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Executive Summary 

LMI completed a research and development (R&D) project to evaluate machine learning 
(ML) as a potential approach for improving forecasts of part demands. Data sparsity 
limited the success of ML across a wide range of techniques. As a result of this 
research focused recommendations for follow-on R&D are identified to explore the 
successful elements of this investigation. 

Due to the sparsity of the available demand data, using Maintenance and Availability 
Data WarehouseTM (MADWTM) data alone is insufficient to improve the Defense Logistics 
Agency (DLA) demand forecasts beyond those using established DLA models. The  
F/A-18E/F was selected as the trial platform for the project. Data sparsity was 
encountered across all platform component part demands. However, ML models of 
maintenance events, rather than part demands, delivered improved forecasting 
over time series modeling while addressing data sparsity concerns. Further 
research should be performed to determine whether this approach can enhance 
customer service, leading to improved readiness of the supported weapon systems. 

To improve further analysis, use of additional data, beyond MADWTM, should be 
explored to develop a more complete view of supply chain demands. The multi-echelon 
supply system should be modeled for added precision. Consumption data along with 
both retail and wholesale demands should be included in the follow-on models. 
Figure ES-1 shows the partial view provided by the data available for this R&D project 
compared to the full range of supply chain demands. 
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Figure ES-1. Using Consumption Data for Acquisition 

 

Forecasting demand for repair parts for weapon systems is a challenging objective that 
requires advanced analytics. The demand varies greatly, maintenance patterns change, 
and multiple inventory levels shroud true consumption patterns. Through R&D, DLA 
wants to create and test a minimum viable product using ML techniques. LMI applied 
these techniques on historical data from Service maintenance records and a Condition 
Based Maintenance Plus (CBM+) program to forecast parts demand. Improved forecasts 
would enable DLA to better manage the supply chain, enhancing support to retail 
customers. 

DLA’s objective is to explore the value of applying ML to Service historical maintenance 
records, which contain detailed information. This R&D project focuses on the F/A-18E/F 
Generator Converter Unit (GCU), a top degrader for the aircraft fleet. 

As the GCU is identified by the Navy as a top degrader there was in fact less sparsity 
than for other components. Key insights from the GCU analysis include the following: 

• Performance of ML models using demand data is limited by the sparsity of 
data. Infrequent part orders cause the data sparsity over time. The best-
performing ML models consistently under-predict part demands. 

• ML models using maintenance action forecasting mitigate the data sparsity 
issue and perform better than time series models for maintenance actions. Using 
ML to predict maintenance action should be further investigated as a means of 
improving part demand forecasts across other platforms and parts. 

• Change point detection may be useful in signaling the need for a different 
ML model. 

We recommend five follow-on options, directly related to ML modeling, to improve parts 
forecasting. We also recommend an alternative to ML rooted in simulation modeling: 

1. Predict maintenance events and associated usage bills of materiel (BOMs). This 
recommendation expands on promising results from maintenance action 
forecasting with ML to overcome sparsity. Using data available in the MADWTM 
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and applying ML techniques, we can produce a BOM for use with predicted 
maintenance events: 

- Building on the promising results, use ML to forecast the organizational 
(O-level) and intermediate (I-level) maintenance requirements for the asset. 

- Use ML to identify a BOM for each identified maintenance event. 

- Use this BOM to forecast parts required for the maintenance availability. 

2. Predict changes in maintenance requirements. Current forecasting models use 
historical demand data without regard for changes in requirements due to 
changes in airframe construct, updates to components, or aging. Using the data 
available in the MADWTM and applying ML, we can predict changing maintenance 
requirements: 

- Identify changes discovered in recent maintenance events. 

- Identify changes in parts requirements associated with these changes. 

- Identify future requirements on the basis of these changes. 

3. Use ML to improve readiness and acquisition using consumption data. From 
experience, by using consumption data available at the retail level and applying 
ML, we can help improve overall readiness and availability of the airframes. DLA 
will see actual consumption levels, rather than waiting and relying on wholesale 
requisitioning. This approach will more accurately reflect usage and changes in 
usage at the National Item Identification Number level in a timelier manner. If 
historical replenishment has been for 100 units, but consumption has declined by 
50 percent, DLA can anticipate a decrease in frequency or quantities of 
replenishment requisitions. Knowing this can help prevent over-stocking 
inventory (and tying up acquisition funding) as well as under-stocking (resulting in 
out-of-stocks and decreased customer service): 

- Identify actual consumption at the O/I levels. 

- Identify retail issues to support consumption. 

- Associate the retail issues to on-hand inventory and identify changes at the 
retail level. 

- Recommend acquisition of wholesale inventories from observed trends in the 
consumption data. 

4. Dynamically train ML models. Dynamically choosing models over time can help 
improve accuracy. Utilizing change points can be helpful if not many reside within 
the data and lag times are insufficient to cause problems. Evaluating models on 
the basis of past performance is also a viable solution, but it can be time 
consuming. 

The MADWTM provides operational-level demand data for individual parts over 
time. These data furnish consumption information not found in the current DLA 
wholesale requisitioning data. Using data from both of these systems in concert 
with other available data (platform operational and DLA acquisition data) renders 
a more holistic picture of parts support and a subsequent improvement in 
forecasting for each layer of inventory. 

5. As an alternative to ML, use predictive simulation modeling to determine future 
part demands. To leverage service maintenance data to improve part forecasts, 
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DLA can use predictive modeling (using asset-focused, high-resolution 
simulation) to balance inventory levels beyond the limitations of statistical models 
and traditional forecasting. 

LMI successfully applied an asset-focused, high resolution simulation, Demand 
Pro, to many Department of Defense programs over the last 20 years. We have 
applied this proven capability to Air Force parts support for data cleansing, 
predictive maintenance actions, and ready for testing. 

This platform has predicted part requirements at the operational level as well as 
the intermediate and depot levels. Demand Pro delivers a capability that far 
surpasses forecasting tools. Through past performance, we have demonstrated 
that this predictive simulation platform and prescriptive analytics are more 
accurate and deeper than widely used traditional forecasting methods. 

Leveraging predictive simulation modeling can provide DLA with the holistic 
approach needed to capture the relationships between maintenance actions at 
the asset level, part consumption, retail requirements, and wholesale 
replenishment as summarized in Figure ES-2. Model elements from the 
simulation are listed and can be applied to predictive analysis according to the 
desired study objectives. 

Figure ES-2. Leveraging Predictive Simulation Modeling 

 
Note: CLS = contract logistics support; NMCM = not mission capable maintenance; NMCS = not mission capable supply;  

PBL = performance-based logistics. 
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Preface 

This research and development project seeks to create and test a minimum viable 
product using machine learning (ML) techniques on historical data from Service 
maintenance records to improve parts demand forecasting. 

The report has two volumes: 

1. Volume 1 addresses the efforts in predictive modeling using maintenance data. 

2. Volume 2 discusses use of Condition Based Maintenance Plus data and 
methods. 

In this volume, we tried to apply various ML models to evaluate past maintenance events 
and part demands to predict future part orders. 
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Introduction 

The Defense Logistics Agency (DLA) wants to apply machine learning (ML) techniques 
on data generated by the weapon systems’ integrated Condition Based Maintenance 
Plus (CBM+) program to improve its retail customer support through better supply chain 
management. 

This research and development (R&D) project seeks to create and test a minimum 
viable product (MVP) using ML techniques on historical data from Service maintenance 
records and a CBM+ program to improve parts demand forecasting. The customers for 
this effort are DLA J3 (J31 Mission Support, National Account Managers, and J34 
Process Owners), J6, DLA Land and Maritime, Troop Support, and Distribution. The 
Service program manager (PM), weapon system, and associated maintenance depot 
are all key stakeholders. 

Background 
DLA manages over 2 million unique spare parts. These items are not all stocked, many 
have no demand, some are shipped directly from suppliers to DLA customers, and some 
are buy-on-demand. DLA uses two types of forecasting. The first employs statistical 
models using DLA historical demand data. The second initiates with the customer 
organization and is finalized through collaboration. Both are based on item supply data 
and are filtered across multiple levels of inventory. Forecasts that produce too little stock 
result in backorders and may decrease readiness. Forecasts that produce too much 
stock consume DLA acquisition funds and depot space, incurring the associated costs of 
maintaining inventory. 

DLA does not exploit information-rich Service maintenance data to develop parts 
forecasts. The private sector has known the value of this point of consumption data for 
years. Traditional DLA supply forecasts, based on depot demand information, have 
errors in types, quantities, timing, and location of required parts. 

Objective 
DLA’s objective is to explore the value of applying ML to Service historical maintenance 
records, which contain detailed information. 

This R&D project seeks to answer the following question: Does the analysis of Service 
historical maintenance records improve parts forecasts and resulting supply support? 
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Technical Concept and Approach 

The initial concept was to apply ML to available data to improve forecasting of DLA-
managed items. From this position, we would evaluate and execute predictive models to 
compare with current DLA statistical forecasting and develop business case analyses for 
these predictive models. Infrequent part orders create data sparsity over time. As the 
project progressed, the sparsity of data led to two determinations: the predictive models 
did not improve on the existing statistical forecasting, and without this improvement there 
was no need to develop business cases. 

In concert with a DLA-established technical working group (TWG), we did develop and 
execute predictive models and formulated follow-on options to properly leverage these 
new technologies. 

Component Selection 
To focus the R&D project, we selected a critical component to analyze: the F/A-18E/F 
Generator Converter Unit (GCU). Navy Reliability Control Board (RCB) root cause 
analysis revealed the GCU as a top degrader (Table 2-1). 

Focusing the analysis on the GCU was approved by the TWG in September. The 
GCU also presented a high return on investment opportunity with respect to readiness. 
While the analysis and results are limited to the GCU, the methodology is repeatable for 
any component. 

Table 2-1. RCB Top Degrading F/A-18E/F Parts with Root Cause 

Rank Degrader name Root cause 

1 Outboard Leading Edge Flap 
Lower Fairing 

Maintenance-induced damage, over-torque during removal 
and replacement. Compounded by demand forecast transfer 
from Naval Supply Systems Command to DLA. 

2 GCU G2/G3 not designed to withstand alternating current non-linear 
electrical loads. Erroneous removal while troubleshooting 
wiring discrepancies. 

3 Arresting Tailhook Assembly Nicks, gouges, and corrosion driving excessive repair 
turnaround time at scheduled overhaul. Compounded by 
inaccurate forecast model, quality evaluation at fleet readiness 
center, and limited number of repairable components. 

 

Analysis Method 
The functional approach included the following tasks: 

1. Establish a TWG and define a DLA retail support operational use case. 

2. Analyze the F/A-18 GCU. 

3. Develop predictive models. 
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4. Compare the forecast with actual DLA forecasts. 

5. Develop a business cases for predictive models. 

6. Deliver a final report with recommendations. 

Task 1: Establish Working Group 
DLA established a TWG to guide and support the project. LMI provided input to and 
received guidance from the TWG to adjust project actions and execution while 
maintaining scope, schedule, and budget for the overall effort. 

Task 2: Analyze F/A-18 GCU 
2.1. Characterize the capability of CBM+ in a specific weapon system component of the 

subsystem as a baseline. With and the TWG’s approval, LMI focused on the 
F/A-18 GCU to determine the availability of historical and CBM+ maintenance 
data. As the GCU is identified by the Navy as a top degrader there was in fact less 
sparsity than for other components. We gathered the CBM+ data from the Services 
and found the DLA data in the Enterprise Business System. We used these data 
as the baseline for all subsequent modeling efforts. 

2.2. Develop a predictive model approach for CBM+. Through our partner Global 
Strategic Solutions, LLC (GSS), the team investigated a method to link data from 
selected CBM+ enabled subsystems to DLA supply data and determine the ML 
tools required for analysis. (See Volume 2 for all CBM+ method applications.) 

2.3. Supply the forecast using ML and historical data. Use ML and LMI’s Maintenance 
and Availability Data WarehouseTM (MADWTM) to develop models for improving 
demand forecasting. 

Task 3: Develop Predictive Models 
The predictive models developed apply the techniques described in Appendix A. 
(Because the developed models were unable to improve the parts forecast using 
available data, we did not identify an MVP.) 

Task 4: Compare Forecast with DLA Data 
Compare current forecasting models with those developed under the project to 
determine whether the predictive model improves demand forecasting. (As noted in 
Task 3, we did not develop an MVP and thus did not complete this task.) Additionally, 
DLA does not have operational level forecasts, only depot level forecasts. Therefore, 
comparing the LMI models (which used operational level data) to DLA forecast models 
using depot data equates to comparing organizational level to depot level maintenance 
actions. These two distinctly different types of maintenance are not expected to produce 
similar demands. 

Task 5: Develop Business Cases for Predictive Models 
From the results of the previous tasks, develop a business case analysis that includes 
operational and implementation costs, data availability, and benefits to DLA. (Because 
we did not develop the models beyond the GCU, as noted in Task 3, we did not do this.) 
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Task 6: Deliver Final Report with Recommendations 
The final report includes details on all models, procedures, and use for supply chain 
functional experts and data scientists. 

Assumptions and Constraints 
Maintenance events are assumed to require a specific, consistent set of parts. Part 
frequency per maintenance action is assumed to be constant with respect to time. These 
assumptions bound the modeling effort and address gaps in data. As additional details 
and data become available, these assumptions may be removed. 

DLA part orders may be constrained by changes in operations tempo, aging equipment, 
changes in maintenance concept, or budget considerations. Orders are not classified 
into these categories. These constraints define the processes and procedures modeled 
by the predictive analysis. 

Data Collection and Analysis 
Input data was smoothed, parsed and conditioned with several techniques for use 
across varied ML models. Data parsing and smoothing include: 

• Changed ML modeling of part demands to maintenance events to support 
smoothing 

• Parsed data by time by establishing lags in various models 

• Examined seasonality (found to not be an issue) 

• Conducted change point detection isolating groups of data by demand frequency 
(led to the recommendation to dynamically train ML models). 

MADWTM 
The MADWTM (Figure 2-1) is the primary source for data and analysis. This decision 
support tool integrates and stores maintenance and availability data for equipment, 
weapon systems, infrastructure, and facilities across the Services for each level of 
maintenance (field, intermediate, and depot), provider (organic or commercial), and 
nature of cost (labor and materials). 
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Figure 2-1. MADWTM 

 

Since 2005, LMI has been collecting Service maintenance data in the MADWTM. These 
data include all available maintenance data curated through Natural Language 
Processing and other techniques. The database helps the Department of Defense (DoD) 
understand the cost and availability impacts on weapon system sustainment. The 
curation supports comprehensive analysis through ML. The MADWTM contains over 
1 billion records from 42 data sources. Records in the MADWTM are cleaned, 
standardized, resolved, and reconciled. 

