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series of triangles connected from the apex of one to the base of another. Axons tend to pass unidirectionally 
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Use of a Neural Circuit Probe to Validate in silico
Predictions of Inhibitory Connections

Honglei Liu1, Daniel Bridges2, Connor Randall2, Sara A. Solla3, Bian Wu4, Paul
Hansma2, Xifeng Yan1, Kenneth S. Kosik4*, Kristofer Bouchard5*,

1 Department of Computer Science, University of California, Santa Barbara, USA
2 Department of Physics, University of California, Santa Barbara, USA
3 Department of Physiology, Northwestern University, Chicago, USA
4 Neuroscience Research Institute, University of California, Santa Barbara, USA
5 Biological Systems and Engineering Division, Lawrence-Berkeley National Laboratory,
Berkeley, USA

* kenneth.kosik@lifesci.ucsb.edu, kristofer.bouchard@gmail.com

Abstract

Understanding how neuronal signals propagate in local network is an important step in
understanding information processing. As a result, spike trains recorded with
Multi-electrode Arrays (MEAs) have been widely used to study behaviors of neural
connections. Studying the dynamics of neuronal networks requires the identification of
both excitatory and inhibitory connections. The detection of excitatory relationships
can robustly be inferred by characterizing the statistical relationships of neural spike
trains. However, the identification of inhibitory relationships is more difficult:
distinguishing endogenous low firing rates from active inhibition is not obvious. In this
paper, we propose an in silico interventional procedure that makes predictions about
the effect of stimulating or inhibiting single neurons on other neurons, and thereby gives
the ability to accurately identify inhibitory causal relationships. To experimentally test
these predictions, we have developed a Neural Circuit Probe (NCP) that delivers drugs
transiently and reversibly on individually identified neurons to assess their contributions
to the neural circuit behavior. With the help of NCP, three inhibitory connections
identified by our in silico modeling were validated through real interventional
experiments. Together, these methods provide a basis for mapping complete neural
circuits.

1 Introduction

As proposed by D. O. Hebb [1] a “cell assembly” is a network of neurons that is
repeatedly activated in a manner that strengthens excitatory synaptic connections. An
assembly of this sort has a spatiotemporal structure inherent in the sequence of
activations, and consequently strong internal synaptic strengths, which distinguish them
from other groups of neurons. Although assemblies of this sort can be defined in
numerous ways, one approach is to identify statistically significant time-varying
relationships among simultaneously recorded neurons from the spike trains [2–6].
Obtaining these neural activity measurements requires recording from many neurons in
parallel that can be spatially localized and temporally resolved at sub-millisecond time
scales [7]. Widely used approaches for recording from multiple neurons such as calcium
imaging and voltage sensitive dyes as a proxy for electrical activity or multiple
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implanted micro electrodes do not satisfy all these requirements. Novel instrumentation
is required to meet the challenge of drawing complete neural circuits.

Dissociated neurons can self-organize, acquire spontaneous activity, and form
networks according to molecular synaptogenic drivers that can be visualized and probed
with multi-electrode arrays (MEAs). The work presented here utilizes MEAs to record
signals sub-millisecond time resolution and precise spatial localization. The Neural
Circuit Probe (NCP) uses mobile probes for local chemical delivery to a neural circuit
of cultured neurons on a commercial MEA with 120 electrodes. Local drug delivery
transiently and reversibly modulates the electrical behavior of individually identified
neurons to assess their contributions to the circuit behavior. The dynamics of neuronal
networks require both excitatory and inhibitory signals. Excitatory cells alone cannot
generate ”cell assemblies” because such interconnections would only lead to more
excitation. A balance between excitatory and inhibitory neurons ensures the stability of
global neuronal firing rates while allowing for sharp increases in local excitability which
is necessary for sending messages and modifying network connections [8]. In a neuronal
network described in terms of correlations among statistically significant time-varying
relationships among the spike trains of simultaneously recorded neurons, the detection
of excitatory relationships can be inferred based upon correlations between spikes with
constant latencies that approximate synaptic transmission [9, 10]. However, the
identification of inhibitory relationships is more difficult: distinguishing endogenous low
firing rates from active inhibition is not obvious.

In this paper, we demonstrate that tools from statistical inference can predict
functionally inhibitory synaptic connections and show how inhibition propagates in a
network to affect other neurons. We first fit a Generalized Linear Model (GLM) to
spike trains recorded from neurons in hippocampal cultures, and inferred effective
interactions between these neurons. We then used the fitted model to perform simulated
in silico experiments in which we simulated the effect of silencing individual neurons in
a network on the activity of other neurons. We tested the predictions from these
simulated silencing experiments by performing real experiments in which we applied
Tetrodotoxin (TTX) to silence neurons and thereby validated our computational
approach toward the detection of inhibitory interactions

2 Methods

2.1 Cell culture

Commercial MEAs (Multi-electrode arrays) were sterilized with UV irradiation (for ¿ 30
minutes), incubated with a poly-D- or poly-L-lysine (0.1 mg/ml) solution for at least
one hour, rinsed several times with sterile de-ionized water water and allowed to dry
before cell plating. The culture chamber surrounding the MEA was 25 mm in diameter
and filled with 1 ml of cell culture media. Cell cultures were prepared in two stages.
This was done to allow glia to proliferate and become confluent in the area of the
electrodes (1st plating) and for neurons to grow within a substrate of confluent glia
(2nd plating). Unless otherwise stated, cells were cultured at 125,000 cells per dish.
Mouse hippocampal neurons were used for all experiments described here. All mice
were in a C57BL/6 genetic background and male mouse pups were used for all cell
cultures. Mouse pups were decapitated at P0 or P1, the brains were removed from the
skulls and hippocampi were dissected from the brain [11]. After one week, cultures were
treated with 200 uM glutamate to kill any remaining neurons followed by a new batch
of cells added at the same density as before. Cultures were grown in a tissue culture
incubator (37°C, 5% CO2), in a medium made with Minimum Essential Media with 2
mM Glutamax (Life Technologies), 5% heat-inactivated fetal calf serum (Life
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Technologies), 1 ml/L of Mito+ Serum Extender (BD Bioscience) and supplemented
with glucose to an added concentration of 21 mM. All animals were treated in accord
with University of California and NIH policies on animal care and use.

2.2 Electrophysiology

Most recordings were done in cell culture medium so as to minimally disturb the
neurons. In some cases we instead used an extracellular solution containing (in mM)
168 NaCl; 2.4 KCl; 10 HEPES; 10 D-glucose; 1.8 CaCl2; and 0.8 mM MgCl2. Pipette
solution contained (in mM): 140 potassium gluconate; 4 CaCl2; 8 NaCl; 2 MgCl2; 10
EGTA; 2 Na2ATP and 0.2 Na2GTP. The pH was adjusted to 7.4 with KOH. The
osmolality of external and internal solutions was adjusted to 320 mosmol. Salts were
obtained from Sigma-Aldrich or Fluka; TTX was obtained from Ascent Scientific.
Recordings were done using MultiChannel Systems MEA 2100 acquisition system. Data
were sampled at 20 kHz and post-acquisition bandpass filtered between 200 and 4000
Hz. Recordings were done at 290 to 340 C. All recordings were done on neurons at 7-30
days in vitro (DIV). Data recordings were typically 3.5 to 5 minutes long. Recording
duration was typically kept short to minimize the effects of removing MEAs from the
incubator. Drug manipulations were done with a custom built instrument that allowed
us to apply drug locally.

2.3 Spike sorting

For each MEA recording, we first removed redundancy propagation signals [12] and
then did spike sorting [13]. Extracellular signals were band pass filtered using a digital
2nd order Butterworth filter with cutoff frequencies of 0.2 and 4 kHz. Spikes were then
detected and sorted using a threshold of 6 times the standard deviation of the median
noise level.

The data in Fig 3a were gathered in one recording session and each ”unit”
corresponds to one spike train after the spike sorting algorithms were applied on the raw
data. However, the data in Fig 3d and Fig 3g were gathered in several recording
sessions. So, the labels of units could be inconsistent in different recording sessions after
the spike sorting algorithms were applied. Hence, to make the data consistent across
different recording sessions, for these two datasets, we merged the spike trains from the
same electrode as one unit.

2.4 A pipeline to identify and validate putative inhibitory
connections

We used a novel pipeline to first identify putative inhibitory connections from spike
trains and then validate them with a Neural Circuit Probe (NCP) that we built. Mouse
hippocampal neurons were dissociated and plated on a multi-electrode array (MEA). To
begin with, as shown in Fig 1a, their spontaneous spiking activity was modeled using a
Generalized Linear Model (GLM) in which the outcome is a zero or one (spike or no
spike) random variable and single neurons generate spikes according to a Poisson
process. The rate of this process was determined by the spikes from other neurons.
Parameters of the GLM were fit using a gradient descent algorithm to minimize the
negative log likelihood of the recorded spike trains.

We next conducted in silico interventional experiments to identity inhibitory
connections as shown in Fig 1b. Single neurons were silenced or activated in silico and
then these data were used to infer predicted effects on connectivity using the fixed
parameters from the GLM as determined above. The procedure for running the in silico
interventional experiment was as follows. First, we selected one neuron as our
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interventional target. Throughout the simulation experiment, the state of this neuron
was fixed to either 0 (silenced) or 1 (activated). Then, for all the other neurons, we ran
the GLM with the inferred parameters to get the probabilities of seeing a spike at the
next time point. Each probability represented how likely it was for a neuron to generate
a spike at the next time point. Given the probability, we sampled a binary value (0 or 1)
from a Bernoulli distribution as the state of the neuron for the next time point, where 0
refers to no spike and 1 means spike. We continued doing this to generate simulated
recordings one time point at a time until a desired length T had been reached, where T
is the number of time points in our in silico interventional recording. To find inhibitory
connections, we investigated the generated simulated data to find those neurons that
were negatively correlated (Pearson correlation coefficient) with the intervention taken
on the target neuron. These neurons were considered as potentially inhibited by the
interventional target.

Finally, we conducted real TTX delivery experiments to validate the putative
inhibitory connections predicted from the in silico interventional experiments as shown
in Fig 1c. In these experiments, TTX was delivered using the NCP as a delivery system.
The NCP delivered TTX in a manner highly localized to a single electrode and in
sufficiently low concentration that its potency dropped below threshold once it diffused
beyond a single electrode. The NCP can detect increased impedance as the probe
approached the cell and therefore allowed us to deliver TTX as close as possible to the
cell without directly contacting the cell. Each TTX delivery resulted in the rapid onset
of complete silencing of the neuron to which it was applied. As a result, putative
inhibitory connections were validated when we observed activation of an inhibited
neuron for a duration that approximated the time of TTX-induced silencing.

2.5 Generalized Linear Model

We used GLM to model the spiking of neurons. Let m denote the number of neurons
being recorded and xi,t be the number of spikes of neuron i at time t. We assume xi,t is
drawn from a Poisson distribution with rate λi,t which is written as

λi,t = exp (bi +
m∑
j=1

maxlag∑
l=minlag

θi,j,lxj,t−l). (1)

where bi is a parameter controlling the spontaneous firing rate of neurons i and θi,j,t
denotes the effective interaction from neuron j to neuron i at time lag l. We assume
that the firing rate of neurons i depends on the activities of all neurons in a history
window that spans from time t−maxlag to time t−minlag, where minlag and
maxlag are the minimum and maximum time lags we consider.

Given Eq. 1 for the firing rate of individual neurons, the likelihood for the
observation of neuron i at time t, Li,t is

Li,t = p(xi,t|λi,t) =
λi,t

xi,te−λi,t

xi,t!
. (2)

In spike train data with one millisecond time bin, there are at most one spike at any
time point and therefore xi,t takes the value of 0 or 1. Hence, the log-likelihood is

logLi,t = xi,t log λi,t − λi,t. (3)

The log-likelihood for all the observations in a recording with length T is

logL =

m∑
i=1

T∑
t=maxlag

logLi,t. (4)
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Fig 1. An overview of the procedure that we used to identify and validate direct and
indirect inhibitory connections. (a) A Generalized Linear Model (GLM), in which the
firing of a neuron is modeled as determined by the spikes from other neurons, was used.
Filters of the GLM were inferred from a training recording of spontaneous firings. (b)
In silico experiments were conducted by performing simulated interventions on a neuron
and generating simulated responses with pre-trained GLM filters. Putative inhibitory
connections were then identified by comparing the simulated interventions and
responses. (c) Real drug delivery experiments were conducted to validate the putative
inhibitory connections.

