to noise and propagation conditions on the channel. Our experience with this approach, which
is meant to defeat standard TCP’s unsuitable contention-control protocols, is also discussed in
the note.

KEYWORDS: TCP/IP over HF Radio, IP-based Applications over HF Radio, Tactical Data
Communications, Near-Vertical-Incidence-Skywave, NVIS, MIL-STD-188-110A Modems,
Serial-tone Modems, NOS, Pinging, Radio Data Networks, SMTP, ICMP, FTP.

iv

 Acknowledgments

We are grateful to Terry Danielson of the Naval Ocean Systems Command (NOSC), for
providing us with several of the synchronous DRSI I/O cards that drive a MIL-STD-188-110A
serial-tone modem, and to Steve Barnett, also of NOSC, for information on setup of the cards.

v

Table of Contents

Section Page

1. Introduction 1

2. Layout and Data Flow at our HF NVIS Stations 5

2.1 Hardware Layout 5

2.2 Data Flow 8

3. Setup of NOS for the NVIS Network 9

4. Description of the On-air Performance Testing 13

5. Description of NOS Operation over an HF Channel 17

6. Data Collection and Data Format for Point-to-Point Tests 27

7. Data Analysis Software and Analysis Output 31

8. Summary of Point-to-Point Performance Results 35

9. NOS Performance in a Network 39

10. Setup of Trumpet Winsock and the Pipe and Winpkt TSR Shims
for 32-bit Operation via NOS 47

11. Addressing and Routing in an HF Network 51

12. Running 32-bit Applications over the HF NVIS Network 53

12.1 A PING Example 53

12.2 An FTP Example 55

12.3 An E-mail Example 60

13. Interfacing a NOS HF Network to a LAN 65

13.1 Connecting the HF Network to the Ethernet 65

vi

14. Findings 69

List of References 73

Appendix A 75

Appendix B 79

Appendix C 81

Glossary 85

vii

List of Figures

Figure Page

1. Layout of Hardware at an HF NVIS TCP/IP Station 5

2. Data Flow at an HF NVIS TCP/IP Station 7

3. Geographical Layout of the Three HF NVIS Stations 13

4. Total Octets Sent and SRTT for an Easy FTP Transfer 23

5. Congestion Window and Slow-start Threshold for an Easy FTP Transfer 24

6. Total Octets Sent and SRTT for a Difficult FTP Transfer 25

7. Congestion Window and Slow-start Threshold for a Hard FTP Transfer 26

8. 32- and 16-Bit Data Flow at a Station in an IP-Based Radio Network 49

viii

List of Tables

Table Page

1. Statistical Summary of HF NVIS SMTP Throughput Data 37

2. Statistical Summary of HF NVIS FTP Throughput Data 38

3. FTP Transfers from One Station to Two Other Stations 41

4. FTP Transfers Between Two Independent, Contending Pairs of Stations 43

5. FTP Transfers Through a Relay Station 44

1

 Section 1

Introduction

This note documents a performance evaluation of the NOS TCP/IP protocol stack when it is
used to send and receive text files over near-vertical-incidence-skywave (NVIS) HF radio
propagation paths. This assessment bears on the evaluation of a number of COTS and
developmental systems that transfer data over HF radio.

Among these are systems being considered in “dual-use” HF radio configurations on board
military aircraft being modified under the US Air Force GATM upgrade program. One use of
such radio systems is communication of civilian air traffic control and “airline operational
control” data over commercial networks. A second use is communication of encrypted military
command and control data over purely military networks. (NOS has been used by the US Navy
and others with the KG-84C and KIV-7 devices to encrypt E-mail messages.) Our results
provide throughput and probability of correct message delivery baselines for both modes of
use.

Our study also allows baseline performance comparison for systems that exchange data
between tactical (“short-haul”) military users over beyond-line-of-sight radio links, and for
systems that can communicate IP-addressable data among platforms being integrated into the
worldwide US Military Global Grid. In the last case, the TCP/IP protocol stack we have
evaluated can itself be used in preliminary studies of direct transmission of TCP/IP datagrams
over half-duplex radio.

To aid the use by others of the shareware stack we evaluated, we have expanded the scope
of our report to include not only performance results but also certain information on how to set
up and effectively operate the stack over error-prone radio links. Although the report is not,
therefore, a comprehensive manual on configuration and operation of TCP/IP over radio (no
such manual will probably ever exist), we expect that some of the information in it will ease the
sometimes painful process of setting up NOS and its variants for HF radio use.

The NVIS radio paths connect stations between 30 and 60 miles apart located in
Massachusetts and New Hampshire. The text files, of various sizes, were sent in both
compressed and uncompressed format from the standard TCP/IP-based Simple Mail Transfer
Protocol (SMTP) and File Transfer Protocol (FTP) applications.

NVIS paths are relatively short paths (linking stations from 20 to 400 miles apart) that are
used extensively for tactical military and various civilian communications. NVIS
communications require antennas that can launch energy at high takeoff angles (60 or more
degrees). Among the types of antennas that can do this are dipoles and sloping longwires.

2

NVIS communications occupy a transitional place on the range of radio communication
modes running between line-of-sight and long-distance (one or more hop) skywave
communications. Difficult conditions are often encountered during NVIS communications.
(Among these are multipath interference at sunrise and sunset, high D-layer signal absorption at
midday and strong interference from long-distance broadcast stations at night.) Protocol
performance evaluations over NVIS links provide conservative (i.e., lower-bound) assessments
of the usually longer-distance communications normally associated with the notion of
“shortwave” or “skywave” radio, since properly chosen longer-distance modes are less affected
by these phenomena than NVIS.

In addition to providing conservative performance estimates, NVIS networks such as ours
provide a crucial additional advantage: they are easier to set up and control than networks with
stations hundreds of miles apart that demand time-consuming and expensive travel or
coordination to keep them on the air for the extended periods that realistic HF testing demands.

These NOS tests are part of an on-going, multi-year program to assess and compare the
performance of reliable, modern systems for communicating data over HF radio. Such systems
comprise, at each station, an HF radio and antenna, a controller (usually a computer) that runs a
user interface, and an HF modem that does waveform generation, signal processing and
forward error correction. The software that implements a particular data transmission protocol
runs either on the controller or in the modem or both.

“Reliable” in the sense of our assessment program means that a protocol includes an ARQ
sub-protocol that causes a station receiving erroneous data to ask the transmitting station to
repeat it.

The performance of a data communications system used over radio links includes a wide
range of attributes. Among these are

• Throughput,

• Probability of successful message file transfer,

• Day versus night differences (often pronounced in HF communications),

• User-friendliness of the operating interface,

• Ease of setup, learning and use,

• Interface to Local-area networks (LAN) and standard IP-based E-mail clients or
servers,

• Usability with a variety of PC-controller operating systems and

• Usability and interface with cryptographic equipment.

3

Users often emphasize performance measures like these differently, so no fixed order of
importance can be assigned to them. However, in this note we shall emphasize throughput and
probability of successful message file transfer as a basis for comparisons of NOS point-to-point
performance with that of other HF protocols like CLOVER-2000, FED-STD-1052, NATO
STANAG 5066 and the Space Communications Protocol Specification (SCPS) modification of
TCP/IP for satellite and other radio channels. Comments on other aspects of TCP/IP
performance with NOS and the MIL-STD-188-110A serial-tone modem will be made
throughout the report.

We shall show that although the standard TCP/IP stack is not ideally suited for use with
radio channels, its performance is still good enough to serve as a baseline for assessing the
performance of (non-TCP) ARQ protocols, such as those just cited, that are tailored to HF
channels. The standard stack has the further advantage that it allows TCP/IP datagrams (data
frames plus headers) to be passed directly to and from TCP-based applications (mail clients,
browsers, etc.) without the need for translation into and out of a proprietary frame format
especially designed for communication over radio channels.

The NOS stack used for our tests is a 16-bit DOS shareware suite developed by amateur
radio operators about ten years ago. Since that time, the stack, whose C source code is freely
available, has been developed further and has been used both commercially and by the US
Navy, the US Army Corps of Engineers, several NATO navies, the Australian Armed Forces
and several South American countries involved in projects with the US Government.

The NOS version we used, called JNOS after the name of its first developer (Johan
Reinalda), conforms to the Internet Request for Comments (RFC) 1122, the specification for
“standard” TCP/IP-stack operation. NOS can be used to transfer data from most popular
TCP/IP applications, such as the internet control message protocol (ICMP), the FTP, SMTP
and the hyper-text transfer protocol (HTTP). It can also act as an IP-switch and an IP-router
and can thus directly transfer TCP/IP data between radio networks and wireline or wireless
LANs.

Although NOS is a 16-bit program, we employed special software “shims” to interface
32-bit IP-based Windows 95 applications such as E-mail clients and Worldwide Web browsers
with it, and have sent E-mail, etc., by that means over our NVIS links using 32-bit clients and
servers. This process and its setup are described in the note.

Because of their inability to distinguish between contention and channel errors (a
phenomenon we shall discuss below), standard (i.e., no more than RFC-1122-compliant)
TCP/IP stacks like NOS are inherently unsuited to highly efficient use over radio channels. In
spite of this, what is often acceptable performance over HF links can be achieved with a
standard TCP/IP stack by adapting the stack’s window- and segment-size parameters, and the
HF modem’s data rate and interleaver settings, to changing noise and propagation conditions on

4

the channel. Our experience with this approach, which has involved manual adjustment of such
parameters between file transfers, has shown that it offsets the effects of standard TCP’s
contention-control protocols to some extent. This is also discussed further in the note.

The rest of the paper covers the following topics: layout and data flow at our HF NVIS
stations, setup of NOS for the NVIS network, description of the on-air performance testing,
description of NOS operation over an HF channel, point-to-point data collection and format,
software for point-to-point data analysis and analysis output, summary of point-to-point
performance, NOS operations in a network of more than two stations, setup of Trumpet
Winsock and the pipe and winpkt terminate-and-stay-resident (TSR) shims for 32-bit Operation
via NOS, addressing and routing in an HF sub-network, running 32-bit applications over an HF
NVIS network, interfacing a NOS HF network to a LAN and a summary of our findings.

Section 5 contains relatively detailed material on how TCP operates as a protocol in the
presence of contention and channel errors. We have included it as a guide for potential users
and others who may have found it hard to locate such an account. Other readers may skip this
material without losing the thread of the narrative. Readers interested in performance
(throughput and probability of correct message reception) should read Sections 8, 9 and 14
(Findings). Finally, potential NOS users interested in running familiar 32-bit applications over
radio via 16-bit NOS can read about how we accomplished that in Section 10.

5

Section 2

Layout and Data Flow at our HF NVIS Stations

2.1 Hardware Layout

Each of the three stations used in most of our tests of TCP/IP over NVIS links was
assembled from the following hardware components (see Figure 1):

• An HF radio,

• A wire antenna (dipole or longwire) and associated RF cables,

• A Rockwell MDM-3001 or Harris RF-5710 MIL-STD-188-110A serial-tone HF
modem and associated audio and data cables,

• A 90 MHz or faster PC running the Windows 95 operating system and the 16-bit
JNOS TCP/IP stack software in a DOS window and

• A custom-made DRSI synchronous I/O serial interface card (provided to us by the US
Navy Ocean Systems Command) installed in an ISA slot of the windows PC.

Win 95 PC

NOS

Wire Antenna

Synchronous
RS232

Audio

RF

DRSI
Card

MIL-STD-188-110A
Serial-Tone Modem

HF
Radio

Figure 1. Layout of Hardware at an HF NVIS TCP/IP Station

6

2.2 Data Flow
The flow of data at an operating HF TCP/IP station is sketched in Figure 2. The basic unit

of data, sent from station to station in the NVIS network is a TCP/IP “datagram,” encapsulated
in an AX.25 link-layer packet. The datagram consists of a twenty-byte IP header, a
twenty-byte TCP header (for a total of forty header-bytes) and a block of data bytes, called a
“segment,” whose size is determined by software configuration parameters and the operation of
the TCP/IP protocol itself. The AX.25 packet contains To and From link-layer addresses (radio
callsigns), start- and stop-flags, the TCP/IP datagram, cyclic redundancy check (CRC) bytes
used for the data-integrity checking performed by the AX.25 link layer and various control
settings. The datagram headers contain IP To- and From-addresses, various control option
settings and CRC bytes used for the data-integrity checking performed by the transport (TCP)
layer of a standard stack. The datagrams contain data sent to or from applications such as
E-mail clients, FTP clients or Web browsers.

Outgoing TCP/IP datagrams (whose data contents originate in a DOS or Windows 95
application that uses TCP/IP) are assembled by a TCP/IP stack (in our case, NOS or Trumpet
Winsock) and passed to the DRSI card as AX.25 frames. These frames then go as synchronous
data to the serial-tone modem. The modem formats the resulting data stream according to the
framing, frame-synchronizing and equalizer-probe specifications of the MIL-STD-188–110A
waveform and modem specification. Note that in data-transmission systems based on NOS, the
modem performs primarily link- and physical-layer functions. Data processing needed to run
network-, transport- and application-layer protocols takes place in the Data terminal equipment
(DTE, usually a computer) that runs NOS, rather than in the modem, as in some other systems
(e.g., CLOVER).

7

E-mail Client
 Eudora

FTP Client
 WS_FTP

Web Browser
 Netscape

Windows
Applications

Windows 95
TCP/IP Stack
129.83.41.xxx
Trumpet
Winsock*

16-bit DOS
TCP/IP Stack
129.83.41.xxx
NOS (Router/
Switch)

Ethernet card
DRSI card
PipeWinpktWinpkt

Ethernet

SLIP
Link

Serial-tone
Modem

HF
Radio

RS-232

*Replaces Native Winsock Stack

Audio

RF

TCP/IP
Datagrams

AX.25
Frames

TCP/IP
Datagrams

Figure 2. Data Flow at an HF NVIS TCP/IP Station

9

Section 3

Setup of NOS for the NVIS Network

The NOS TCP/IP software suite comprises a 16-bit DOS executable (binary) file
accompanied by a number of setup files that the executable file reads at start up or during its
operation. The NOS package is installed by simply copying it and its setup files to a desired
directory on the PC-controller’s hard disk. After installation, NOS can run in a DOS window
and is launched by double clicking with a mouse on its icon from the Windows 95/98 graphical
user interface (GUI).

It is important to realize that running NOS with a piece of hardware (an Ethernet card or a
modem, for example) usually requires installation of driver software used in conjunction with
NOS. In our case, the hardware in question is a MIL-STD-188-110A HF serial-tone modem,
and the driver software for the DRSI card (drsi.c and the accompanying header file drsi.h) that
we use came with the HF version of JNOS we obtained from the Navy. We have not
investigated what it would take to incorporate the DRSI drivers (and perhaps other software)
associated with use of a serial–tone modem into another version of NOS.

Basic setup of NOS is accomplished by editing an American standard code for information
interchange (ASCII) text file called autoexec.net. For each of our stations, this file contains
about 140 lines. Each line states the name of a command or parameter followed by its setting.
An annotated copy of one of our HF autoexec files (for station MB1 in Bedford, Mass.) is
shown in Appendix A. For a good tutorial on the content and set up of an autoexec file for
NOS see References 3 and 4.

NOS opens and reads the autoexec file at startup to set its operating parameters. After
startup, some of the parameters can also be changed on the fly from the NOS command line,
although the changes don’t take effect until a message transfer has finished. The settings, some
of which we will discuss further below, can be divided into four general categories:

• Callsign or address assignment commands,

• Interface configuration commands,

• Routing and address notification commands and

• Miscellaneous setup and activation commands.