In the MADWTM, a set of flexible tools provides information on historical maintenance 
questions related to cost and availability. The MADWTM uses predictive and diagnostic 
modeling to answer questions related to materiel availability, with a focus on 

• data materiel availability, 

• efficiency, 

• impact, and 

• insights and analysis. 

Historical Demand Data 
The MADWTM contains detailed information on all supply transactions required for 
maintenance actions. This information is predominantly categorical, describing the 
National Item Identification Numbers (NIINs) ordered, the quantities, when the orders are 
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placed, and the weapon system for which they are ordered. With this information, the 
MADWTM can identify the supply transactions uniquely linked to labor transactions, 
offering an opportunity to understand how specific NIINs contribute to availability loss. 
For modeling, we used data from 2009–18, containing every order for any NIIN made for 
work involving a GCU. We grouped transactions by day and NIIN to get a table 
containing each day, an NIIN, and the number of orders for that NIIN placed on that day 
(backfilling days of no order with zero). The full information taken from the MADWTM 
demand data includes 

• NIIN, 

• order date, and 

• total number of orders of each NIIN on each date. 

Historical Maintenance Data 
The MADWTM contains detailed information on all labor transactions in numerous data 
fields, including cost, availability impacts, and other descriptive information on 
maintenance actions such as the system and subsystem maintained, the maintenance 
performed (repair, replace, treat, etc.), when the transaction began, and the end item 
maintained. As noted, the data covered transactions in 2009–18. From these data, we 
aggregated the total number of maintenance actions performed on a given day. To add 
granularity to the scope of the problem, we filtered by both maintenance action and end 
item. All possible maintenance actions were used and filtered to one specific end item, 
the GCU. The full information taken from the MADWTM maintenance action data includes 

• action start date, 

• end item, and 

• number of maintenance actions on each date. 

Model Training and Evaluation 
(Appendix A contains detailed model descriptions.) 

Machine Learning 
We applied various ML models, including ridge regression, random forest, Poisson 
regression, gradient boosting, elastic net, least absolute shrinkage and selection 
operator (LASSO) regression, and k-nearest neighbors (k-NN). These ML models 
evaluate past maintenance events or part demands to predict future part orders. 
(Appendix A details each of these models.) 

We explored two approaches to parts forecasting. First, we used historical demand data 
to predict NIIN-level demand. The results suggested that this approach would not be 
significantly better than DLA’s current forecasting methods. Second, we forecast the 
number of maintenance actions and information on the average number of parts used in 
a given maintenance action to predict NIIN-level demand. Both forecasting approaches 
started with a time series input (weekly parts consumed per NIIN for parts forecasting 
and weekly number of maintenance actions for maintenance forecasting) and 
implemented many of the same ML and deep learning methods. To evaluate 
performance, we compared those methods with baseline time series methods. 
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In both approaches, we converted time series data to a schema suitable for supervised 
learning, and then applied ML and deep learning methods to the data. To convert the 
data into a supervised ML format, we lagged the data back 40 weeks (each column 
represents the value of 40 previous time steps for a data point) and added categorical 
time features to the data. This schema enabled us to encapsulate all the time series 
aspects of the data into a format suitable for supervised ML. By lagging the data by 
40 weeks, autocorrelation and seasonality were considered in the time series models 
and increased the number of features for ML. The value is predicted 8 months into the 
future from the current values; thus, the response is the value 32 weeks into the future. 

With the data in a suitable format, we trained both parametric models and non-
parametric models to evaluate which type performs best for this data. Parametric models 
fit an equation to the data and are unlikely to fit to noise. Non-parametric methods do not 
fit an equation to the data so they can describe more complex patterns in data. For all 
models in both approaches, hyperparameters were tuned to optimize model 
performance. 

ML models for maintenance action forecasting included the following: 

• Parametric Methods: 

- Ridge regression 

- LASSO regression 

- Elastic net 

• Non-parametric Methods: 

- Random forest regression 

- Gradient boosted regression 

- k-NN 

- Kernel ridge regression 

- One dimensional convolutional neural network 

- Recurrent neural network. 

ML models for parts forecasting included the following: 

• Parametric Methods: 

- Ridge regression 

- Poisson regression 

- LASSO regression 

- Elastic net regression 

• Non-parametric Methods: 

- Random forest regression 

- Gradient boosted regression 

- k-NN. 
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Analysis and Results 

The analysis consists of two forecasting approaches: parts demand forecasting and 
maintenance forecasting. These approaches involve a similar data setup and ML 
approach but diverge in their analysis and results. Each section in this chapter details an 
approach and consists of the approach’s data setup, preliminary data analysis, modeling 
method, modeling result analysis, and conclusion. 

Data sparsity limited the success of ML across a wide range of techniques. As a 
result of this research focused recommendations for follow-on R&D are identified to 
explore the successful elements of this investigation. 

Parts Demand Forecasting 
The first approach to parts forecasting is to use historical demand quantity to predict 
future demand quantity. This approach assumes a relationship between past and future 
quantity demanded. 

We used time series methods to establish baseline results. We then applied ML models 
to predicting parts demand. (Appendix B details the modeling method.) 

Exploratory data analysis on the parts demand data included NIIN clusters analysis 
using unsupervised ML methods, statistical analysis on demand increases at the end of 
a fiscal quarter and end of a fiscal year, and classification to predict whether there will be 
an order on a given day. Figure 3-1 shows the modeling process. 

Data 

Source 

We used MADWTM data sourced from the Aviation Financial Analysis Tool (AFAST) to 
model demand. Each row in the data corresponds to an order of a given NIIN at a 
specific time and location. The AFAST-sourced MADWTM data provide information on 
operational-level demand for NIINs. 

Cleaning 

We applied several filters to the MADWTM data. First, we filtered the data by TMS 
(Type/Model/Series) and ServiceWBS (Service work breakdown structure, an alternative 
to work unit code [WUC]) so the data contained only demands for GCU parts on  
F/A-18s. After this filtering, the data consisted of demand records for 1,419 NIINs. The 
majority of NIINs are ordered on less than 2 days in the data set. Since neither time 
series methods nor ML methods perform well on such sparse data, we further filtered the 
data to include only NIINs ordered on more than 2 days. The resulting data set consisted 
of 487 NIINs. Finally, we reduced the data to contain only NIINs DLA currently forecasts, 
resulting in the final data set with demand records for 330 NIINs. 
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Figure 3-1. Modeling Process 

 
Note: MAE = mean absolute error; MSE = mean squared error. 

We then aggregated the data into daily quantities by NIIN. After filtering and 
aggregating, the data set consisted of NIIN, nonzero demand quantity, and date of 
corresponding demand. The data are subsetted to consist of dates from January 2009 
through December 2018 to account for data collection inconsistencies before 2009 and 
in 2019. The data consisted of every instance of a nonzero demand quantity, so we 
added missing dates and a corresponding zero for demand quantity for each NIIN. 

Exploratory Data Analysis 

End-of-Quarter Spikes 

At the end of a fiscal quarter or fiscal year, planners may order more parts to use 
underspent funds. This phenomenon may appear as spikes in demand quantity at the 
end of fiscal quarters and at the end of the fiscal year. To evaluate end-of-fiscal-quarter 
spikes, we split the data by fiscal quarter and used t-tests comparing the difference in 
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means over the last month of the quarter to the rest of the quarter. The t-tests showed 
that a few quarters had statistically significant increases in order quantity at the end of 
the quarter at the 0.05 significance level. Of all quarters in 2009–18, only the fourth 
quarter of 2010, the second quarter of 2011, and the fourth quarter of 2015 showed a 
significant increase in parts demanded at the end of the quarter. Figure 3-2 shows the 
plot of the second quarter of 2011. The plot shows a clear increase in demand at the end 
the quarter. Since only 3 of 40 quarters showed significant increases at the end of the 
quarter, we concluded planners are not demanding more parts at the end of the quarter. 

Figure 3-2. Second Quarter 2011 Parts Demand 

 

Likewise, planners may order more parts at the end of a fiscal year to exhaust funds. 
Behavior like this would result in higher demand quantity in the fourth quarter than in 
other quarters. To evaluate whether planners ordered significantly more in the fourth 
quarter, we applied a one-way analysis of variance (ANOVA) test to see whether all four 
quarters have the same mean. The test achieved a high p-value at the 0.05 significance 
level. All four quarters have statistically similar means throughout the data; thus, 
planners are not ordering significantly more at the end of the fiscal year. Figure 3-3 
shows the total amount of demand quantity by quarter over a 10-year period. The plot 
confirms the ANOVA test results, as no quarter is consistently higher than others. The 
plot also shows that demand consistently increases over time for all four quarters. 
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Figure 3-3. Demand by Quarter 

 

The results of the t-test and the ANOVA test suggest that, overall, there is little evidence 
of an increase in demand at the end of fiscal quarters and fiscal years. Transformation of 
data or predictions is not required to account for spikes in the data from planners 
exhausting underspent funds. 

NIIN Clustering 

We explored clustering NIINs according to sparsity to break down the data set and train 
on groups of NIINs with similar sparsity separately. Ideally, if the data set is clustered 
well, training and testing on NIINs by cluster would improve model accuracy because 
sparse NIINs will not cause the model to under-predict for frequently ordered NIINs. 

Our clustering methods first trained on one-dimensional data that consisted of the NIIN 
and the number of days that NIIN had no orders. We clustered the data with k-means 
clustering and density-based spatial clustering of applications with noise (DBSCAN). The 
k-means clustering identified separations between data points that made some sense 
visually, but DBSCAN was unable to identify anything meaningful. Results from 
clustering the one-dimensional data alone did not provide confident clusters. Figure 3-4 
shows the clusters assigned by the k-means clustering algorithm using three clusters. 
Each point represents the percentage of days a specific NIIN is not ordered over the 
entire period. Each color represents a different cluster. 
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Figure 3-4. k-Means Clustering Using Three Clusters 

 

We next applied clustering by the entire weekly time series to each NIIN. This data 
format consists of each individual NIIN’s weekly time series data as rows in a 
multidimensional data frame. Next, we compared k-means, DBSCAN, Gaussian mixture 
models (GMMs), and hierarchical clustering. 

We selected the number of clusters for these algorithms using plots of the relationship 
between the sum of squared Euclidean distance between each point and the center of 
the nearest cluster and the number of clusters. Figure 3-5 shows the plot of the sum of 
squared distance as the k-means clustering algorithm generates increasing numbers of 
clusters. The plot shows an elbow that falls around four clusters. This elbow means that 
when the algorithm generates more than four clusters, they are unlikely to add significant 
value to the model. Other clustering algorithms also indicated four clusters may be best. 

All clustering algorithms clustered the data similarly except DBSCAN, which labeled 
nearly all data as noise. We identified no similarities among the time series data of the 
clustered NIINs. 

Figure 3-5. Squared Distance for Different Cluster Amounts 
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All the clustering methods except DBSCAN use distance-based metrics. We next 
applied cosine similarity to improve clustering results. Figure 3-6 shows results from one 
cluster generated from DBSCAN using cosine similarity. Each line represents the weekly 
demand for a single NIIN over the entire period 2009–18. Clusters where different NIINs 
have similar order dates (regardless of number of orders) are considered successful 
clusters. Using DBSCAN with cosine similarity, we grouped the time series into six 
clusters with similar time series data. Despite these groupings, most of the NIINs are 
classified as noise. Because of the inconsistencies between different clustering 
techniques, clustering is not applied in further modeling. 

Figure 3-6. Clustered NIINs over Time 

 

Evaluation Measures 
We used the following measures to evaluate and compare models: 

• MSE, which measures the squared difference between the actual and predicted 
values. 

• MAE, which measures the absolute difference between actual and predicted 
values. 

• Period in stock (PIS), which measures how accurately and how consistently a 
model predicts. 

• Mean, the average of the test set prediction. 

• Standard deviation (SD), a descriptive statistic that measures how far spread out 
predictions are from their mean. Calculated for test set predictions. 

• Standard error (SE), a summary statistic that estimates how close the sample 
mean error is likely to be from the true population mean error. Calculated for test 
set predictions. 

Time Series Modeling 
Before evaluating ML models for parts forecasting, we used time series models to 
explore simple, traditional forecasting methods and establish baseline results. Including 
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time series modeling also helped to exhaustively evaluate forecasting methods on the 
data. 

Time series methods model data as a function of time. They are effective only when 
previous values in time can predict future values in time. Time series models take in two 
variables that have a one-to-one relationship: time and corresponding value. To forecast 
demand, the time series models take in the time and the corresponding total quantity 
ordered for a NIIN. 

Data Setup 

In preparation for time series modeling, we evaluated the data for stationarity to ensure 
they are appropriate for the models. Stationary data have consistent statistical properties 
over time. The data have consistent variance and covariance throughout time. The data 
may have changing mean, but it must change in the same manner with time. Data need 
to be stationary for some time series modeling to be effective. The augmented Dickey-
Fuller (ADF) test determines whether the data are stationary. ADF is a statistical 
hypothesis test with the null hypothesis that the data are non-stationary. It defines critical 
values on the basis of change in a stream of data over a set number of time intervals. A 
p-value represents the significance of the test findings. A p-value greater than 0.05 
indicates that the null hypothesis was rejected. Sufficient evidence exists to establish 
that the data are stationary. Every NIIN tested using the ADF test returns a p-value 
greater than 0.05 when looking at daily-level data. When looking at weekly data, nearly 
every NIIN tested using the ADF test returns a p-value greater than 0.05 (except a few, 
usually highly sparse NIINs, that do indicate non-stationarity). Because the majority of 
NIINs proved stationary under both aggregation levels, we assume the data are 
stationary. Thus, transformation and differencing of data are not required before time 
series modeling. 

An 8-month lead is incorporated into the time series models by setting a gap between 
the end of training and the start of testing. We used a sliding window approach to make 
predictions, establishing start and end dates for the training and testing sets. We then 
slid the model predictions forward by the length of the testing set and repeated the 
process through the entire testing data set. This process enables creation of disjoint sets 
of test predictions for each slide that, when combined, completely cover the entire 
testing set. The testing set consisted of 28 days to aggregate the predictions into roughly 
a 1-month prediction for each slide. We used this interval to make 28-day time series 
predictions and weekly ML predictions, aggregated by 4 weeks into comparable, monthly 
predictions. 