The model described above includes too many parameters and there is nothing in
the model that ensures the inferred parameters to vary smoothly with time, something
that isas expected from interactions between pairs of neurons. Furthermore, the model
has too many parameters and this might cause problems for robustly inferring them. To
ensure the smoothness of the filters, instead of directly using a history window of spikes
in the model, following [14], we use their filtered versions that are created by convolving
with several cosine bumps. To minimize the number of fitting parameters and prevent
overfitting, we add an L− 1 regularizer to the likelihood. These remedies are described
further below.

We first design p cosine basis functions where the lth cosine basis function can be
written as:

fl(t) =
1

2
{1 + cos[a ln (t+ b)−Θl]} (5)

for all times t such that satisfy

−π ≤ a ln (t+ b)−Θl ≤ π

and
fl(t) = 0
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outside the interval defined above. The values of a, b and Θl are manually chosen. One
of the factors to be considered when choosing their values is the locations where the
peaks of the bumps occur. During experiments, we used pairwise cross-correlations to
determine the locations of the peaks.

In the naive GLM without the basis functions, for neuron j, we used a history
window of spikes to model its influence on other neurons. Now the raw spikes are
convolved with p cosine basis functions to get the filtered versions, of which the lth

value is calculated as follows:

x̃j,l,t =
τ∑

∆=1

fl(∆)xj,t−∆,

where τ is the length of the history window that is covered by the cosine basis functions.
Eq. (1) is rewritten as:

λi,t = exp (bi +
m∑
j=1

p∑
l=1

βi,j,lx̃j,l,t), (6)

where βi,j,l is the weight of the lth basis function for the influence from the neuron j to
neuron i.

As mentioned above, to prevent overfitting, we added an L1 regularization term to
penalize non-zero filter parameters. The loss function we want to minimize is rewritten
as

J = −
m∑
i=1

T∑
t=maxlag

logLi,t + r

m∑
i=1

m∑
j=1

p∑
l=1

|βi,j,l|,

where r is the regularization constant. The value of r is decided by doing 10-fold cross
validation on a spontaneous firing recording of 60 seconds. We used the Area Under the
Receiver Operating Characteristic curve (AUC-ROC) as our metric to evaluate the
performance of the fitted model to do predictions on future spikes given previous
spiking histories.

2.6 in silico interventional experiments

To identify inhibitory connections from an ensemble of neurons, one straightforward way
is to investigate the GLM filters obtained by fitting the spike trains, as these filters
represent the relations of neurons captured by GLM. However, the inhibitory effects
among neurons can be rather complex than obvious, and simply using the GLM is
usually not enoughsufficient. For example, two of the inhibitory connections we
identified in this study were not observable from the their corresponding GLM filters,
but became obvious once interventions were applied. Therefore, in this study, we have
proposed a method to conduct in silico interventional experiments which could discover
hidden inhibitory connections by running simulated experiments.

To cold start the simulated experiment, we used a history window of length τ with
none spiking states (i.e., all the neurons take the value 0 in a time window of τ). The
instantaneous firing rate of neuron i at time t was calculated according to E.q. (6) in
Methods section. Therefore, the probabilities of seeing and not seeing a spike are

p(xi,t = 1|λi,t) = λi,te
−λi,t

and
p(xi,t = 0|λi,t) = e−λi,t
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Because in our setting, there is at most one spike in the one millisecond time bin, xi,t
can only take the value of 0 or 1. However, if we run simulated experiments by directly
sampling from a Poisson distribution, the value xi,t takes could be arbitrary instead of
binary. Hence, we normalize the probability of getting a spike at time point t as

p(xi,t = 1|λi,t) =
p(xi,t = 1|λi,t)

p(xi,t = 1|λi,t) + p(xi,t = 0|λi,t)

=
λi,t

1 + λi,t
,

(7)

For neuron i at time point t, we generate the simulated sate by sampling a value
from a Bernoulli distribution with the probability of Eq. (7).

During the in silico interventional experiments, we selected one neuron as our
interventional target and fixed its state to be either 0 (silenced) or 1 (activated). Then,
the responses from other neurons were gathered and compared with the intervention
taken on the target neuron by calculating their Pearson correlation coefficients. Those
neurons that were negatively correlated with the intervention were considered as
potentially inhibited by the interventional target. The algorithm is shown in Algorithm
1.

Algorithm 1: Identifying Putative Inhibitory Connections

input : A recording X of spontaneous firing events and a target neuron t
output : Top k neurons that are potentially inhibited by t
Train a GLM model using X
Conduct in silico experiments where neuron t is intervened
for each neuron i do

Calculate the Pearson correlation coefficient between simulated recordings of
neuron i and neuron t

end
Select top k neurons that have the largest negative Pearson correlation coefficient
with neuron t
return top k neuron ids

2.7 Instrumentation for validating putative inhibitory
connections

Identification of single cell contributions to a neuronal circuit requires precise access to
and control over functionally identified cells. To accomplish this goal we built a neural
circuit probe (NCP) consisting of (1) a head unit that accepts various probes, (2) an
integrated perfusion chamber plus light ring illumination system, (3) a probe control
system with computer interface which implements a simple feedback system for an
automated approach, and (4) a commercial MEA (MEA2100, Multi Channel Systems)
mounted to a custom X-Y translation stage (Fig 2).

The NCP controller uses proportional and integral feedback control to position the
various probes, and can accept a variety of input signals, such as ion current used here.
An amplifier is located on the head unit that amplifies the current signal before going to
the controller. The NCP software allows the operator to engage and disengage the
probe using feedback. It is also used to control the location of the MEA stage beneath
the probe, allowing the operator to position the probe above neurons of interest. A
pneumatic control system attached to the probe regulates a pressure line for chemical
delivery (Fig 2a, Fig 2b). An integrated pressure sensor, connected to the MEA data
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acquisition system, measures the duration and magnitude of pressure for temporal
alignment with the MEA signal.

Local targeted drug delivery with the NCP can be used to modify their electrical
behavior. This was done with small pipettes typically with inner diameters of 1-2
microns. In this example (Fig 2c, Fig 2d) we applied the Na+ channel blocker
tetrodotoxin (TTX, 500 nM) to induce a temporary and reversible cessation of activity
from that cell. Thus with the NCP we can do targeted drug delivery with high spatial
resolution.

Fig 2. Illustration of the Neural Circuit Probe (NCP) and real drug delivery
experiments to validate putative inhibitory connections. (a) Schematic drawing of the
key components. The probe is positioned in x and y to center it in the field of view of
the microscope. Then the MEA is translated in x and y to bring a target neuron
directly under the probe. Finally the probe is automatically lowered, with ion
conductance feedback, to just above, but not touching, the neuron. (b) Overview of the
NCP situated on an inverted microscope. (c) The changes of firing rates at all
electrodes before and after TTX application. Gray dots are electrodes with no spiking
activities recorded. Black dots are electrodes with no spiking rate changes. When we
blocked spiking at the specific electrode (red circle) it had widespread secondary effects
on the firing rates observed at other MEA electrodes. Though the firing rate decreased
for many electrodes (blue dots), for two electrodes it increased (green dots). (d) A
transient increase of probe pressure delivered TTX (500 nM), which reversibly blocked
spiking activity, with high spatial resolution. This process was repeated 3 times.

3 Results

3.1 Identifying Putative Inhibitory Connections

Following the aforementioned procedure, a recording with spontaneous activity from 17
units over a duration of 20 seconds divided into one millisecond time bins was used to
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fit the GLM model (Fig 3a). Each unit corresponded to a spike train after spike sorting
and removal of the redundancy inherent in propagation signals [12]. Then unit 10 was
chosen as the in silico interventional target, i.e. it was fixed in a silent state (no spikes
at all times) for 10 seconds and then fixed for 10 seconds in an active state (continuous
spiking). Simulations with the fitted GLM identified five units with the highest
probability to be inhibited by unit 10 (Fig 3c). The strongest candidate for inhibition
by unit 10 was unit 8. Note that the filters from the fitted GLM also suggested that the
connection from unit 10 to unit 8 was predominantly inhibitory (Fig 3b).

Additional in silico experiments on another cell culture were also conducted to
identify putative inhibitory connections by following the aforementioned procedure. For
these experiments, we used a 60 second recording of spontaneous firing events (Fig 3d)
to fit a GLM. The GLM parameters for the connections from unit 12 to five units are
shown in Fig 3e. We calculated the Pearson correlation coefficients between the in silico
intervention on unit 12 and simulated responses of every other neuron. The top five
negatively correlated units were chosen and investigated (Fig 3f). In another example,
we chose unit 23 as the in silico interventional target. Similarly, Fig 3h shows the GLM
parameters for the connections from unit 23 to five other units and Fig 3i shows the top
five units that were identified as candidates for inhibition by unit 23.

3.2 Validation of Inhibitory Connections

Given putative inhibitory connections identified in the first example (Fig 3c), to
validate experimentally that unit 8 was an inhibitory target of unit 10, TTX was
delivered four times on unit 10 (Fig 4a) using the neural circuit probe as a delivery tool.
The instrument delivered TTX in a manner highly localized to a single electrode and in
sufficiently low concentration that its potency dropped below threshold once it diffused
beyond a single electrode. Each TTX delivery resulted in the rapid onset of complete
silencing of the neuron to which it was applied. Delivery of TTX to the electrode
corresponding to unit 10 resulted in the activation of unit 8 and activation of the target
neuron for a duration that approximated the time of TTX-induced silencing. These
experimental data clearly demonstrated that the top inhibitory connection (from 10 to
8) predicted by our simulated experiment was validated by the actual TTX delivery
experiment.

In the second example, 92 was a strong candidate for inhibition by unit 12. To
validate this inferred connection experimentally, we delivered TTX to unit 12 and, as
predicted, observed an inhibitory effect from unit 12 to unit 92 (Fig 4b). It’s also worth
mentioning that even though unit 92 is not the top 1 candidate predicted by our in
silico interventional experiments, it’s within the top 5 predictions out of 120 possible
units. This shows that the in silico interventional experiments could give accurate
predictions of putative inhibitory connections. In the final example, we also delivered
TTX to unit 23 and observed rebound of firing on unit 92 (Fig 4c) which was predicted
by the in silico interventional experiments (Fig 3i).

3.3 Indirect connections

The inhibitory connections identified in this study may not be direct. A unit could be
causing inhibitory effects on another unit through a third unit. To study the
possibilities of inhibitory connections, we have revisited the three examples of inhibitory
connections validated in Fig 4. For each example, we introduced a third unit and
convolved the GLM filters of the two connections in a potential inhibitory connection.
Fig 5 shows the convolution outputs that exhibited inhibitory effects. To understand
the inhibitory effects from unit 10 to unit 8, we show three possible cases where unit 10
could cause an inhibitory effect on unit 8 through a third unit (Fig 6a).
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The second example shown in Fig 3 and Fig 4 illustrates an important feature that
the in silico experiments offers in describing how signals propagate in the network. In
this example the inhibitory effects from 12 to 92 is not obviously manifested in the
filters shown in Fig 3e, i.e. the magnitude of the curve representing the connection from
12 to 92 is not as significant as others. However, this inhibitory effect is ranked high
according to the negative Pearson correlation score given the simulated experimental
results. One explanation for this is the indirect connections among units. It may be the
case that unit 12 is not directly inhibiting unit 92, but it could cause an inhibitory
effect through other units.