Examples of settings in the first category are those of a station’s IP address and host name:

ip address 44.56.8.103

hostname mb1.mbpr.org

10

TCP/IP stacks normally use IP addresses (four sets of up to three integers separated by
periods) to establish and keep track of connections with each other, but using IP addresses as
callsigns causes obvious inconveniences to users, who prefer callsigns they can remember.
Mappings between callsigns (which are not case-sensitive) and IP addresses are therefore kept
in host tables, which are ASCII files of host-name-to-IP-address correspondences that are
accessible to NOS. In normal NOS operations, a calling station enters a receiving station’s
callsign at a user interface and NOS then consults its local host table to retrieve the IP address
corresponding to the callsign.

The host names for this study were chosen as combinations of callsigns (“mb1” = MITRE
Bedford 1, etc.) and domain names (“mbpr.org” for MITRE Bedford packet radio.org).
Because we sometimes also use NOS for testing on amateur radio frequencies in the amateur
packet radio network, whose domain name is ampr.org, and find it convenient to use the same
host tables for all of our testing, we have found it necessary to use “full host names” as
callsigns. Hence, rather than calling the Derry station with the callsign der, the usual practice,
we call it with the callsign (full host name) der.mbpr.org.

Turning next to interface configuration, consider the command

attach drsi 0x310 5 ax25 dr0 2700 2600 2400 2400

This command “attaches” and configures the synchronous serial interface between NOS
and the DRSI I/O card that passes both flow-control commands and message data between the
NOS stack and the serial-tone modem (and from there to and from a radio). The interface
parameters in this case are the card’s I/O address (0x310) and interrupt number (5), the protocol
used on the interface (AX.25, a “packet radio” variant of X.25), the interface label (dr0), the
receiving buffer size in bytes (2700), the so-called maximum transmission unit (MTU) in bytes
for TCP datagrams (“packets”) sent over the interface (2600) and the data transmission rates for
the two channels the card can process (2400 bps; in our case, we use only one channel).

As an example of a routing and address notification command, consider

route add 44.56.4.57 dr0

This command tells NOS that all datagram traffic intended for the station with IP address
44.56.4.57 is to be routed to the dr0 interface and from there to the serial-tone modem and the
radio.

A miscellaneous setup command is

ifconfig dr0 tcp irtt 15000

11

This command specifies (configures the interface for) the “initial round-trip time” (IRTT)
in milliseconds (ms) for TCP datagrams sent to another station via to dr0 interface. The IRTT
is used by a collision-control algorithm built into TCP that decides when to re-send a datagram
that has not been acknowledged in timely fashion owing—presumably—to a collision between
that datagram and one sent at the same time by another station. (On radio links, noise,
multipath, or interference can also cause a missed acknowledgment.) Collision control and its
effect on throughput will be discussed below.

Other miscellaneous commands set up mailboxes, turn on the built-in FTP or mail server,
and so on. See References 3 and 4 for more discussion of NOS commands, since we have only
scratched the surface here.

As will be evident from this section and the discussion below of the setup of the Trumpet
Winsock stack and the pipe and winpkt shims, correct configuration of NOS and the helper
programs needed to make it operate with the 32-bit Trumpet Winsock stack on the one hand,
and with a network of other TCP-equipped radio stations on the other, is complicated. Part of
this complication comes from the fact that NOS can be used as a network server, rather than
just a network client. The intricacies of correct server configuration are well known to anyone
who has administered a Windows NT or similar server.

Most of the rest of the setup complications arise from our use of the standard TCP/IP stack
in a radio network over half-duplex channels with rapidly and randomly changing propagation
conditions on them. These changing conditions cause bit errors in received datagrams that
“confuse” the standard stack’s collision control mechanisms, causing them to react to a
datagram unacknowledged because of a channel error as if the failed acknowledgment had been
caused by a collision.

Thus, instead of trying to re-send the datagram as soon as the failed acknowledgment is
noted, which would generally be the best strategy, the stack’s algorithms invoke a “back off,”
causing the transport layer to wait longer to re-send the datagram than it would have in the
absence of a channel-induced acknowledgment failure. This is a sensible reaction to
congestion, but not to channel errors. Coping with this behavior in a way that leads to high
throughput when there are channel errors requires a certain amount of dynamic and creative
TCP parameter adjustment between message or file transfers. We will have much more to say
about this adjustment process below.

13

Section 4

Description of the On-air Performance Testing

Most of our testing involved three stations, one each in Bedford and Norfolk,
Massachusetts, and a third in Derry, New Hampshire. The stations lie roughly on a line
running north-south, with Derry (42°53¨N, 71°16¨W) in the north, Norfolk (42°07¨N,
71°20¨W) in the south and Bedford (42°20¨N, 71°25¨W) in the middle, about 30 miles from
both Derry and Norfolk. The configuration is shown in Figure 3. Most of our tests involved
point-to-point (two-station) testing. Roughly a third of the point-to-point tests were
transmissions from Bedford to Derry, a third from Bedford to Norfolk and the rest over the 60-
mile ground path from Derry to Norfolk.

Derry, N.H. (DER)

Bedford, Mass. (MB1)

Norfolk, Mass. (NFK)

30 mi.

30 mi.

60 mi.

Figure 3. Geographical Layout of the Three HF NVIS Stations

14

We also ran a few point-to-multipoint tests, a few pairs of simultaneous point-to-point tests
(to assess performance in networked and contention environments) and a few tests of file
transfer through a relay. These multipoint tests produced only small sample sizes and the data
(discussed in Section 9) were not submitted to the statistical analysis described below.

The three stations used 100-to-125-watt military (Harris RF-5000 and RF-280) and ham
radios (Yaesu FT-1000MPs), with most tests using the military radios. Antennas were dipoles
or sloping, resistively terminated longwires. Both types are appropriate for NVIS operation,
which requires that energy be radiated at high (~70-90°) launch angles. The serial-tone
modems were Rockwell-Collins MDM-3001s and Harris RF-5710s.

The tests ran from January 1998 to the fall of 1999 and thus covered about seven changes
of season during a period of rising sunspot number, which lay between 30 to 130. Maximum
Usable Frequencies (MUFs) on the links were between about 2 and 9 megahertz (MHz) during
the testing period and we chose our operating frequencies from an available set covering
2 to 8 MHz.

With the exception of some tests at around 5 MHz toward the end of the period, all the tests
used frequencies (most around 3 MHz) that were of only average quality from the standpoint of
noise, interference and distance from the so–called optimal operating frequency (about 80
percent of the MUF). This means that our results reflect conservative performance. An
automatic link establishment (ALE) system or a judicious choice of frequencies from a set free
of interference (a great luxury for most users) might have produced average throughput perhaps
20 or 30 percent higher than ours.

The point-to-point tests covered both day- and nighttime operating conditions, including
mid-day absorption by the D-layer, multipath fading at sunrise and sunset, thunderstorm noise
and sporadic-E-layer propagation during the summer, and interference from broadcast stations
at night. Because the data transfer process involved manual parameter adjustments between
file transfers, and could thus not be automatically scheduled, few if any tests were run between
local midnight and six in the morning local time. However, numerous tests with similar
protocols that do allow scheduled data transfers show that because of increased levels of
broadcast interference between local midnight and local sunrise, and occasional operation too
close to the MUF, throughput between those times is often 10 or 20 percent lower than in the
evening. This means that our nighttime results are probably slightly better than those derived
from all-night operation.

The point-to-point throughput tests involved compressed and uncompressed text-message
transfers using the standard SMTP application implemented by NOS and compressed and
uncompressed text-file transfers using the standard FTP that NOS also implements. In both
cases, the dictionary-based Lempel-Ziv-Welch (LZW) algorithm built into NOS carried out
compression and decompression. The parameters of the algorithm were set for maximum
compression (with the commands “LZW bits 16” and “LZW mode compact”).

15

In the case of SMTP (“E-mail”) message transfers, compression was turned on and off with
the NOS “smtp sendlzw on/off” command. In the case of FTP file transfers, compression was
turned on and off by sending files in the ASCII mode (i.e., compressed) with the NOS
command “type a” (sent to the receiving station at the start of an FTP session), or by sending
files in “binary mode” with the command “type i” sent at the corresponding time. (The “i” here
stands for “image” and comes from earlier days when graphics files were apparently the most
common types of binary file sent with FTP.) Compression is accomplished in the ASCII mode
because our version of NOS automatically compresses text files sent in that mode.

After a successful FTP transfer, NOS reports the transfer time (in seconds) to the screen.
We entered this time and other particulars of point-to-point transfers (see below) into an ASCII
archive file for later analysis. If a transfer was unsuccessful (NOS timed out), this was also
recorded in the archive file. After a successful SMTP message transfer, NOS does not report
the transfer time or throughput. To get this time we either monitored the “TCP status” or
turned on the “trace” utility, which shows the size and time of arrival of datagrams along with
the contents of datagrams whose content is associated with the beginning (“SYN,” etc.) and end
of a transfer (“FIN WAIT,” etc.). The corresponding SMTP transfer time (in seconds) was then
entered into the archive file as above.

We normally started each experimental point-to-point session with conservative parameter
settings (TCP segment size and modem data rate). We found that a segment size of 216 octets
and a modem data rate of 1200 bps were often good starting values. (With our manual
adaptation technique it rarely seemed to be effective to use the modem’s long interleaver
setting, but the interplay of data rate and interleaver depth in our approach is a topic that
deserves much more study than we were able to give it.)

If the throughput for the first few transfers of a session indicated that the channel conditions
were good (often in mid-morning and late afternoon when absorption and noise were relatively
low, or the operating frequency was near the optimal one, or some combination of the three),
we raised the datagram size. If this led to higher throughput, we raised the modem data rate.
If, on the other hand, the initial results were poor, we reversed the process, lowering the
datagram size and then, if necessary, the data rate or even the interleaver depth until we got
what appeared to be the best results achievable in the prevailing channel conditions.

We generally kept the window size fixed at 2592 bytes at Bedford and Norfolk and
1728 bytes at Derry, and chose our segment (frame) sizes in point-to-point tests to be factors of
the window size. (See the next section for the definitions of a window and segment.)
According to the TCP protocol, this generally caused NOS to send integer numbers of
segments, up to the number of segments comprised by a window. To send traffic to stations
with window size 2592 (= 12 x 216), we generally chose segment sizes of 216, 324, 432, 864 or
1296 octets (bytes). To send to Derry (window size 1728 [= 8 x 216]), we generally chose
segment sizes of 216, 432, 576 or 864 octets.

16

These window sizes allowed the standard TCP protocol implemented in NOS to vary the
number of segments sent at one time from between one and twelve in the case of Bedford and
Norfolk and between one and eight in the case of messages sent to Derry. (To take advantage
of the overhead savings that arise from TCP’s ability to ACK several datagrams with a single
transmission, we usually chose the MSS to be an integer divisor of the window size.)

Sent messages generally comprised between 10k and 50k bytes of ASCII text, with the
most common size 20 or 30k. (Messages 20 to 30k long—five to eight pages of text—take
around six minutes to send on average.) This range of sizes allows a nearly optimal tradeoff
between a small ratio of overhead to information content in transferred files and time spent
sending each file. The table below lists the average throughput in octets per second for
uncompressed files with sizes between Nk and (N.1)k octets, N = 10, 20, 30, 40 and 50,
transferred by FTP during the daytime. The “SS” values in brackets are the sample sizes on
which the average throughputs are based.

The table suggests that file sizes from 20 to 40k produce roughly the same throughput and
that the throughput does not rise significantly as the file size increases above that range. This
leveling-off of average throughput as file size increases is a general property of HF ARQ
protocols and the leveling-off appears to occur at roughly the same size for all modern HF
protocols.

File Size
(octets)

E(tput) [SS]
(octets/s)

5-5.1k 40 [24]

10-10.1k 49 [65]

20-20.1k 54 [46]

30-30.1k 64 [28]

40-40.1k 58 [22]

50-50.1k 64 [33]

17

Section 5

Description of NOS Operation Over an HF Channel

Most of our testing involved point-to–point (two-station) links on which all files or
messages were sent in the datagram mode. In this mode, flow control, frame (datagram)
acknowledgments and reaction to collisions are handled only by the TCP layer (the fourth or
transport layer in Open Systems Interconnection [OSI] terms) of the NOS stack.

TCP in the standard stack is known as a “sliding-window protocol without negative or
selective acknowledgments.” A sliding window is the means used by TCP for flow control,
and it allows the protocol to acknowledge more than one segment at a time. This lowers
overhead and generally raises throughput when the channel supports it.

The amount of data that can be sent at a particular time may be viewed as occupying a
window whose varying size is “advertised” or “offered” to the sender by the receiver in each of
the receiver’s acknowledgment packets. (TCP segments are acknowledged by giving the
sequence number of the most recently received byte rather than by giving a segment number,
but the effect is the same.) This advertised size depends on how much data the receiver has
accepted as correct and how much space is available in its buffers. As a transfer proceeds, the
left part of the window contains sent but unacknowledged data, and the right part contains data
that can be sent. As data are acknowledged, the left edge of the window moves, in effect, to the
right, “closing the window.” When more data are sent, the right edge of the window moves to
the right, “re-opening” the window. The window thus slides (albeit in a jerky way) across the
data to be sent until the transfer is done.

The maximum window size in bytes that can be advertised and therefore sent is specified
by the WIN parameter in the receiver’s autoexec file. WIN should be picked as the greatest
amount of data the receiver thinks can be sent in good channel conditions with a high
probability of being ACKed on the first try. (The largest window size allowable in standard
TCP is 65535 bytes.) When conditions are in fact good and the receiver offers WIN bytes, the
sender can send as many segments as can fit into those WIN bytes. As mentioned in Section 4,
to ensure that an integral number of segments get sent (avoiding inefficient fragmentation of
segments into packets smaller than the channel can support), we generally chose our maximum
segment sizes (MSSs) at sending stations dynamically (between transfers) from the set {216,
324, 432, 864 or 1296} for the station pair (Bedford and Norfolk) that set their WINs to 2592
and from the set {216, 432, 576 or 864} for stations sending to Derry, where the WIN was
normally set to 1728.

18

Stations in our network that were configured to receive FTP or SMTP traffic normally set
their MSS at half their window size (that is, an MSS of 1296 at Norfolk and Bedford and an
MSS of 864 at Derry). This allowed a sending station to choose its MSS as any size from one
of the two sets above, (depending on who was receiving) according to perceived channel
conditions. Note that this was done manually in our experiments. In a future version of NOS
this could and should be done automatically in response to some measure of current channel
conditions.

If segments in a window arrive with bit errors the receiver can’t correct, the receiver will
drop such segments and will ACK only the range of sequence numbers received correctly
without gaps. This means that all segments in a window that arrive after a dropped segment
will be discarded. This describes the behavior of TCP’s “go-back-N” ARQ protocol, which is
one of the properties of standard TCP that makes it less well suited to use on HF or other radio
channels than protocols that use a “selective acknowledgment” or “negative acknowledgment”
ARQ protocol.

Under a go-back-N protocol, if an early segment in a window containing many segments is
lost, then all of the segments following the lost segment are thrown away and must be resent,
causing throughput to fall drastically. A protocol that asks for repeats of only bad segments is
obviously more efficient than this one. A great deal of thought is now being devoted to
producing versions of TCP whose ARQ scheme is better suited to use with radio channels than
the standard scheme.

Although entire windows of segments can be sent at one time in good conditions, TCP
takes a conservative approach to ramping up to such behavior. This approach is called slow
start. In this technique, the number of segments that is sent at one time is dictated by the rate
at which segments have been ACKed. This rate is determined by a parameter called the
Congestion Window (cwind) that is dynamically adjusted by TCP. The Congestion Window
helps determine the amount of data the sender can transmit at any one time, the allowed
window, according to the formula

allowed_window = min(cwind, advertised_window).

In the absence of congestion, the Congestion Window is the same as the window advertised
by the receiver, but when the Congestion Window is lowered far enough by perceived
collisions, the formula says that fewer datagrams are transmitted over the connection than
otherwise.