Figure 3-7 illustrates an example of a sliding window. In this example, the training 
window is 5 months long, the gap between train and test for lead time is 2 months long, 
the testing window is 1 month long, and the entire test set is 4 months long. The 
example shows the four slides required to make enough disjoint testing window 
predictions to cover the testing set and shows that, while the testing windows are 
disjoint, the training windows may overlap. 
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Figure 3-7. Example Sliding Window 

 

We repeated the sliding window approach on many training window sizes to test their 
effect on accuracy. Training start dates vary while the initial training end date, initial 
testing start date, testing window length, and gap length stay constant. This permits the 
training window length to vary while maintaining the gap between training and testing 
and the number of predictions each slide makes. All time series models evaluated 
training windows including monthly increments from 30 days to 1 year and yearly 
increments from 1 year to 7 years, except for exponential smoothing, which did not 
evaluate training windows of 1 month through 3 months because of modeling 
restrictions. 

Method 

For each NIIN, window, and time series model, we did the following: 

1. Filtered data by a given NIIN because the time series methods can only model 
one variable at a time. 

2. Split data into initial training and testing. Set the start of testing to April 14, 2017, 
the end of training to September 2, 2016, and the start of training according to 
the number of days in the given window length. We slid these dates according to 
the sliding window methods explained above. 

3. For the given NIIN, model, and window length, fit the model to the training 
window and tune hyperparameters over the testing set by grid searching every 
possible parameter combination and choosing the model that provides the 
prediction with the lowest possible MAE for the monthly aggregated test set. 

4. Calculated MSE and MAE for given NIIN, window, and model. 

Model Development 

For an exhaustive model evaluation, we used moving average, simple smoothing, 
exponential smoothing, Fourier, and Prophet to model and make predictions on the data. 
(Appendix A details these models.) These time series methods can only predict one 
variable, so each model trained and tested NIINs individually. As a result, these time 
series methods cannot relate demand patterns between NIINs. Some time series 
methods can relate multiple variables in one model, but we did not explore them due to 
weak support for these algorithms in Python. 
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Models are trained on data describing NIINs with less than 90 percent sparsity. NIINs 
with nonzero orders on at least 10 percent of days. The testing window for results is a 
22-month period, ranging from April 13, 2017, to November 22, 2018. 

ML Modeling 
Unlike time series methods, ML methods can model complex relationships and 
incorporate additional information. More complex modeling methods like many ML 
methods tend to produce results with lower bias but higher variance, which may be 
useful given the sparsity inherent in the data set. Many ML methods can also find 
relationships between variables and use those relationships in prediction. Likewise, they 
may be able to find relationships between NIINs and use those relationships to increase 
forecast accuracy. The role of these relationships in ML modeling may be enough to 
overcome the sparsity challenges. 

Feature Engineering 

We converted the data into a supervised ML format by lagging the data. Lagging a 
variable involves recursively adding a column for the variable at the previous time step to 
the original data frame for the number of lags specified. Tables 3-1 and 3-2 show an 
example transformation of time series format to a supervised ML format lagged back 
2 days. The first table shows the data in a time series format with two columns: date and 
corresponding quantity. The second shows the original data frame with two additional 
columns representing each lag from lagging quantity back 2 days. The first two rows of 
the supervised ML data setup will be deleted before modeling because they are 
incomplete. When lagging back N time steps, the first N rows in the data will always be 
deleted for being incomplete. 

Table 3-1. Time Series Format 

Date Quantity 

01-01-2012 5 

01-02-2012 3 

01-03-2012 8 

01-04-2012 7 

01-05-2013 9 

Table 3-2. Supervised ML Format 

Date Quantity (t–2) Quantity (t–1) Quantity (t) 

01-01-2012 N/A N/A 5 

01-02-2012 N/A 5 3 

01-03-2012 5 3 8 

01-04-2012 3 8 7 

01-05-2012 8 7 9 

 

Lagging is a traditional method for converting time series data to supervised ML data. 
When the data are lagged with the correct number of lags, a row of the data will include 
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all the row’s time series aspects, namely seasonality and autocorrelation. Seasonality is 
the cyclical pattern in time series data that repeats throughout the data set. 
Autocorrelation is the amount with which a time point is affected by all previous points. 
Similarly, partial autocorrelation evaluates the relationship between observations at two 
different time periods without including the effect of the observations at intermediate time 
periods. 

Figures 3-8 and 3-9 are the plots for autocorrelation and partial autocorrelation for NIIN 
016432402. This NIIN is representative of the majority of the NIINs in the data set. The 
plots consist of vertical lines for each lagged value up to 60 weeks prior. The height of 
each line in the autocorrelation (Figure 3-8) and partial autocorrelation (Figure 3-9) 
signifies the correlation coefficient between the given lagged value and present value. 

Figure 3-8. Autocorrelation 

 

Figure 3-9. Partial Autocorrelation 

 

The partial autocorrelation plot removes the correlation caused by all intermediary time 
intervals and the autocorrelation plot does not. The greater the correlation coefficient, 
the more related the specific lagged value and present value are. The shaded region 
represents the boundary for statistically significant correlation coefficients. Lagged 
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values with lines that extend outside of this shaded region are significantly related to the 
present value. Because the furthest lag that extends out of the shaded region in both 
plots is around 55 weeks, the plots show significant lags up to 55 weeks. Likewise, the 
majority of NIINs show similar plots with significant lags up to 55 weeks prior. 

The autocorrelation plot also shows no seasonality for the majority of the NIINs as there 
is no cyclical behavior in the autocorrelations. Thus, lagging far enough back to include 
all the autocorrelations is sufficient. 

In addition to the 55 lags, we applied one hot encoding to the month to predict ahead 
32 weeks. Predicting ahead 32 weeks is equivalent to predicting ahead 8 months, a long 
enough time to address DLA’s lead times. 

Method 

ML models often perform best with as few variables as possible that still represent the 
data, so we explored all possible lag values to find the best lag for each model. With 
each iteration of the method below, we removed the latest lag. For each model, 55 lags 
are evaluated. 

For each lag and model, we did the following: 

1. Split data into initial training and testing by setting the testing start date to 
April 14, 2017. 

2. For the given model and number of lags, fit the model and tuned 
hyperparameters with randomized grid search. (Appendix B shows the sampled 
hyperparameter sets, and the final, best hyperparameter sets for each model.) 

3. Calculated MSE and MAE for given model and number of lags. 

Model Development 

We tested the models on monthly aggregations from April 2017 through November 2018 
to directly compare ML model predictions and evaluation metrics with those from the 
time series models. 

We predicted demand quantity 8 months into the future and compared results for the 
following ML models: 

• Ridge regression 

• Random forest regression 

• Poisson regression 

• Gradient boosted regression 

• LASSO regression 

• k-NN 

• Elastic net regression. 

(Appendix A details each of these models.) 
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Results 

Time Series Results 

Tables 3-3 and 3-4 show the values for the three measures for each of the time series 
models for NIIN 010050515, the most frequently ordered NIIN in the data, and NIIN 
014554498, an infrequently ordered NIIN that is representative of the data. Both list the 
best models for their respective NIIN in order, with better performing models listed 
before worse performing ones. The models are ranked according to each model’s MSE 
and MAE. 

Table 3-3. Model Evaluation Metrics for NIIN 010050515 

Model MSE MAE PIS Mean SD SE 

Exponential smoothing 210.57 11.36 −2,222.04 45.28 8.06 1.76 

Simple smoothing 208.21 11.64 −2,558.60 48.73 8.46 1.85 

Prophet 242.50 11.48 −1,773.83 49.40 17.61 3.84 

Fourier 231.24 12.54 −2,413.11 43.67 5.80 1.27 

Moving average 239.60 13.04 −2,772.29 42.36 7.65 1.67 

 
Table 3-4. Model Evaluation Metrics for NIIN 014554498 

Model MSE MAE PIS Mean SD SE 

Moving average 1.01 0.60 −155.05 0.10 0.05 0.01 

Exponential smoothing 1.09 0.55 −176.00 0.00 0.00 0.00 

Simple smoothing 1.02 0.74 −132.17 0.29 0.25 0.06 

Fourier 1.08 0.69 −163.50 0.16 0.24 0.05 

Prophet 1.35 0.95 −102.86 0.55 0.57 0.12 

 

For both NIINs, all PIS values are negative and large in magnitude. Such values indicate 
that all models for both NIINs consistently under-predict the true values. Because all 
models under-predict for frequently ordered NIINs and for infrequently ordered NIINs, 
the models overall have high statistical bias toward under-prediction and are thus not 
performing well. Exponential smoothing performed among the top two models for both 
NIINs, but otherwise different models perform best for different NIINs. 

The evaluation metrics for each NIIN are not directly comparable, as they are not 
standardized and can be misleading due to data sparsity. The metrics are low for NIIN 
014554498 because it is ordered infrequently, so predicting zero values for all instances 
can yield good model evaluation metrics but is a useless model. This result is the norm 
for the data; the majority of the NIINs in the data behave similarly to NIIN 014554498 
and achieve similar, under-predicted results. 

Figures 3-10 and 3-11 show the plots for monthly predicted quantity and monthly actual 
quantity for NIINs 010050515 and 014554498 over the test set. The plots show the 
different order frequencies for the two NIINs and that, generally, the models under-
predict the actual values. 
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Figure 3-10. Comparison of Time Series Models for NIIN 010050515 

 

Figure 3-11. Comparison of Time Series Models for NIIN 014554498 

 

Table 3-5 shows the best model, according to MSE and MAE scores, for each of the 11 
most frequently ordered NIINs. These results indicate that moving average and 
exponential smoothing are best for the majority of frequently ordered NIINs. 

Table 3-5. Best Models for Most Frequently Ordered NIINs 

Model NIIN MSE MAE PIS Mean SD SE 

Simple smoothing 001651942 57.43 5.89 −96.65 13.63 1.03 0.22 

Moving average 014554498 1.01 0.60 −155.05 0.10 0.05 0.01 

Moving average 011192008 283.79 10.79 −539.81 12.18 1.36 0.30 

Exponential smoothing 014938822 4.68 1.65 8.00 4.14 1.14 0.25 

Moving average 014793739 8.55 2.11 −36.56 5.15 0.24 0.05 

Fourier 000546940 155.26 9.39 −1,649.11 26.64 6.92 1.51 

Exponential smoothing 009507783 8.76 2.31 −509.88 8.94 1.29 0.28 

Moving average 014793776 488.76 17.51 −2,338.49 42.22 3.27 0.71 

Fourier 012223502 673.52 22.30 −2,210.28 97.74 19.96 4.36 

Fourier 014793835 58.85 5.67 −1,031.31 17.82 2.31 0.50 

Exponential smoothing 010050515 210.57 11.36 −2,222.04 45.28 8.06 1.76 
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Table 3-5. Best Models for Most Frequently Ordered NIINs 

Model NIIN MSE MAE PIS Mean SD SE 

Simple smoothing 001651942 57.43 5.89 −96.65 13.63 1.03 0.22 

Moving average 014554498 1.01 0.60 −155.05 0.10 0.05 0.01 

Moving average 014793815 5.93 1.92 −206.65 4.37 0.12 0.03 

 
Time series methods are generally ineffective at predicting far into the future and tend to 
perform better with more data. The accuracy of the models used here suffered from 
incorporating an 8-month gap between training and testing for lead times and from the 
limited amount of data. 

ML Results 

While briefly exploring results using all DLA-forecasted NIINs present in the MADWTM, 
examining the most frequently ordered NIINs is more productive due to data sparsity. 
The majority of NIINs in the final, filtered data set are still ordered infrequently. The 
histogram in Figure 3-12 shows the frequency for different levels of sparsity. The vast 
majority of NIINs have no orders on at least 95 percent of the days in the data, 
demonstrating the data sparsity. 

Figure 3-12. Count of NIINs by Percent of Days with No Orders 

 

With such sparsity, modeling methods often suffer. Initially, all NIINs are modeled 
regardless of sparsity, but as expected, these modeling efforts produce poor results by 
consistent under-predicting, as the extremely sparse NIINs affected the predictions for 
the less sparse NIINs. Table 3-6 shows results from a ridge regression model with MSE, 
MAE, average PIS scores per NIIN, and general statistics for groups of NIINs with 
different levels of sparsity. 
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Table 3-6. Ridge Regression Model Results 

% days with 
no orders 

No. of  
values MSE MAE PIS Mean SD SE 

Avg no.  
of orders 

99 271 3.80 0.31 −267.48 0.04 0.49 0.01 26.188192 

 95 and  99 36 82.24 3.19 −1,666.81 1.90 7.30 0.26 214.138889 

 90 and  99 12 38.22 4.13 −1,294.17 4.00 5.45 0.34 564.083333 

 90 11 304.39 11.08 −7,800.82 21.92 23.83 1.54 2,514.818182 

 

Table 3-5 shows that as sparsity increases, MSE and MAE improve. However, these 
metrics are misleading. For the three sparsest groups, the models tend to predict all zero 
values since there are few, low-valued orders seen in the mean and average number of 
orders columns in Table 3-5. While models that predict all zero values can achieve 
better MSE and MAE metrics for these sparse groups, they are useless for parts 
forecasting. Conversely, the models produced variable predictions for NIINs in the least 
sparse group. While these models achieved worse MSE and MAE values, they produced 
useful predictions. Thus, we only included the 11 NIINs in the group with less than 
90 percent sparsity for modeling. 

The sparsity constraint is addressed by filtering out all NIINs ordered on less than 
10 percent of the data and aggregating the data by week for the ML approach. While the 
initial results indicated that these groups are also under-predicted, isolating only the 
most frequently ordered parts may alleviate this issue. The resulting data set contained 
11 NIINs. We tested all models in the 22-month period from April 2017 through 
November 2018. We evaluated overall performance with MSE and MAE. PIS measures 
sequential consistency and can only be evaluated at the NIIN level. 

For each model, we compared the predictions resulting from the model training iteration 
with the lowest MSE and MAE for each NIIN. To directly compare results among all 
models, we aggregated predictions into approximately monthly predictions. For the time 
series results, we aggregate the daily predictions into disjoint 28-day predictions, and for 
the ML results, we aggregate the weekly predictions into disjoint 4-week predictions. 
With these aggregations over the same testing set, we could directly compare all model 
results for each NIIN with plots and tables describing monthly MSE, MAE, and PIS. 

Ridge regression performed best, achieving the lowest overall MSE and MAE scores on 
the filtered data set consisting of the 11 NIINs. However, raw evaluation metrics defined 
our ranking system and statistical tests never evaluated these rankings. Future work 
would include statistical testing to evaluate whether models statistically performed better 
than each other. Table 3-7 shows the overall evaluation metric for each model. 