To explore this possibility further, we show three possible indirect inhibitory
connections from unit 12 to unit 92 (Fig 6b). Each indirect connection consists of a
predominantly excitatory connection and a predominantly inhibitory connection, which
could cause a net inhibitory effect. Therefore, it supports the idea that the inhibitory
effect from unit 12 to unit 92 were caused by indirect inhibitory connections.

As a final example, Fig 4c shows another inhibitory effect between pairs of neurons,
in this case unit 23 to unit 92, as discovered from the in silico experiments on the fitted
GLM and then validated by experiments. Similarly, we show three indirect inhibitory
connections from 23 to 92 (Fig 6c).

4 Discussion

Understanding how neuronal signals propagate in local network is a prerequisite to
understanding information processing in those networks. The ‘gold standard’ way to
predict how the activity of one neuron influences another is through intracellular paired
recordings along with pharmacologic probes. Using such intracellular recordings, one
can establish the presence or absence of direct or indirect connections between pairs of
neurons and thus to some degree predict how activity in one neuron affects the others.
Inspired by the successes of this technology, we show here how it can be extended to
larger networks of neurons using advanced mechatronic positioning of a probe over an
array of electrodes with the Neural Circuit Probe. As a demonstration of the potential
power of this device, we demonstrated its utility in testing the predictions of in silico
modeling.

We first fitted a GLM model to spikes recorded from a culture using MEAs, then
performed in silico experiments in which we silenced one of the units, and identified
what other units will change their activity upon this inactivation. We then went back to
the culture and silenced the same unit using TTX and observed that the inhibitory
effects predicted by the in silico experiments showed up when TTX was applied.

The results presented here thus opened the door to using statistical models not only
to characterize the statistics of neural spike trains or functional connectivity between
neurons, but to make predictions about the response of the network to changes.
Although using GLM to study the circuitry of a neuronal network is never going to be
as accurate as intracellular recordings, the simplicity of fitting the model to data, and
performing in silico experiments with this model, are great advantages that support the
idea of using this approach to make educated guesses about the likely outcomes of
manipulations to the network, i.e. offering a virtual culture, similar to a previous
attempt to use GLMs to build a virtual retina. [15].

In using the GLM in neural data analysis, one typically assumes that a single neuron
generates spikes via e.g. a Poisson process. The rate of this process is determined by
the spikes from other neurons filtered by interactions that are inferred from data using
convex optimization. The inferred model is then used for a variety of purposes that
include evaluating the role of correlations in shaping population activity, for example, in
the retina [14], the motor cortex [16,17], the functional connectivity between grid
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cells [18], or the relative influence of task related covariates on shaping neural responses
in the parietal cortex [19]. Despite the widespread use of the GLM in neural data
analyses, a potentially very powerful aspect of this class of models has been left
unexplored: the ability of the GLM to make predictions about how a neuronal network
responds to interventions. At the microcircuit level, this amounts to identifying
meaningful interactions between pairs of neurons and using them to make predictions
about how external manipulations of one or more neurons can affect the others. The
main reason for the fact that GLMs have not been used for this purposes so far is that,
in general, the ground truth about connectivity is not known and, therefore, it is not
possible to compare the interactions inferred by GLM with the real ones. The results
presented in this paper add a new dimension to how these statistical models can be
used in neuroscience by showing that, although the relationship between individual
synaptic interactions and those inferred by the GLM may not be known, the inferred
connections can still be employed to make specific predictions about the functional
connectivity of a neuronal network. Our results thus demonstrate how statistical models
can be used to infer neuronal microcircuitry at a detailed level without using more
complicated experimental techniques such as multi-unit intracellular recordings.

Supplementary materials

S1 Appendix. Choosing the regularization constant The performance of the
GLM was evaluated using a Receiver Operating Characteristic (ROC) curve, which
plots true and false positive rates on different axes. The extent to which true positive
rates exceed false positive rates is given by the area under the curve (AUC) and was our
performance metric to evaluate how well the fitted model could predict future spikes
given previous spiking histories. As we can see from Fig 7, the AUC-ROC stops
increasing as we increase the regularization constant r to a certain point. We chose r
(2.5 in our case) that gave us the best AUC-ROC.

S2 Appendix. Additional functionality of the NCP The NCP also
incorporates a mobile electrode to measure extracellular potentials anywhere on the
array, providing a higher spatial resolution of the signal versus the standard MEA (Fig
8). The mobile electrode consists of a 20 micron inner diameter micropipette with a 75
micron platinum electrode inserted in the top [20]. A single channel from the
commercial MEA preamp is repurposed to measure and record from the mobile
electrode. To use the commercial system, the repurposed channel was tapped into using
a small piece of conductive film with an insulating layer on the backside, bypassing the
electrode on the MEA, and inserting the mobile signal. This technique was necessary to
validate the specific neuron that gave rise to the MEA signal of interest.
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Fig 3. Real data examples of the procedure that we used to identify putative inhibitory
connections. (a) A training recording of 17 units for a duration of 20 seconds which
were divided into 1 millisecond time bins. The black bars represent spikes. (b) Filters of
the GLM inferred from the training recording. Note that at different time lags, the
strength of the connection between two units is also different. (c) Simulated data for
top 5 units that were negatively correlated with the intervened unit 10. The red and
blue lines represent the instantaneous firing rates for the simulated recordings. The
labels on the left of the y-axis represent the unit numbers and the labels on the right
represent the range of the instantaneous firing rates (0 to 1). Note that when unit 10
was changed from silent state to active state, conversely, unit 8 changed to silent state
from active state, which implied a putative inhibitory connection. (d) A training
recording of 120 electrodes for a duration of 60 seconds which were divided into 1
millisecond time bins. (e) Filters of the GLM inferred from the training recording. (f)
Simulated data for top 5 units that were negatively correlated with the intervened unit
12. (g) A training recording of 120 electrodes for a duration of 60 seconds which were
divided into 1 millisecond time bins. (h) Filters of the GLM inferred from the training
recording. (i) Simulated data for top 5 units that were negatively correlated with the
intervened unit 23.
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Fig 4. Real TTX experiments to validate putative inhibitory connections. (a) Real
TTX experimental recording where unit 10 was silenced 4 times by delivering TTX.
Unit 8 rebounded every time unit 10 was silenced, which indicated an inhibitory
connection from 10 to 8. (b) Real TTX experimental recording where unit 12 was
intervened. (c) Real TTX experimental recording where unit 23 was intervened.

a b c

Fig 5. Convolutions of the GLM filters from indirect connections. (a) Convolution of
the GLM filters from the connection 10→ m and m→ 8, where m (y-axis) is an
intermediate unit. The convolutions when m is 10 or 8, which indicates a direct
connection, are omitted. (b) Convolution of the GLM filters from the connection
12→ m and m→ 92, where m (y-axis) is an intermediate unit. (c) Convolution of the
GLM filters from the connection 23→ m and m→ 92, where m (y-axis) is an
intermediate unit.
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Fig 6. Indirect inhibitory connections. (a) Three possible cases where unit 10 has an
inhibitory influence on unit 8 through a third unit. The first case consists of an
excitatory connection (10→ 7) and an inhibitory connection (7→ 8). The second case
consists of an excitatory connection (10→ 6) and an inhibitory connection (6→ 8).
The third case consists of an inhibitory connection (10→ 3) and an excitatory
connection (3→ 8). (b) Three possible cases where unit 12 has an inhibitory influence
on unit 92 through a third unit. The first case consists of a predominantly inhibitory
connection (12→ 97) and an excitatory connection (97→ 92). The second case consists
of an excitatory connection (12→ 104) and an inhibitory connection (104→ 92). The
third case consists of an inhibitory connection (12→ 119) and an excitatory connection
(119→ 92). (c) Three possible cases where unit 23 has an inhibitory influence on unit
92 through a third unit. The first case consists of an excitatory connection (23→ 104)
and an inhibitory connection (104→ 92). The second case consists of an excitatory
connection (23→ 50) and an inhibitory connection (50→ 92). The third case consists
of a predominantly inhibitory connection (23→ 97) and an excitatory connection
(97→ 92).
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Fig 7. The AUC-ROCs with respect to r. For each value the regularization term has
taken, we do a 10-fold cross validation and report the mean and variance.

Fig 8. Monitoring electrical activity of a selected neuron. (a, b) No spiking activity
was detected on the MEA for the neuron (arrow) closest to the MEA electrode (black
circle) whereas a simultaneous recording from the mobile electrode shows robust spiking
behavior (compare labelled traces in b). (c, d) The MEA electrode (black circle) closest
to the neuron (c, arrow) showed spiking (d, top trace) but when the mobile electrode
probe was positioned directly over the cell, the corresponding recording had a higher
signal-to-noise ratio.
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Tovar KR, Bridges DC, Wu B, Randall C, Audouard M, Jang
J, Hansma PK, Kosik KS. Action potential propagation recorded
from single axonal arbors using multielectrode arrays. J Neurophysiol
120: 306–320, 2018. First published April 11, 2018; doi:10.1152/
jn.00659.2017.—We report the presence of co-occurring extracellular
action potentials (eAPs) from cultured mouse hippocampal neurons
among groups of planar electrodes on multielectrode arrays (MEAs).
The invariant sequences of eAPs among coactive electrode groups,
repeated co-occurrences, and short interelectrode latencies are consis-
tent with action potential propagation in unmyelinated axons. Re-
peated eAP codetection by multiple electrodes was widespread in all
our data records. Codetection of eAPs confirms they result from the
same neuron and allows these eAPs to be isolated from all other
spikes independently of spike sorting algorithms. We averaged co-
occurring events and revealed additional electrodes with eAPs that
would otherwise be below detection threshold. We used these eAP
cohorts to explore the temperature sensitivity of action potential
propagation and the relationship between voltage-gated sodium chan-
nel density and propagation velocity. The sequence of eAPs among
coactive electrodes “fingerprints” neurons giving rise to these events
and identifies them within neuronal ensembles. We used this property
and the noninvasive nature of extracellular recording to monitor
changes in excitability at multiple points in single axonal arbors
simultaneously over several hours, demonstrating independence of
axonal segments. Over several weeks, we recorded changes in inter-
electrode propagation latencies and ongoing changes in excitability in
different regions of single axonal arbors. Our work illustrates how
repeated eAP co-occurrences can be used to extract physiological data
from single axons with low-density MEAs. However, repeated eAP
co-occurrences lead to oversampling spikes from single neurons and
thus can confound traditional spike-train analysis.

NEW & NOTEWORTHY We studied action potential propagation
in single axons using low-density multielectrode arrays. We unam-
biguously identified the neuronal sources of propagating action po-
tentials and recorded extracellular action potentials from several
positions within single axonal arbors. We found a surprisingly high
density of axonal voltage-gated sodium channels responsible for a
high propagation safety factor. Our experiments also demonstrate that
excitability in different segments of single axons is regulated inde-
pendently on timescales from hours to weeks.

action potential; axonal; development; propagation; spike sorting

INTRODUCTION

Axons are the output structures of neurons, broadly integrat-
ing and converting subthreshold synaptic potentials to all-or-
none action potentials, which are then propagated throughout
the axonal arbor. Despite this central role in information
transfer, the physiology of mammalian central nervous system
(CNS) axons has not been studied in as much detail as more
experimentally accessible neuronal structures such as cell bod-
ies or dendrites. Paired axonal recordings have been used to
examine the fidelity of action potential propagation (Khaliq
and Raman 2005; Meeks et al. 2005; Raastad and Shepherd
2003), as well as the density of voltage-gated sodium channels
in axons (Hu and Jonas 2014). However, the small caliber of
axons limits their accessibility for routine experimentation
using these methods. Voltage-sensitive dyes also have been
used to investigate the action potential properties in axons from
different classes of cortical neurons (Casale et al. 2015; Zhou
et al. 2007). The difficulty of experimentally accessing CNS
axons is demonstrated by technically challenging experiments
such as these.