Every transfer starts with the cwind set to the size of one segment (as specified by the
MSS). Every time a segment is ACKed thereafter, the cwind is increased by MSS bytes, which
leads to a geometric (exponential) increase in the amount of sent data, limited ultimately by the

19

offered WIN. Thus, at any time the sender can send up to the minimum of the offered window
and the Congestion Window. This can be viewed as flow control imposed by the sender in
reaction to what TCP views as congestion, whereas the offered window reflects flow control
imposed by the receiver in reaction to the size of its buffer space.

Sooner or later during many transfers over HF channels, one or more packets suffer
uncorrectable errors and fail to be acknowledged (a sender timeout) or the receiver times out
waiting for more data and re-sends an ACK. Standard TCP interprets these acknowledgment
failures or duplications as having been caused by congestion (a collision with packets sent by
another user), and deals with them by invoking a congestion avoidance procedure.

Under this procedure, the first thing that happens after recognition of a likely
acknowledgment failure is that roughly one-half the current cwind (but at least 2 x MSS) is
saved as a variable called the “slow-start threshold” (ssthresh). Then the cwind is lowered to
MSS octets. After this, a slow start begins again, but instead of exponentially increasing the
amount of data sent until WIN is reached, the procedure increases it exponentially only until
ssthresh octets are reached. Thereafter, in the absence of failed ACKs, the cwind increases
only additively by one MSS worth of octets per round-trip time. The next time a packet is lost
the whole procedure is repeated starting with a new, lower ssthresh and a new slow-start phase.

Adjustment of the cwind and ssthresh is in practice even a bit more complicated than we
have described it and depends among other things on whether the sender times out waiting for
an ACK or the receiver times out waiting for more data. Both parameters can, during the
course of a data transmission, increase or decrease at almost any stage, but the description
above captures the essence of their adjustment. Appendix C lists pseudo-code for the actual
algorithms used by NOS to adjust the congestion window and slow-start threshold in response
to missed packets or duplicate ACKs.

The division of the rate of data increase after a lost packet into two phases, the (somewhat
confusingly named) slow start exponential-growth phase, and the linear-growth congestion-
avoidance phase, make up standard TCP’s approach to countering all packet loss, whether it’s
caused by congestion or channel effects. When the loss is really caused by congestion, the
adaptive throttling-down of the sending rate through changes in the cwind and ssthresh makes
sense: the more congestion, the less aggressive the rate of segment injection into the channel.

However, when the loss is caused by bit errors, this approach is generally not what should
be taken; what is better is to re-inject a segment as soon as its loss is detected. (Some of the
recent work to improve TCP’s performance on radio links involves fine-tuning of the algorithm
that adjusts the slow-start threshold and changing the “default” assumption that all packet loss
is caused by collisions.) Coping with the undesirable effects of TCP’s default collision
avoidance algorithms to the extent allowed by the standard stack requires an understanding of
TCP’s retry strategy.

20

As a preface to discussion of this strategy we turn first to an important aspect of TCP’s
operation in lossy (i.e., error-prone) radio channels: its estimation of round-trip times (RTTs).
The estimated RTT, also known as the smoothed RTT (SRTT), is used in an algorithm that
determines the retry strategy when frames fail to be acknowledged. (TCP acknowledges only
data-segments and not ACKs themselves.) RTT estimation is important because estimated
RTTs are used to decide when a frame has been lost (has failed to be ACKed) and needs to be
re-sent. If the estimated RTT is too large, packet loss will be detected late and throughput in a
lossy channel will fall. On the other hand, if the estimated RTT is too small, then packets that
have not been lost will be re-sent and multiple ACKs will be sent by the receiver. This can
have a catastrophic effect on performance. The estimate should therefore never be too low and
should not be much higher than the real (but unknown) RTT on any one transmission.

Following much discussion and experimentation, the Internet community (Jacobson, Karn
and others) devised an algorithm (now in RFC 793) for estimating RTTs that takes into account
previous measurements of RTTs, the most recent RTT measurement and the variability of
previous RTT measurements (see References 1 and 2). The algorithm first calculates a
smoothed average (SRTTnew) of the most recent RTT (the MRTT) and the previous average
(SRTTold) according to the formula (sometimes called a “low-pass filter”)

SRTTnew = α SRTTold + (1 – α) MRTT,

where α, a decay constant, is usually set to about 0.9. This estimate is updated with each new

RTT measurement. When TCP is first launched, the algorithm is initialized by setting SRTTold

= IRTT, where IRTT, the initial round-trip time, is specified for NOS in the autoexec.net file
with the command “ifconfig dr0 tcp irtt,” where irtt is in milliseconds. (We took IRTT =
15000, or 15 s.) If TCP is running and has already estimated the SRTT during previous on-air
activity, the initial round-trip time and its initial variability are taken as the most recent
estimates. Re-initialization of the SRTT can be performed between transfers from the NOS
command line.

The RTT estimate, called the “Retransmission Time-Out” (RTO) value, is then taken as
β SRTTnew, where β > 1 is a function of a smoothed estimate of RTT variability. Taking β > 1

is intended to prevent under-estimation of the RTT, which is generally more serious than (a
modest) over-estimation. Poor performance with early versions of TCP caused by excessive
variability in, and ambiguity of, round-trip times was removed to a large extent by updating the
SRTT only with round-trip times for new (rather than retransmitted) packets. This is called
Karn’s algorithm, after Phil Karn, an amateur radio operator who wrote the first version of
NOS.

If a data segment is successfully sent but its ACK is lost, it could happen that both sender
and receiver could wait endlessly—the receiver waiting for more data in response to its offered
window and the sender waiting for the window offer that allows it to send more data. Standard
wire-line versions of TCP deal with this by defining a persistence timer that causes the sender

21

to periodically ask the receiver for a window-size update. Sending a "window-probe segment"
if no offer has been received after a persistence time has elapsed does this.

In NOS, an analogous function is performed by the TCP maxwait parameter (see below).
NOS does have a “persist” parameter for congestion control at the AX.25 link-layer. However,
this parameter is used for contention control in an algorithm that calculates the probability that
a sender will retransmit a packet after a backoff of a single “slot time” if it detects no carrier on
the operating frequency (see Section 9). In the absence of contention for channels, link-layer
congestion control played no significant role in our NVIS testing. Section 9 discusses some
experiments we did run to assess the effects of contention.

If a segment fails to be ACKed after the current RTO estimate has elapsed, standard TCP
assumes that the cause of this is a collision with a transmission from another network station.
TCP’s method for dealing with the collision is to invoke a backoff in an attempt to avoid
further collisions. Each backoff lasts for one or more multiples of the current RTO estimate up
to some settable limit (see below). In NOS the backoff strategy can be set to be exponential
(double the backoff time after each missed ACK) or linear (increase the backoff time
arithmetically [by one backoff time] after each missed ACK). In each case, backing off
continues until the settable backoff limit (blimit) on the number of backoffs is reached.

Because our point-to-point measurements took place on channels free of congestion from
other network stations, we chose a linear backoff to avoid the undesirably wasted overhead that
an exponential backoff would cause. Note that congestion is viewed here as being different
from interference (QRM), which is treated as noise.

NOS allows control of its backoff protocol through the backoff limit (“ifconfig dr0 tcp
blimit” in the autoexec.net file) and the maximum wait-time (“ifconfig dr0 tcp maxwait”)
settings, both of which limit the extent of backing off under TCP’s congestion control strategy.
The backoff limit is the maximum number of allowed backoffs. The maximum wait-time
(maxwait, in milliseconds) is the amount of time that may elapse “avoiding congestion” before
a retry is forced. The RTO, the amount of time that may elapse waiting for an ACK before
retransmission of a datagram, is calculated in NOS by the formula

RTO = min[backoff_no*(4*MDEV + SRTT), maxwait],

where backoff_no < blimit is the number of times a backoff has been invoked by TCP and
SRTT and MDEV are current smoothed estimates of the round-trip time and its deviation
(|SRTT – RTT|). The term 4*MDEV + SRTT can be construed as a multiple of the RTT and
plays the role of the multiplier β referred to above. Hence, with a linear backoff strategy and a

blimit of two there will be at most two backoffs. The first backoff lasts

min[4*MDEV + SRTT, maxwait] milliseconds;

the second lasts

22

min[2*(4*MDEV + SRTT), maxwait] milliseconds, etc.,

and the larger the SRTT and its mean deviation, the longer is each backoff.

Since our point-to-point channels had no congestion in the usual sense, we usually set the blimit
for “aggressive retrying” (e.g., blimit = 2; we found that setting blimit = 1 sometimes caused
timing problems). We set the maxwait to be a few seconds longer than the predicted time
(based on the modem baud rate) it would take to send the largest window of data (e.g.,
maxwait = 30 or 40 seconds). Our approach was guided by the idea that since only signal
fading or long-distance broadcast interference were causing frame errors, it was generally best
to suppress most of the “congestion control” and keep trying to get frames through until they
did get through or the number of retries was exceeded and the transfer attempt failed.

It is important to note that a careful watch must be kept on the maxwait setting, especially
when the channel improves and bigger segment windows begin to be sent. If maxwait has been
made too small in an attempt to reduce the delay associated with unnecessary
collusion-avoidance measures, undesirable retransmissions of data will occur when the retry
timer expires before the protocol has finished sending a big window. The maxwait value must
be raised (between transfers) in this case.

The net effect of TCP’s congestion control procedures is to reduce the volume and rate of
retransmission exponentially when congestion is perceived but increase the rate and volume of
transmission somewhat less aggressively when the perceived congestion goes away. Studies
have shown that this approach prevents instabilities in network operation that would otherwise
occur if recovery from congestion proceeded as rapidly as the response to it.

As described in the previous section, our measurement strategy involved observation of
performance (throughput) and adjustment between transfers of the maximum segment size,
modem data rate and occasionally the modem interleaver depth. This strategy was devised to
cope best with current channel conditions and thereby offset the undesirable effects of backoffs
caused by “misguided” congestion control.

Figures 4 and 5 illustrate changes in the congestion window, slow-start threshold and
smoothed round-trip time during an actual FTP 10k-file transfer over a NVIS channel in good
channel conditions. The data for the figures were logged at the sending station (MB1) by
issuing the “tcp status” command from the NOS command line after every transmission from
the file-receiving station (NFK) and writing the results to a file with the NOS “record”
command. The recorded status data, which include current cwind, ssthresh and srtt values,
were then extracted and formatted for plotting.

Figure 4 shows changes in the total number of received error-free octets (bytes) and the
SRTT during the transfer, which used an MSS of 432 octets, a data rate of 1200 bps and a short

23

interleaver. The transfer took 170 seconds, for a throughput of 58 octets/s. Note that the total
number of octets sent rose steadily during the transfer, with the next-to-last transmission
sending a full window of 2592 octets. The final transmission was short and carried only the
remaining 64 octets in the file plus the headers.

Figure 4. Total Octets Sent and SRTT for an Easy FTP Transfer

The smoothed round-trip time estimates started low from a previously stored value and then
rose steadily toward their “current” mean under the conditions of the transfer of around
17 seconds. (Some of the round-trip time is taken up by backoffs and software processing
rather than transmitting.) The slight drop in the SRTT at the end of the transfer was caused by
the shorter round-trip time that elapsed during the transfer of the last 64-octet part of the file.

Figure 5 shows changes in congestion window and slow-start threshold during the same
10k-transfer. The cwind rose steadily during the transfer to the offered window size of

24

2592 octets and stayed at that size for the last three data transmissions, and since there were no
lost packets, the slow-start threshold stayed at the maximum segment size value of 432 octets.

Figure 5. Congestion Window and Slow-start Threshold for an Easy FTP Transfer

Figures 6 and 7 show changes in the congestion window, slow-start threshold and smoothed
round-trip time during a 10k FTP file transfer in poor channel conditions (mid-day with high
D-layer absorption). In these conditions packets were lost (were received with too many bit
errors to be corrected) and had to be resent following failure of the sender to receive ACKs of
such packets.

Figure 6 is a plot of changes in the total number of received error-free octets and the SRTT
during the transfer, which used an MSS of 216 octets, a data rate of 600 bps and a short
interleaver. The transfer took 489 seconds, for a throughput of 20 octets/s. The total number of
octets sent rose steadily until about a third of the way into the transfer (about 17:25:22 GMT),

25

when the cwind (see Figure 7) had risen to 1310 octets. At that time a window of 1296 octets
failed to be ACKed (possibly because maxwait was set too small) and had to be resent.

Figure 6. Total Octets Sent and SRTT for a Difficult FTP Transfer

Following the retransmission, the Jacobson “fast recovery” algorithm was invoked (see
Appendix B). This raised the ssthresh to cwindold/2 = 1310/2 = 655 and lowered the cwind to
968 (Figure 7). At 17:26:50 a further 216 (= MSS) octets failed to be ACKed, the ssthresh was
halved again to cwindold/2 = 968/2 = 484 and the cwind was lowered to its smallest value of 216
(the MSS). At 17:27:07 GMT data began to flow (i.e., be ACKed) again and the cwind was
raised to 626. Starting at 17:27:52 four transmissions in a row failed to be ACKed and the
cwind was lowered to 540 and then to 216, where it stayed, throttling down data flow
accordingly. After an initial rise during this period to 540/2 = 270 in response to the previous
resumption of flow, the ssthresh also fell to its minimum value of 216, where it also stayed
during the outages.

26

At 17:29:42 the NVIS channel had improved sufficiently for error-free data flow to resume
and the rest of the file (3520 octets) was successfully transferred (Figure 6). During this final
period the cwind expanded steadily and the ssthresh stayed at 216 (Figure 7).

Figure 7. Congestion Window and Slow-start Threshold for a Hard FTP Transfer

The smoothed round-trip time estimates (Figure 6) again started low from a previously
stored value and then rose steadily (toward their current mean of about 18 seconds) during the
initial period of smooth data flow. After the first lost packet, the amount of sent data was
restricted by the reduction in the value of cwind and this in turn lowered the round-trip time
when data began to flow again. The effect of Karn’s algorithm (described above) is seen in the
constant value of the SRTT during the periods when data flow stopped, since no new round-trip
times were measured then. The slight drop in the SRTT at the end of the transfer was caused in
this case also by the shorter round-trip time that elapsed during the transfer of the last, small,
280-octet part of the file.

27

Section 6

Data Collection and Data Format for Point-to-Point Tests

As mentioned above, we manually collected our point-to-point data into a single ASCII
archive file called archive.mdm after the modem we used in most of our experiments. Shown
below is an excerpt from this file that was recorded in March 1999.

18.03.99 23:36:00 NOR MB1 DG s 864 2592 2400 S 191 20635 1 20635 Q

18.03.99 23:46:00 NOR MB1 DG s 864 2592 1200 S 393 30088 1 30088 Q

22.03.99 15:24:00 NOR MB1 DG I 432 2592 1200 S 290 10000 1 10000 Q

The entries in each line are

[DATE] [TIME] [TOCALL] [FROMCALL] [MODE] [TYPE] [MSS] [WIN] [RATE]
[INTERLEAVER] [TRANSFER TIME] [SIZE] [NO RESENT] [SENTSIZE] [CHANNEL].

All TIMEs are Greenwich Mean (GMT). TOCALL and FROMCALL are the link-layer
callsigns used by the receiving and sending stations during the transfer recorded on the line.
The MODE can be either DG (datagram) or VC (virtual circuit). All of the tests reported on
here used the datagram mode, in which retransmission of unacknowledged datagrams is
controlled by the transport layer alone, rather than by both the transport layer and the data link
layer, as in the virtual circuit mode.

TYPE stands for the transfer mode: I=IMAGE (FTP uncompressed files), A=ASCII (FTP
compressed files), s=SMTP uncompressed messages and S=SMTP compressed messages.