Table 3-7. Overall ML Model Error 

Model MSE MAE Mean SD SE 

Ridge 322.16 10.67 24.06 24.14 1.53 

Random forest 393.89 11.24 23.46 19.80 1.25 

Elastic net 351.16 11.29 21.70 23.85 1.51 

LASSO 477.40 13.28 17.63 19.90 1.26 



 

 3-16  

Table 3-7. Overall ML Model Error 

Model MSE MAE Mean SD SE 

Ridge 322.16 10.67 24.06 24.14 1.53 

Gradient boosting 583.74 12.96 20.10 17.44 1.11 

k-NN 534.20 13.42 17.64 18.49 1.17 

Poisson 836.82 16.95 18.57 17.07 1.08 

 

While ridge regression performed best overall, different models performed best for 
different individual NIINs. Table 3-8 shows the performance for the 11 most frequently 
ordered NIINs with the best-performing model according to MSE and MAE, 
corresponding MSE, MAE, and PIS scores. The testing set sparsity is included for each 
NIIN to evaluate whether there is a relationship between testing sparsity and prediction 
accuracy. No discernible pattern is present, but there is a consistent under-prediction for 
all but the sparsest NIINs. The table shows the relationships between error metrics and 
sparsity and that random forest and ridge regression perform best for the most individual 
NIINs. 

Table 3-8. Best ML Model Performance by NIIN 

NIIN Model MSE MAE PIS Mean SD SE % zeros

014938822 Random forest 4.95 1.77 22 4.14 0.34 0.07 42.86 

001651942 Poisson regression 69.82 6.27 −319 12.73 3.28 0.72 27.47 

011192008 Ridge regression 309.77 12.23 53 13.55 4.51 0.98 48.35 

009507783 Random forest 14.59 3.05 −598 8.59 1.47 0.32 17.58 

014793739 Ridge regression 11.95 2.68 −53 4.95 2.12 0.46 23.08 

014793835 Random forest 65.45 6.36 −905 19.59 4.01 0.87 8.79 

012223502 Ridge regression 1,603.64 35.00 −6,945 82.68 16.57 3.62 2.20 

014793776 Gradient boosting 482.82 16.45 −2,189 41.32 11.71 2.56 18.68 

010050515 Random forest 281.73 13.73 −3,012 41.14 6.46 1.41 1.10 

014793815 Gradient boosting 4.18 1.55 −114 5.27 1.29 0.28 31.87 

000546940 Random forest  182.82 9.91 −1,562 26.73 4.00 0.87 1.10 

 

Because nearly all PIS scores in Table 3-8 are negative and large in magnitude, even 
the best-performing models tend to under-predict. The final filtered data set consisted of 
11 NIINs. With so few NIINs, it is computationally feasible to train, tune, and test each 
individually. However, it would not be feasible to train, tune, and test individual models 
for each NIIN in the larger set of DLA-forecasted items. 

Although the error metrics for some of the NIINs suggest the models were adequately 
forecasted, only a few NIINs achieved meaningful results. Figure 3-13 shows the results 
of the model trained on the 11 most frequently ordered NIINs in the full data set for one 
of those NIINs, 010050515. The plot shows that all models under-predict and that even 
the best-performing models do not quite mimic the true behavior of the data. 
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Figure 3-13. Comparison of ML Models for NIIN 010050515 

 

Table 3-9 shows the evaluation metrics for each model for NIIN 010050515 
corresponding to the above results. It shows that all models consistently under-predict 
for this NIIN as all PIS values are negative and large in magnitude. 

Table 3-9. Evaluation Metrics for Each Model for NIIN 010050515 

Model MSE MAE PIS Mean SD SE 

Random forest 281.73 13.73 −3,012 41.14 6.46 1.41 

Ridge 269.95 13.77 −3,046 41.55 8.07 1.76 

Elastic net 325.50 15.14 −3,620 39.09 7.32 1.60 

k-NN 471.91 18.18 −3,829 36.05 6.60 1.44 

LASSO 475.27 18.73 −4,422 37.32 12.34 2.69 

Gradient boosting 523.45 19.91 −2,807 44.05 17.95 3.92 

Poisson 981.27 27.73 −6,839 25.95 10.94 2.39 

 

The same results can be seen below for the NIIN with the overall lowest MSE and MAE 
scores, 014938822. Figure 3-14 displays the results of all ML models on the prediction 
set, and Table 3-10 shows the scores for each model. 

Figure 3-14. Comparison of ML Models for NIIN 014938822 
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Table 3-10. Scores for Each Model 

Model MSE MAE PIS Mean SD SE 

Random forest 4.95 1.77 22 4.14 0.34 0.07 

k-NN 5.50 1.86 −119 3.50 1.37 0.30 

Boost 6.59 2.05 65 4.50 0.72 0.16 

Ridge 9.55 2.27 74 4.27 2.42 0.53 

Elastic net 10.55 2.55 −561 1.73 1.42 0.31 

LASSO 16.18 3.27 −766 1.09 1.68 0.37 

Poisson 49.82 6.45 1,552 10.27 2.24 0.49 

 

While the MSE and MAE scores for these predictions are very close to zero, which can 
indicate that the model fit closely to the actual values, the graph indicates that the model 
is not fitting properly to the data. The best-performing model according to the evaluation 
metrics is random forest, but random forest predicted a flat line and did not come close 
to fitting the actual data. This result runs counter to the results for NIIN 010050515, 
which show comparatively high MSE and MAE scores, but has a plot indicating a 
somewhat close fit. The difference in evaluation metrics and prediction plots emphasizes 
that MSE and MAE can be misleading. PIS scores also seem to vary greatly depending 
on the model. Ranging from severe over-predictions for Poisson to severe under-
predictions for some others. 

Accurate prediction using ML requires little sparsity and relevant features in the data. 
The available data did not meet either requirement. The data are naturally sparse due to 
infrequent demand. Modeling all NIINs together introduces more sparsity because one 
hot encoding of NIINs is required to combine them into one data set. The data contained 
no useful features. 

Comparing ML and Time Series Results 

For NIIN 010050515, nearly all the time series models performed better than the ML 
models according to all metrics. Exponential smoothing and simple smoothing performed 
best overall with the lowest MSE, MAE, and PIS magnitude. However, none of the 
models had predictions that fit close to the actual values on the plots. 

Likewise, for nearly all NIINs, a time series method performed best, with only 2 of 
11 NIINs showing best results with an ML model. Overall, moving average, exponential 
smoothing, and Fourier performed best for the most NIINs. The time series methods 
overwhelmingly outperform ML methods, so the latter must not have been able to 
overcome the sparsity challenges by relating NIINs in the model. Table 3-11 shows the 
best overall model for each NIIN. 

Table 3-11. Overall Best Model Performance by NIIN 

NIIN Model MSE MAE PIS Mean SD SE % zeros 

014938822 Random forest 4.95 1.77 22.00 4.14 0.34 0.07 42.86 

001651942 Poisson 69.82 6.27 −319.00 12.73 3.28 0.72 27.47 

011192008 Moving average 227.28 9.85 464.62 14.44 4.32 0.80 48.35 
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Table 3-11. Overall Best Model Performance by NIIN 

NIIN Model MSE MAE PIS Mean SD SE % zeros 

014938822 Random forest 4.95 1.77 22.00 4.14 0.34 0.07 42.86 

009507783 Exponential smoothing 9.16 2.43 −633.45 8.44 1.64 0.31 17.58 

014793739 Moving average 8.55 2.24 185.26 4.94 0.46 0.09 23.08 

014793835 Fourier 55.46 5.60 −1319.87 17.06 2.47 0.46 8.79 

012223502 Fourier 750.30 23.55 76.86 95.73 19.61 3.64 2.20 

014793776 Moving average 461.22 17.06 −4,954.58 40.00 5.03 0.93 18.68 

010050515 Exponential smoothing 206.79 11.21 −2,163.50 43.78 7.78 1.45 1.10 

014793815 Gradient boosting 4.18 1.55 −114.00 5.27 1.29 0.28 31.87 

000546940 Exponential smoothing  135.82 8.99 −1,929.15 27.05 8.36 1.55 1.10 

 

Overall, the evaluation metrics and the plots do not show that any of the time series or 
ML methods are truly capturing the underlying patterns in the data and predicting future 
demand well. The predictions do not consistently follow the trend or magnitude of the 
data. Parts forecasting with demand data thus does not predict well enough to render 
value to DLA. 

Additional Analysis: Part Order Classification 
We tested ML methods for classification as predictors of whether orders will exist 
8 months into the future. The daily data is lagged by 1 month, included categorical time 
variables, and predicted 8 months into the future. This data setup is the same as the 
data setup for ML for parts forecasting except that the data are binary and orders are 
coded with a value of one; otherwise, a value of zero indicates no orders. 

We evaluated random forest for classification, logistic ridge regression, linear 
discriminant analysis, k-NN, and naïve Bayes models using precision and recall. 
Precision is the percentage of the time an order exists, given a prediction by the model. 
Recall is the percentage of time the model predicts an order when an order exists. 
Overall, logistic ridge regression performed the best on the basis of the evaluation 
metrics. Table 3-12 shows the evaluation metrics for logistic ridge regression and 
random forest for classification. 

Table 3-12. Evaluation Metrics 

Model Precision (%) Recall (%) Total error (%) 

Logistic ridge regression for classification 44.2 16.8 78.0 

Random forest for classification 32.0 16.8 76.5 

 

We employed precision-recall (P-R) curves of each model to evaluate performance. P-R 
curves are used instead of receiver operating characteristic curves as a visual evaluation 
tool due to class imbalance. All models showed P-R curves indicating poor performance. 
Ideally a P-R curve will approach the upper right corner where P=1 and R=1. Instead, 
the models produced P-R curves similar to the P-R curve for logistic ridge regression in 
Figure 3-15. 
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Figure 3-15. P-R Curve for Logistics Ridge Regression 

 

The P-R curves indicate the classification models performed poorly. We applied 
resampling methods in an attempt to improve the class imbalance, but resampling did 
not improve the P-R curves and the evaluation metrics. 

Maintenance Action Forecasting 
Parts forecasting with demand quantity did not predict well enough to render value to 
DLA, so we explored maintenance action forecasting as a second approach. The goal 
was to leverage the relationship between the number of maintenance actions and the 
quantity demanded for an NIIN to forecast the amount demanded for an NIIN. This 
approach assumes a constant relationship between the number of maintenance actions 
and the percentages of each NIIN involved in maintenance actions. 

Time series methods that predict the number of maintenance actions on the GCU 
establish a baseline metric for prediction accuracy. We compared results from ML and 
deep learning methods with the baseline results from time series methods. The number 
of maintenance actions is modeled as a proxy for demand forecasting, as accurate 
predictions for maintenance can lead to accurate predictions for parts demand. 

Data 

Source 

MADWTM data sourced from the Decision Knowledge Programming for Logistics 
Analysis and Technical Evaluation (DECKPLATE) is an integrated data environment for 
modeling maintenance. Each row represents a maintenance action performed on a 
specific end item. The DECKPLATE-sourced MADWTM data provides details on 
operational-level maintenance actions. 

Cleaning 

We filtered the data according to TMS and ServiceWBS so they contained only demands 
for GCU parts on F/A-18s. We aggregated the number of maintenance actions by day, 
trimmed the dates to range from January 2009 through December 2018, and filled 
missing dates with zero values. We filtered dates using the start of the maintenance, 
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OPNStartDate, because many maintenance actions take more than 1 day to complete. 
The final data set consisted of the date and the corresponding total number of 
maintenance actions. With this aggregation, data sparsity is eliminated and the data are 
better suited for ML models. The ML data are aggregated by week, and the time series 
models use daily level information. 

Evaluation Methods 
We evaluated models using MSE and MAE and used SD and SE to describe the spread 
of the predictions. 

Time Series Modeling 
We developed time series models for various techniques: moving average, simple 
smoothing, Fourier, exponential smoothing, and Prophet. Each model tests different 
lengths of training windows on testing accuracy. We used MSE and MAE to find the best 
window and best corresponding hyperparameters for each model. 

We took a sliding window approach to make predictions, looping it through different 
windows with each model to find the best training size. Sliding windows are also used in 
time series forecasting for demand and are explained there. However, only one variable 
is predicted in maintenance action forecasting with time series; thus, filtering data for 
each model is not required. The windows range in monthly increments from 30 days to 
1 year, and then yearly increments from 1 year to 7 years. Exponential smoothing tested 
these same training windows, aside from the first 6 monthly windows, which were used 
intermittently, because they were sometimes too small for some modeling parameters to 
work. 

For each window and model, we did the following: 

1. Split data into initial training and testing. Set the testing start date to April 13, 2017, 
and the training end date to September 1, 2016. 

2. For the given model, and window length, fit the model and tuned 
hyperparameters by searching every possible parameter combination for the one 
that resulted in the lowest possible MAE over the monthly aggregated test set. 

3. Calculated MSE and MAE for given window and model. 

ML Modeling 

Feature Engineering 

We transformed data using the same method applied to demand data. 

Figure 3-16, the autocorrelation plot, shows that up to 40 weeks of prior data are 
correlated with the current data within a 95 percent confidence bound. Forty lags are 
included in the models to capture the autocorrelation in the data. 
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Figure 3-16. Autocorrelation 

 

Figure 3-17, the partial autocorrelation plot, shows that a lag of nearly 40 is 
independently correlated with the data. These two plots emphasize that much historical 
data (7–10 months) is needed to capture the correlation in the data. 

Figure 3-17. Partial Autocorrelation 

 

Figure 3-18 illustrates the decomposition plots, which show the seasonality and trend in 
the data. A decomposition plot breaks down time series data into its four component 
parts and plots each component sequentially. The third plot from the top in the set below 
shows the seasonality in the number of maintenance events on the GCU. The plot 
shows that there is seasonality that cycles roughly every 8 months. To capture 
seasonality in the data, we include 8 months of historical data in the lagged data frame. 
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Figure 3-18. Decomposition Plots 

 

Given the autocorrelation and seasonality, we lagged the data by 40 weeks. We 
evaluated feature importance to determine specific lag for each model. Including more 
than 40 lags unnecessarily increases the number of regressors in the data and 
decreases performance by essentially adding noise to the model. 

Month is one hot encoded to add time variables to the data. We used the data value of 
the point 8 months (32 weeks) into the future as the response. We set the gap between 
training and prediction to 8 months to capture DLA’s large lead times. 

Modeling 

Again, because ML models often perform best with as few variables as possible that still 
represent the data, each model loops through each number of possible lags to find the 
best number of lags for the model. With each iteration, the model sequentially includes 
one less lag. With this process, each model evaluates each possible set of lags from 
1 lag through 40 lags. 

