
AI Engineering:
11 Foundational Practices
Recommendations for decision makers from experts in software
engineering, cybersecurity, and applied artificial intelligence

Angela Horneman, Andrew Mellinger, and Ipek Ozkaya

11 Foundational Practices
1.	 Ensure you have a problem that both can

and should be solved by AI. Start with a well-
defined problem, understanding what you want
to accomplish and the outcomes you need, while
ensuring you have data available to infer those
outcomes. Once you know that you have a potential
AI problem, verify that other, simpler options—
which could be better solutions—do not exist.
AI is not a panacea and is often a more complex,
less efficient solution for problems where other
solutions may already exist.

2.	 Include highly integrated subject matter
experts, data scientists, and data architects
in your software engineering teams. Effective
AI engineering teams consist of experts in the
problem domain (subject matter experts), data
engineering, model selection and refinement,
hardware infrastructure, and software architecting
in addition to the other typical software engineering
expertise. These team members bring the required
skills in algorithm selection, model building, model
customization, and data pipeline management
that make up the core of AI systems. Include team
members who can deal with the sparsity of well-
designed tools and the high demands of these
systems in terms of performance, scalability,
bandwidth, resource management, and versioning.

3.	 Take your data seriously to prevent it from
consuming your project. Data ingestion, cleansing,
protection, monitoring, and validation are necessary
for engineering a successful AI system—and they
require tremendous amounts of resources, time,
and attention. Ensure that your processes account
for

•	changes in the environment

•	possible bias

•	potential for adversarial exploitation throughout
the system lifetime

The output of an AI system is intrinsically tied to
the data used to train the system and how well the
training data correlates to the problem and the
current world. A lot can go wrong with the data,
ranging from changes in format that can break an
ingest function, to malicious injection of data into
a training set that causes an incorrect model or
a data leak, to data lacking diversity or sufficient
examples of classes of interest. These challenges
require a comprehensive data management strategy
and oversight function. Automation is critical to
managing the data, but teams should balance
automation with observability and accessibility.

THE U.S. DEPARTMENT OF DEFENSE (DOD) is
increasingly interested in taking full advantage of
the improved capabilities of machine learning (ML)
algorithms and building artificial intelligence (AI)-enabled
systems that speed up timeliness and accuracy of the
decisions made to support DoD missions. With the
increased availability of computing resources, applying
ML algorithms to models of thousands of parameters—
and terabytes and petabytes of data—is now possible.

The availability of ML libraries and off-the-shelf solutions
sometimes gives the impression that implementing AI-enabled
software systems (AI systems) is easy. However, developing
viable and trusted AI systems that are deployed to the field
and can be expanded and evolved for decades requires
significant planning and ongoing resource commitment.
The following practices, informed by our work in software
engineering, cybersecurity, and applied AI, are AI engineering
recommendations for decision makers. For DoD missions,
acquisition and operational perspectives bring additional
considerations, which we will address in future reports.

Software Engineering Principles Apply to AI Engineering
Along with the following recommendations, remember
that an AI system is a software-intensive system. The
established principles of designing and deploying quality
software systems that meet their mission goals on time
apply to engineering AI systems. Teams should follow
modern software and systems engineering practices as
well as guidelines such as the Defense Innovation Board’s
Ten Commandments of Software. Teams should strive to
deliver functionality on time and with quality, design for
architecturally significant requirements (such as security,
usability, reliability, performance, and scalability), and plan
for sustaining the system for its entire lifetime. However,
some concerns in traditional software systems are
exaggerated in AI systems, particularly systems that include
ML components:

•	Engineering teams will need to architect AI systems for
inherent uncertainty in their components, data, models,
and output.

•	Engineering teams will need to adapt to managing different
rhythms of change. The rate of change in AI systems is
not consistent throughout the system. Data and models
may change very frequently, which may or may not imply
changes to the rest of the system.

•	Managing data will require more resources both up-front
and throughout the life of the system.

•	Verifying, validating, and securing AI systems will need to
account for ambiguity as well as increased attack surface due
to frequently changing data and underlying nature of models.

4.	 Choose algorithms based on what you need your
model to do, not on their popularity. Algorithms
differ in several important dimensions: what kinds of
problems they can solve, how detailed the information
in the output is, how interpretable the output and
models are, and how robust the algorithm is to
adversaries (via manipulating training data, interfering
with a feedback loop, and the like). Choose an algorithm
that is appropriate for your problem and satisfies your
business and engineering needs. As the needs of the
system evolve and the environment in which it works
changes, the algorithm is likely to change as well.