MSS is the maximum segment size in bytes, the largest individually addressed packet of
data that could be sent during the transfer (a parameter we adjusted between transfers for
highest throughput in the perceived channel conditions). WIN is the window size, the largest
number of bytes that can be sent in one transmission to the station that set it. (Note that a data
window usually comprises several packets of data.) As pointed out in the previous section,
under the TCP protocol the window size used by a file-sender is set by the receiving station.
That is, the window values listed in our archive file were set by the station with the TOCALL
address. The operative MSS during a TCP data transfer is the minimum of the MSS values at
the sending and receiving stations. We set the MSS values at our receiving stations large
enough to allow the sender to set the operative MSS for his transfers, and the sender’s MSS is
the value listed in our transfer data. The MSS and WIN are discussed further below.

28

The RATE and INTERLEAVER are the modem information rate in bits per second (75,
150, 300, 600, 1200 or 2400)‚ and the modem interleaver depth (S = short, 0.6 s; L = long, 4.8
s).

The transfer time is the time in seconds between when correct reception of a file (by FTP)
or message (by SMTP) was noted at the sending station and the time when the keystroke
corresponding to start of transmission was hit. In the case of FTP file transfers, the latter time
(the start of file transmission) was the time the “put filename” command be sent to the NOS
FTP application from the keyboard. Note that the transfer time for FTP transfers does not
include the time needed to establish the FTP session that has to be opened before files can be
put (sent) or got (retrieved). Establishment of the session, and entry and confirmation of the
user name and user password take up this time, typically about a minute. (Since the radio and
modem are active during FTP sessions only when files are being sent or retrieved, we assumed
that a typical FTP file transfer would occur during an already opened session.

To transfer a message file with SMTP, NOS combines session establishment and transfer
into a continuous operation. That is, the user is not normally allowed to open an “idle” SMTP
session. In this case, therefore, we started our transfer-time reckoning at the time of the
keystroke that queued a message for transmission. We sent only one message at a time, so all
SMTP transfer times include SMTP link establishment and log-in times.

SIZE is the size in bytes of the file or message transferred and NO RESENT is the total
number of bytes resent (because of bit errors occurring on the sending or receiving channel in
our case), which is reported to the screen during the course of a transfer by NOS. SENTSIZE
is the number of bytes sent over the air during a successful transfer. If the transfer happens in
the uncompressed mode, the SENTSIZE is the same as the SIZE. If the transfer happens in the
compressed mode, the SENTSIZE is smaller (by about half for text files) than the SIZE.

CHANNEL describes the perceived state of the radio channel during the transfer. Q stands
for quiet (little or no noise or interference), M for QRM (interference from other transmissions,
usually by shortwave broadcast stations at night), N for QRN (noise from static crashes or
manmade sources, especially during the summer storm season), B for QSB (fading caused by
rapid changes in ionization levels and multipath at sunrise and sunset, for example) and D for
disturbed (often caused by solar flares). Since our data were collected over the course of many
months and are summarized in this report to describe average performance over long periods,
we have lumped them together irrespective of channel type.

The line with dashes in its TRANSFER TIME and NO RESENT fields records a failed
transfer. The number of such lines is used by statistical software described below to calculate
the probability of correct transfer for various categories of transfer. To allow comparison with
all of our other throughput studies, we recorded as failures only transfers that timed out after
the corresponding connection and log-on phases.

29

As examples of the interpretation of lines in the performance-data archive consider the lines

08.03.99 22:15:00 NOR MB1 DG S 432 2592 1200 S 204 20229 1 10561 Q

22.03.99 15:24:00 NOR MB1 DG I 432 2592 1200 S 290 10000 1 10000 Q

The first line summarizes the transfer from Bedford (MB1) to Norfolk (NOR), Mass., of a
compressed SMTP message file 20,229 bytes (octets) long that occurred on 8 March 1999 at
about 22:15 GMT (5:15 PM local time). The maximum segment and window sizes were 432
and 2,592 bytes and the modem data rate and interleaver depth were 1200 bps and short. The
transfer took 204 seconds and only one byte was resent (apparently an artifact of the NOS
status reporting since no erroneous datagram containing data had to be resent). Because of the
compression the number of bytes actually sent over the air was 10,561 and the channel was
quiet. The throughput for this transfer was 20,229/204 ≈ 96 bytes/s. Note that in the case of

uncompressed SMTP transfers (none shown above), the number of bytes sent over the air in our
tests is slightly larger than the size of the message body—in our point-to-point transfers fewer
than 100 bytes larger—because of the added SMTP mail-header.

The second line records similar data from an FTP transfer of a 10k text file in the image
(uncompressed binary) mode. Note that the number of bytes sent over the air is the same as the
file size.

31

Section 7

Data Analysis Software and Analysis Output

The results in the point-to-point data archive were analyzed off-line by a program we wrote
called summary_mdm.c. This program reads the archive file line by line looking for various
strings. As it moves through the file to the end-of-file indicator, the program keeps running
totals of throughput and other data corresponding to the strings, from which it calculates
statistics such as the average and standard deviation of the throughput. The statistics are
written to a summary file after the pass through the archive file. Switches in the summary code
are set before each run to pick out specific data (corresponding to various string combinations)
for analysis. For example, we select lines with differing actual (SIZE) and compressed file
sizes (SENTSIZE) to pick out compressed file transfers, and use the date-time group to
distinguish daytime from nighttime transfers. Since the summary program was written to
analyze archive files of fixed format but arbitrary length, summaries of the data collected so far
can easily be made at any time.

Shown below is the output of the summary program for all TCP/IP NVIS tests run from
January 1998 to April 1999 (a subset of all such data). For this output we set the software
switches to compute throughput statistics for nighttime compressed SMTP message transfers.

Statistics calculated from archive.mdm on 04.06.99 13:24:37

SMTP COMPRESSED TRANSFERS NIGHT

1. NUMBER OF TRANSFERS IN SAMPLE = 118

2. E(MSS) = 535 bytes, sd(MSS) = 251 bytes

3. E(WIN) = 2320 bytes, sd(WIN) = 512 bytes

4. E(BAUD RATE) = 1408 bps, sd(BAUD RATE) = 486 bps

5. E(SIZE) = 20991 bytes, E(SENT) = 11393 bytes

6. E(RESENT) = 3526 bytes, E(FRACT RESENT) = 31%

7. max_RESENTFRACT = 186%, sd(FRACT RESENT) = 33%

8. E(TRANSFER TIME) = 399 s, sd(TRANSFER TIME) = 215 s

9. E(THRUPUT) = 63 cps, sd(THRUPUT) = 24 cps, sd(mean_THRUPUT) = 2.2 cps

10. max_THRUPUT = 127 cps, Median(THRUPUT) = 62.2 cps, E(THRUPUT/Hz) = 0.023 cps/Hz

11. 4 transfer failures; P(transfer success) = 118/122 = 0.97

32

Line nine of the output shows that the average throughput for 118 compressed-text-file mail
transfers was about 63 characters per second (cps). Recall that throughput is equal to
SIZE/(TRANSFER TIME) in the notation of Section 9, where SIZE equals the uncompressed
size of a message or file. The largest observed throughput in this mode (line ten) was about
127 cps. The sd (THRUPUT) of 24 cps reflects the spread of the throughput measurements
about their average, which was fairly large, and typical of the highly variable NVIS channel.
Roughly speaking, about two-thirds of a set of measurements will be within one standard
deviation of their mean and over 90 percent within two standard deviations of their mean.

We also calculated the “standard deviation of the mean throughput” [sd(mean_THRUPUT)]
in characters per second (line 9) and the average throughput per Hz of signaling bandwidth line
10). The standard deviation of the mean throughput (equal to the standard deviation of the
throughput divided by the square root of the sample size) is an assessment of the variability of
the mean itself (which has its own statistical variability). The sd(mean) here (2.2 cps) suggests
that our sample size in this case is big enough to make us confident that if we collected many
more throughput measurements under roughly the same conditions, we would not get an
average throughput that differed from the one above by more than about 2 cps.

To estimate the average throughput per Hertz [E(THRUPUT/Hz)], which normalizes
bandwidth effects, we divide the average throughput by the average signaling bandwidth. For
the serial-tone waveform, the signaling bandwidth is about 2700 Hz (see MIL-STD-188-110A)
and the throughput per Hz of bandwidth is about 0.02 cps/Hz (line 10).

For the tests analyzed here we also kept track of the number of failed transfers and
calculated the percentage of successful transfers. Unsuccessful transfers occurred when, after a
successful link, the number of times the modem tried to send a data frame exceeded a
programmable limit of 20 (set in autoexec.net with the “tcp retries” command), causing NOS to
terminate the transfer. As noted above, we did not include failures to link in our transfer
success ratios. For compressed nighttime SMTP transfers, 122 transfer attempts resulted in
ARQ links, four of which timed out before the message got through. This led to a transfer
success ratio of 118/122 or approximately 97 percent, typical of a properly designed ARQ
protocol used with the robust MIL-STD-188-110A modem on HF links.

The second through fourth lines summarize statistically our attempts to adapt the TCP MSS
and window sizes, along with the modem data rate to current channel conditions. The second
line can be interpreted to mean that we chose a segment size of 432 most of the time and
segment sizes of 216 or 864 most of the rest of the time. This is at odds with some
recommendations of the “best” segment size to use on HF channels, but it should be kept in
mind that we had the freedom to vary our segment sizes between transfers. For most users this
is not an option. They will probably use a standard E-mail or FTP client and have no access to,
or knowledge of, TCP configuration parameters. For them, a “recommended” segment size
around 200 may still be the best choice.

33

Our average baud rate of around 1400 bps with its relatively small standard deviation shows
that we operated most of the time at 1200 bps. Attempts to react to poor channel conditions by
dropping the data rate to 300 bps or lower rarely led to good results (throughput was either very
low or the attempt failed). This may be a reflection of the observation that when conditions are
very poor they are often changing very rapidly and a protocol like FED-STD-1052, NATO
STANAG 5066, Clover or Pactor-II that can adjust key protocol parameters during rather than
just between transfers will usually perform better than the standard TCP stack.

Note that we rarely changed the interleaver depth to long (4.8 seconds) since that rarely
seemed to raise throughput or lower the transfer failure rate. However, since we made no
systematic study of “optimal” interleaver settings in our experiments, this should not
necessarily be taken as a recommendation for NOS operation over HF. (Other protocols like
FED-STD-1052 frequently change the interleaver, but they adapt their settings during and not
just between transfers.)

The fifth through seventh lines show the average message file size (about 21,000 bytes or
five pages of text) and average number of bytes that had to be resent during transfers. In this
case, about a third of each compressed message had to be resent because of bit errors too
numerous to be corrected by the modem’s built-in error-decoder. The large standard deviation
of the fraction of each message that had to be resent (33 percent) is further evidence of the
variability of the NVIS channel. Compressed messages of this mean size took between six and
seven minutes to transmit on average.

35

Section 8

Summary of Point-to-Point Performance Results

The results of our NVIS tests of TCP/IP (as of April 1999) are summarized in Tables 1 and
2 below. They correspond to SMTP and FTP throughput and are divided into day and
nighttime performance, each of which is sub-divided into uncompressed and compressed
performance. The first column in each table gives the average throughput and its standard
deviation, the average throughput per Hz, the standard deviation of the mean throughput and
the maximum observed throughput. The second column gives the number of transfers and the
probability in percent of successful transfer [P(good xfer)] in each case. The third column
gives the mean and standard deviation of the resent fraction for each transfer category. The
fourth column gives the mean and standard deviation of the transfer time in seconds and the
fifth column the average number of bytes in the original, uncompressed message files.

The average message-file size for all of our transfers was about 20,000 bytes. This is
roughly the “optimal” size for throughput comparisons, in the sense that this size involves a
large enough ratio of information content to average protocol overhead to produce almost
maximal average throughput without wasting test time on larger files that achieve only
marginal improvements in throughput (see Section 4).

In the case of compressed transfers (such as ours) that rely on NOS’s built-in LZW
compression algorithm, DOS memory-allocation methods led to memory overflow for files
larger than around 40k bytes, so that is apparently the upper limit on file size for transfers using
the applications built into NOS. However, using its FTP application, NOS can transfer binary
files compressed off-line by other applications, and the size of such files is limited only by the
storage capacity of the computers running NOS. Mail clients and servers that allow
attachments (Eudora, Netscape, etc.) can also be interfaced with NOS in the manner shown
below to allow transfer of large compressed message files.

Table 1 (SMTP) shows that the inherent (no compression used) over-the-air average
throughput of NOS TCP/IP for SMTP (E-mail) transfers on our links was about 42 cps during
the day and 55 cps at night. The standard deviations of these mean throughputs are about 2 cps,
giving us high confidence that additional measurements made under the same conditions would
yield nearly the same mean throughputs.

That the nighttime average throughput in this case is somewhat higher than the
corresponding daytime throughput is probably caused by channel differences that are in turn a
reflection of test scheduling limitations. Many of our uncompressed nighttime SMTP transfers
took place in the evening before the arrival of foreign broadcast interference, and during
periods when our chosen operating frequency was close to the optimal operating frequency.
The corresponding daytime tests covered the day more evenly and were thus often exposed to

36

D-layer absorption at mid-day. This may have led to the better nighttime performance for
SMTP uncompressed transfers. Tests with protocols that more easily allow one to schedule
transfers that run all night suggest that average nighttime performance is generally lower than
daytime performance.

Average throughput for compressed SMTP (E-mail) transfers on our links was about 67 cps
during the day and 63 cps at night. The standard deviations of these mean throughputs are also
about 2 cps. The fact that the compressed throughputs are only about 20 to 50 percent larger
than the uncompressed ones (one might expect them to be around 100 percent larger) is due to
a combination of channel differences, the extra time taken for the exchange of compression
information between the sending and receiving stations and time taken by the stations to
perform the frame-by-frame message compression and decompression that are built into NOS.

Table 2 (FTP) shows that the uncompressed (using the binary or image mode) average
throughput of NOS for FTP was about 55 cps during the day and 53 cps at night. The standard
deviations of these mean throughputs are around two cps, about the same as for SMTP
transfers.

Average throughput for compressed FTP transfers was about 93 cps during the day and
105 cps at night, with standard deviations of these mean throughputs also about 2 cps. The
slightly higher night than day throughput is again probably an artifact of our test schedule, and
all-night testing may have produced a different result. Note that the compressed throughputs
for FTP are now about twice the uncompressed ones. This is due in part to the fact that our
FTP transfer times do not include session-establishment time. It is possibly also due to more
efficient exchange of compression information between the sending and receiving stations in
the FTP mode than in the SMTP mode.

The probability of correct message reception was above 90 percent in all cases. This is
typical of adaptive ARQ protocols for HF, and was achieved by NOS despite the fact that we
were adapted TCP/IP and modem parameters to channel conditions only between message
transfers. It should be kept in mind that in the case of FTP transfers our data apply only to the
transfer phase of TCP operation. Failed attempts to establish an FTP session (which
occasionally occur) are not included in our probability-of-success statistics. (SMTP
probabilities do include such failures since every one of our SMTP transfers began with
establishment of an SMTP session.)

The average fraction of each message that had to be re-sent by TCP’s (transport-layer)
ARQ protocol during our tests was between 20 and 30 percent. This reflects our adjustment of
parameters as channel conditions changed. This fraction would no doubt have been
significantly larger if the parameters had remained fixed.

37

Median throughputs (the 50th percentile of the measured throughput distribution and not
listed in the tables) were five to ten percent below average throughputs. This implies that
slightly more measurements lie below the means than above them, but the medians are close
enough to the mean throughputs to justify use of the latter as a performance index.

Maximum observed throughputs were between 122 and 154 cps for SMTP transfers and
between 118 and 219 cps for FTP transfers, depending on transfer mode and time of day.
These may be of some value in comparisons with other protocols but are not a good indication
of expected performance, since the NVIS channel rarely allows them to be achieved.