For each model and lag, we did the following: 

1. Split data into initial training and testing by setting the testing start date to 
April 13, 2017. 

2. For the given model and number of lags, we fit the model and tune 
hyperparameters with randomized grid search. (Appendix B shows a table with 
the hyperparameter sets from which we sampled, and the final, best 
hyperparameter sets for each model.) 

3. Calculated MSE and MAE for a given model and number of lags. 

Development 

We applied many of the same models used in modeling demand quantity. We included 
two neural networks to test whether more complex models performed better than 
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traditional ML approaches. We selected the best-performing hyperparameters and lag 
for each model. We explored several ML techniques (described in Appendix A): 

• Ridge regression 

• Random forest regression 

• Gradient boosted regression 

• LASSO regression 

• Elastic net 

• k-NN 

• Kernel ridge regression 

• Convolutional neural network 

• Recurrent neural network. 

Results 

Time Series Results 

Models are ranked on the basis of MSE and MAE (Table 3-13). The table lists the 
models in order from best to worst performance according to the evaluation metrics. 
Moving average performed best by far, with MSE and MAE values much smaller than 
those for the other models. 

Table 3-13. MSE and MAE for Each Trained Model 

Model MSE MAE Mean SD SE 

Moving average 66,731.3 199.56 1,210.91 98.22 21.43 

Exponential smoothing 91,047.2 237.50 1,207.64 248.42 54.21 

Simple smoothing 93,426.5 246.60 1,186.71 235.80 51.46 

Prophet 110,248.0 274.43 1,014.76 324.29 70.77 

Fourier 192,495.0 372.33 1,401.99 330.64 72.15 

 

Figure 3-19 shows the plot of the predicted number of monthly maintenance actions for 
each time series model as well as the actual values. The plot shows that the simple flat 
line estimate from moving average fits a seemingly linear model to the actual values. 
The plot also shows how the other time series models do not model the same trend of 
the actual values. 
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Figure 3-19. Comparison of Time Series Models 

 

None of the time series methods model maintenance actions despite training on different 
window sizes and tuning the models to account for seasonality and autocorrelation. 

ML Results 

We evaluated and ranked the models using a combination of MSE and MAE. Random 
forest performed best, closely followed by gradient boosted trees, and then the ridge. 
Table 3-14 shows the MSE and MAE for each model. The table is ordered from best- to 
worst-performing model. 

Table 3-14. MSE and MAE for Each Model 

Model MSE MAE Mean SD SE 

Random forest 25,608.20 136.91 1,233.64 171.77 37.48 

Gradient boosting 31,145.00 143.41 1,242.23 221.74 48.39 

Ridge 37,875.60 146.59 1,108.23 89.70 19.58 

LASSO 39,512.10 148.41 1,132.50 107.76 23.52 

Kernel ridge 40,220.20 159.77 1,173.50 146.91 32.06 

k-NN 52,281.20 173.09 1,232.91 103.89 22.67 

Convolutional neural network (CNN) 47,252.40 175.80 1,174.93 198.27 43.27 

Elastic net 65,985.20 190.50 1,156.59 139.46 30.43 

Recurrent neural network (RNN) 66,693.40 201.44 1,227.20 79.10 17.26 

 

We tested the models over the 22-month period from April 2017 through November 
2018. Nearly all ML methods are visually able to model the data and show lower MAE 
and MSE than those from time series models. 

Figure 3-20 shows the plot of actual and predicted values for all fitted ML models. The 
plot shows that all ML methods predict spikes in maintenance actions as well as periods 
with less variation. Figure 3-20 shows the evaluation metrics for the ML models. These 
models deliver promising results that support continued evaluation with other assets and 
components. 
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Figure 3-20. Comparison of ML Models 

 

No models exhibited noticeable statistical bias, as none consistently under-predicted or 
over-predicted values. Figure 3-20 shows the plot of monthly model predictions and 
monthly actual values for number of maintenance events. The plot shows the lack of 
model bias and that, overall, most of the models follow the actual value trend. 

We compared the results from the best-performing model, random forest, with 
predictions created with different ensembles of individual model predictions. Figure 3-21 
shows monthly predictions for random forest, actual monthly predictions, averaged 
predictions from all models, and averaged predictions from the best two models, random 
forest and gradient boosted trees. The plot shows that the mean of the best two models 
seems to be somewhat closer to the actual values than random forest alone and that the 
overall mean is further away from the actual values than both random forest and the 
mean of random forest and gradient boosted trees. 

Figure 3-21. Random Forest Comparison 

 

Table 3-15 shows the MSE and MAE for these average values and compares them with 
the MSE and MAE for random forest. The plot and table indicate that random forest 
alone and the mean of random forest and gradient boosting performed similarly 
according to MSE and MAE, but random forest achieves lower SD and SE. Random 
forest thus performs marginally better than the mean of random forest and gradient 
boosting. 
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Table 3-15. MSE and MAE Averages and Random Forest Comparison 

Model MSE MAE Mean SD SE 

Random forest 25,608.20 136.91 1,233.64 171.77 37.48 

Best two model means 26,760.30 136.70 1,237.93 194.27 42.39 

Overall mean 32,389.90 142.63 1,186.86 105.43 23.01 

 

Although random forest performed best, the mean of random forest and gradient 
boosting still performed well. This result suggests that averaging predictions may lead to 
reasonable estimates of the future number of maintenance actions. Further exploration 
would be needed to see whether a more sophisticated combination of predictions leads 
to even better performance and improvement over random forest. However, ensemble 
models come with the computational cost of training multiple models. Combining 
predictions is only worthwhile if its improvement in accuracy outweighs the 
computational cost of training multiple models. 

Unlike the demand data, the maintenance data are not sparse and thus better suited for 
ML than demand data. Thus, traditional ML methods performed well, and even simple 
time series methods had some success. 

ML methods significantly under-predicted when trained with less lags than the 
autocorrelation and seasonality plots suggested are necessary. Increasing the 
complexity of the problem with more columns in the data and more sophisticated, 
nonparametric models like the CNN removed the issue with under-prediction. 

Comparing ML and Time Series Results 

Figure 3-22 shows the plot of the best time series model, moving average, and the best 
ML model, random forest. Moving average predicts a flatline estimate over the entire 
testing window, whereas random forest fits closely to the plot of actual maintenance 
action counts. No time series models, including ones that can make more complex 
forecasts, were able to model how the data change over time. The MSE and MAE 
scores seen in Table 3-16 also indicate that random forest performs better, with lower 
MSE and MAE scores. 

Figure 3-22. Random Forest and Moving Average Comparison 
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Table 3-16. Random Forest and Moving Average Comparison 

Model MSE MAE Mean SD SE 

Random forest 25,608.20 136.91 1,233.64 171.77 37.48 

Moving average 66,731.30 199.56 1,210.91 98.22 21.43 

 

ML accurately predicts maintenance actions, but future research is needed to apply 
these predictions to forecasting parts. Additional comparisons will show how consistently 
the ML models outperform time series models. Although the five models developed here 
do not perform better, other time series models not explored may perform better. Other 
components and other assets should be included in further exploration. 

Finally, in Figure 3-22, random forest performs unusually well. This performance is due 
to intentional training data selection to include the middle change point in Figure 3-23. 
When the training data did not include this change point, all models performed much 
worse, with plots of predicted values much different from actual values. Additionally, 
results from exponential smoothing and simple smoothing also closely match the actual 
values. These two models were trained on a data window different from the training set 
for the ML models, yet still achieve results close to the actual values. 

Additional Analysis 
Two additional modeling techniques can further enhance maintenance action 
predictions. Change point detection can find changes in historical trends, and anomaly 
detection can detect unexpected points in the data. Both excursions can enhance 
training data cleansing; change points can help define training data boundaries, and 
removing anomalous points from training data may help ensure they are representative. 

Change Point Detection 

We explored changes in data trends with change point analysis. Bayesian change point 
detection is applied on the basis of Facebook’s package Prophet. We confirmed change 
points in the data using the cumulative sum control chart algorithm and validated them 
with cumulative plots of the data. Cumulative plots show the cumulative total number of 
maintenance actions. When the average trend changes, the rate of change in the 
cumulative plot will change, appearing like a piecewise linear model. These plots are 
aggregated from daily data to be as smooth and detailed as possible. 

We found three changes in maintenance actions trends when aggregating by week. The 
change points occur around May 9, 2013; April 23, 2015; and November 10, 2016. 
These change points agree with changes in the cumulative plot of weekly maintenance 
actions. In this plot, changes in the rate of maintenance action count are indicated by 
points where plot concavity shifts. Figure 3-23 shows the weekly number of maintenance 
actions (with change points marked in red). 
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Figure 3-23. Weekly Number of Maintenance Events with Change Points 

 

Figure 3-24 shows the cumulative weekly number of maintenance actions (again with 
change points marked in red). 

Figure 3-24. Cumulative Weekly Number of Maintenance Events with Change Points 

 

Change points can be useful in developing an appropriate training set that ultimately 
improves testing accuracy. For instance, only including the data since the most recent 
change point may lead to the training data being more relevant to the testing data 
because new and relevant data may predict future data better. In the future, finding the 
best way to incorporate change points into training may improve modeling accuracy by 
signaling the need for retraining or replacing the ML model. 

Anomaly Detection 

We evaluated 40-week time streams for anomalies using isolation forest, local outlier 
factor, and elliptic envelope. (Appendix A details these ML methods for anomaly 
detection.) We used the majority vote from the three methods to label anomalous points. 
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On the weekly data, we found four periods of anomalous data. These areas correspond 
to March 2012, March–June 2015, mid-October 2015–mid-May 2016, and February–
mid-March 2018. On the monthly data, we see one period of anomalous data: mid-July 
2014–mid-May 2015. This period overlaps with two of the anomalous periods in the 
weekly data. Figure 3-25 shows the daily and Figure 3-26 shows the weekly number of 
maintenance events labeled with anomalous points. In these plots, a red “x” indicates 
that the 40-week stream of data leading up to that point is found as anomalous by at 
least two of the anomaly detection methods. 

Figure 3-25. Daily Number of Maintenance Events 

 

Figure 3-26. Weekly Number of Maintenance Events 

 

The anomalous points could be removed from the data set to build a more consistent 
training data set. However, to effectively remove anomalous activity for better training, 
anomalous points need to be validated as truly abnormal for the data. These anomalous 
periods are likely to be related to policy and historical events. Removing them from the 
data would thus remove relevant historical data and lead to a less robust model for the 
future. 
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Conclusions 

The analysis completed supports three general conclusions: 

• Performance of ML models using demand data is limited by the sparsity of data. 
The best-performing ML models consistently under-predict part demands. 

• ML models using maintenance action forecasting addressed the problems with 
data sparsity and performed better than time series models for maintenance 
actions. Using ML to predict maintenance action should be further investigated 
as a means to improve part demand forecasts. 

• Change point detection may be useful to signal the need for a different ML 
model. 

This R&D effort provides answers to the following analysis question: Does the analysis 
of Service historical maintenance records improve parts forecasts and resulting supply 
support? 

When applied to the F/A-18E/F GCU, ML models using Service historical records are 
limited due to sparse part demands. However, when modeling maintenance events, the 
sparsity in the data is reduced and the accuracy of ML modeling improves over time 
series models. Further investigation could produce results across other platforms and 
parts. 

To improve further analysis, use of additional data, beyond MADWTM, should be 
explored to develop a more complete view of supply chain demands. The multi-echelon 
supply system should be modeled for added precision. Consumption data along with 
both retail and wholesale demands should be included in follow-on models. 
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Recommendations for Further R&D 

Through this R&D project, we found that using only the currently available MADWTM data 
is insufficient to improve DLA demand forecasts beyond those using established DLA 
models due to the sparsity of the available data. However, the introduction of 
maintenance actions does produce improved predictions over time series modeling for 
maintenance actions. Further exploring this approach across other assets and parts may 
produce results that enhance customer service and lead to improved readiness of the 
supported weapon systems. 

DLA should consider the following options and strategies to improve the overall accuracy 
and fidelity of parts forecasting. Our recommendations include efforts that require no 
R&D as well as those accomplished through DLA R&D. We recommend four options 
directly related to ML modeling to improve parts forecasting and an alternative to ML 
rooted in simulation modeling. Appendix C details the program management 
requirements for each recommendation. 

Predict Maintenance Events and Associated Usage BOMs 
Using the data available in the MADWTM for the F/A-18E/F variants and applying ML, 
LMI can produce a usage bill of materiel (BOM) to be used for the predicted 
maintenance events. The comprehensive data in the MADWTM contain many quantitative 
and qualitative fields that describe the objects maintained on the weapon system, cost 
and availability metrics, and availability loss for the maintenance event. Predicting 
maintenance events by Service WUCs can potentially provide improved parts 
forecasting for DLA: 

• Use ML to forecast the O-level and I-level maintenance requirements for the 
airframe. 

• Use ML to identify a BOM for each identified maintenance event by WUC. 

• Use this BOM to forecast parts required for the maintenance availability 
(Figure 5-1). 

Figure 5-1. From Forecast Maintenance to Forecast Parts 
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Predict Changes in Maintenance Requirements 
Using the data available in the MADWTM for the F/A-18E/F variants and applying ML, 
LMI can predict changing maintenance requirements. Current forecasting models use 
historical demand data without regard to changes in requirements due to changes in 
airframe construct, updates to components, or age: 

• Identify changes in maintenance patterns discovered in recent maintenance 
events. 

• Automatically alert DLA planners to intervene and discontinue using the now 
incorrect statistical forecasts (Figure 5-2). 

Figure 5-2. Maintenance Patterns Help Planners 

 

Use ML to Improve Readiness and Acquisition Using 
Consumption Data 

Feeding curated MADWTM consumption data available for the F/A-18E/F variants into 
DLA’s existing models may improve those forecasts. Use of consumption data is a best 
practice in the private sector. Until now, consumption data have been unavailable to 
DLA. 

To assess using these data, we will employ LMI’s Financial and Inventory Simulation 
ModelTM (FINISMTM). LMI and DLA R&D jointly developed FINISMTM for use on prior 
projects. It simulates DLA’s existing forecasting models and is a good tool to evaluate 
how forecasts do (or do not) improve using consumption rather than wholesale supply 
data: 

• Identify ML to curate actual parts consumption data for O/I-level maintenance. 

• Feed the consumption data into the models DLA uses for parts forecasts. 

• Repeat using the demands that DLA normally uses to drive its forecasts. 