5.	 Secure AI systems by applying highly integrated
monitoring and mitigation strategies. The attack
surface of an AI system is expanded due to challenges
with understanding how its complex models function
and depend on data. These additional attack surface
dimensions compound the vulnerability of the
traditional hardware and software attack surface.
Counteract this circumstance by performing ongoing
evaluation and validation—activities that are especially
important given present-day conditions of rapid
development of attacks and defenses.

6.	 Define checkpoints to account for the potential
needs of recovery, traceability, and decision
justification. AI systems are acutely sensitive
to the dependencies among input data, training
data, and models. As such, changes to the version
or characteristics of any one can quickly—and
sometimes subtly—affect others. In systems where
models change periodically, it may be enough to
version models with timeframes of use. In systems
where models change frequently or continually,
carefully consider when and how to correlate input
data with the model used to evaluate it, and how
to capture and retain that information. Manage
these dependencies and versions with care.

7.	 Incorporate user experience and interaction
to constantly validate and evolve models and
architecture. As much as possible, use an automated
approach to capture human feedback on system output
and improve (i.e., retrain) models. Monitor user experience
to detect issues early, such as degraded performance
in the form of system latency or reduced accuracy. Even
in low-interaction systems, ensure continued human
involvement to monitor for the judgments (practical,
ethical, moral, trust, risk related) that computers cannot
be coded to evaluate—and for indications of model
tampering or system misuse. Be sure to account for user
and management automation bias.

8.	 Design for the interpretation of the inherent
ambiguity in the output. AI output requires much
more interpretation than most other systems. The
uncertainty introduced by an AI system might not be
acceptable under certain scenarios for the mission and
users. Incorporating machine learning components also
necessitates designing for output uncertainty and degree

of reliability to assist interpreting and assuring the output.
Several AI system components may require techniques
such as continuous monitoring and instrumentation.

9.	 Implement loosely coupled solutions that can be
extended or replaced to adapt to ruthless and
inevitable data and model changes and algorithm
innovations. The boundaries between the components
of an AI system deteriorate more quickly than those in
traditional systems due to the entanglement of data.
Moreover, the impact of change is heightened due to
unanticipated direct and indirect data dependencies.
These dependencies may trigger changes in functionality,
expected outputs, and even the infrastructure that
supports the system. When designing and sustaining
AI systems, continuously apply fundamental design
principles of engineering to develop loosely coupled,
extensible, scalable, and secure systems.

10.	 Commit sufficient time and expertise for constant
and enduring change over the life of the system.
Teams significantly underestimate resources needed
nine out of ten times. Building AI systems requires
greater resources initially that need to scale up quickly
and significant dedication or resources through the
life of the system. These resources include computing,
hardware, storage, bandwidth, expertise, and time.

11.	 Treat ethics as both a software design consideration
and a policy concern. Evaluate every aspect of
the system for potential ethical issues. Account for
organizational and societal values in all aspects of
the system, from data collection, to decision making,
to validation and monitoring of performance and
effectiveness. Data collection often raises questions of
privacy and in some cases touches other ethical issues,
but data collection is not the only area of concern. How
the systems will be used (e.g., autonomous military
drones), data representation (e.g., ethnic, gender,
disability diversity in facial recognition), and model
structure (including protected characteristics in credit or
employment decisions) can be ethical issues as well.

Final Thoughts

The only constant is change. Designing, deploying,
and sustaining AI systems require engineering practices
to manage inherent uncertainty in addition to constant
and increased rhythm of change. Algorithms, practices,
and tools to engineer AI systems are constantly
evolving, and changes brought by these systems reach
across problem, technology, process, engineering,
and cultural boundaries. These AI engineering
practices provide a foundation for decision makers to
navigate those changes to develop viable, trusted, and
extensible systems. As we build and use these systems,
we will define better codified engineering and data
management practices as well as tools.

©2019 Carnegie Mellon University | 5271 | DM19-0624 | C 06.06.2019 | S 08.09.2019

About the SEI

The Software Engineering Institute is a federally funded research
and development center (FFRDC) that works with defense and
government organizations, industry, and academia to advance
the state of sthe art in software engineering and cybersecurity to
benefit public interest.
Part of Carnegie Mellon University, the SEI is a national resource
in pioneering emerging technologies, cybersecurity, software
acquisition, and software lifecycle assurance.

Contact Us
CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE; PITTSBURGH, PA 15213-2612

sei.cmu.edu
412.268.5800 | 888.201.4479
info@sei.cmu.edu

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s)
and should not be construed as an official Government position, policy, or decision, unless
designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No Warranty”
statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and
freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other external and/or commercial use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

DM19-0624