Table 1. Statistical Summary of HF NVIS SMTP Throughput Data

Xfer Mode E(thruput)
sd(thruput)
E(tput/Hz)
sd_mn(tput)
max_tput

No. Xfers

P(good xfer)

E(Resent
Frac.) (RF)
sd(RF)

E(xfer_tm)

sd(xfer_tm)

E(SIZE)

Uncompr.
Text Msg.
Day

42 cps
23 cps
0.015 cps/Hz

1.7 cps
122 cps

185

91%

19%

21%

577 s

356 s

19702

Compr.
Text Msg
Day

67 cps
30 cps
0.025 cps/Hz
2.2 cps
154 cps

179

92%

27%

32%

384 s

191 s

21191

Uncompr.
Text Msg
Night

55 cps
21 cps
0.020 cps/Hz

1.9 cps
133 cps

128

99%

15%

18%

421 s

198 s

20886

Compr.
Text Msg
Night

63 cps
24 cps
0.023 cps/Hz

2.2 cps
127 cps

118

97%

31%

33%

399 s

215 s

20991

38

Table 2. Statistical Summary of HF NVIS FTP Throughput Data

Xfer Mode E(thruput)
sd(thruput)
E(tput/Hz)
sd_mn(tput)
max_tput

No. Xfers

P(good xfer)

E(Resent
Frac.) (RF)
sd(RF)

E(xfer_tm)

sd(xfer_tm)

E(SIZE)

Uncompr.
Text File
Day

55 cps
32 cps
0.020 cps/Hz

2.5 cps
150 cps

161

94%

23%

28%

517 s

427 s

21725

Compr.
Text File
Day

93 cps
45 cps
0.034 cps/Hz
3.9 cps
219 cps

135

96%

25%

29%

296 s

209 s

21022

Uncompr.
Text File
Night

53 cps
24 cps
0.020 cps/Hz

2.0 cps
118 cps

141

93%

22%

19%

455 s

333 s

19891

Compr.
Text File
Night

105 cps
41 cps
0.039 cps/Hz

3.2 cps
218 cps

170

94%

21%

31%

237 s

151 s

21718

39

Section 9

NOS Performance in a Network

To assess some of the effects on performance of TCP/IP operation in HF networks, we ran
a number of tests involving uncompressed one-way FTP file transfers among more than two
stations. The main purpose of these tests was to assess the effects of contention and relaying on
throughput. Another purpose was to investigate the effects and appropriate settings of various
transport-layer (TCP) and link-layer (AX.25) parameters designed to deal with contention, or
the longer round-trip times encountered in relaying, or both, and to investigate rules of thumb
for setting such parameters in other NOS HF networks. Lack of the time required to carry out
network tests forced us to accept small sample sizes for our data (less than ten in some cases).
Our findings are therefore based on anecdotal evidence only. Readers will have to decide for
themselves whether the observed performance provides useful guidelines for configuration and
operation of other TCP/IP-based HF networks.

The tests involved

• Simultaneous FTP transfers from one station to two other stations,

• Simultaneous FTP transfers between two independent pairs of stations and

• File transfers from one station to a second station through a third relay station.

In each case we also ran occasional point-to-point transfers with the same parameter
settings as in the corresponding network tests to allow comparisons with performance in non-
networked conditions. Note that we did not run any tests of simultaneous FTP transfers from
two stations to a single third station. However, the observations from the second set of tests
may shed some light on that kind of operation.

All tests were run with serial-tone modem data rates of either 1200 or 600 bits per second
and short interleaver settings. Furthermore, all tests were run in the afternoon or early evening
in autumn, when propagation is normally good. TCP Window and maximum segment sizes
were set at 2592 and 216 octets at all stations and almost all of the transferred text files had a
size of 10k bytes. As observed above, these settings and this file size are not usually ones that
lead to highest throughput, but relative throughputs recorded in these experiments are more
important than absolute ones.

40

In the first set of tests, the single sending station opened two FTP sessions, one with each of
two recipients. In the second set of tests, each of two sending stations opened a single FTP
session to one of the remaining two stations in a four-station network. Here we caused one of
the two sending stations to start its transfer slightly after the start of the transfer of the other
sending station, since we view it as unlikely that stations in a four-station network would
normally start transfers at exactly the same time. Almost simultaneous starts still represent a
kind of worst case for contending transfers.

In the relaying tests, the NOS autoexec configuration files at two stations were set up to
force them to relay all traffic to each other through a third (relay) station (the commands that
accomplished this are listed below). Comparison data in this case came from one of the other
pairs of stations that were configured for point-to-point operations.

In network operations that involve contending stations, the link (AX.25)-layer slottime and
persist[ence] parameters play key roles in dealing with contention. The persist parameter (set
in the autoexec.net file with the command “dr0 persist,” and taking values between 0 and 255)
is used (in the driver software for the DRSI synchronous I/O card) to calculate the probability
that a sender will transmit a packet when it determines that the channel is clear. This
persistence probability Pp is calculated as (persist + 1)/256.

Any NOS station with data to transmit first checks the HF modem’s carrier-detect line for
an indication of a serial-tone preamble. As soon as NOS finds there is no carrier (that is, no
preamble has been detected), it waits for slottime x 10 ms and then begins transmitting data
with probability Pp. If the clock-based random number generator used in the DRSI driver
determines that NOS will not begin transmitting, then NOS waits another slottime x 10 ms and,
hearing no carrier, again begins transmitting its waiting data with probability Pp. This process
continues until transmission of the data finally occurs.

Making persist small at a station causes it to be less likely than otherwise to transmit
immediately when it has data to send and detects no carrier. Making slottime large causes a
longer wait than otherwise before a station with data generates a random number to decide
whether to transmit. Lowering persist or raising slottime at a station gives other stations in a
NOS network more channel time. Of course, a station that gives up that time must expect
lower average throughput.

The following table gives the throughput in octets (8-bit bytes) per second for four sets of
transfers from one sending station to two receiving stations, carried out on the same day
near 5 MHz. Each set of transfers comprises single puts (transfers) one after the other to each
receiving station for comparison, followed a few minutes later by simultaneous puts to both
stations starting at almost the same time. The table lists the addresses of the sending and
receiving stations, whether the transfer was single or simultaneous and the throughput in
bytes/s. In all cases the sender-modem transmission rate was 1200 bps and both receivers

41

transmitted their ACKs at 600 bps. The persist and slottime parameters at all three stations
were 176 and 180 (the defaults used in some Navy operations) and all stations set their maxwait
to 30000 (30 s). Note that although the sender does not contend with himself in the
simultaneous-transfer case, the two receivers do contend in the sending of their ACKs, so the
contention control parameters will play a role in determining performance in this case.

Table 3. FTP Transfers from One Station to Two Other Stations

TO FROM Sing/Simul Tput bytes/s

NFK MB1 Single 9

DER MB1 Single 15

NFK MB1 Simultaneous 5

DER MB1 Simultaneous 9

NFK MB1 Single 23

DER MB1 Single 21

NFK MB1 Simultaneous 7

DER MB1 Simultaneous 10

NFK MB1 Single 16

DER MB1 Single 19

NFK MB1 Simultaneous 5

DER MB1 Simultaneous Timed Out

NFK MB1 Single 15

DER MB1 Single 21

NFK MB1 Simultaneous 6

DER MB1 Simultaneous 7

42

The table shows that the throughput for the simultaneous transfers from MB1 to DER and
NFK was between about a third and half that recorded for single transfers. The fact that the
simultaneous-transfer throughputs were in some cases significantly smaller than half their
single-transfer values might be explainable by differences in the link qualities between the
sender and the two receivers, but the sample sizes are of course too small to allow one to make
stronger statements. Perhaps the most useful finding in this case is simply the confirmation that
NOS can perform simultaneous one-to-many transfers and that the throughput is probably
acceptable in some applications.

The next table gives the throughput from several sets of contending pairs of transfers.
These pairs involved a transfer from one sending station to one receiving station carried out
while a second sender independently transferred a file to a second receiving station. All
transferred files contained 10k bytes. The data were collected on four different days using the
same frequency near 5 MHz. With two exceptions (marked by asterisks) in which the senders
worked at 1200 bps, transmission rates at all stations were 600 bps. Both receiving stations had
persists of 176. The slottime at all four stations was 180 (= 1800 ms). Varying the slottimes
and maxwaits at sending stations in our network would have given us more leeway than
adjusting only persist in coping with congestion, but a study of this must be put off to another
time. Maxwaits were between 30 and 60 seconds for the four stations.

The table lists the addresses of the sending and receiving stations, the persist parameter at
the file-sending station, whether the transfer was single or simultaneous and the throughput in
bytes/s. (Simultaneous transfers are of course grouped in pairs in the table.) The notation
“(1st)” after a sender’s address indicates that the sender started his transfer a minute or so before
the other sender started.

We observed the following phenomena during these contending transfers: Generally
speaking, the station that started transferring first got all or most of its file through before the
station that started only slightly later. However, attempts to use the channel by the station held
off from transferring still lowered the throughput of the station that finished first. The
throughput of the sender that finished first was lowered to about two-thirds of the throughput
observed in the absence of contention.

Twice in our data, for reasons perhaps having to do with the vagaries of timing, both
stations shared the channel until they finished their transfers. However, this resulted in
significantly lower throughput than in cases when one station effectively seized the channel
until it was done.

Three times during simultaneous transfers one of the senders timed out. (The maximum
number of retries was set to 20 at all stations.) This almost never happens during single
transfers conducted at the time of day of these tests.

43

Lowering of the persist parameter at one of the senders to reduce contention had an
inconclusive effect on throughput. More data will have to be collected to make any
recommendations on appropriate persist and slottime settings.

The best advice we can derive from our experiments is to avoid contending transfers. If
they can’t be avoided, follow the conventional advice drawn from packet radio experience that
says to use as much variety in the setting of persist and slottime at potentially contending
stations as fairness requirements allow.

Table 4. FTP Transfers Between Two Independent, Contending Pairs of Stations

TO FROM TX Persist Sing/Simul Tput bytes/s
NFK MB2(1st) 255 Simultaneous 21
DER MB1 50 Simultaneous 20
NFK MB2* 255 Simultaneous 8
DER MB1(1st)* 50 Simultaneous Timed Out
NFK MB2 127 Simultaneous 6
DER MB1(1st) 127 Simultaneous 6
NFK MB2 127 Single 24
NFK MB2(1st) 127 Simultaneous 21
DER MB1 127 Simultaneous Timed Out
NFK MB2(1st) 20 Simultaneous 5
DER MB1 20 Simultaneous 8
NFK MB2 20 Simultaneous 9
DER MB1(1st) 20 Simultaneous 6
NFK MB2 20 Simultaneous 10
DER MB1(1st) 20 Simultaneous Timed Out
NFK MB2(1st) 20 Simultaneous 7
DER MB1 20 Simultaneous 11
NFK MB2 20 Simultaneous 4
DER MB1(1st) 20 Simultaneous 3
NFK MB2 20 Single 21
DER MB1 20 Single 17
NFK MB2 176 Simultaneous 10
DER MB1(1st) 60 Simultaneous 7
NFK MB2(1st) 176 Simultaneous 17
DER MB1 176 Simultaneous 22
NFK MB2 176 Simultaneous 8
DER MB1(1st) 176 Simultaneous 7
NFK MB2(1st) 60 Simultaneous 14
DER MB1 176 Simultaneous 11
DER MB1 176 Single 32

44

The last table gives the throughput from several sets of transfers using a relay. The relay
was set up for communications between MB2 and DER via NFK. It was set up by replacing
the normal default routing statements in MB2 and DER’s autoexecs (“route add der.mbpr.org
dr0” and “route add mb2.mbpr.org dr0”) with the statements

route add der.mbpr.org dr0 nfk.mbpr.org [at MB2] and

route add mb2.mbpr.org dr0 nfk.mbpr.org [at DER].

No contention from stations not involved in the relayed transfer took place. All transferred
files contained 10k bytes and the data were collected on three different days using the same
frequency near 3 MHz. Transmission rates at all stations were 600 bps. The persists and
slottimes of all three stations were 176 and 180 and all three stations had maxwaits of 60 or 65s.

Table 5. FTP Transfers Through a Relay Station

TO FROM Pt-Pt/Relay File Size Tput bytes/s

DER MB1 Pt-Pt 10k 30

DER MB2 Relay 10k 13

DER MB1 Pt-Pt 10k 24

DER MB2 Relay 10k 10

NFK MB1 Pt-Pt 10k 27

DER MB2 Relay 10k 13

DER MB1 Pt-Pt 10k 20

DER MB2 Relay 10k 10

DER MB1 Pt-Pt 10k 30

DER MB2 Relay 10k 12

DER MB1 Pt-Pt 10k 22

DER MB2 Relay 10k 14

DER MB1 Pt-Pt 20k 31

DER MB2 Relay 20k 11

45

The table lists the addresses of the sending and receiving stations, whether the transfer was
point to point or via relay, the file size and the throughput in bytes/s. As above, the point-to-
point transfers were also run to allow comparisons with non-relayed performance. (With one
exception, a transfer from MB1 to NFK, all the point-to-point tests were run from MB1 to
DER. MB1 is a few hundred yards from the relay initiator MB2.)

The table shows that relaying reduced throughput to between a third and a half of
comparable point-to-point throughput. In cases where the relayed throughput was significantly
less than half the point-to-point throughput, the difference may have been due to random
differences in link quality on the two legs of the relay path.

47

Section 10

Setup of Trumpet Winsock and the Pipe and Winpkt TSR
Shims for 32-bit Operation via NOS

Our approach to running IP-based, 32-bit Windows 95 applications via the 16-bit,
DOS-based NOS TCP/IP stack required installing a second 32-bit stack called Trumpet
Winsock (windows socket). Trumpet Winsock communicates with 32-bit applications in the
same way as the “native” Window 95 stack (Winsock.dll) does. However, Trumpet Winsock is
configurable via an ASCII setup file (trumpwsk.ini), whereas the native Winsock.dll appears to
be configurable only by editing the Windows 95/98 Registry. (It is not clear that the native
Winsock could be configured to communicate with NOS even with an understanding of the
Registry parameters that govern operation of the Winsock.dll.)

When IP-based applications are to be run over the internal Serial Line Internet Protocol
(SLIP) link between Trumpet Winsock and NOS, a batch file is run that replaces the native
Winsock.dll with Trumpet Winsock in the path the applications follow to find a TCP/IP socket.
When applications are to be run in the usual way over say the Ethernet, another batch file is run
that reverses this process. The applications then find and use the native Winsock. Figure 8
shows the flow of data between applications, Trumpet Winsock, the pipe and winpkt drivers
and NOS when such applications are run over a radio network. Trumpet Winsock is available
in several versions on the Internet (www.trumpet.com.au) for a small registration fee. We have
installed and used the 32-bit Version 3.0d.

Examples of the settings in the trumpwsk.ini file relevant to our network are:

ip=129.83.41.193 [IP “hardware” address of the DTE at this station. (The network ID part
of this address is “129,” corresponding to one of MITRE’s Ethernet
groups).]

netmask=255.255.255.0 [Distinguishes the network ID portions of IP addresses on this
network (the first three numerals) from the host ID (individual node)
parts (the last seven numerals).]

gateway=128.83.66.65 [NOS IP “radio” address of this station (the network ID part of
this address is “128,” corresponding to a notional radio network we use
for our tests)]

dns=128.83.66.65 [IP address of the domain name server for the 128 network]

domain=mbpr.org [domain name for this network: mitre bedford packet radio]

vector=61 [software interrupt vector; a “hook” to a pipe driver]

48

mtu=576 [MTU in bytes for internal TWinsock-NOS SLIP link]

rwin=2048 [TCP Receive Window in bytes for internal TWinsock-NOS SLIP link]

mss=512 [TCP MSS in bytes for internal TWinsock-NOS SLIP link]

The “gateway” and “dns” entries configure Trumpet Winsock to use JNOS as the gateway
and Domain Name Server for TCP/IP radio connections. The MTU, RWIN and MSS settings
for the internal SLIP link connecting Trumpet Winsock and NOS were chosen for acceptable
performance of IP-based applications over the radio network. The choice of these parameters
depends on the values of similar parameters chosen for the radio links controlled by NOS. The
choice of TCP parameters for radio links is an art rather than a science and will always be a
subject for further study. An annotated copy of one of our HF trumpwsk.ini files is shown in
Appendix A.