• Use ML to identify which populations perform better using consumption data 
(Figure 5-3). 
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Figure 5-3. Using Consumption Data for Acquisition 

 

Dynamically Train ML Models 
Dynamically choosing models over time can help improve accuracy. Utilizing change 
points can be helpful if not many reside within the data and lag times are insufficient to 
cause problems. Evaluating models on the basis of past performance is also a viable 
solution, but it can be time consuming. (Appendix D details this approach.) 

The MADWTM provides operational-level demand data for individual parts over time. 
These data furnish consumption information not found in the current DLA wholesale 
requisitioning data. Using data from both of these systems in concert with other available 
data (platform operational and DLA acquisition data) renders a more holistic picture of 
parts support and a subsequent improvement in forecasting for each layer of inventory. 

Use Predictive Simulation Modeling to Determine Future  
Part Demands 

To leverage service maintenance data in the development of improved DLA part 
forecasts, predictive modeling using asset-focused, high-resolution simulation can serve 
to balance inventory levels beyond the limitations of statistical models and traditional 
forecasting. LMI has developed an asset-focused, high-resolution simulation—Demand 
Pro—and applied it across many DoD programs over the last 20 years: 

• Asset-focused. The Demand Pro simulation platform models each individual 
asset in a fleet or each weapon system in a service inventory. 

• High-resolution. Maintenance, supply, logistics, and operations are detailed for 
each asset. Five levels of indenture are modeled in the asset structure. 

This platform has been applied to predict future part requirements at the operational 
level as well as intermediate and depot levels. Demand Pro delivers a capability that far 
surpasses forecasting tools. Through past performance, LMI has demonstrated the 
accuracy and depth of its predictive simulation platform and prescriptive analytics vs. 
widely used traditional forecasting methods (Table 5-1). (Appendix E details this 
approach.) 
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Table 5-1. Demand Pro Modeling versus Traditional Forecasting 

Demand Pro modeling and analysis Traditional forecasting 

Focuses on assets, their components, operations, 
and the activities that sustain these assets through 
both planned and unplanned maintenance. Models a 
holistic, detailed asset life cycle, including 
components, operation, reliability, maintenance, 
sustainment, and supply. 

Views demands in isolation. Fails to connect assets 
and their operation to performance metrics and 
costs in an accurate, detailed manner. 

Uses historical data to establish an initial condition 
of assets and components, and then generates 
volumes of predictive output data for mining to 
represent a set of possible future outcomes. Maps 
the possibilities of future outcomes to enable well-
informed decisions and prescribe effective actions. 

Relies heavily on historical data, thus requiring 
insights to be tightly coupled to past events. This 
fundamental flaw creates a gap between forecasts 
and actual observations in dynamic systems where 
the future does not equal the past. 

Leverages many replications of possible future 
outcomes to enable a deep understanding of risk, 
uncertainty, and confidence in reported metrics. 

Because only one set of historical data exists (it is 
not possible to repeat the past to generate new 
outcomes), attempts to separate natural variability 
from meaningful relationships fail repeatedly. 

Eliminates the need for simplifying assumptions. 
Explicitly quantifies and represents reliability, 
maintenance task duration, shipment delays, repair 
effectiveness, and other sources of uncertainty. 
Models aging on a component level. Includes 
complex representation of probabilistic age, 
including independent component aging and 
restoration and updating age distributions on the 
basis of failure or maintenance events. 

Requires many over-simplifying assumptions about 
the nature of inputs that include uncertainty, for 
example, exponentially distributed failure rates and 
exponential maintenance task duration. Assumes 
that asset, parts, and components do not age over 
years of operation. Assumes maintenance is 
unchanging over time. 

 

. 
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Appendix A  
Model Descriptions 

Time Series Models 
Time series models employ raw time series data (a quantity or measurement and a time 
when that information is collected) and attempt to capture how the data change over 
time and use them to forecast what they will look like in the future. Several time series 
models are used to predict demand quantity and number of maintenance events. 

Moving Average 
Moving average defines a lookback window length and averages all the data points in 
this time window to obtain the estimate of the value for a future point in time. The 
lookback window maintains a constant length and moves forward with each time step. 
This is a simple model with no real assumptions about the nature of the incoming data. It 
tends to predict very well on constant data and worse in any cases where the variance is 
high. It is unable to capture more complex patterns in time series data. 

Exponential Weighted Moving Average/Simple Smoothing 
Like moving average, exponential weighted moving average (EWMA) averages data 
points from a time window to use for forecasting. However, these data points are not all 
treated equally. Values further back in time are weighted exponentially less than more 
recent points. The main assumption here is that more recent history is more indicative of 
future points than older points. These models work well in situations where moving 
averages perform well but are less sensitive to changes in the data. These models still 
tend to perform worse in situations where the variance in high. They are unable to 
capture more complex patterns in time series data. 

Exponential Smoothing 
Exponential smoothing takes the idea from EWMA, weighting all previous data points in 
how they contribute to the estimate of the future, and expands it to include information 
about trends and seasonality present in the data. Trends are simply a representation of 
the direction the data are moving over time. Seasonality refers to patterns within the time 
series data that occur at consistent intervals in time. The smoothing algorithms can 
incorporate the information from the weighted average, trends, and seasonality to 
develop a forecast. These models work best with clear trends or seasonality in the data 
that can be fit and where the data can mostly be represented by a combination of these 
elements and the weighted average. One of the biggest difficulties with using these 
algorithms is determining the correct trend and seasonality needed to properly model the 
data. Also, when data have inconsistent trends or seasonality the predictions can be off. 

Fourier 
Forecasting using Fourier transformations use the rule that any stream of non-zero 
values can be broken down into some number of sine waves. During Fourier forecasting, 
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the time series data are broken down into the set of sine waves that can be combined to 
re-create it. Instead of re-creating the time series, a select number of the sine waves that 
most represent the data are combined to give a smoothed representation of the time 
series. Use of these models assumes the time series is composed of a set of patterns 
that happen intermittently (seasonality) that the Fourier waves can capture and project 
into the future. They are particularly strong at modeling when the data have very strong 
evidence of seasonality. Conversely, the models are weak when the data do not contain 
many repeating patterns or change frequently and inconsistently. 

Prophet 
This model is used for forecasting and change point detection. 

Facebook’s Prophet is a widely used forecasting tool that takes an “analyst-in-the-loop 
approach” by combining statistical forecasting methods with an analyst’s domain 
knowledge to achieve optimal forecasting accuracy. Rather than learning temporal 
relationships in the data like with traditional time series methods for forecasting, Prophet 
fits a curve to the historical data with generalized additive models, Fourier 
transformations, and categorical features to address trend, seasonality, and holidays. Its 
equation is y(t) = g(t) + s(t) + h(t) + epsilon, where g(t) is the trend of the data, s(t) is the 
seasonality in the data, h(t) is the categorical features indicating holidays in the data, 
and epsilon is the normally distributed error. 

Prophet fits the trend, g(t), to the data with piecewise logistic growth model if the data 
describe growth that will saturate at carrying capacity or piecewise linear model 
otherwise. It automatically finds the change points in the data and uses them to define 
the cut points in the piecewise models. To forecast, Prophet assumes that the future 
data will follow the same trend as the historical data and have the same change point 
frequency and associated rate of change magnitudes. To address seasonality, s(t), 
Prophet adds Fourier series to fit the periodicity. Finally, to fit a function for holidays, h(t), 
Prophet can take in lists of holidays and their dates to add an indicator function to 
represent whether any given date is a holiday. 

To optimize this equation, Prophet uses Bayesian inference methods to update the 
distributions of all the model parameters and determine the model’s forecasting 
uncertainty and offers the analyst opportunities to alter the model’s saturation capacities, 
change points, holidays and seasonality, and smoothing parameters based on their 
expertise in the domain. 

ML for Regression 
These models are used to predict the demand quantity. The following supervised ML 
methods all take in a continuous response variable and a set of features that are used to 
predict the response variable called regressors. Each description includes how the 
model works and the model’s assumptions, strengths, and weaknesses. 

Random Forest 
Random forest creates uncorrelated decision trees with class assignments in the leaves 
by randomly sampling the observation set with replacement and fitting a decision tree to 
each random set. It makes predictions by applying all the decisions trees to the 
observation and taking the average predicted value. Random forest is interpretable, 
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unlikely to fit to noise, and can indicate which regressors are important to the model. 
However, it is ineffective for non-stationary data and does not perform well with highly 
non-linear relationships. 

Ridge Regression 
Ridge regression fits a linear line to the data points such that the total difference 
between each point and the line is minimal. It weights coefficients for regressors to allow 
for some regressors to be more important to the model than others. Ridge regression is 
thus a regularized version of linear regression. The model assumes linear relationships 
between the regressors and response, lack of outliers, and that the error between the 
actual points and the line are independent and identically distributed (IID). The errors are 
independent from one another and follow a normal distribution centered at a mean of 
zero. Ridge regression is unlikely to overfit, computationally fast, and interpretable but it 
is only effective with linear relationships. 

LASSO Regression 
LASSO regression fits a linear line to data points much in the same way that ridge 
regression does. It also weights coefficients to permit certain regressors to be more 
important to the model than others. The major distinction between ridge and LASSO is 
that LASSO’s weighting allows some coefficients to be driven all the way to zero. This 
allows LASSO to determine feature importance within possible regressors. The model 
has the same assumptions as ridge: a linear relationship between regressors and 
response, lack of outliers, and IID errors. LASSO is unlikely to overfit, computationally 
efficient (though slightly less than ridge), and interpretable. It is only effective in modeling 
linear relationships. 

Elastic Net Regression 
Elastic net regression works as a combination of both ridge and LASSO regression 
occurring at the same time. It weighs regressor coefficients according to both models. 
The model again assumes a linear relationship between regressors and response, lack 
of outliers, and IID errors. It is computationally efficient (though less than either LASSO 
or ridge) and can capture more complex relationships than LASSO or ridge. It is 
somewhat less interpretable than either ridge or LASSO and more prone to overfitting 
than either of those models. It is again only effective at modeling linear relationships. 

Kernel Ridge Regression 
Kernel ridge is a version of ridge regression that utilizes a “kernel trick” to transform the 
data into another dimensional space during fitting. In the original data space, the data 
may not be linear and regression models would not be effective, but by transforming the 
data it may have a linear relationship with the response. It is a non-parametric version of 
ridge regression. The major assumption of this algorithm is that transforming the data to 
another dimensional will uncover a linear relationship between the data and response 
where normal ridge regression assumptions hold. 
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Poisson Regression 
Like ordinary least squares regression, Poisson regression fits a line to the data such 
that the total difference between the points and the line is minimal. However, it assumes 
the response data follow a Poisson distribution rather than a Gaussian distribution. 

Gradient Boosting 
The gradient boosting model creates several decision trees and combines them to 
minimize loss for the best predictive ability. A decision tree is essentially a series of 
conditions that filter the data into different groups, with each node of the tree 
representing a split in the data according to the condition. For instance, a node can be 
whether a variable is less than a specified value, and all observations meeting that 
condition are filtered by that node and have similar response variables. Gradient 
boosting can minimize a few loss functions, and each loss function is used in different 
scenarios. To forecast quantity demanded, Poisson loss is minimized because the data 
consist of count totals and the Poisson distribution specifically models discrete counts. 
Gradient boosting is flexible, computationally fast, and can indicate what features are 
important to the model. However, it lacks interpretability, can fit to noise, requires tuning 
many hyperparameters, and is ineffective for non-stationary data. 

Feed Forward Neural Network 
A feed forward neural network (FFNN) is a dense layered system of equations that 
optimizes internal weights with MSE to be able to take input values and deliver an 
approximate output prediction after training on a large amount of data. FFNNs are good 
at handling non-linear relationships and work well with large data sets. However, they 
can fit to noise easily, are ineffective with highly sparse data sets, difficult to interpret, 
and train slowly. 

CNN 
CNN is similar to an FFNN in that it passes input through a series of nested equations to 
approximate an output. The CNN differs by applying special functions to the input space 
to try and detect patterns or relationships between different columns. After processing 
the input space, the output is then put through an FFNN and used to estimate an output. 
CNN’s have been successful in finding patterns in sequential data and are less 
computationally complex than other neural network approaches to capture this 
information. Like FFNNs, they fit to noise easily, are ineffective with highly sparse data 
sets, difficult to interpret, and train slowly. Also, if no relevant patterns exist in the input 
space, they will not be effective. 

RNN 
RNN works very similarly to the previously mentioned CNN. It attempts to capture 
information in sequential data and pass that information into an FFNN to approximate an 
output prediction. It performs well in the same situations as the CNN but is specifically 
designed for modeling time series data, so it can, in some cases, perform better. Like 
FFNNs, it fits to noise easily, is ineffective with highly sparse data sets, is difficult to 
interpret, and trains slowly. Also, if the data are not purely a function of the sequence, 
modeling over it will not be effective. 
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Classification Models 
Classification models train similarly to regression models but learn to predict a binary 
outcome. Specifically, they can learn to predict whether something will or will not 
happen. In this research, classification models trained to predict an order for a given part 
would occur on a given day. 

Logistic Regression 
Logistic regression models the probability that an observation belongs to a specific class 
by fitting a logistic sigmoid function to the predictor variables. This function transforms 
the output from the regressors to values between zero and one to return probabilities 
that can be mapped to class assignments. The model selects a threshold for these 
probabilities. All observations with a class probability above this threshold are assigned 
to one class while observations with a class probability below the threshold are assigned 
to the other. The regressors for this model are whatever set of predictors the data 
scientist finds useful. The response variable for logistic regression is the list of predicted 
binary class assignments. Behind the scenes, logistic regression minimizes cross-
entropy to fit the best logistic sigmoid function for the best predictive ability. It optimizes 
parameters in the cross-entropy function to do so. Use of logistic regression requires a 
linear relationship between regressors and the response, lack of multicollinearity, lack of 
outlier, and IID errors. Logistic regression is a good model choice for interpretability, but 
is unstable when the two classes are very distinct. 

Naïve Bayes 
Naïve Bayes finds the probability an observation belongs to a given class by using 
Bayes rule and assuming each regressor is an independent feature. Bayes rule is the 
equation relating the conditional probability of a class with the marginal conditional 
probabilities of the features where X is the class and y and z are regressors. Its  
equation is: 

𝑃ሺ𝑋|𝑦, 𝑧ሻ ൌ 𝑃ሺ𝑦|𝑋ሻ ∗ 𝑃ሺ𝑧|𝑋ሻ ∗ 𝑃ሺ𝑦ሻ ∗ 𝑃ሺ𝑋ሻ 

The model calculates the probability that each feature indicates each class, and each 
conditional probability among features. To predict the class to which an observation 
belongs, the model calculates the probability of the observation belonging to each class 
by formatting the problem into Bayes rule and plugging in the feature probabilities and 
conditional probabilities. The model returns the class with the greatest probability. Naïve 
Bayes is interpretable, fast, and insensitive to irrelevant regressors and cannot represent 
complex behavior. Thus, this technique is unlikely to over-fit to training data and can 
quickly adapt to changing data. However, it assumes that the features are independent 
regardless of whether they truly are. 