Multielectrode arrays (MEAs) are used to record extracel-
lular action potentials (eAPs; also referred to as “spikes”) from
hundreds of neurons simultaneously (Lewis et al. 2015; Liu et
al. 2012). When neurons and glia are cultured on planar MEAs,
the electrical behavior of self-organized neural ensembles can
be noninvasively monitored over days to weeks (Potter and
DeMarse 2001). In these cultures, close apposition of neurons
with recording electrodes can produce recordings with high
signal-to-noise characteristics, whereas the ease of experimen-
tal manipulations in cell culture systems creates opportunities
for experiments that are otherwise technically challenging in
vivo. Because growth of neuronal processes and electrode
orientation are in the same plane, it is reasonable to expect that
action potential propagation within single neurons might be
detected among multiple electrodes, even in arrays with low
electrode density.

We report in this article the widespread co-occurrence of
eAPs in cultured mouse hippocampal neurons, with character-
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istics expected for detection of action potential propagation,
including repeated and invariant sequences of co-occurring
spikes at multiple MEA electrodes. Within coactive electrode
groups, eAPs occurred with interelectrode latencies that are
consistent with propagation velocities reported for unmyeli-
nated axons (Kress and Mennerick 2009). Coactive electrode
groups were present in all our data records from cultured
mouse hippocampal neurons, and recordings from each unique
culture always displayed several distinct and independent co-
active electrode groups. Repeated detection of eAPs among
electrodes, with submillisecond interelectrode latencies, con-
firmed that each coactive set of spikes originates from single
neurons. The stereotyped sequence and pattern at coactive
electrodes unambiguously “fingerprints” and uniquely identi-
fies each neuronal source of these signals. These identified
neurons can be thought of as anchor points that can be used to
monitor the behavior of single neurons within the larger neu-
ronal network. Averaging the eAP co-occurrences across all
MEA electrodes revealed electrodes with subthreshold eAPs, a
larger extent of two-dimensional propagation, and, thus, a
greater temporal range of interelectrode latencies. We used
these propagating eAP signals to examine excitability in single
axons during neuronal network development. When we de-
creased the density of voltage-gated sodium channels, the
propagation velocity decreased in a density-dependent manner,
but the fidelity of action potential propagation was unaffected,
consistent with high axonal sodium channel density. The non-
invasive nature of extracellular recording is ideal for monitor-
ing axonal excitability across hours or days. In relatively short
time windows, we simultaneously recorded increases and de-
creases in different segments of single axonal arbors occurring
over several hours. Over multiple weeks, our data show that the
two-dimensional extent of action potential propagation within
single axonal arbors dynamically expands and contracts inde-
pendently in different parts of the arbor. Recording over these
longer time intervals also revealed changes in spike waveforms
consistent with changes in action potential duration, changes in
the extent and duration of repolarizing conductances, and
time-dependent changes in propagation velocity. Our data
demonstrate that multisite, noninvasive extracellular recording
can be used to study the physiology of single axonal arbors
from neurons within a larger neuronal ensemble and to monitor
how action potential properties in multiple regions of axonal
arbors change over time. These extracellular signals from
single neurons are a novel source of empirical ground truth that
could be used to test spike sorting algorithms.

METHODS

Cell culture. Cleaned MEAs (120MEA100/30iR-ITO arrays; Mul-
tiChannel Systems) were sterilized by UV irradiation (for ~30 min)
and then incubated with poly-D- or poly-L-lysine (0.1 mg/ml) for at
least 1 h, rinsed several times with sterile deionized water, and either
plated immediately after rinsing or allowed to dry before cell plating.
The culture chamber surrounding the MEA (19-mm inner diameter)
was filled with 1 ml of cell culture medium. Cell cultures were
prepared in two stages to allow glia to proliferate and become
confluent in the area around the electrodes. The first plating seeds the
MEA substrate with proliferating glial cells upon which neurons can
grow following the second plating, usually a week later. Cells were
plated at 100,000–125,000 cells per dish for the first plating and at
125,000–200,000 cells per dish for the second plating. Mouse hip-
pocampal neurons were used for most of the experiments described.

All mice were from a C57BL/6 genetic background, and male mouse
pups were used for all cell cultures. For cell culture, mouse pups were
decapitated at postnatal day 0 (P0) or P1, the brains were removed
from the skulls, and hippocampi were dissected from the brain.
Hippocampi were enzymatically dissociated for 30 min at 37°C and
then triturated with flame-polished Pasteur pipettes (Tovar and West-
brook 2012). After the first plating, most neurons did not survive.
However, when necessary for timing purposes, cultures were treated
with 200 �M glutamate for 30 min at 37°C to kill any remaining
neurons. This was done 5–7 days after the first plating. Cultures were
grown in a tissue culture incubator (37°C, 5% CO2) in a medium made
with minimum essential medium with 2 mM Glutamax (Life Tech-
nologies), 5% heat-inactivated fetal calf serum (Life Technologies),
and 1 ml/l Mito� serum extender (Corning) and supplemented with
glucose to an added concentration of 21 mM. Cell culture medium
was changed two times per week, and cultures were maintained for as
long as 6 wk. We used no antibiotics in our primary neuron cell
cultures. All animals were treated in accord with University of
California and National Institutes of Health policies on animal care
and use.

Solutions, electrophysiology, and analysis. To minimally disturb
the neurons and maintain sterility, the recordings described in this
work were done in cell culture medium (see above). Recordings were
done using a MultiChannel Systems MEA 2100 acquisition system.
Data were sampled at 20 kHz and bandpass filtered between 200 and
4,000 Hz after acquisition. Data were recorded on all 120 data
channels. We controlled the head-stage temperature with an external
temperature controller (MultiChannel Systems TC01). Most record-
ings reported in this article were done at 30°C, unless otherwise
indicated. A small subset of early experiments were done without
temperature control. The ambient working temperature of the head
stage was ~29°C, setting the minimum temperature at which we could
perform experiments. Osmolality of the media was usually ~320
mosmol/kgH2O. Salts were obtained from Sigma-Aldrich or Fluka;
tetrodotoxin (TTX) was obtained from Tocris. For the experiments
reported, drugs were introduced directly into the recording chamber in
a volume not more than 0.2% of the chamber volume.

All recordings were done on neurons at 5–30 days in vitro (DIV).
We only used recordings with signals present on the majority of
channels. Recordings were typically 3–5 min long. Recording dura-
tion was kept short to minimize the effects of removing MEAs from
the incubator and to avoid large changes in CO2 and pH. All record-
ings were done with the MEA chambers covered by a CO2-permeable,
water vapor-impermeable membrane (Potter and DeMarse 2001) to
minimize the effects of evaporation, maintain cell culture sterility, and
decrease degassing of the medium. Membranes were held in place
over the recording chamber by a Teflon collar placed over the culture
chamber. The temperature of each array was equilibrated to head-
stage temperature before data acquisition. This usually required at
least 5 min during which we monitored the reequilibration to the
specified temperature before recording. Although our recordings were
done with covers over the culture reservoir surrounding the MEA,
separate control experiments showed that minimizing the recording
duration was important because the temperature gradient between the
temperature control element, located below the MEA, and the top of
the MEA chamber lid promoted evaporation from the small volume of
the culture wells and sharply increased the osmolarity of the culture
medium (data not shown). When no lid was present, the osmolality of
the external solution steadily increased over periods of 45–60 min,
accompanied by an increased number of spikes, increased bursting,
and decreased interspike intervals. If the cultures were left continu-
ously uncovered long enough (�120 min), spiking decreased and
eventually ceased. For experiments requiring temperature changes,
head-stage temperature was monitored and each MEA was kept at the
new temperature for at least 5 min.

Spike detection and analysis. MultiChannel Systems proprietary
files were converted to HDF5 file format with the MCS program Multi
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Channel DataManager before all analysis was performed. Extracellu-
lar signals were bandpass filtered using a digital second-order Butter-
worth filter with cutoff frequencies of 0.2 and 4 kHz. Spikes were
detected using a threshold of six times the standard deviation of the
median noise level (Quiroga et al. 2004). For each eAP detection time,
five data points centered on the minimum spike time were fit to a
second-order polynomial whose minima was calculated to provide an
estimate of the precise spike time. A 3-ms window of the extracellular
voltage was then extracted for each spike time. To test the efficiency
of spike sorting, eAPs were sorted using a 3-ms spike waveform at
each electrode, followed by principle component analysis, with clus-
tering done using the OPTICS algorithm (Prentice et al. 2011). Action
potential propagation signals were initially detected by eye with the
help of custom spike visualization software and were validated by
signal averaging using custom software. Unless otherwise noted,
spike-sorted data were not used in our analysis. Analysis was done
using Igor (WaveMetrics) and with custom software written in Python
and Mathematica (Wolfram). Custom software used in this work is
available online (https://github.com/dbridges/mea-tools).

All statistical data are means � SD. For cases of multiple compar-
isons, we used analysis of variance followed by the Bonferroni
multiple comparison correction. Linear fits to data from manipulation
of propagation latency were done using Igor. The percent change in
propagation velocity was calculated as

�propagation speed �%) � 100�1 ⁄ �1 � m�� � 100,

where m is the average slope for each condition (temperature or TTX
concentration).

In some instances, spikes at some coactive electrodes were not
reliably detected, even when spikes at other coactive electrodes were
detected. This represents either failures of action potential propaga-
tion, as might be expected in cases of branch-point failures (Grossman
et al. 1979; Soleng et al. 2004) for example, or signal detection
failures, such as when eAP amplitude approaches the spike detection
threshold. Plotting the probability of eAP detection at constituent
propagation signal electrodes as a function of the ratio of eAP
amplitude to the spike detection threshold showed that spike detection
probability decreased sharply with the spike amplitude-to-threshold
ratio. This indicates that occasional failures to detect component
propagation signal eAPs at constituent electrodes likely resulted from
failures of signal detection rather than failures of action potential
propagation. This result is not surprising given the reported high
reliability of action potential transmission in hippocampal axons (Cox
et al. 2000; Raastad and Shepherd 2003; Radivojevic et al. 2017) but
does speak to the level of signal interference from background
recording and biological signal noise.

Immunocytochemistry. For immunocytochemistry experiments,
neurons and glia were grown on glass coverslips in plastic culture
dishes but otherwise prepared and maintained in the same manner as
neurons plated on MEAs. Cells were fixed with 4% paraformaldehyde
for 15 min at room temperature and washed three times with phos-
phate-buffered saline (PBS). Cells were then permeabilized with
0.25% Triton X-100 in PBS for 10 min at room temperature and
washed three times with PBS. Cells were blocked with BlockingAid
(Life Technologies) for 1 h at room temperature and incubated with
primary antibodies in the block solution at 4°C overnight. Primary
antibodies were diluted at 1:2,000 for the guinea pig anti-vesicular
glutamate transporter 1 (anti-VGluT1; catalog no. 135 304; Synaptic
Systems) and at 1:1,000 for the rabbit anti-glutamic acid decarboxyl-
ase (anti-GAD67; catalog no. 198 013; Synaptic Systems). The cells
were washed three times with PBS and incubated with the secondary
antibodies in the blocking solutions for 1 h at room temperature. The
donkey anti-guinea pig IgG, Alexa Fluor 647 conjugate (catalog no.
AP193SA6; EMD Millipore) and donkey anti-rabbit, Alexa Fluor 488
conjugate (catalog no. A-21206; Life Technologies) secondary anti-
bodies were diluted at 1:1,000. Cells were washed three times with

PBS and mounted on glass slides with ProLong gold antifade moun-
tant (catalog no. P36934; ThermoFisher Scientific).

Human induced pluripotent stem cell-derived neurons. Neurons
were derived from human induced pluripotent stem cells (iPSCs) by
NeuroD1 overexpression as described previously (Lalli et al. 2016).
Briefly, human iPSCs were passed as single cells with Accutase
(StemCell Technologies) and were plated on Matrigel-coated (Corn-
ing) plates in mTeSR1 medium (StemCell Technologies) with the
RhoA-associated coiled-coil forming kinase (ROCK) inhibitor
Y-27632 (StemCell Technologies). The following day, cells were
transduced with lentiviral vector NeuroD1-GFP-Puro, driven by a
tetracycline-inducible promoter. Two days after transduction, doxy-
cycline (1 �g/ml) was added to the medium to induce the transgene.
This stage was designated day 0. Transduced cells were selected on
day 1 by adding puromycin (1 �g/ml). On day 3, cells were lifted with
Accutase and replated on MEAs with mouse glial cells already
seeded. From day 5 to day 8, a half-medium change was performed
with doxycycline and AraC (1 �M) to kill the proliferating cells in the
culture. The induced neurons were maintained and recorded in N2/
B27 medium.