Windows 95
Applications

E-mail
ClientWeb Browser
FTP Client

Etc.

Trumpet
Winsock
TCP/IP
Stack

NOS
TCP/IP
Stack

HF
Modem

HF
Radio

Pipe/Winpkt
Drivers

32-Bit
Data

16-Bit
Data

TCP/IP Datagrams

AX.25
Frames

Audio

Figure 8. 32- and 16-Bit Data Flow at a Station in an IP-Based Radio Network

49

To get Trumpet Winsock to talk to NOS, two interface programs (“drivers”) are required.
These are called pipe.com (a “double ended packet driver”) and winpkt.com (a windows packet
driver). These programs are loaded into system memory to run as terminate-and-stay-resident
(TSR) applications.

The two-sided pipe.com packet driver provides two data channels (a so-called “wormhole”)
between two programs (NOS and Trumpet Winsock). It is invoked with the following “attach”
command placed in the basic autoexec.net file for NOS:

attach packet 0x60 pipe 3000 6000

This command attaches the pipe driver at software interrupt vector 60, and gives it a buffer
size of 3000 octets (bytes) and an MTU of 6000 octets. The parameters of the pipe interface
are set up below the attach command in the autoexec.net file. These are (“ifc” = ifconfig
specifies the command as one that configures an interface)

ifc pipe tcp mss 216

ifc pipe tcp win 2592

ifc pipe tcp maxwait 60000

The mss and win have been described above. Maxwait is the time in milliseconds NOS will
wait for an acknowledgment of a packet over this interface before re-sending it.

The winpkt.com driver is loaded into memory as a TSR program. Commands in the
trumpwsk.ini and NOS autoexec.net configuration files that call out the same memory address
allow the Trumpet Winsock and NOS stacks to “see” the areas of memory that are occupied by
the winpkt and pipe drivers. This allows the two stacks to use these drivers for the internal
SLIP link over which they talk to each other.

51

Section 11

Addressing and Routing in an HF Network

Each station in an AX.25 network such as our HF NVIS network requires an AX.25
callsign/hardware address. These callsigns are used for identification during AX.25
connections. (NOS IP datagrams are encapsulated in AX.25 frames by NOS itself.) Every data
packet that goes out over the air is labeled with the AX.25 callsigns of the sending and
receiving stations and their IP addresses. In the syntax of the NOS autoexec file, the AX.25
callsign “mb1” is entered with the command

ax25 mycall mb1

The use of two stacks in our implementation of the interface between 32-bit applications
and NOS requires that two IP addresses be used by each HF station: a NOS (“radio”) address
and a “Windows address” associated with the Windows applications that communicate directly
with Trumpet Winsock. An example of a NOS IP address and its associated “host name”
(taken from the NOS autoexec file at “mb1”) is

ip address 128.83.66.45

hostname mb1.mbpr.org

This IP address is a member of the 128-subnet. The host name is prefixed by the AX.25
callsign and has the domain name associated with the subnet as its suffix. The domain name in
our closed-network tests was mbpr.org, the domain name used for a mitre bedford packet radio
network. Hostnames are used in E-mail addressing and to look up IP addresses in the “host
files” that domain name servers consult to associate aliases (host names) with IP addresses.

In most of our tests we route all traffic directly to the synchronous (dr0) interface card that
communicates with the serial-tone modem. This is done by putting the command

route add default dr0

in all of our NOS autoexecs. If we wanted to use a particular node as a relay for all traffic—the
one with callsign DER in Derry, N.H., for example—we would replace this command with the
command “route add default dr0 der.mbpr.org” in their autoexecs. The two commands above
are sufficient to address a TCP/IP station that uses only NOS and related DOS applications.
However, since we wish to run Windows 95/98 applications using a two-stack approach, we
require more complicated addressing.

The following autoexec (or directly entered) command assigns the “Windows address”
129.83.41.193 to the corresponding DTE:

route add 129.83.41.193 pipe

52

(This address belongs to the set of those used on the firewall-protected MITRE Ethernet.
This notional example would thus correspond to a radio network that—if authorized—could
allow an HF net member to be connected to the internal MITRE desktop network.) The
assigned address is the one that will be used by IP-based Windows applications installed in the
local DTE when they communicate with their counterparts running on DTEs at other stations.
The command says further that the pipe TSR program (pipe.com) is the interface NOS is to use
when routing incoming datagrams to the corresponding Windows application(s).

The command below is the last one needed for basic connectivity for Windows applications
in a simple HF network. It is part of TCP/IP’s Address Resolution Protocol (ARP) and is
required to establish how stations that need to reach Windows applications at other stations
should do so.

arp publish 129.83.41.193 ax25 mb1 dr0

The address resolution process maps addresses of different forms (for example, those from
Ethernet and IP networks) to each other. In the case of TCP/IP, the ARP dynamically maps
“hardware addresses” used by various networks (e.g., Ethernet or AX.25 addresses) to 32-bit
IP-addresses. The command above maps the IP address 129.83.41.193 to the AX.25 link layer
hardware address mb1. Stations that want to get application data to the address 129.83.41.193
need only send it to the AX.25 address mb1, which knows how to get it to 129.83.41.193
(namely, through the pipe). Resolution can be local or in response to requests. For example,
the ARP publish command

arp publish 129.83.46.68 ether 00:10:4b:7b:9a:98 pk0

would allow responses to Ethernet members’ requests for information on how to get datagrams
to an HF net member with Windows IP address 129.83.46.68 (“use the Ethernet hardware
address 00:10:4b:7b:9a:98 via the pk0 port”). The command

arp publish 44.56.8.103 ether 00:10:4b:7b:9a:98 pk0

would allow responses to Ethernet members’ requests for information on how get to an HF net
member with ham-radio-net IP address 44.56.8.103 (“use the Ethernet hardware address
00:10:4b:7b:9a:98 via the pk0 port”).

In our Trumpet-Winsock-NOS configurations, NOS resolves hardware addresses by ARP-
publishing hardware-to-IP-address correspondences at HF stations. The command

arp publish 129.83.41.193 ax25 mb1 dr0

referred to above is in the autoexec at the HF station with AX.25 callsign mb1. This command
announces to other interfaces that applications using the Windows IP address 129.83.41.193 are
associated with the AX.25 (radio) callsign mb1 via the dr0 (synchronous DRSI-card) port.

53

Section 12

Running 32-bit Applications over the HF NVIS Network

In this section we describe the main events that occur when an application running on a
DTE on a platform communicates with a corresponding application running on a DTE on
another platform. The second DTE will generally be at another HF station (where it hosts
another user application like an E-mail client) or it may be on a non-radio platform acting as a
DNS server or a gateway/router. Our approach will be to discuss the actions taken by the
user(s) and those performed automatically by servers or routers between them. Excerpts from
NOS “trace files” will be shown to illustrate what’s happening at various OSI layers as the
DTEs, servers and routers interact with each other.

12.1 A PING Example
We start with perhaps the simplest stack operation, a “ping” sent from one HF station to

another without intervening relay. In this example, NOS itself (rather than a separate
application) will do the pinging, so no discussion of 32-bit applications is needed.

Pinging, whose operation is governed by the Internet Control Message Protocol (ICMP),
involves sending a packet of user-specified length to another user-stack with a request that the
packet be acknowledged with a packet of the same size. If the acknowledgment is received, the
protocol calculates and displays the ping’s round-trip time. An option of displaying and
recording statistics from scheduled pings may also be exercised from the NOS command
prompt.

Pinging is especially useful in radio applications when channel or congestion conditions
make links unreliable and one wants to check if signals are propagating on a link and how long
they take to be received (“echoed”) when they are propagating. (This time includes both
transmission and processing delays.) We have also found it to be crucial in understanding how
various HF and other stations use the Address Resolution Protocol to discover routes to stations
in other networks.

In our HF network pings can be sent from the command line of NOS or from various
software packages designed to monitor network performance. We do most of our pinging from
NOS itself.

As an illustration, consider pings sent using NOS from one HF station to another when the
sender knows the hardware address of the recipient. To monitor the flow of ICMP datagrams

54

that occur in this situation we turn on the “trace” function of NOS. Tracing allows us to view
(and if desired, record to a file) all or part of each AX.25 packet sent and received on most of
the interfaces NOS has been configured (with “attach” commands) to use. The traced packets
are labeled with the sender’s and receiver’s AX.25 and IP addresses and with the acronyms of
the protocols being employed in the exchange (AX.25, ARP, ICMP, TCP, etc.).

The following traced packets show AX.25 callsign MB1 (Bedford, Mass.) PINGing
callsign NFK (Norfolk, Mass.) over an HF link. MB1 was sending at a modem information
rate of 1200 bps with a short (0. 6 second) interleaver and NFK was sending at 600 bps with a
short interleaver. Notable parts of the exchange have been highlighted in boldface. Before
pinging, MB1 has entered the command “arp add 128.83.66.46 ax25 nfk dr0” into his
autoexec.net. This tells his version of NOS that the AX.25 hardware address NFK corresponds
to the IP “radio” address 128.83.66.46.

Fri Sep 17 19:55:26 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 32 128.83.66.45->128.83.66.46 ihl 20 ttl 254 prot ICMP
ICMP: type Echo Request id 65535 seq 0
0000 O\..

Fri Sep 17 19:55:33 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 32 128.83.66.46->128.83.66.45 ihl 20 ttl 254 prot ICMP
ICMP: type Echo Reply id 65535 seq 0
0000 O\..

Note that the ping has been returned in about seven seconds. The next four traced packets
show what happens when MB1 pings NFK without knowing the hardware address (NFK) that
corresponds to the IP address 128.83.66.46.

Fri Sep 17 19:54:48 1999 - dr0 sent:
AX25: MB1->QST UI pid=ARP
ARP: len 30 hwtype AX.25 prot IP op REQUEST
sender IPaddr 128.83.66.45 hwaddr MB1
target IPaddr 128.83.66.46 hwaddr

Fri Sep 17 19:54:54 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=ARP
ARP: len 30 hwtype AX.25 prot IP op REPLY
sender IPaddr 128.83.66.46 hwaddr NFK
target IPaddr 128.83.66.45 hwaddr MB1

55

Fri Sep 17 19:54:54 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 32 128.83.66.45->128.83.66.46 ihl 20 ttl 253 prot ICMP
ICMP: type Echo Request id 65535 seq 0
0000 ;...

Fri Sep 17 19:55:01 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 32 128.83.66.46->128.83.66.45 ihl 20 ttl 254 prot ICMP
ICMP: type Echo Reply id 65535 seq 0
0000 ;...

Note that in this case, before he can ping NFK, MB1 must first send an ARP request (a
“QST” or broadcast call) to it to find out the hardware-to-IP-address correspondence there.
Since ARP packets are about as long as the default ping size, the need for an ARP request
roughly doubles the roundtrip time (now about 13 seconds) of the first ping to NFK. (Once
NFK has been “ARPed,” MB1’s NOS remembers the ARP information obtained with the ARP
request and subsequent pings will take about half the time of the first one so long as NOS is
running.)

12.2 An FTP Example
Our second example is more complicated than pinging: a file transfer from a Windows 95

FTP client (WS_FTP.exe) running at MB1 to the NOS FTP server at NFK. This will involve
use of the pipe TSR between the 32-bit WS_FTP application and the 16-bit NOS stack at MB1
and the synchronous dr0 ports for the AX.25 packet radio link. Since the associated trace
record in this case is several pages long, we will give only a narrative of the significant events
recorded in it. This will leave out most of the activity on the pipe utility that connects the
Trumpet Winsock and JNOS stack via the internal SLIP link, since pipe activity generally
mirrors radio-link activity. Notable parts of the exchange have again been highlighted in
boldface. Numbers that preface certain announcements, like the “230” in “230 w1imm logged
in” are standard labels for FTP events and are generated by the FTP protocol.

The HF user at Bedford (hardware address 129.83.41.193, radio address MB1) initiates the
transfer by launching his WS_FTP client application and requesting a connection to NFK (IP
address 128.83.66.46). MB1 advertises a window of 2048 octets and an MSS of 512 octets.
(Data on the server have already been entered into the user’s WS_FTP client application).

Fri Sep 17 21:05:43 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 44 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1052->21 Seq x70560000 SYN Wnd 2048 MSS 512

56

NFK responds, advertising a window of 2592 and an MSS of 1296:

Fri Sep 17 21:05:58 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 44 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c5000 Ack x70560001 ACK SYN Wnd 2592 MSS 1296

Soon the pipe passes NFK’s FTP log-on notification to MB1’s FTP client:

Fri Sep 17 21:06:00 1999 - pipe sent:
serial line IP: len: 136
IP: len 136 128.83.66.46->129.83.41.193 ihl 20 ttl 253 prot TCP
TCP: 21->1052 Seq x512c5001 Ack x70560001 ACK PSH Wnd 2592 Data 96
0000 220- nfk.mbpr.org, JNOS FTP version 1.10m/JNOSC (8088)..220 Rea
0040 dy on Fri Sep 17 21:05:32 1999..

The user at MB1 (w1imm) sends his user name:

Fri Sep 17 21:06:00 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 52 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1052->21 Seq x70560001 Ack x512c5061 ACK PSH Wnd 2048 Data 12
0000 USER w1imm..

and then his password in response to the corresponding prompt from NFK passed up by the
pipe:

Fri Sep 17 21:06:18 1999 - pipe recv:
serial line IP: len: 53
IP: len 53 129.83.41.193->128.83.66.46 ihl 20 ttl 60 prot TCP
TCP: 1052->21 SeK->MB1 UI pid=IP
IP: len 64 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c5061 Ack x7056000d ACK PSH Wnd 2592 Data 24
331 Enter PASS command..

NFK compares w1imm’s user name and password with a table of authorized users and their
passwords and tells MB1 that w1imm is logged onto the NFK FTP server:

57

Fri Sep 17 21:06:26 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 61 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c5079 Ack x7056001a ACK PSH Wnd 2592 Data 21
3. 230 w1imm logged in..

w1imm asks NFK for the name of its current directory (PWD = “print working directory”):

Fri Sep 17 21:06:36 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 45 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1052->21 Seq x70560027 Ack x512c50a5 ACK PSH Wnd 2048 Data 5
00 PWD..

NFK responds:

Fri Sep 17 21:06:45 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 70 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c50a5 Ack x7056002c ACK PSH Wnd 2592 Data 30
3. 257 "/" is current directory..

w1imm’s WS_FTP application automatically—and wastefully on a narrowband radio
channel—asks for a listing of the current FTP directory:

Fri Sep 17 21:06:54 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 46 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1052->21 Seq x70560045 Ack x512c50da ACK PSH Wnd 2048 Data 6
00 LIST..

NFK begins sending the 4626 bytes of the listing:

Fri Sep 17 21:07: NFK->MB1 UI pid=IP
IP: len 93 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c50da Ack x7056004b ACK PSH Wnd 2592 Data 53
0000 150 Opening data connection for LIST / (4626 bytes)..

58

The data begin to arrive in segments of 512 octets and are passed up the pipe to WS_FTP:

Fri Sep 17 21:07:32 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 552 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 20->1053 Seq x62bf9001 Ack x9fd70001 ACK Wnd 2592 Data 512
0000 3comdr~1/ 12:05 8/09/98 acrobat3/
0040 8:19 8/13/97..atlas5/ 11:54 8/22/98 aurora
0080 .zip/ 7:58 9/18/97..autoexec.nav al line IP: len: 44
IP: len 44 129.83.41.193->128.83.66.46 ihl 20 ttl 60 prot TCP
TCP: 1053->20 Seq x9fd70000 Ack x62bf9001 ACK SYN Wnd 2048 MSS 512

About five minutes later (in channel conditions that caused some repeats) the listing has arrived:

Fri Sep 17 21:12:21 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 58 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c510f Ack x7056004b ACK PSH Wnd 2592 Data 18
0000 226 File sent OK..

w1imm now asks NFK to switch to its FTP current working directory (c:\temp) and list its
contents (865 octets):

Fri Sep 17 21:19:30 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 50 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1052->21 Seq x7056004b Ack x512c5121 ACK PSH Wnd 2048 Data 10
00 CWD temp..