Random Forest for Classification 
Random forest for classification works the same as random forest for regression. The 
only difference is that it contains class assignments in the leaves rather than continuous 
numbers. As before, random forest creates uncorrelated decision trees with class 
assignments in the leaves by randomly sampling the observation set with replacement 
and fitting a decision tree to each random set. It makes predictions by applying all the 
decisions trees to the observation and taking the majority vote. Random forest is 
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interpretable and unlikely to fit to noise, and can indicate which regressors are important 
to the model. However, it is ineffective for non-stationary data and does not perform well 
with highly non-linear relationships. 

k-NN 
k-NN uses feature similarity to predict the class assignment for an observation. It plots 
an observation in the training data’s feature space, finds the K (the chosen number of 
neighbors to use) closest training observations to the point according to the specified 
distance metric, and uses the class assignment with the highest frequency as the 
observation’s prediction. k-NN’s hyperparameters are K, which is the number of 
neighbors to evaluate, and the distance metric. The data scientist can optimize 
prediction accuracy by evaluating different K values and different distance metrics to 
minimize classification error on the training set then use the best K and the best distance 
metric found to predict on testing data. k-NN makes no data assumptions other than that 
observations in the same class are nearest to each other in feature space. k-NN is a 
good option because it is non-parametric and does not assume any underlying data 
distribution. k-NN is a lazy algorithm and does not generalize based on the training data 
and trains a model quickly. k-NN is interpretable. However, k-NN is computationally 
expensive because it stores all the training information and takes a long time to make 
predictions since it needs to evaluate every training point before it can choose those 
closest points for each testing point. 

Support Vector Classifier 
A support vector classifier creates a separating hyperplane that divides the two classes 
in feature space. The hyperplane is a maximal separating hyperplane. The hyperplane 
separates the classes such that the hyperplane is the furthest from observations in all 
classes and separates classes to minimize classification error. It assumes that the data 
are IID. 

Linear Discriminant Analysis 
Linear discriminant analysis (LDA) calculates the probability of an observation’s 
belonging to a class given the predictor variables by fitting a probability density function 
to the predictor variables for each class then using Bayes rule to find the probability of a 
class given each probability distribution. The model uses these probabilities to define 
decision boundaries in feature space that surround observations in each class. In the 
case of a binary classification, LDA defines a line that separates observations in one 
class from the other; observations falling in the region for a class are classified as 
belonging to that class. It assumes that the predictor variables are drawn from a 
Gaussian distribution or a multivariate Gaussian distribution and that they have a 
common covariance matrix. LDA is a good model choice because it does not require 
hyperparameter tuning, it is stable even if classes are extremely distinct or contain few 
observations, and it works well with multi-class classification problems. 

Gradient Boosting for Classification 
Gradient boosting for classification works in the same manner as gradient boosting for 
regression but minimizes classification loss. As explained in regression, gradient 
boosting creates several decision trees and combines them to minimize loss for the best 
predictive ability. A decision tree is essentially a series of conditions that filter the data 
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into different groups, with each node of the tree representing a split in the data according 
to the condition. For instance, a node can be whether a variable is less than a specified 
value, and all observations meeting that condition are filtered by that node and have 
similar response variables. Gradient boosting is a flexible model that can handle non-
linear relationships in data, is computationally fast, and can indicate which features are 
important to the model. However, it lacks interpretability, can fit to noise, requires 
extensive hyperparameter tuning, and is ineffective for non-stationary data. 

Anomaly Detection 
Anomaly detection algorithms look for data points in a data set that are somehow 
different from most of the data set. Identifying streams of maintenance action counts that 
differ from the majority of normal maintenance action count patterns could be valuable to 
increasing DLA awareness of upcoming demand changes. Anomaly detection algorithms 
model maintenance action count data to identify these anomalous points. 

Isolation Forest 
Isolation forest labels points that are remote from most of the data as anomalies. It uses 
decision trees with random splits to partition the data. As outliers are infrequent, different 
from most of the data, and remote in feature space, random partitioning should cause 
the outliers to lie close to the root of the tree. Outliers need fewer random splits of the 
tree to be separated from most of the data. Isolation forest calculates an anomaly score 
for each of the points using aspects of the tree and classifies points according to the 
score, with scores close to one indicating anomalies and scores less than 0.5 indicating 
non-anomalies. The points with the greatest anomaly scores are ultimately classified as 
anomalies. 

Elliptic Envelope 
Elliptic envelope assumes the data are Gaussian and fits an ellipse to surround most of 
the data. It classifies points lying outside of this ellipse as anomalous. The model fits this 
ellipse such that the percent of observations outside of it is equal to the contamination, 
the specified percentage of points expected to be outliers. The data scientist must use 
domain knowledge to specify the contamination. 

Local Outlier Factor 
Local outlier factor classifies points with low local density as anomalous. Points with low 
local density are those that are remote in feature space. The algorithm calculates each 
point’s local density and compares it to the average of its neighbors’ local densities. If 
the point is less dense that its neighbors, then it is more remote than its neighbors. It 
classifies the most remote points as anomalies. 

Clustering Methods 
Clustering methods group data points according to different measurements of similarity. 
They are unsupervised learning algorithms that require manual evaluation once they 
execute. In this research, clustering methods grouped data about specific NIINs over 
time to identify similar NIINs. 
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k-Means Clustering 
k-means clustering assumes a set of data has a specific number of clusters into which 
the data can be broken down. It then tries to optimally assign these clusters so that each 
data point is close to the nearest (by distance) cluster’s mean while keeping clusters as 
far apart as possible. The algorithm assumes that the data being clustered can be 
adequately represented by distance metrics and that the mean of the data is a 
meaningful representation. One of the difficulties in using this algorithm is that it is 
necessary to decide the correct number of clusters, a subjective decision. 

Hierarchical Clustering 
Hierarchical clustering works similarly to k-means in that it is given a set number of 
clusters and tries to optimally place each cluster. Instead of optimally matching clusters 
and points on optimal distance from a mean, points are assigned too many clusters 
initially and the algorithm works backwards to group the closest clusters together. Again, 
the number of clusters to use is a subjective manual decision. 

DBSCAN 
DBSCAN works differently from the previous algorithms described. DBSCAN can use 
any measure of similar or close data points and tries to find groups of data points very 
close together based on the selected measure. Any area where lacking a significantly 
dense representation of data points (low density areas) will be marked as noise. The 
major strength of this method is that there is no need to manually determine cluster 
count. The drawback is that it can be difficult to determine the correct thresholds for how 
dense an area should be to be considered a cluster. 

GMMs 
GMMs work similarly to k-means clustering in that they try to optimize clusters on the 
basis of distance between clusters and nearness of points within clusters. The main 
difference is that instead of giving a hard assignment to the cluster to which a point 
belongs, the model is probabilistic and there is a probability of any point belonging to any 
cluster. These models are useful in cases with low confidence on the appropriate 
number of clusters to use. 
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Appendix B  
Detailed Modeling Method 

The following flowcharts illustrate the steps used during this project for the multiple ML 
efforts. 
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Time Series Using Part Demands 
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Machine Learning Using Part Demands 
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Model Hyperparameter set Best hyperparameters 

Gradient boosting 
 
 
 
 
 

min_child_weight: [1, 5, 10], 
gamma: [0.5, 1, 1.5, 2, 5], 
subsample: [0.6, 0.8, 1.0], 
colsample_bytree: [0.6, 0.8, 1.0], 
max_depth: [3, 4, 5], 
reg_lambda: [1e-2, 1e-1, 0.5, 0.99], 
objective: [‘reg:squarederror’, count:poisson’] 

Min_child_weight: 10 
Gamma: 5 
Subsample: 1.0 
Colsample_bytree: 1.0 
Max_depth: 3 
Objective: ‘count:poisson’ 

Ridge regression  alpha: [1, 0.1, 0.01, 0.001, 0.0001, 0] 
fit_intercept: [True, False] 
solver: [‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’] 
normalize: [True, False] 

Alpha: 0.001 
Fit_intercept: False 
Normalize: True 
Solver: ‘lsqr’ 

Random forest bootstrap: [True, False], 
max_depth: [5, 10, 20, 40, 60, 80, 100, None], 
max_features: [‘auto’, ‘sqrt’], 
min_samples_leaf: [1, 2, 4], 
min_samples_split: [2, 5, 10], 
n_estimators: [200, 400, 800, 1200, 1600, 2000] 

Bootstrap: True 
Max_depth: None 
Max_features: ‘sqrt’ 
Min_samples_leaf: 4 
Min_samples_split: 10 
N_estimators: 800 

k-NN n_neighbors: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15] 
weights: [‘distance’, ‘uniform’] 
algorithm: [‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’] 
leaf_size: [20-30] 
p: [1, 2, 3, 4, 5] 

N_neighbors: 6 
Weights: ‘uniform’ 
Algorithm: ‘brute 
Leaf_size: 25 
P: 1 

LASSO regression alpha: [0.01, 1.01, 2.01, 3.01, 4.01, 5.01, 6.01, 
7.01, 8.01, 9.01, 10.01] 
fit_intercept: [True, False] 
normalize: [True, False] 
precompute: [True, False] 

Alpha: 3.01 
Fit_intercept: False 
Normalize: False 
Precompute: True 

Elastic net regression alpha: [0.01, 1.01, 2.01, 3.01, 4.01, 5.01, 6.01, 
7.01, 8.01, 9.01, 10.01] 
l1_ratio: np.arange(0.01, 0.999, 0.25) 
fit_intercept: [True, False] 
normalize: [True, False] 
precompute: [True, False] 

Alpha: 5.1 
L1_ratio: 0.51 
Fit_intercept: False 
Normalize: False 
Precompute: True 

Poisson regression Use l1 regularization. The python library 
“statsmodels” finds best parameters while training.

 

 
 
 



Detailed Modeling Method 

 B-5  

Time Series Using Maintenance Events 
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Model Hyperparameter set Best hyperparameters 

Fourier number_of_harmonics: [all integers from  
0 to 20] 

number_of_harmonics: 1 

Exponential Smoothing  trend: [‘add’, ‘mul’, None 
seasonal: [‘add’, ‘mul’, None] 
seasonal_periods: [30, 60, 90, 1] 
damped: [True, False] 

trend: None 
seasonal: ‘add’ 
seasonal_periods: 90 
damped: False 
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Machine Learning Using Maintenance Events 
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Model Hyperparameter set Best hyperparameters 

Gradient boosting 
 
 
 
 
 

min_child_weight: [1, 5, 10], 
gamma: [0.5, 1, 1.5, 2, 5], 
subsample: [0.6, 0.8, 1.0], 
colsample_bytree: [0.6, 0.8, 1.0], 
max_depth: [3, 4, 5], 
reg_lambda: [1e-2, 1e-1, 0.5, 0.99], 
objective: [‘reg:squarederror’, 
count:poisson’] 

Best Lag: 39 
Min_child_weight: 1 
Gamma: 5 
Subsample: 0.6 
Max_depth: 5 
Reg_lambda: 0.5 
Objective: “reg:squarederror” 

Ridge regression  alpha: [1, 0.1, 0.01, 0.001, 0.0001, 0] 
fit_intercept: [True, False] 
solver: [‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, 
‘sparse_cg’] 
normalize: [True, False] 

Best lag: 23 
Alpha: 1 
Fit_intercept: True 
Solver: “sparse_cg” 
Fit_intercept: True 

Random forest bootstrap: [True, False], 
max_depth: [5, 10, 20, 40, 60, 80, 100, 
None], max_features: [‘auto’, ‘sqrt’], 
min_samples_leaf: [1, 2, 4], 
min_samples_split: [2, 5, 10], 
n_estimators: [200, 400, 800, 1200, 1600, 
2000] 

Best Lag: 28 
Bootstrap: False 
Max_depth: 80 
Max_features: ‘sqrt’ 
Min_samples_leaf: 1 
Min_samples_split: 2 

k-NN n_neighbors: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15] 
weights: [‘distance’, ‘uniform’] 
algorithm: [‘auto’, ‘ball_tree’, ‘kd_tree’, 
‘brute’] 
leaf_size: [20-30] 
p: [1, 2, 3, 4, 5] 

Best Lag: 8 
N_neighbors: 5 
Weights: “distance” 
Algorithm: “ball_tree” 
Leaf_size: 32 
P: 3 

LASSO regression alpha: [0.01, 1.01, 2.01, 3.01, 4.01, 5.01, 
6.01, 7.01, 8.01, 9.01, 10.01] 
fit_intercept: [True, False] 
normalize: [True, False] 
precompute: [True, False] 

Best Lag: 25 
Alpha: 2.01 
Fit_intercept: True 
Normalize: False 
Precompute: True 

Elastic net regression alpha: [0.01, 1.01, 2.01, 3.01, 4.01, 5.01, 
6.01, 7.01, 8.01, 9.01, 10.01] 
l1_ratio: np.arange(0.01, 0.999, 0.25) 
fit_intercept: [True, False] 
normalize: [True, False] 
precompute: [True, False] 

Best Lag: 16 
Alpha: 0.1 
L1_ratio: 0.51 
Fit_intercept: False 
Normalize: True 
Precompute: False 

Kernel-ridge regression alpha: [0.1-15] in 0.5 increments 
kernel: [‘linear’, ‘laplacian’, ‘rbf’, 
‘polynomial’, ‘sigmoid’] 
degree: [2, 3, 4] 

Best Lag: 31 
Kernel: ‘linear’ 
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Model Hyperparameter set Best hyperparameters 

CNN # of Convolutional Layers: [1, 2, 3] 
# of feed-forward layers: [1, 2, 3] 
# of nodes, Convolutional Layer 1: [512, 
256, 128, 64] 
Convolutional Layer 1 kernel size: 4 
# of nodes, Convolutional Layer 2: [32, 64, 
128] 
Convolutional Layer 2 kernel size: 3 
# of nodes, Convolutional Layer 3: [16, 32] 
Convolutional Layer 3 kernel size: 3 
# of nodes, feed-forward Layer 1: [1000, 
500, 400, 300, 100] 
# of nodes, feed-forward Layer 2: [400, 
200, 100] 
# of nodes, feed-forward Layer 3: [150, 50] 
Dropout rate: [None, 0.05, 0.01, 0.25] 
Optimizer: [‘SGD’, ‘RMSprop’, ‘Adagrad’, 
‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’] 

Best Lag: 27a 
# of Convolutional Layers: 2 
# of feed-forward layers: 2 
# of nodes, Convolutional Layer 1: 128 
# of nodes, Convolutional Layer 2: 64 
# of nodes, feed-forward Layer 1: 400 
# of nodes, feed-forward Layer 2: 200 
Dropout rate: None 
Optimizer: ‘Adam’ 

RNN # of Recurrent Layers: [2, 1] 
# of Feed-Forward Layers: [1, 2, 3] 
Convolutional Layer 1 kernel size: 4 
# of nodes, Recurrent Layer 1: [32, 64, 128]
# of nodes, Recurrent Layer 2: [16, 32] 
# of nodes, feed-forward Layer 1: [1000, 
500, 400, 300, 100] 
# of nodes, feed-forward Layer 2: [400, 
200, 100] 
# of nodes, feed-forward Layer 3: [150, 50] 
Dropout rate: [None, 0.05, 0.01, 0.25] 
Optimizer: [‘SGD’, ‘RMSprop’, ‘Adagrad’, 
‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’] 

Best Lag: 19a 
# of Recurrent Layers: 1 
# of Feed-Forward Layers: 2 
# of nodes, Recurrent Layer 1: 128 
# of nodes, feed-forward Layer 1: 400 
# of nodes, feed-forward Layer 1: 200 
Dropout rate: None 
Optimizer: ‘Adam’ 

a For neural networks, we only tried every lag for one pre-defined model and then grid searched both the max lag (40) and the 
one found to be best during this initial loop. This was done due to the computational time involved in running neural networks. 
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Appendix C  
Recommendations for Future R&D Projects 

We recommend DLA consider the following projects for their potential in the 
improvement of forecasting customer needs. 