RESULTS

Identifying action potential propagation. In every MEA
recording from cultures of mouse hippocampal neurons, we
noticed repetitively coactive groups of electrodes. Figure 1A
shows the position of one such group of coactive electrodes
indicated within the layout of the MEAs used in our experi-
ments. In our MEAs, the interelectrode distance was 100 �m
center to center, and each electrode was 30 �m in diameter. An
example of repeated spike co-occurrence at six electrodes is
shown in Fig. 1B. In this example, during a 180-s-long data
record, spikes repeatedly co-occurred at these electrodes more
than 1,700 times. An example of repeated eAP co-occurrence
from these six electrodes is shown in voltage traces (Fig. 1B,
arrows). Sequence stereotypy as well as the spike timing
latency between coactive electrodes is shown. Data from this
record are ordered in time, from the electrode with the earliest
occurring spike (F9) to the electrode with last spike in the
sequence (D4). During each co-occurrence event, the order of
spikes at coactive electrodes was invariant. Each panel in Fig.
1C displays the average of 200 eAPs at the indicated electrode,
superimposed on 10 individual traces from that electrode. The
averaged eAP waveforms resulted from indexing other elec-
trodes to the negative peak of the co-occurring eAPs at the
electrode with the earliest occurring eAP (F9). Note that spikes
at F9 had the highest amplitude in this group of coactive
electrodes. This, in addition to the absence of an initial upward
capacitive component of the spike waveform at F9, is consis-
tent with these eAPs originating at or near the axon initial
segment (AIS). The characteristic delay between spikes and the
sequence stereotypy of these signals during each coactive event
are apparent from the averaged events in Fig. 1.

Detection of eAPs at the same neuronal location by two
electrodes can occur when electrodes are closely apposed or
when the signal-to-noise characteristics are high. The capaci-
tive (positive) component of the eAP in F10 aligns well with
the resistive (negative) component of the eAP in F9. The
negative peaks of the eAPs at F9 and F10 are consistently
offset by roughly 0.3 ms, and the waveforms are quite distinct
from each other. These features suggest action potential prop-
agation from F9 to F10 rather than codetection of eAPs at the
same cellular region by neighboring electrodes. Moreover, the
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combined effect of the large electrode pitch and the fact that
extracellular voltage decreases steeply (as 1/r2, where r is the
radius from a point source; Buzsáki et al. 2012) likely limits
simultaneous eAP detection by multiple electrodes in our
experiments.

Several features of the eAPs at coactive electrode groups led
to the conclusion that these spikes represent action potential
propagation, including the invariant sequence of eAP occur-
rence at constituent electrodes during each coactive event (Fig.
1C). Additionally, the interelectrode latencies within each

coactive event were consistent with previous reports of prop-
agation velocity in unmyelinated axons. Graphs in Fig. 1D
each show two cumulative distributions: the interelectrode
latencies between the index electrode (F9) and each coactive
electrode, and the latency between eAPs at each of the other
electrodes (F10, F8, G8, E7, and D4) and the next occurrence
of eAPs at F9. The latencies between F9 and each coactive
electrode were all in the millisecond-to-submillisecond time
domain and highlight the repeated sequence of eAP timing.
Note that the latency between the most widely spaced elec-

Fig. 1. Coactive extracellular electrodes reveal action potential propagation. A: a labeled map of the extracellular electrode configuration. Electrode spacing is
100 �m center to center, and electrodes are 30 �m in diameter. Filled black circles indicate a group of repeatedly coactive electrodes. The earliest spike in this
repeating sequence always occurred at F9 (red circle), and the coactive spiking terminated at D4. B: extracellular voltage records from the 6 electrodes indicated
in A. Arrows (top) highlight co-occurring spikes among these electrodes. Electrode designations are indicated at left of each trace. C: spikes from coactive
electrodes shown at higher time resolution with averaged spikes (thick black lines) superimposed on 10 individual sweeps (gray lines). Electrode designations
are indicated at top left above each voltage trace. Note the increasing delay with distance from F9. D: cumulative distributions of the latency in spike time between
extracellular action potentials (eAPs) at F9 and each of the other electrodes of this coactive sequence (red circles), and the latencies between eAPs at each
electrode and the next occurrence of eAPs at F9 (black circles). Note the very short time delays and low variability shown in red. E: in 28 groups of coactive
electrodes, with 5 component electrodes, the electrode with the highest amplitude was usually the first electrode in the series. F: mean amplitudes (�SD) for
spikes in 5-component propagation signals are plotted. Spike amplitudes were normalized to spikes within each co-active electrode group. Normalized amplitudes
are higher at the earliest spikes: *P � 0.0005, ANOVA followed by the Bonferroni multiple comparison correction.
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trodes (F9 and D4) was the longest latency (~1 ms). The
progressive latency increase between eAPs at F9 and eAPs at
other electrodes is obvious by the rightward shift of their
distributions; the low variability of these latency distributions
was mirrored by coefficients of variation (CV) ranging from
0.047 to 0.080, consistent with a high-fidelity process like
action potential propagation (Meeks et al. 2005). In contrast,
the comparatively broad latency distributions between eAPs at
other electrodes and the next occurrence at F9 are at least an
order of magnitude longer than the other latencies, demonstrat-
ing that high spiking frequency among coactive electrodes does
not explain the repeated detection of short interelectrode laten-
cies in coactive electrode groups. In 62 unique groups of
coactive electrodes, the mean interelectrode interval between
consecutive spikes was 0.18 � 0.15 ms (n � 139). Latencies
such as these are too short to be explained by a process such as
spiking in pairs of synaptically coupled neurons (3–5 ms;
Ivenshitz and Segal 2010).

For the coactive electrodes in this example (Fig. 1), the
signal at F9 propagated to D4 (539 �m distant) at ~0.5 m/s, an
underestimate of the actual propagation velocity because it
assumes a direct path between electrodes. However, this esti-
mate is consistent with reported measurements of action po-
tential propagation in unmyelinated axons from hippocampal
neurons (Hu and Jonas 2014; Meeks and Mennerick 2007).
Invariant eAPs sequences with submillisecond latencies be-
tween coactive electrode groups, along with the low spike
timing variability between coactive electrodes, are all consis-
tent with these groups of electrodes detecting action potential
propagation in different parts of the same neuron.

The AIS is the site of action potential initiation (Bean 2007;
Kole and Stuart 2012) as well as the neuronal region with the
highest density of voltage-gated sodium channels (Hu et al.
2009; Kole et al. 2008). The amplitude of the extracellular
signal is proportional to the transmembrane current. We thus
looked for a relationship between eAP amplitude and the order
of occurrence using the relative amplitude of eAPs from 28
unique groups of coactive electrodes in different recordings.
Each group contained five coactive electrodes. We first deter-
mined the eAP sequence for each group and then peak-scaled
the eAP amplitudes to the amplitude of largest average spikes
within that group. The eAPs at the first electrode in each
sequence had the highest amplitude 70.4% of the time (Fig.
1E). Averaging the eAP amplitude at each position to get the
mean peak-scaled eAP amplitude for each of the five electrodes
of the sequence (Fig. 1F) showed the first spike in these
sequences, on average, had the highest peak-scaled amplitude
(0.91 � 0.14; P � 0.00001, ANOVA and post hoc Bonferroni
correction). These results are consistent with detection of high
transmembrane current density at or near the AIS. Spike
waveforms recorded at the site of action potential initiation
lack the capacitive component that results from action potential
propagation. The lack of an initial capacitive (positive) peak in
the first eAP (Fig. 1C) of many sequences in our records is also
consistent with eAP detection at or near the AIS. The eAP
amplitude decreased by only ~40% at sites distal from the
initiating electrode (Fig. 1F) contrary to the expectation of a
steep gradient in voltage-gated sodium channel density be-
tween the AIS and somatodendritic membrane (Cox et al.
2000; Hu et al. 2009; Kole et al. 2008; Lorincz and Nusser
2010). The relatively shallow gradient between the eAPs at the

first electrode and eAPs at distal sites (Fig. 1F) is consistent
with eAPs from coactive groups representing axonal signals.
We thus conclude that the repeated eAP co-occurrence and
interelectrode latencies reported represent action potential
propagation at different segments of neuronal membrane with
a high density of voltage-gated sodium channels. We refer to
cohorts of eAPs at coactive electrode groups as “propagation
signals.”

Propagation signals are widespread. Propagation signals
were seen in all recordings from mouse hippocampal neurons
cultured on confluent layers of glia. In a randomly chosen
subset of MEA recordings from these neurons, there were, on
average, 7.5 � 3.4 propagation signals per culture (n � 75
recordings; Fig. 2A). In this same data set, there were 4.1 � 2.4
constituent electrodes per propagation signal (Fig. 2B). There-
fore, spike redundancy due to propagation signals affected
roughly 25% of the MEA electrodes in these recordings (as-
suming no overlap between electrodes of each propagation
signal). The eAP time stamps in a sample of six electrodes
from a single MEA recording, showing spike time before and
after propagation signals were removed, illustrates the impact
of propagation signal redundancy on the raw data record (Fig.
2C). In this recording, propagation signals constituted any-
where from 18.9% (H1) to 87.0% (J1) of the total number of
spikes from these electrodes. We removed propagation signal
eAPs from all but one constituent electrode and decreased the
total number of spikes detected in these records by 41.2 �
19.2% (n � 25 recordings). Electrode density is expected to
increase the frequency of detection of propagation signals
(Bakkum et al. 2013). We therefore tested how the interelec-
trode spacing of our arrays (100 �m) contributed to propaga-
tion signal detection. This was done with a subset of propaga-
tion signals with four electrodes each (the mean number of
electrodes per propagation signal). We asked whether we could
detect these same signals after retrospectively eliminating ev-
ery other electrode in these recordings. Even after doubling the
interelectrode distance, we still detected propagation signals in
12 of 39 cases, illustrating that larger interelectrode spacing did
not eliminate eAP redundancy resulting from detection of
action potential propagation. Every recording from cultured
mouse neurons contained multiple unique examples of propa-
gation signals. Propagation signals were also present in record-
ings from human iPSC-derived neurons (data not shown). Our
results indicate that redundancy from propagation signal eAPs
could significantly compromise spike rate analysis unless taken
into account.

The nature of extracellular recording usually precludes as-
signing the source of an eAP to any particular neuron under
study. However, the repeated codetection of propagation signal
eAPs among multiple electrodes validates that propagation
signal spikes represent action potential propagation in single
neurons. The eAP sequence and two-dimensional electrode
arrangement creates a unique fingerprint for each signal in
the background of spikes from all other sources. We used
these characteristics to isolate the firing properties of the
individual neurons giving rise to propagation signals, inde-
pendently of spike sorting routines. The distribution of
neuronal firing frequency for 192 propagation signals in
records from 39 cultures is plotted in Fig. 2D. These firing
frequencies in our culture and recording conditions indicate
sufficient co-occurring eAPs for the reduction of back-

310 NONINVASIVE, MULTISITE RECORDING FROM AXONS

J Neurophysiol • doi:10.1152/jn.00659.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (128.111.209.175) on August 7, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



ground recording noise by signal averaging. These neuronal
firing frequencies are consistent with other reports of action
potential frequency from hippocampal neurons in vivo (Fen-
ton and Muller 1998; Ranck 1973).