Fri Sep 17 21:20:02 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 96 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c517c Ack x70560079 ACK PSH Wnd 2592 Data 56
00 150 Opening data connection for LIST /temp (865 bytes)..

The listing gets sent in one transmitted window and is ACKed 18 seconds later:
Fri Sep 17 21:20:20 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 58 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c51b4 Ack x70560079 ACK PSH Wnd 2592 Data 18
0000 226 File sent OK..

59

After receiving the listing, w1imm decides to send the text file “file.2k” to NFK. (The
command to do this is sent from the GUI to the local WS_FTP application and does not appear
as such in the traced data.)

WS_FTP will send this file in binary (“Image”) mode and the stations negotiate this:

Fri Sep 17 21:29:39 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 48 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1052->21 Seq x70560079 Ack x512c51c6 ACK PSH Wnd 2048 Data 8
0000 TYPE I..

Fri Sep 17 21:29:46 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 55 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c51c6 Ack x70560081 ACK PSH Wnd 2592 Data 15
00 200 Type I OK..

The transfer begins:

Fri Sep 17 21:30:02 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 93 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 21->1052 Seq x512c51ec Ack x705600a8 ACK PSH Wnd 2592 Data 53
00 150 Opening data connection for STOR /temp/file.2k ..

and the first segment of text data is sent via the pipe and ACKed:

Fri Sep 17 21:30:26 1999 - pipe recv:
serial line IP: len: 552
IP: len 552 129.83.41.193->128.83.66.46 ihl 20 ttl 60 prot TCP
TCP: 1055->20 Seq x60810001 Ack xb3b7f001 ACK Wnd 2048 Data 512
0000 Agamemnon, Vis-.-vis.[6.3.95]..I have always believed in the lit
0040 eral truth of the Trojan War; my strong belief in Homer and trad
0080 ition has never been shaken by modern critics, and I thank this
00c0 belief for the discovery of Troy [A similar belief] led
0100 me to the discovery of the five graves [at Mykenai] with their
0140 outstanding treasures. -Heinrich Schlie
TCP: 1055->20 Seq x60810000 Ack xb3b7f001 ACK SYN Wnd 2048 MSS 512

60

Fri Sep 17 21:30:26 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 40 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 20->1055 Seq xb3b7f001 Ack x60810001 ACK Wnd 2592

The file gets sent and w1imm closes the FTP connection with a QUIT command that receives
an ACK via the pipe:

Fri Sep 17 21:35:02 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 46 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1052->21 Seq x705600c1 Ack x512c526a ACK PSH Wnd 2048 Data 6
00 QUIT..

Fri Sep 17 21:35:08 1999 - pipe sent:
serial line IP: len: 54
IP: len 54 128.83.66.46->129.83.41.193 ihl 20 ttl 253 prot TCP
TCP: 21->1052 Seq x512c526a Ack x705600c7 ACK PSH Wnd 2592 Data 14
0000 221 Goodbye!..

The client and server negotiate closing of the FTP session and the MB1 FTP client resets
(closes) the TCP socket connection via the pipe:

Fri Sep 17 21:35:18 1999 - pipe recv:
serial line IP: len: 40
IP: len 40 129.83.41.193->128.83.66.46 ihl 20 ttl 60 prot TCP
TCP: 1052->21 Seq x705600c8 RST Wnd 0

12.3 An E-mail Example
We conclude our examples with a complete E-mail exchange between a Windows 95

Eudora POP client at one of our HF stations and a NOS E-mail POP server running at a second
station. The associated trace record in this case is also many pages long so we again present
only a narrative of what the trace file has recorded. Furthermore, the narrative highlights only
the most significant events in the trace, leaving out most of the packets traced on the pipe
interface.

The HF user at MB1 starts the exchange by composing and sending at the Eudora GUI a
message to anapol@129.83.66.46 (NFK’s IP address). This launches via the pipe and NOS a
connection request (SYN packet) to NFK in whose header the SMTP (E-mail) protocol is
specified. NFK responds via the pipe with confirmation of the request:

61

Fri Sep 17 20:33:37 1999 - pipe sent:
serial line IP: len: 69
IP: len 69 128.83.66.46->129.83.41.193 ihl 20 ttl 253 prot TCP
TCP: 25->1049 Seq x76faf001 Ack xe2610001 ACK PSH Wnd 2592 Data 29
0000 220 nfk.mbpr.org SMTP ready..

MB1 sends Eudora log-on information:

Fri Sep 17 20:34:34 1999 - pipe recv:
serial line IP: len: 71
IP: len 71 129.83.41.193->128.83.66.46 ihl 20 ttl 60 prot TCP
TCP: 1049->25 Seq xe261003e Ack x76faf05b ACK PSH Wnd 2048 Data 31
00 RCPT TO:<anapol@129.83.66.46>..

and NFK ACKs it:

Fri Sep 17 20:34:44 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 48 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 25->1049 Seq x76faf05b Ack xe261005d ACK PSH Wnd 2592 Data 8
00 250 Ok..

MB1 sends via the pipe and NOS a Eudora-generated header containing the addressee
anapol@129.83.66.46, the message subject (“Autoexec”), and the encoding type (MIME):

Fri Sep 17 20:34:52 1999 - pipe recv:
serial line IP: len: 552
IP: len 552 129.83.41.193->128.83.66.46 ihl 20 ttl 60 prot TCP
TCP: 1049->25 Seq xe2610063 Ack x76faf07f ACK Wnd 2048 Data 512
0000 Message-Id: <3.0.5.32.19990917203320.007d2e60@128.83.66.46>..X-S
0040 ender: anapol@128.83.66.46 (Unverified)..Disposition-Notificatio
0080 n-To: <anapol@128.83.66.46>..X-Mailer: QUALCOMM Windows Eudora P
00c0 ro Version 3.0.5 (32)..Date: Fri, 17 Sep 1999 20:33:20 -0500..To
0100 : anapol@129.83.66.46..From: Weeper <anapol@128.83.66.46>..Subje
0140 ct: Autoexec..Mime-Version: 1.0..Content-T4:52 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 40 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1049->25 Seq xe2610063 Ack x76faf07f ACK Wnd 2048

62

MB1 now sends the first data segment of the attached autoexec.net file (the numbered lines
contain message data and the “====” line has been manufactured by Eudora):

Fri Sep 17 20:34:52 1999 - dr0 sent:
AX25: MB1->NFK UI pid=IP
IP: len 552 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1049->25 Seq xe2610263 Ack x76faf07f ACK Wnd 2048 Data 512
0000 ii"....See attached file..--=====================_937636400==_..
0040 Content-Type: text/plain; charset="us-ascii"....# AUTOEXEC
0080 .NET setup file for HF NVIS at MB1 4.8.99 ..#..# Miscellaneous
00c0 setup **..# 286/386 clo
0100 ck..isat yes..# dump/session.log..log 1
0140 ..watch off..memory thresh 14336..memory ibufsizeup file for HF
NVIS at MB1 4.8.99 ..#..# Miscellaneous
00c0 setup **..# 286/386 clo
0100 ck..isat yes..# dump/session.log..log 1
0140 ..watch off..memory thresh 14336..memory ibufsize
0180 3000..#..# Set up domain defaults *****************************
01c0 **********..domain cache size 50..domain suffix none..domain ret
.
.
.

About two minutes later NFK ACKs receipt of the message:

Fri Sep 17 20:37:09 1999 - dr0 recv:
AX25: NFK->MB1 UI pid=IP
IP: len 50 128.83.66.46->129.83.41.193 ihl 20 ttl 254 prot TCP
TCP: 25->1049 Seq x76faf07f Ack xe26112df ACK PSH Wnd 2592 Data 10
00 250 Sent..

and closes the connection (SMTP session):

Fri Sep 17 20:37:17 1999 - pipe sent:
serial line IPpid=IP
IP: len 46 129.83.41.193->128.83.66.46 ihl 20 ttl 59 prot TCP
TCP: 1049->25 Seq xe26112df Ack x76faf089 ACK PSH Wnd 2048 Data 6
00 QUIT..

63

which it then resets:

Fri Sep 17 20:37:18 1999 - pipe recv:
serial line IP: len: 40
IP: len 40 129.83.41.193->128.83.66.46 ihl 20 ttl 60 prot TCP
TCP: 1049->25 Seq xe26112e5 RST Wnd 0

65

Section 13

Interfacing a NOS HF Network to a LAN

To configure our HF network for operation with another network requires appropriate
hardware and driver software for the interface to the other network. If the other network is an
Ethernet, for example, this would typically be done by installing an Ethernet card and driver in
a DTE at at least one of the HF stations, which would then serve as a gateway to the Ethernet
for the rest of the HF network.

Operating such a card with NOS requires a DOS-based Ethernet driver. DOS-format
drivers for many, but not all, hardware interfaces to NOS are available on the Internet. We
normally configure a NOS batch file (nosstrt.bat) to activate a DOS driver on a DTE as a TSR
with a specified software interrupt.

It should be noted that since NOS will invoke the driver, setup of the latter requires that its
software be in a format suitable for DOS drivers, rather than Windows 95/98 plug-and-play
(“have disk”) drivers.

13.1 Connecting the HF Network to the Ethernet

To attach an interface in NOS at a station that can also communicate with an Ethernet LAN,
a command like the following is entered into the corresponding NOS autoexec.net file:

attach packet 0x65 pk0 10 1500

This command attaches a packet driver at memory address 65, gives it the label “pk0,”
allows up to 10 packets in the receive buffer and sets the MTU on the corresponding port to
1500 octets (the standard Ethernet packet value). Note that the capacity assigned to the receive
buffer on an Ethernet interface is measured in packets, not bytes.

The Ethernet interface (for example, at an HF Ethernet gateway station) is configured with
commands like the following:

ifconfig pk0 ipaddress 129.83.46.108
ifconfig pk0 tcp mss 1460
ifconfig pk0 tcp win 14600
ifconfig pk0 tcp retries 3
ifconfig pk0 tcp blimit 10
ifconfig pk0 tcp maxwait 100
ifconfig pk0 tcp irtt 1000

66

Most of these are analogous to the parameters for other IP-carrying interfaces and have the
same meanings. Note, however, that the Ethernet interface gets its own IP address since IP
addresses for each “network adapter” (NOS I/O port) must be distinct. (Since IP addresses
identify “hardware devices” on a network, each device needs its own IP address.)

This means that an HF-to-Ethernet gateway running 32-bit applications must be assigned
three IP addresses: a “radio-network” address (like the 128.83.66.45 in the NOS-setup example
above), a Trumpet Winsock “software” address (like the 129.83.41.193 in the example
trumpwsk.ini file discussed in Appendix A) and an additional IP address (like the sample
address 129.83.46.108 listed above) assigned to the pk0 Ethernet port. (HF net members that
aren’t gateways require only the first two types of IP addresses if they are not running 32-bit
applications.) Note that we have set the MSS above equal to 40 less than the MTU to account
for the 20 bytes of IP and 20 bytes of TCP header in each segment.

The following commands resolve (“ARP”) the gateway’s Windows address
(129.83.41.193) and the gateway’s Ethernet port address (129.83.46.108) into the Ethernet
hardware address assigned to the gateway’s Ethernet card (e.g., 00:10:4b:7b:9a:98):

arp publish 129.83.41.193 ether 00:10:4b:7b:9a:98 pk0
arp publish 129.83.46.108 ether 00:10:4b:7b:9a:98 pk0

These commands configure NOS to tell other DTEs on the Ethernet how to reach the two
gateway stacks when those DTEs send an ARP request asking for that information.

Connecting to another network also requires addition of appropriate addressing and routing
commands to the NOS autoexec files of the HF stations that want to talk to that network.
Normally, all stations would gain access to the other network through an HF gateway/router.
In the case of the Ethernet, NOS itself can serve at one or more stations as such a
gateway/router for an HF network.

The following examples of routing commands for the HF gateway’s NOS autoexec show
various ways of setting up the DTE that could function as a gateway to the MITRE Ethernet:

Send all 129.x.x.x IP traffic to the MITRE Ethernet gateway at 129.83.46.254:

route add 129/8 pk0 129.83.46.254

Send all IP traffic to the MITRE gateway at 129.83.46.254:

route add default pk0 129.83.46.254

67

Send all 129.x.x.x IP traffic out the Ethernet port (pk0) to a private Ethernet that requires no
gateway:

route add 129/8 pk0

Send all IP traffic to a private Ethernet that requires no gateway:

route add default pk0

The following gateway commands ARP publish a MITRE Domain Name Server (DNS) at IP
address 129.83.20.100 and a MITRE Web (WWW) Server at IP address 129.83.11.40.

arp publish 129.83.20.100 ax25 mb1 dr0
arp publish 129.83.11.40 ax25 mb1 dr0

The first command would allow HF stations to use an HF gateway to get to a MITRE
domain name system (DNS) for sending E-mail to MITRE accounts. The second would allow
HF stations to log onto a MITRE internal website.

For further details and some diagrams of data flow in an IP-based radio network connected
to an Ethernet or other LANs, see our report on experimentation with an IP-based
communications appliqué for the ARC-164 UHF HAVE QUICK radio (Reference 5).

69

Section 14

Findings

In this report we have described the installation, setup, operation and performance of the
standard NOS TCP/IP protocol stack over HF near-vertical-incidence-skywave radio channels.
We have also described the installation and setup of software that allows 32-bit Windows 95
applications such as E-mail clients to run over HF links via NOS. Both types of
implementation use inexpensive COTS hardware, standard COTS application software
(Eudora, WS_FTP, etc.) and the DOS-based shareware NOS stack that manages routing and
interfacing to other networks. NOS is configurable via an ASCII autoexec.net file and various
versions of its C source code are widely available.

In our on-air point-to-point testing we emphasized suitable choices of radio or protocol
parameters (including operating frequency), and good manual adjustment of TCP and modem
parameters between message transfers, in an attempt to achieve high throughput in the face of
varying HF channel conditions. Such parameter adjustments are often desirable on radio
channels to offset the effects of TCP’s response to channel-induced packet corruption as if it
were channel congestion. The most important parameters to be adjusted dynamically for HF
NVIS channels appear to be the TCP maximum segment (data-frame) size and the HF modem
data rate.

Under the conditions of our point-to-point tests the average throughput of the NOS TCP
suite lay between about 42 and 67 characters per second for SMTP transfers, depending on
whether a file was compressed or not and whether transfers were run during the day or night.
FTP transfers achieved average throughputs between 53 and 105 characters per second under
the same stipulations. The probability of successful message-file transfer was above 90 percent
in all cases.

These throughputs are roughly one-half to two-thirds the corresponding throughputs of the
high-performance HAL CLOVER-2000 and Harris RF-6710/6750 (Federal-Standard-1052) HF
data-transmission systems, which employ proprietary software and use link-layer protocols
specifically tailored (unlike those in NOS) to the properties of half-duplex HF radio channels.
All three systems have comparable probabilities of successful message-file transfer (90 percent
or higher).

The link-layer protocols of the CLOVER-2000 and the Harris RF-6710/6750 systems adapt
automatically to changing channel conditions. CLOVER-2000 adapts rapidly—about every
four seconds, and the Harris RF-6710/6750 less rapidly—roughly once a minute. Rapid
adaptation follows the channel more accurately at the expense of overhead, whereas slower
adaptation uses less overhead but leads to less agile channel-following. Which is the better
approach is probably still open to debate.