Spike sorting algorithms attempt to cluster eAPs into “units”
for subsequent analysis. However, because each extracellular
electrode can detect signals from any nearby active neurons,
spike sorting routines suffer from a lack of external empirical
validation, or “ground truth” (Quiroga 2012). Propagation
signals are a novel source of empirical ground truth because the
codetection by more than one electrode validates that they
result from single neurons. We used propagation signal eAPs
to assess the performance of a simple spike sorting routine. We
did this by comparing the total number of spikes in eAPs from
propagation signals from 200 neurons, in spike-sorted and
unsorted data. For each propagation signal eAP we studied, we
plotted the ratio of the number of spikes in sorted data to that
in unsorted data in a cumulative distribution. A sorting routine
that was 100% efficient would result in a ratio of 1, meaning
that the sorting routine detected every propagation signal eAP
in the unsorted data. In the majority of cases (140/200), our
spike sorting routine efficiently sorted at least 90% of the
spikes that we detected from unsorted propagation signals (Fig.
2E). Thus propagation signals eAPs are a novel source of
empirical validation to assess the performance of spike sorting
routines. Our data show that propagation signals are wide-
spread in all our cultures and occur with sufficient frequency
for signal averaging, which could significantly increase the
number of constituent propagation signal electrodes.

Action potential propagation in single neurons at multiple
sites. Propagation signal eAPs can be averaged because they
result from single neurons. Averaging propagation signal eAPs
would decrease the recording noise and reveal electrodes with
eAPs otherwise below the spike detection threshold. As shown
in Fig. 3A, signal averaging reveals electrodes with propaga-
tion signal eAPs that would otherwise be below the spike
detection threshold. In this example, repeated co-occurrence of
eAPs at D9 and F9 was used to isolate this propagation signal.
This electrode pair had more than 1,900 co-occurring spikes in
180 s of recording. We averaged 800 of these eAPs at all MEA
electrodes in this recording using a 5-ms window centered
around the first spike (D9) of the co-occurring pair. Before
signal averaging, D9 and F9 were the only electrodes with
superthreshold eAPs (Fig. 3A); averaging revealed eAPs at 14
additional electrodes, greatly expanding the number of elec-
trodes with eAPs and, importantly, increasing the number of
interelectrode latencies. Averaged eAP waveforms were super-
imposed on 10 sweeps of raw data from a subset of these
electrodes (Fig. 3A). The eAP detection threshold is shown in
each data window, indicating that most signal-averaged eAPs
were well below the detection threshold. We superimposed the
signal-averaged peak-scaled waveforms of two electrodes with
superthreshold spikes and two electrodes with spikes below
detection threshold to show the morphological similarity of
these eAPs (Fig. 3B) and demonstrate the latency between the
first and subsequent eAPs. In a subset of 47 unique propagation
signals, the average number of electrodes with superthreshold
spikes was 3.4 � 1.6 per propagation signal. Signal averaging
each of these propagation signals increased the number of
electrodes with eAPs to 18.4 � 9.2, roughly 15% of the total
number of MEA electrodes. We refer to events revealed by

Fig. 2. Widespread occurrence of propagation signals in all multielectrode array
(MEA) recordings. A: in a distribution of the number of propagation signals per
MEA from 75 unique recordings, the average number of propagation signals per
MEA was 7.5 � 3.4. B: the distribution of electrodes per propagation signal. For
544 propagation signals, the average number of electrodes per propagation signal
was 4.1 � 2.4. C: results of removing propagation signals on spike trains are
graphically demonstrated in 10 s of spike train data from 6 electrodes from the same
MEA recording. Spike trains before (black) and after (red) propagation signal removal
are displayed. Electrode designations are shown at right of each spike train pair. These
spike trains are from unsorted data and demonstrate that removal of propagation signals
is itself a novel spike sorting step. D: the distribution of neuronal firing frequency
(mean � 5.03 � 5.02 Hz, n � 192 propagation signals). E: propagation signals were
used to assess the performance of a spike sorting routine (OPTICS). This was done by
comparing the number of eAP co-occurrences between two electrodes in unsorted
and sorted spike trains in the same data records. The efficiency of spike sorting was
assessed by using the ratio of the total number of spikes (Freq) in sorted vs.
unsorted spike trains for 200 propagation signals. Data are expressed as a
cumulative distribution of these ratios. Perfect sorting means that the sorting
routine performed as well as propagation signal-based isolation of spikes from
single neurons. The vertical dashed line indicates the cutoff where sorting effi-
ciency was 90%. This plot shows that 70% of the 200 propagation signals were at
or above 90% sorting efficiency (horizontal dashed line). Arrows in A, B, and D
indicate mean values of those distributions. Data are means � SD.
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signal averaging as “subthreshold” eAPs. The increased num-
ber of electrodes with eAPs resulting from signal averaging
increased the temporal range of propagation latencies among
the sampling electrodes.

For each propagation signal, we expect that the latency
between eAPs at the initial electrode and eAPs at other con-
stituent electrodes tend to would increase as a function of
distance. We tested this assumption on propagation signals
from 50 neurons by using the cohort of electrodes with signal-
averaged eAPs and plotted the latency as a function of shortest
distance between electrodes. The plot of latency from the
initial eAP to all other propagation signal eAPs (Fig. 3C)
shows that, as expected, latency tends to increase as a function
of distance. Each signal was fit with a linear function; the
inverse of the slope of the fits of each of these propagation
signals gives a mean propagation velocity of 0.59 � 0.28 m/s
for these neurons (n � 50 propagation signals recorded at
30°C), consistent with previous measurements from unmyeli-
nated axons (Hu and Jonas 2014; Meeks and Mennerick 2007).
This estimate represents the lower limit of velocity because it
assumes a direct path between electrodes. The increased num-
ber of interelectrode latencies per propagation signal that result
from signal averaging increases the resolution of measure-
ments that depend on changes in interelectrode latency.

Assessing changes in propagation velocity. Accurately mea-
suring conduction velocity requires knowledge of the propa-
gation path length under study. Acquiring this information
routinely is impractical in our system because of the high
density of cells (and thus processes) in our neuronal cultures.
To bypass the need to know path length and still quantify how
experimental manipulations affect propagation velocity, we

plotted the change in interelectrode latency as a function of
time delay between the index electrode and other constituent
electrodes in each propagation signal. We validated our
method using the well-known temperature sensitivity of action
potential propagation (Chapman 1967; Franz and Iggo 1968;
Westerfield et al. 1978).

Figure 4A, top, shows a map of constituent propagation
signal electrodes, including electrodes with super- and sub-
threshold eAPs. Recordings were done at the indicated tem-
peratures, and eAP latency between the index electrode (B7)
and other constituent electrodes is shown in averaged spikes
from a subset of these electrodes (Fig. 4A, bottom). Peak-
scaled eAPs at the indicated temperatures show that, as ex-
pected, increasing the temperature decreased the eAP latency
between the index electrode and each of the other electrodes.
We measured changes in action potential propagation induced
by temperature by plotting the change in eAP latency as a
function of the propagation time at 30°C (Fig. 4B, top) for
every constituent electrode of this propagation signal (Fig. 4B,
bottom). In this example, the slope of the fitted line from the
comparison of two back-to-back recordings done at 30°C was
flat (m � 0.004 � 0.004; Fig. 3E). In contrast, increasing the
temperature decreased the latencies between eAPs at the index
electrode (B7) and all other electrodes and increased the slopes
in the fitted data. In this example, raising the temperature from
30°C to 33°C increased the slope to 0.147 � 0.005, reflecting
a 17.2% increase in propagation velocity. Increasing the tem-
perature from 30°C to 36°C decreased the interelectrode la-
tency further and increased the slope of the fitted data
(0.246 � 0.007), consistent with the action potential propaga-
tion velocity increase of 32.6% at 36°C compared with 30°C.

Fig. 3. Signal averaging increases the number of electrodes with propagation signal extracellular action potentials (eAPs). A: a map of propagation signal
component electrodes, showing sweeps from a subset of those electrodes, centered around the spike at D9. The spike detection threshold for each electrode is
indicated by the gray band. Data from each electrode show signal-averaged eAPs (red) superimposed on 10 raw data traces (black). For this signal, eAPs at D9
and F9 electrodes were consistently above their detection thresholds, whereas eAPs at other electrodes were revealed by signal averaging. Vertical axes are the
same for all electrodes (50 �V), except for D9 (90 �V). Horizontal axes are the same for all electrodes (3 ms). Electrode layout in this and all subsequent
examples is identical to that in Fig. 1A. Red circle indicates the electrode where the earliest propagation signal eAP occurred (D9). B: subset of super- and
subthreshold eAPs from this propagation signal were peak-scaled to the largest negative peak (from electrode D9) and superimposed, highlighting that spikes
at distal electrodes tended to occur later in the sequence. Subthreshold eAPs are those that are revealed after signal averaging. C: for 50 propagation signals, the
latencies between eAPs at initial electrodes and all other signal-averaged eAPs are plotted as a function of shortest distance between electrodes. Data from 2
propagation signals are highlighted with dashed lines connecting red symbols. Linear fits to each are superimposed (solid red lines).
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The temperature-induced changes in latency from 17 propaga-
tion signals from several different MEAs shows that this
method easily resolves the effect of 2 degrees of temperature
difference on action potential propagation velocity (P � 0.005
for each temperature comparison; Fig. 4C). The effect of
temperature on propagation velocity is linear across a large
temperature range (Chapman 1967; Franz and Iggo 1968).
Fitting the mean percent change at each temperature shows that

in cultured mouse hippocampal neurons, propagation velocity
increased 5% for every degree increase in temperature
(r2 � 0.98; m � 5.2 � 0.14). These data demonstrate that the
effects of manipulating propagation velocity can be quantified
by sampling the effect of small latency differences at multiple
sites in the axonal arbor.

Cultured mouse hippocampal neuron axons are extensive
and contain multiple branches. The large two-dimensional
extent of constituent propagation signal electrodes is well
within the range expected from the reported length and branch-
ing patterns of hippocampal axons (Arszovszki et al. 2014;
Kaech and Banker 2006). We examined the extent of axonal
growth in our culture system by immunostaining cultured
neurons with a marker of neuronal processes (Tuj1) and the
presynaptic marker VGluT1, a marker of presynaptic termi-
nals. To increase the chance of visualizing single axons, by
minimizing contamination from processes belonging to other
neurons, we decreased our plating density by 80% for these
experiments. Axons were differentiated morphologically from
dendrites by their caliber, longer length, and gradual taper
(Kaech and Banker 2006). Figure 5 shows a neuron with an
axon that bifurcates partway along its length. The meandering
paths of these axonal branches span hundreds of micrometers.
Branches from this axon enter regions with relatively high
levels of punctate VGluT1 staining coupled with a large
increase in the complexity of neuronal processes (center left
and bottom right). The inset highlights a portion of the axon
where two smaller axonal branches depart from the main
branch on the left. Thus the meandering paths and extensive
branching of axons in our culture system are consistent with
the large and varied patterns of propagation signal electrodes in
our system and show the overlap between extensive axonal
processes and the two-dimensional extent of propagation
signals.

Fig. 5. Axons from cultured neurons can span hundreds of micrometers and
have meandering paths and several branches. The lengths and paths displayed
by axons were compared with the morphology inferred from propagation
signals by immunostained hippocampal neurons with a marker expressed in
axons and dendrites (Tuj1) in low-density cultures. Axons were differentiated
from dendrites by their uniform caliber, longer length, and more gradual taper.
The total length of the process shown between the asterisks was 1,692 �m.
Inset highlights a portion of the axon where 2 smaller axonal branches depart
from the main branch. These images confirm that neuronal processes such as
axons could underlie propagation signals in our recordings.