70

NOS does not adapt TCP segment size or a modem’s data rate automatically. Instead, we
adjusted the segment size and the serial-tone modem’s data rate by hand between point-to-point
message-file transfers (NOS does not allow manual segment-size adjustment during transfers).
As a general rule, we lowered the segment size and data rate in point-to-point tests when
conditions were poor and raised them when they were good. This often had a profound effect
on throughput.

Although this strategy led to what many users might consider acceptable or even good
throughput, NOS performance over HF channels could be improved significantly by modifying
it to adjust the maximum segment size and perhaps the maxwait in response to current
assessments of the channel as reflected by “performance.” NOS could be further improved for
HF use by letting it adjust the serial-tone modem’s data rate in response to current performance.
Of particular interest in such an improvement would be determining the performance
measurements that might be used to guide this automatic adjustment and the frequency with
which the adjustments should be made (during transfers, between transfers, etc.).

What such performance measurements should be is a recommended subject of study. Some
candidate measurements are the

• Throughput of the last transfer, weighted by how long ago it occurred,

• Number of resent octets (bytes) during the last or current transfer,

• Average signal-to-noise ratio (SNR) during the last or current transfer (taken from
the modem),

• Current (smoothed) SNR (for possible parameter adjustments during a transfer)
and

• Current Congestion Window (for possible parameter adjustments during a
transfer).

Another modification of NOS that would improve its HF radio performance is to change the
NOS transport-layer ARQ protocol to one that uses selective acknowledgments or selective
non-acknowledgments (NACKs) of missed packets. This would remove the wasteful effects of
the standard go-back-N protocol, which frequently rejects correct data packets. Selective
ACKs or NACKs have been added to a number of recent upgrades of the TCP/IP stack
(including the one used by Windows 98).

A further improvement would be introduction of algorithms that can discriminate between
channel errors and collisions, reacting aggressively to the former and backing off (as is
currently done by NOS) in reaction to the latter. The SCPS modification of the standard stack
includes such algorithms, including one variant that turns off the standard congestion control
altogether.

71

It should be noted that modifications like those suggested here will generally make the
modified stack incompatible with standard stacks. This has the disadvantage that unless there
is a way to revert to a standard stack for sockets used for non-radio communications (e.g., for
connections to Ethernet LANs), the “HF radio stack” will be usable only with stacks that have
been similarly modified.

A small number of NVIS network tests were run to investigate the effects on performance
of contention and relaying. Although the sample sizes of the tests were too small to allow us to
arrive at definitive conclusions about network operations with NOS, some tentative guidelines
were suggested. These were that NOS is easy to configure for relaying, and that file transfers
probably work best when stations with TCP/IP data to send either schedule their transfers so as
to avoid contention altogether or set their contention control parameters (persist and slottime)
so as to give different stations widely differing access to channels.

73

List of References

1. D. C. Lynch and Rose, M. T., eds., Internet System Handbook, Addison-Wesley,
Reading, Mass. 1993.

2. W. R. Stevens, TCP/IP Illustrated, Vol. 1, Addison-Wesley, Reading, Mass. 1994.

3. R. Fahnestock and Dugal, James P., JNOS Commands Manual, No date. Tailored to
JNOS version 1.11e, updated in Dec. 1999. Can be found at the FTP site
pc.usl.edu/pub/ham/jnos.

4. I. Wade, NOS Intro, ARRL Publications, Newington, Ct. 1992.

5. R. P. Levreault, Lokuta, R. S., and Wickwire, K. H., An IP-based Data-
Communications Applique for the ARC-164 (HAVE QUICK) Radio, MITRE Working
Note 99B0000030, May 1999.

75

Appendix A

Example NOS Autoexec File

This appendix lists an annotated copy of the HF autoexec file used at our NVIS station
MB1 in Bedford, Mass (“#” marks comment lines). Although Section 3 discusses key aspects
of this file in overview, understanding of its entries and their proper settings requires
documentation and some experience. A good set of documentation on the meaning of most of
the commands in this autoexec can be found in Reference 4 and at the FTP site listed in
Reference 3. Note that although these references define all the commands, they do not
constitute a complete guide to how they should be set. One of the purposes of this note is to
advance the state of this guidance as far as the use of NOS over HF radio is concerned.

The use of TCP/IP is normally associated with use of a domain-name-to-IP-address lookup
table, which makes avoids memorization of IP addresses. However, the table is not strictly
necessary for simple networks like ours.

AUTOEXEC.NET setup file for the HF NVIS at Station MB1 4.8.99
#
Miscellaneous setup ***
286/386 clock
isat yes
dump/session.log
log 1
watch off
memory thresh 14336
Make sure this is not < RX buf in attach command:
memory ibufsize 3000
#
Set up domain defaults **
domain cache size 50
domain suffix none
domain retries 2
domain cache clean off
#

76

Station Identification ***
ip address 128.83.66.45
hostname mb1.mbpr.org
This MUST precede the "attach" command.
Note. The callsign used in an ax.25 header is used much like an
ethernet address in an ethernet datagram.
“Radio” callsign
ax25 mycall mb1
#
Set up an Ethernet interface ************************************
Format: address label #pkts in RX buf MTU
attach packet 0x65 pk0 10 256
#
Attach pipe interface between Trumpet Winsock & JNOS ***************
Format: address type rcv buffer MTU
attach packet 0x60 pipe 3000 6000
Set up TCP parameters for the pipe shim
ifc pipe tcp mss 216
ifc pipe tcp win 2592
ifc pipe tcp maxwait 60000
#
Attach Synchronous interface to DRSI card *************************
Format: addr irq proto IFace rxbuf MTU rate1 rate2
attach drsi 0x310 5 ax25 dr0 2700 2600 2400 2400
Alternative address & IRQ
#attach drsi 0x300 11 ax25 dr0 2048 1792 2400 2400
AX25 parameters for DRSI interface
param dr0 txdelay 45
param dr0 enddelay 45
param dr0 txtail 25
param dr0 slottime 180
param dr0 persist 176
Turnaround time. Use 70 for USQ-122 modem/20 for MDM-3001 modem
param dr0 turn 20
#
Configure DRSI Interface **************************************
#Backoff timer mode for "congestion control" on DRSI interface
ifconfig dr0 tcp timertype linear
ifconfig dr0 tcp retries 20
ifconfig dr0 tcp blimit 2
MAXWAIT in milliseconds

77

ifconfig dr0 tcp maxwait 30000
MAXWAIT for networked operation.
dr0 maxwait in milliseconds, make all nodes in net a few
tens of seconds different (600000-1000000)
dr0 irtt in milliseconds, make all nodes in nets a few
seconds different (10000-17000)
IRTT in ms
Startup parameters:
ifconfig dr0 tcp irtt 15000
ifconfig dr0 tcp mss 216
ifconfig dr0 tcp window 2592
#
Set up TCP/IP defaults (some over-ridden by DRSI values)*************
ip rtimer 60
ip ttl 255
tcp mss 216
tcp irtt 15000
tcp window 216
#
Start various "network services" ********************************
start pop3
start smtp
start ttylink
start telnet
start ftp
start finger
start remote
remote -s 4643
#
Mbox setup ***
mbox nrid yes
mbox sendquery off
mbox attend on
mbox tmsg "WELCOME TO THE MB1 HF NVIS MAILBOX\n"
attend on
third on
#

78

Set up IP routing ***
route add default dr0
route add 128.83.66.46 dr0
route add 128.83.66.47 dr0
route add 129.83.41.193 pipe
Address Resolution Protocol setup
arp add 128.83.66.46 ax25 nfk dr0
arp add 128.83.66.47 ax25 der dr0
arp publish [129.83.41.193] ax25 mb1 dr0
#
Set up the mailbox **
Timer (if used) in seconds, the longer the better
#smtp timer 21
#Only an SMTP kick will launch messages
smtp timer off
smtp mode route
Use 1 for no tracing, use 3 to trace smtp client exchange
smtp trace 1
Batch shipment of messages:
#smtp batch off
#time interval used to notify user/return undelivered mail
#return mail after DTIMEOUT hours as undelivered
smtp dtimeout 72
Turn on extended memory for SMTP.
smtp usemx on
strace off
Set degree of LZW message compression (16 = max)
lzw bits 16
lzw mode compact
domain dns off
>>>>>>> LAST COMMAND IN FILE <<<<<<<<
THE END

79

Appendix B

Example trumpwsk.ini File

Shown below is a trumpwsk.ini initiation file for the Trumpet Winsock v. 3.0d TCP/IP
stack that communicates with Windows 95 applications, and over an internal SLIP link with
NOS, in our HF network configurations. The parameter settings we used in our configurations
are at the top of the file and are annotated. We left the indented entries below the annotated
entries at their indicated default values.

[Trumpet Winsock] [a label for this file]
ip=129.83.41.193 [IP “hardware” address of the DTE/PC at this station]
netmask=255.255.255.0 [distinguishes assignable from fixed parts of addresses in this

network]
gateway=128.83.66.65 [NOS IP “radio” address of this station: “send outgoing here”]
dns=128.83.66.65 [IP address of domain name server for this network (the NOS “domain.txt” file)]
vector=61 [software interrupt vector; a “hook” to a pipe driver]
mtu=576 [Maximum Transmission Unit in bytes for internal TWinsock-NOS SLIP link]
rwin=2048 [TCP Receive Window in bytes for internal TWinsock-NOS SLIP link;

the corresponding parameter in NOS is called “win.”]
mss=512 [TCP Maximum Segment Size in bytes for internal TWinsock-NOS

SLIP link. Another stack can send up to 4 (rwin/mss) unacknowledged
segments at a time to this station]

time=
domain=
rtomax=60
ip-buffers=32
pkt-buffers=16
slip-enabled=0
slip-port=4
slip-baudrate=38400
slip-handshake=1
slip-rtsflow=0
slip-compressed=0
dial-option=0
online-check=1
inactivity-timeout=5
slip-timeout=0
slip-redial=0
slip-logging=0

80

slip-rcvbuf=8192
slip-sndbuf=8192
dial-parity=0
font=Courier,9
use-socks=0
socks-host=0.0.0.0
socks-port=1080
socks-id=
socks-local1=0.0.0.0 0.0.0.0
socks-local2=0.0.0.0 0.0.0.0
socks-local3=0.0.0.0 0.0.0.0
socks-local4=0.0.0.0 0.0.0.0
ppp-enabled=0
ppp-usepap=0
ppp-usechap=0
ppp-username=""
ppp-password=""
no-close-message=0
use-waitmessage=0
clock-period=100
seen-license=1
ip-routing=0
registration-check="j_\G3Sm!GTZn(92>A+beiJFY"
trace-options=1706
next-port=1515
win-posn=15 19 546 328 -1 -1 -1 -1 1
registration-name="#0%/I+:Gz-7<"
registration-password="h]NE6Xiu"

81

Appendix C

NOS cwind and ssthresh Adaptation Algorithms

This appendix lists pseudo-code for the algorithms used by NOS to adjust the slow-start threshold
(ssthresh) and the congestion window (cwind) in response to reception of duplicate ACKs by a sender
(The Jacobson Algorithm) or a timeout waiting for more expected data by a receiver (includes the
Nagle Algorithm). The listings were derived from the NOS C-code modules tcpin.c and tcpout.c in the
NOS source distribution. (“//” inaugurates a comment.)

Van Jacobson "Quick Recovery" by Sender Algorithm (C++-style pseudo-code from tcpin.c).
Activated if sender receives DUPACK or more duplicate ACKs.

if(dupacks == DUPACKS) //dupacks = no. counted ACKs. DUPACKS = 3 is default

//limit.

 { //Duplicate ACKs rcvd; packet probably lost.
//Resend to avoid timeout. MSS = rcvd. MSS.

 ssthresh = max(cwind/2, MSS); //Reduce threshold as if timeout has occurred,
//since there is congestion.

 tcp_output(tcb); //Retransmit lost packet from TCP-layer.
//Inflate congestion window, as if dup ACKs
//had really ACKed packets beyond lost one.

 cwind = ssthresh + DUPACKS*MSS;
 } //End if(dupacks == DUPACKS).

else if(dupacks > DUPACKS) //Continue to inflate congestion window until ACKs get “unstuck.”
 {
 cwind = cwind + MSS;
 }
 //ACKs finally “unstuck.” Deflate congestion window
 //to where it would have been at end of slow start.
if((dupacks >= DUPACKS) && (cwind > ssthresh))
 {
 cwind = ssthresh;
 }

dupacks = 0; //Restart ACK count; ACK must have ACKed a packet.

//Expand cwind if not at limit & rcvd. packet is new.
if((cwind < send_window) && (no_retran))

 { //send_window is the offered window.

82

 if(cwind < ssthresh) //Still doing SS; expand window by number of octets
//ACKed.

 {
 expand = min(acked, MSS); //acked = number of octets just ACKed.
 }
 else
 {
 expand = (MSS*MSS)/cwind;
 }
 //Don’t expand beyond offered window.
 if(cwind + expand > send_window)
 {
 expand = send_window - cwind;
 }

 if(expand != 0) //Expansion is possible.
 {
 cwind = cwind + expand; //Expand congestion window.

 }

 } //End if((cwind < snd.wnd) && (!tcb->flags.retran)).

React to Timeout at Sender Algorithm (C++-style pseudo-code from tcpout.c).
(Activated if sender times out waiting for ACK.)

//Transmitter has been idle for longer than an SRTT.
//Reduce cwind to one packet.

if(current_clock() - time_lastactive) > srtt)
 {
 cwind = MSS;
 }

//Calculate usable send window as smaller of offered
//window and cwind, minus amount of data “in flight.”

usable = min(send_window, cwind);

if(usable > sent)
 {
 usable = usable - sent; //Most common case.
 }

83

 else if((usable == 0) && (sent == 0)) //No data sent & no usable window is apparent.
 {
 usable = 1; //Prepare “closed window probe.”
 }

 else
 {
 usable = 0; //Window has closed or shrunk.

 }
//Calculate size of window that could be sent.
//This is the smallest of the usable window, the received MSS
//and the amount of data on hand.

segment_size = min(data_on_hand, usable, MSS);

//Apply Nagle’s “single outstanding segment” rule:
//If data are in pipeline, don’t send more unless
//data are MSS-sized or make up the last packet.

if((sent != 0) && (segment_size < MSS) && (not_last_segment))
 {
 segment_size = 0;
 }
ip_send(segment_size + headers); //(Re-)send data segment via IP-layer if appropriate.

85

Glossary

ACK Acknowledgment

ALE Amplitude modulation

ARP Address resolution protocol

ARQ Automatic repeat request

ASCII American standard code for information interchange

BLIMIT Back-off limit

COTS Commercial off-the-shelf

CRC Cyclic redundancy check

CWIND Congestion window

DCE Data communications equipment (e.g., HF modem)

DNS Domain name system

DTE Data terminal equipment (e.g., PC controller)

FTP File transfer protocol

GATM Global Air Traffic Management

GUI Graphical user interface

HF High Frequency

HTTP Hyper-text transfer protocol

ICMP Internet control message protocol

IP Internet protocol

IRC Internet request for comments

IRTT Initial round trip time

ISO International Standardization Organization

JNOS The version of NOS we used

LAN Local-area network

LZW Lempel-Ziv-Welch

MHz Megahertz

86

MS Military Standard

ms millisecond

MSS Maximum segment size

MTU Maximum transmission unit

MUF Maximum usable frequency

NACK Non-acknowledgment

NOS Net operating system

NVIS Near-vertical-incidence skywave

PAD Packet assembler-de-assembler

PID Protocol ID

POP Post office protocol

PSK Phase-shift keying

RFC Request for comment (Internet protocol specification)

RTO Retransmission time-out

RTT Round trip-times

SLIP Serial line internet protocol

SMTP Simple mail transfer protocol

SCPS Space Communications Protocol Specification

SNR Signal-to-noise ratio

SRTT Smothed retransmission time-out

SSTHRESH Slow-start threshold

TCP Transmission control protocol

TSR Terminate-and-stay-resident

UDP User datagram protocol

WIN Window size

WWW Worldwide Web