Fig. 4. Quantifying changes in action potential propagation velocity. A: a map
of electrodes with super- and subthreshold extracellular action potentials
(eAPs) for 1 propagation signal (top) and a subset of those eAPs recorded at
30, 33 and 36°C (bottom). Changes in propagation velocity were indexed to
control (30°C). As expected, increasing the temperature decreased the inter-
electrode latency. Shorter time intervals between the initial spike (at B7) and
spikes at other electrodes is evident in the leftward shift of these eAPs with
increasing temperature (A and B). Temperatures are indicated by color, and
eAP waveforms were peak-scaled. B, top: for each propagation signal, changes
in propagation velocity were assessed by plotting the change in the latency (y)
between the earliest eAP and all other eAPs of this propagation signal as a
function of the latency between the initial spike and each spike time in control
conditions (x). Bottom: the temperature-dependent increase in propagation
velocity is shown as an increase in the slope of the linear fit of the data. Data
from control experiments are shown on the horizontal zero line. In this
example, the data were well fitted with straight lines at each temperature (r2 �
0.9). C: for each propagation signal, we used the slope from the linear fit at
each temperature to calculate the percent change in propagation velocity and
the aggregate temperature data for each condition. The change as a function of
temperature is well fitted with a linear function (r2 � 0.998). This slope
indicates that in these neurons, temperature increases the propagation velocity
by ~5% per °C. Data are means � SD. Red circle in A indicates the index
electrode (B7) for the indicated propagation signal.
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Propagation signals are from axons. Axons have many
times the density of voltage-gated sodium channels compared
with dendritic or somatic membrane (Hu et al. 2009; Lorincz
and Nusser 2010). Our routine detection of action potential
propagation suggests that these eAPs originate from neuronal
compartments with a high transmembrane conductance, such
as axons. However, we cannot exclude the possibility that
some of these signals result from action potential backpropa-
gation into somatodendritic cellular regions (Spruston et al.
1995; Stuart and Sakmann 1994). The large voltage-gated
sodium channel density gradient between these compartments
is expected to affect the safety factor of action potential
propagation (Tasaki 1953) as has been reported in these neu-
rons (Mackenzie and Murphy 1998). Therefore, decreasing the
density of active sodium channels with subsaturating concen-
trations of the voltage-gated sodium channel blocker TTX
would collapse the propagation safety factor in dendrites to a
greater extent than the axonal safety factor. We used this to
examine whether propagation signals are from axons or soma-
todendritic regions. Neuronal sites with a low safety factor
would be prone to action potential propagation failures, and
thus we would expect a TTX dose-dependent change in mean
eAP amplitude at these sites.

The amplitude of control eAPs (Fig. 6A, left) were not
noticeably reduced by 10 nM TTX (Fig. 6A, right) in raw
voltage traces from the same electrode. The electrode maps of
two different propagation signals (Fig. 6B) indicate the elec-
trodes at which we detected super- and subthreshold eAPs. As
shown by the averaged waveforms, neither super- nor sub-
threshold eAPs amplitudes were attenuated by 10 nM TTX.
Measurement of averaged eAPs from several propagation sig-
nals demonstrates that the mean amplitudes of super- or sub-
threshold eAPs were not affected by TTX (Fig. 6C). The
NaV1.6 (Scn8a) sodium channel subtype is highly expressed in
hippocampal principal neurons (Schaller and Caldwell 2000).
On the basis of the equilibrium dissociation constant estimates
of 1–6 nM for these channels (Dietrich et al. 1998; Smith et al.
1998), 10 nM TTX is expected to reduce the density of active
sodium channels by at least 60%. Thus reducing the density of
active sodium channels by this amount had no effect on the
amplitudes of propagation signal eAPs, consistent with prop-
agation signal components originating from neuronal mem-
brane with a high safety factor, such as axons.

A high safety factor ensures that action potentials occurring
at high frequency are faithfully propagated because voltage-
gated sodium channels accumulate in inactivated states at high
frequencies (Goldin 2003). As shown in the example eAPs
(Fig. 6A), subsaturating concentrations of TTX coincidentally
increased the eAP firing frequency of these in vitro networks.
TTX (3–10 nM) changed the spiking pattern and produced
array-wide bursting. In these two cultures, the median inter-
spike intervals (ISI) across all MEA electrodes were 211.1 and
78.6 ms before addition of TTX. These numbers decreased to
21.9 and 19.0 ms in 5 and 10 nM TTX, respectively. The
burstiness index (Kumbhare and Baron 2015), a measure of
spike distribution across all electrodes, was lower in the control
recordings (0.456 and 0.602) than in 10 nM TTX (0.929 and
0.976), reflecting array-wide coherent bursting in the presence
of TTX. In single neurons isolated as propagation signals, the
average median ISI was 383.0 � 611.2 ms in control condi-
tions (n � 19). TTX application decreased the average median

ISI to 27.5 � 11.5 ms (5 nM; n � 19 neurons) and 35.6 � 23.1
ms (10 nM; n � 19 neurons). The number of spikes in 20 nM
TTX (fewer than 1% of control) was insufficient for compar-
ative statistical analysis. The increased firing frequency caused
by low concentrations of TTX increases the rigor of this test of
how active sodium channel density affects the fidelity of action
potential propagation. Our data show that even during action
potential firing frequencies of ~30 Hz, reducing the propaga-
tion safety factor by TTX application did not reduce the mean
amplitudes of super- or subthreshold eAPs (Fig. 6C).

Decreasing the active sodium channel density is known to
decrease axonal action potential propagation velocity (Colquhoun
and Ritchie 1972; Hu and Jonas 2014). As expected, TTX
increased the latency between constituent propagation signal
electrodes in a dose-dependent manner in our experiments
(Fig. 6D). For example, application of TTX (10 nM) increased
the latency between the index electrode (G5) and F8, compared
with control (Fig. 6D). Lower TTX concentrations (3 and 5
nM) also significantly increased the interelectrode latency
compared with control (Fig. 6, E and F). Dose-dependent
changes in propagation time in these TTX concentrations were
easily resolved by fitting the change in propagation time in
TTX as a function of the control propagation time for each
propagation signal (Fig. 6E). The average slope of the fit for
each condition was distinct for each TTX concentration tested;
the mean slopes from fits to the data were 0.01 � 0.01 in the
absence of TTX, �0.14 � 0.02 in 3 nM (n � 12), �0.21 �
0.04 in 5 nM (n � 15), and �0.39 � 0.06 in 10 nM TTX (n �
15). These slopes reflect decreases in action potential propa-
gation velocity of 12.2%, 17.1%, and 28.1% in 3, 5, and 10 nM
TTX, respectively (Fig. 6F). Thus the effects of small differ-
ences in the density of active voltage-gated sodium channels
are easily resolved by our methods. Moreover, when we
artificially reduce the density of active voltage-gated sodium
channels by more than 60%, axonal action potential propaga-
tion still occurs with high fidelity even during high-frequency
firing (~30 Hz). We repeated the temperature-response curve
(see Fig. 4C) in the presence of 6 nM TTX which should
reduce the active sodium channel density by 50%. The slope of
the fitted line for these experiments (4.85 � 0.11) indicates that
the temperature sensitivity of action potential propagation was
unaffected by reducing the sodium channel density by 50%,
assuming the TTX equilibrium dissociation constants are rel-
atively unchanged between 30°C and 38°C. The high safety
factor of these unmyelinated axons may mitigate other features
affecting propagation fidelity, such as inhomogeneity in elec-
trical capacity resulting from extensive en passant synapses
and axonal branches (Lüscher and Shiner 1990a, 1990b;
Mainen et al. 1995) and small caliber. That these TTX con-
centrations increased interelectrode latency without affecting
the fidelity of action potential propagation indicates an unex-
pectedly high density of voltage-dependent sodium channels.

Time-dependent changes in axonal excitability. The nonin-
vasive nature of extracellular recording is well suited to long-
term monitoring of neuronal activity. We used propagation
signals to monitor excitability in single axonal arbors over
hours or days. For example, we monitored the propagation
signal eAPs from a single neuron at all constituent electrodes
during a 25-h window (Fig. 7A). Averaged eAP waveforms
from a subset of these electrodes are shown in Fig. 7B. During
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Fig. 6. Propagation signals reflect axonal action potentials. A: extracellular voltage traces from a single electrode are shown in control conditions (left) and in
10 nM TTX (right). B: signal-averaged spikes from 2 different propagation signals (array maps at left) are shown, with super threshold (middle) and subthreshold
(right) spikes indicated. Control spikes (black traces) and spikes in TTX (red traces) are superimposed. Red circles indicate the electrodes where the earliest
propagation signal extracellular action potentials (eAPs) were detected (top, L9; bottom, F3). C: mean amplitudes of super- (top) and subthreshold (bottom) spikes
(normalized to control) from all the propagations signals in these recordings, superimposed on individual data points for these conditions. TTX (10 nM) had no
effect on spike amplitude in either superthreshold spike amplitude (1.06 � 0.25 compared with control; n � 29 electrodes) or subthreshold spike amplitude
(1.04 � 0.28 compared with control; n � 67 electrodes). These data are consistent with propagation signals predominantly representing action potential in axons.
Data are from 8 propagation signals on 2 multielectrode arrays. Dashed lines are the normalized amplitude of control eAPs. D: in another propagation signal
from these experiments, TTX decreased propagation speed, as expected from lowering the density of active voltage-gated Na� channels. Spikes from a subset
of electrodes from this propagation signal are shown, with control spikes (black) and spikes in 5 (gray) and 10 nM TTX (red) superimposed. Traces in 3 nM
TTX were excluded for clarity. In each panel, the dose-dependent increase in latency is shown as the rightward shift of the spikes with increasing TTX
concentration. Red circle indicates the electrode where the initial eAPs were detected (G5). E: the change in latency in each condition (control, 3, 5, and 10 nM
TTX) plotted as a function of the latency between the initial spike and each spike time in control conditions. Data for each condition were fitted with a linear
function. F: the aggregate data are plotted showing the dose-dependent slowing of propagation velocity. The slope of the linear fit at each TTX concentration
was used to calculate the percent change in propagation velocity. Data are means � SD. cont., Control.
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the 25-h recording interval, the eAP amplitudes at the majority
of constituent electrodes from this signal remained stable
(eAPs at K5 and F3, for example). However, within the same
axonal arbor during the same monitoring period, we simulta-
neously recorded the de novo emergence of an eAP waveform
at one electrode (H4) and the progressive amplitude decrease
of eAPs at another electrode (E2) over the same time period.
Over the course of 14 h, the resistive (negative) component of
the eAP waveforms at H4 developed from the preexisting
initial capacitive (positive) component, which remained other-
wise unchanged (Fig. 7B, arrowhead). These changes were
consistent with the gradual and progressive increase of active
conductances of the transmembrane action potential within a

previously nonexcitable portion of axon, for example. In the
case of eAP elimination at the E2 electrode, the time-depen-
dent amplitude decrease in capacitive and resistive eAP com-
ponents were comparable. This observation is consistent with
physical elimination, or withdrawal, of the axonal process. In
contrast, a decrease in spike-coupled transmembrane current in
the axon at that electrode would not be expected to affect the
size of the capacitive component of the eAP waveform at this
site, although other explanations, such as withdrawal of glial
processes leading to decreases in apparent signal size, cannot
be ruled out (Matsumura et al. 2016). Our data show that
significant changes in axonal excitability can occur over sev-
eral hours and imply that distinct portions of single axons can

Fig. 7. Noninvasive monitoring of axonal excitability during neuronal network development. A: the electrode map of a propagation signal that was periodically
monitored over 25 h. B: extracellular action potentials (eAPs) from a subset of the electrodes in A. During the 25-h interval, electrodes with stable eAP amplitudes
(K5, F3) were measured simultaneously with the appearance of new spikes (H4; arrowhead) and the elimination of existing spikes (E2) in the same axonal arbor
(left). Signal amplitudes for each waveform are indicated at right. C: a different propagation signal was monitored for 15 days. Maps show the constituent
electrodes at each recording time (DIV, days in vitro). D: spike amplitudes from all contributing electrodes plotted as a function of DIV, with a subset of these
highlighted (black line), indicating time-dependent changes in signal amplitude. The gray band is the mean threshold for all electrodes at 21 DIV. E: the total
number of constituent electrodes for the propagation signal from the example in C and D at every time point. F: the distribution of propagation signal lifetimes
(PS lifetime) plotted for 68 propagation signals from 4 multielectrode arrays monitored across 15 days. G, top: the spikes at electrode D6 are the earliest occurring
for this propagation signal sequence from the example in C and D and have a waveform consistent with being at or near the site of action potential initiation.
Decreases in the delays between the peak-scaled negative peak (arrowhead) and subsequent positive repolarization peaks (arrows) are consistent with a
developmental decrease in spike width of the eAP at D6 between 11 and 26 DIV. A time-dependent change in the latency was also noted between eAPs at D6
and other electrodes (G and H). G, bottom: the eAP latency between electrodes D6 and G8 initially decreased before increasing to greater extent than seen in
the initial measurement. H: changes in spike latencies were nonuniform across the axonal arbor. Red circles in A and C indicate the index electrode for the
indicated propagation signal (K5 and D6, respectively).

316 NONINVASIVE, MULTISITE RECORDING FROM AXONS

J Neurophysiol • doi:10.1152/jn.00659.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (128.111.209.175) on August 7, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



act independently with respect to regulating excitability over
this same time course.

We also used propagation signals to monitor excitability in
single axons over multiple days. The electrode map in Fig. 7C
shows constituent electrodes from one propagation signal that
we monitored for 15 days. The earliest occurring spike of this
signal was D6, with propagation extending outward diagonally
in both directions. The electrode maps of this propagation
signal at different days in vitro illustrate expansion and con-
traction of excitability of different portions of a single axonal
arbor over time in culture. The number of constituent elec-
trodes at which eAPs are detected in this same axonal arbor are
shown over time (Fig. 7E). During 15 days of monitoring, we
detected 68 unique propagation signals in 4 MEAs. Figure 7F
shows the distribution of the total number of days each of these
signals was detected, with many signals being detected
throughout the 15-day time window (18 signals), and almost as
many being detected only on a single day (17 signals). During
periodic monitoring in this data set, once a propagation signal
was no longer detected, we never saw instances where the
same signal reappeared at a later time.

Because propagation signals are a fingerprint for the source
neuron, we noninvasively recorded time-dependent changes of
individual eAP waveforms at each constituent electrode within
a propagation signal over a 15-day period. For this propagation
signal, eAPs at D6 preceded eAPs at all other electrodes
throughout the 15-day recording period (Fig. 7C). The time-
dependent increase in spike amplitude at D6 (Fig. 7D), coupled
with an eAP waveform lacking an initial upward capacitive
peak (Fig. 7G), are consistent with large increases in trans-
membrane current at or near the AIS. The peak-to-peak inter-
val of the spike waveform at D6 gradually shortened (Fig. 7G,
top). Because the peak-to-peak interval of the extracellular
eAP approximates the width at half height of the transmem-
brane action potential (Bean 2007), the changes in eAP wave-
form we report reflect a time-dependent decrease in the trans-
membrane action potential duration at D6. During long-term
monitoring, the latency between spikes at D6 and eAPs at a
subset of electrodes (C8, D5, and G8) initially showed a
decrease in the interelectrode latency between day 11 and day
17, followed thereafter by an increase in the latency (Fig. 7G,
bottom). In contrast, the latency between spikes at D6 and F11
remained relatively stable over this time period (Fig. 7H).
These examples illustrate that over periods of weeks, different
portions of the axonal arbor from single neurons act indepen-
dently from other portions, illustrating the heterogeneity of
time-dependent changes in propagation speed across axonal
arbor components in single neurons. Extracellular recording is
used to routinely monitor neurons over long time periods. Our
data illustrate how characteristics of propagation signals can be
used to noninvasively monitor single neurons and single axonal
arbors over several weeks.

DISCUSSION

Axons are responsible for the integration and high-fidelity
transmission of neuronal input (Debanne et al. 2011). How-
ever, because of their small caliber, axons are immune from
routine experimental accessibility. The data we present in this
article show that MEAs with low electrode density can be used
to routinely assess action potential propagation from single

neurons within neuronal networks. We also have demonstrated
that repeated co-occurrence of eAPs on multiple electrodes and
the invariability of the timing sequence between those elec-
trodes unambiguously confirm that these signals result from
single neurons. In the context of the extracellular recording
configuration, it is unprecedented to routinely and unambigu-
ously verify that subsets of eAPs result from single identifiable
neuronal sources that can be isolated from a background of
eAPs from other neurons in the spike record. Averaging these
signals revealed a larger cohort of electrodes with eAPs that
would otherwise be below the spike detection threshold and
represent the larger extent of eAPs in each axonal arbor. We
used the increased range of time differences to assess the
effects of manipulating propagation velocity (Figs. 4 and 6).
Signal averaging eAPs revealed physiological details from
different parts of the axonal membrane. The timing and the
two-dimensional distribution of constituent propagation signal
eAPs provides the fingerprint of each propagation signal neu-
ron and enables us to follow individual neurons within the
greater network over several days.

Techniques used to study the physiological properties of
axons, such as patch clamp-based recording configurations or
voltage-sensitive dyes, are technically challenging (Casale et
al. 2015; Schmidt-Hieber et al. 2008). We have shown that
some parallel physiological parameters can be routinely ob-
tained from extracellular recordings with low-electrode density
MEAs. Moreover, unlike recording in the patch-clamp config-
uration, extracellular recording is noninvasive, meaning that
the spiking behavior from single neurons can be monitored for
hours or days. Our results demonstrated that the development
of excitability in axonal arbors proceeds gradually; expansion
and retraction can occur simultaneously in different parts of the
same axonal arbor (Fig. 7B), and thus elaboration and devel-
opment of excitability in the axonal arbor is not necessarily a
concerted process throughout the axon. Different branches of
the axonal arbor could potentially be responding to signals
associated with contraction, for example (Bishop et al. 2004).
The earliest propagation signal eAP is the index around which
our measurements occur because these spikes tend to be the
largest and often have properties consistent with eAPs that
originate from at or near the AIS. These results were surprising
given that the distance between the electrodes and electrically
active cellular regions is a random unknown variable and the
amplitude of the extracellular voltage signal decreases steeply
with distance from the source (Anastassiou et al. 2015). The
detection of eAPs at or near the AIS underscores the resolving
ability of this system. These features create a basis from which
to explore the development of axonal excitability.

MEAs have previously been used to measure action poten-
tial propagation in axons. However, this work was done using
high-electrode density arrays with thousands of electrodes
(Bakkum et al. 2013; Müller et al. 2015; Radivojevic et al.
2017) or in microfluidic chambers designed to constrain axonal
growth (Dworak and Wheeler 2009) and that consequently
prevent interaction with other neurons. The high number of
electrodes used in the former technique produces large data
files that may limit the high-throughput use of this technology.
The latter technique necessarily isolates axons from network
interaction. Physically isolating axons in this way could mask
the contribution of presynaptic conductances during action
potentials and membrane inhomogeneity on action potential
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propagation, for example, because axons of many hippocampal
neurons have en passant presynaptic terminals along their
length. Large-scale MEAs also have been used to measure
action potential propagation in the retina (Li et al. 2015) in
experiments that coupled electrical measurements with fluo-
rescent labeling of small numbers of retinal ganglion cells.
Combining fluorescent labeling with electrical measurement is
attractive but impractical to implement in high-density neuro-
nal cultures. Fluorescently labeling all neurons makes it diffi-
cult to follow single processes, whereas labeling a fraction of
neurons may fail to routinely label neurons that underlie
propagation signals. An approach combining fluorescent label-
ing with electrophysiological recording could be used to label
single identified propagation signal neurons in our system
(Pinault 1996). However, relying on changes in propagation
time between component electrodes of each propagation signal
for our analysis (Fig. 3) circumvents the need to know axonal
path length in experiments that manipulate propagation veloc-
ity. Thus, although our methods do not give absolute values for
propagation velocity, our ability to noninvasively sample from
multiple sites provides the dynamic range to quantify the
effects of manipulating propagation and to resolve small
changes in these parameters. This creates avenues for the
routine study of the physiological and pathophysiological pa-
rameters affecting action potential propagation throughout sin-
gle axonal arbors.

Implications for spike-train analysis. Propagation signals
were found in every recording done in mouse neuronal cul-
tures. Our data demonstrate that when we eliminated propaga-
tion signal eAPs on all but one constituent electrode, the total
number of spikes decreased by more than 40%. Propagation
signals affected, on average, 25% of the electrodes in our
arrays. That this form of signal redundancy has not been more
commonly reported could be due to the use of larger pitch
electrodes by other investigators (Shahaf and Marom 2001;
Wagenaar et al. 2005), potentially decreasing the likelihood of
detecting propagation signals. However, when we retrospec-
tively doubled the electrode spacing, we did not eliminate the
redundancy resulting from propagation signals.

The prevalence of propagation signals in our data records
means that assessment of the significance of array-wide behav-
ior requires their elimination. Spike sorting routines attempt to
assign spikes recorded on individual electrodes into units, for
the purpose of further spike-train analysis (Hill et al. 2011).
Detection and elimination of propagation signals from all but
one recording channel is itself a novel spike sorting step that
depends only on eAP codetection at two or more electrodes.
Eliminating redundant propagation signal spikes may in fact
make subsequent algorithm-based spike sorting more robust.
Moreover, because the constituent eAPs from each propagation
signal result from single neurons, their presence in the spike
train is a source of ground truth (Quiroga 2012) that can be
used for testing spike sorting algorithms. We demonstrated
how propagation signals could be used to test the performance
of one sorting routine (Fig. 2E). This approach can be easily
generalized to test the efficiency of other spike sorting routines
as well as to test propagation signal eAPs across a range of
firing frequencies (see Fig. 6A). Propagation signals also could
be used to test sorting performance of the same signals under
other different recording conditions. Our catalog of propaga-

tion signals is a resource to examine signal heterogeneity from
single neurons.

Our cell culture conditions could account for why we readily
observe propagation signals. In our cultures, neurons grow on
a preexisting confluent glial substrate. Glia ensheathe neuronal
processes during outgrowth and synaptogenesis (Theodosis
et al. 2008). A confluent glial bed could create a permissive
environment for growth of axons closer to MEA electrodes
than they might otherwise grow. Alternatively, glia could be an
electrically resistive sheet that increases eAP amplitude across
all electrodes by effectively decreasing the size of the electric
field (Matsumura et al. 2016). In neuronal cultures not grown
on glia, we observed that neuronal processes tended to avoid
the area around the electrodes, that the signal-to-noise ratio
was lower than in neurons plated on a glial bed, and that
propagation signals were not as notable in cultures lacking glia
(data not shown). It is also possible that glia-neuron apposition
increases the transmembrane current density in neurons
through a glial-neuronal signaling mechanism (Fields et al.
2015; Sobieski et al. 2015; Tang et al. 2014) or by increasing
the axon length and complexity of branching (Hughes et al.
2010).

Future directions. The high-throughput nature of extracel-
lular recording with MEAs means that propagation signals can
potentially be used to study channelopathies of axonal ion
channels and to ask how these or other mutations affect
propagation velocity. Mutations have been found in several
types of voltage-gated ion channels that are typically localized
to axons and are associated with phenotypes such as congenital
epilepsy as well as neurodevelopmental disorders such as
autism (Debanne et al. 2011; Kullmann 2010). The effects of
these mutations on axonal excitability could be assessed with
the approaches we have outlined in this work. Our methods
could, for example, be used to study the effects of temperature
on action potential propagation in models of Dravet syndrome,
a condition in which patients have febrile seizures and that, in
the majority of cases, is associated with mutations in the Scn1a
subtype sodium channel (Catterall 2014). Propagation signals
could be used to study other mutations in Scn1a that are
associated with other seizure phenotypes. Patients with poly-
morphisms at Scn1a can vary in their responsiveness to com-
monly prescribed antiepileptic treatments (Tate et al. 2005). In
human iPSC-derived neurons, propagation signals could be
used to study axonal physiology within the context of human
disease models. Propagation signals also could be used to
understand the biophysical nature of these differences in drug
sensitivity in patients with these polymorphisms.
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