Predict Maintenance Events and Associated Usage BOMs 

Objectives 
Use ML to identify and predict discrete maintenance events and generate the BOM 
required for each event. 

Problem Description 
Rather than awaiting wholesale replenishment requisitions, DLA can generate a parts 
forecast using ML to predict specific weapon systems maintenance requirements. 

Benefits 
Visibility into predicted maintenance requirements provides the opportunity to ensure all 
required parts and materiel are available at the time needed. This will result in more 
efficient maintenance (no awaiting parts), increased collaboration as the parts 
requirements can be viewed across all levels of inventory, and increased platform 
availability. 

Customer 
DLA planning community. 

Technical Concept and Approach 
Using the data available in MADWTM and applying ML, LMI can produce a usage BOM to 
be used for the predicted maintenance events. The comprehensive data in the MADWTM 
contain many quantitative and qualitative fields that describe the objects maintained on 
the weapon system, cost and availability metrics, and availability loss for the 
maintenance event. Predicting maintenance events by Service WUCs can potentially 
provide improved parts forecasting for DLA: 

• Use ML to forecast the O-level and I-level maintenance requirements for the 
airframe. 

• Use ML to identify a BOM for each identified maintenance event by WUC. 

• Use this BOM to forecast parts required for the maintenance availability. 
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Team Member Roles 
DLA R&D will be the PM for this effort. The DLA Center of Planning Excellence will be 
the functional experts. LMI will provide ML and supply chain subject matter experts and 
execute the contract. 

Predict Changes in Maintenance Requirements 

Objectives 
Use ML to identify and predict changes in maintenance requirements. 

Problem Description 
Current DLA forecasting models rely on historical demand data without regard to 
changes in requirements due to changes in airframe construct, updates to components, 
or simply age. 

Benefits 
Visibility into predicted maintenance requirements offers the opportunity to ensure all 
required parts and materiel are available at the time needed. This will result in more 
efficient maintenance (no awaiting parts), increased collaboration as the parts 
requirements can be viewed across all levels of inventory, and increased platform 
availability. 

Customer 
DLA planning community. 

Technical Concept and Approach 
Using the data available in the MADWTM and applying ML, LMI can identify changes in 
maintenance events. The comprehensive data in the MADWTM contain many quantitative 
and qualitative fields that describe the objects maintained on the weapon system, cost 
and availability metrics, and availability loss for the maintenance event. Predicting 
maintenance events by Service WUCs can potentially provide improved parts 
forecasting for DLA: 

• Identify changes in maintenance patterns discovered in recent maintenance 
events. 

• Automatically alert DLA planners to intervene and discontinue using the now 
incorrect statistical forecasts. 

Team Member Roles 
DLA R&D will be the PM for this effort. The DLA Center of Planning Excellence will be 
the functional experts. LMI will provide ML and supply chain subject matter experts and 
execute the contract. 
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Use ML to Improve Readiness and Acquisition Using 
Consumption Data 

Objectives 
Use consumption data available at the retail level and apply ML to improve airframe 
overall readiness/availability and assist in the acquisition strategy development. 

Problem Description 
Currently, DLA only sees wholesale requisitions and creates its acquisition strategy on 
the basis of these data. 

Benefits 
Visibility into actual consumption data supports a more accurate understanding of parts 
usage and potential changes in usage. This will assist DLA in the development of the 
acquisition strategy by providing a more current and granular picture of item use, 
resulting in a greater ability to anticipate and react to end user needs. 

Second tier benefits will include more efficient stocking (reduced over-stocking and tying 
up of acquisition funds) and more effective stocking (reduced out-of-stocks). 

Customer 
DLA planning community. 

Technical Concept and Approach 
Feeding curated MADWTM consumption data into DLA’s existing models may improve 
those forecasts. Use of consumption data is a best practice in the private sector. Until 
now, consumption data have been unavailable to DLA. 

To assess using these data, we will employ LMI’s FINISMTM. LMI and DLA R&D jointly 
developed FINISMTM for use on prior projects. It simulates DLA’s existing forecasting 
models and is a good tool to evaluate how forecasts do (or do not) improve using 
consumption rather than wholesale supply data: 

• Identify ML to curate actual parts consumption data for O/I-level maintenance. 

• Feed the consumption data into the models DLA uses for parts forecasts. 

• Repeat using the demands that DLA normally uses to drive its forecasts. 

• Use ML to identify which populations perform better using consumption data. 

Team Member Roles 
DLA R&D will be the PM for this effort. DLA Center of Planning Excellence will be the 
functional experts. LMI will provide ML and supply chain subject matter experts and 
execute the contract. 
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Dynamically Train ML Models 

Objectives 
Leverage service maintenance data to improve DLA parts forecasts, using exploratory 
data analysis (EDA) to identify change points potentially impacting usage. 

Problem Description 
Currently, DLA relies on historical demand when developing forecasts. This does not 
account for changes in maintenance due to operational tempo, changes in maintenance 
requirements, changes in components, or age of end use platform. Even if an accurate 
model is identified for use in forecasting, change points may significantly alter the 
accuracy of that model. 

Benefits 
Identifying change points and dynamically choosing models over time can improve 
accuracy by reducing response time to actual events. 

Customer 
DLA planning community. 

Technical Concept and Approach 
Dynamically choosing models over time can help improve accuracy. Utilizing change 
points can be helpful if not many reside within the data and lag times are insufficient to 
cause problems. Evaluating models on the basis of past performance is also a viable 
solution, but it can be time consuming. 

MADWTM provides operational-level demand data for individual parts over time. These 
data furnish consumption information not found in the current DLA wholesale 
requisitioning data. Using data from both of these systems in concert with other available 
data (platform operational and DLA acquisition data) renders a more holistic picture of 
parts support and a subsequent improvement in forecasting for each layer of inventory. 

Team Member Roles 
DLA R&D will be the PM for this effort. The DLA Center of Planning Excellence will be 
the functional experts. LMI will provide ML and supply chain subject matter experts and 
execute the contract. 

Use Predictive Simulation Modeling to Determine Future  
Part Demands 

Objectives 
Leverage service maintenance data in the development of improved DLA part forecasts, 
using predictive modeling employing an asset-focused, high-resolution simulation, 
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Demand Pro, to balance inventory levels beyond the limitations of statistical models and 
traditional forecasting. 

Problem Description 
Currently, DLA relies on historical demand when developing forecasts. This does not 
account for changes in maintenance due to operational tempo, changes in maintenance 
requirements, changes in components, or age of end use platform. Even if an accurate 
model is identified for use in forecasting, change points may significantly alter the 
accuracy of that model. 

Benefits 
Demand Pro has the following benefits: 

• Asset-focused. The Demand Pro simulation platform models each individual 
asset in a fleet or each weapon system in a service inventory. 

• High-resolution. Maintenance, supply, logistics, and operations are detailed for 
each asset. Five levels of indenture are modeled in the asset structure. 

This platform has been applied to predict future part requirements at the operational 
level as well as intermediate and depot levels. Demand Pro delivers a capability that far 
surpasses forecasting tools. Through past performance, LMI has demonstrated the 
accuracy and depth of its predictive simulation platform and prescriptive analytics vs. 
widely used traditional forecasting methods. 

Customer 
DLA planning community. 

Technical Concept and Approach 
Use an asset-focused, high-resolution simulation capability to model each asset in a 
population as follows: 

• Conduct EDA on maintenance data to identify change points. 

• Evaluate model performance after the change point is identified. 

• Take one of two options: 

- Select the most accurate model on the basis of this evaluation. 

 Pros 

o Only need one active model at a time. 

o Historical predictions do not have to be stored. 

o Clear delineation between old and new. 

 Cons 

o Lag time impacts currency of the model. 

o If change points happen frequently, the model may not be able to 
maintain accuracy. 
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- Evaluate models on the basis of past performance. 

 Pros 

o Minimizes lag time. 

o Everything is adjustable. 

o Weights data as required. 

o Potentially detects patterns over time and switches to the best model 
for the pattern. 

 Cons 

o More involved to determine parameters that constitute a model 
change. 

 How good does the model have to be compared with the others? 

 How long must it sustain its lead? 

o More storage and process time is required to maintain. 

Team Member Roles 
DLA R&D will be the PM for this effort. The DLA Center of Planning Excellence will be 
the functional experts. LMI will provide ML and supply chain subject matter experts and 
execute the contract. 
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Appendix D  
Dynamic ML Training Models 

Problem Statement 
EDA on the maintenance action data found three change points. These change points 
can be the result of real-life events, including changes in fleet activity, weather patterns, 
and aging fleets. With statistically different sections of data separated by these change 
points and potential reasoning for each change point, using different models on different 
time periods of the data will lead to better forecasts. We propose using change points to 
improve current modeling with an automated approach to choosing training data and 
models (Figure D-1). 

Figure D-1. Maintenance Events Over Time 

 

Proposed Solutions 

Reselect Model after Change Point 
This method would train a new model after change point detection. There would need to 
be a lag time in order to collect new data on which to train. For different aggregations, 
lag times will cover larger periods of information. For example, if you want five samples 
on which to train, depending on your aggregations, it could be 5 days, 5 weeks, or 
5 months. 
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Pros 
This approach has the following pros: 

• Only needs one active model at a time. 

• Historical predictions do not have to be stored. 

• Has clear delineation between old data and new. The data scientist can decide 
how to weight/discard data for training. 

Cons 
It has the following cons: 

• Lag time on training makes it tough to keep models current. 

• If change points happen often enough, the models would not be able to keep up. 

Evaluate Models on the Basis of Past Performance 
This method would keep all models active. All model predictions would be stored along 
with the actual results (Table D-1). Accuracy would be measured over time, and a new 
model will be selected if it outperforms the others for a long enough time. 

Table D-1. Example Schema 

Date 
Model A 

pred. 
Model B 

pred. 
Model C 

pred. Actual A %Err B %Err C %Err 

Jan-19 8 6 7 7 14.28571 −14.2857 0 

Feb-19 6 4 10 5 20 −20 100 

Mar-19 10 8 9 9 11.11111 −11.1111 0 

Apr-19 11 11 5 10 10 10 −50 

May-19 9 8 4 8 12.5 0 −50 

Jun-19 13 11 12 12 8.333333 −8.33333 0 

Jul-19 14 15 6 14 0 7.142857 −57.1429 

Aug-19 15 16 12 16 −6.25 0 −25 

Sep-19 13 12 20 13 0 −7.69231 53.84615 

Oct-19 16 13 5 15 6.666667 −13.3333 −66.6667 

 

A is almost always over predicting by one, B is usually predicting under the correct 
amount. C has the best rate of getting 100 percent, but also has the most variance away 
from the mean. Depends on customer needs. 

Pros 
This approach has the following pros: 

• Minimizes lag time on training. Able to keep up with current data. 

• Everything is adjustable. 



Dynamic ML Training Models 

 D-3  

• Can include change point data to weight the current state more heavily. 

• Could potentially detect patterns over time and switch to the best model for the 
pattern. 

Cons 
It has the following cons: 

• More involved to determine parameters that constitute a model change. 

- How good does the model have to be compared with others? 

- How long must it sustain its lead? 

• More storage and processing time required to maintain. 

Conclusion 
Dynamically choosing models over time can help improve accuracy. Utilizing change 
points can be helpful if few exist within the data and lag times are not big enough to 
cause problems. Evaluating models on the basis of past performance is also a viable 
solution, though it can be time consuming. Overall, it depends on the customer and the 
project timeline.
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Appendix E  
Examples of Simulation-Driven Inventory  
Demand Predictions 

Predictive simulation modeling with Demand Pro provides the holistic approach needed 
to capture the relationships between maintenance actions at the asset level, part 
consumption, retail requirements, and wholesale replenishment as summarized in 
Figure E-1. Model elements from the simulation modeling are listed and can be applied 
to predictive analysis according to the desired study objectives. 

Figure E-1. Leveraging Predictive Simulation Modeling 

 
CLS = contract logistics support; NMCM = not mission capable maintenance; NMCS = not mission capable supply;  

PBL = performance-based logistics. 

Ground Vehicle Fleet 1: Within 5% or Five Total Parts 
A Demand Pro model of this asset fleet was developed and validated against observed 
part orders. Accurate simulated part counts will result in either a small percentage 
difference or small absolute difference between historical and predicted orders for each 
component. Parts with many orders are expected to have a small percentage difference 
between historical and predicted parts orders; however, the parts might still have a large 
absolute difference. For example, the tow bar had 2,158 orders accumulated in 1999–
2017 and 2,173 orders predicted in the Demand Pro model operating the same number 
of fleet miles. The difference is 15 parts ordered but less than 1 percent. On the other 
hand, parts with a low number of orders historically are expected to predict a low number 
of orders but result in a high percentage difference between historical and predicted 
parts ordered. For example, the manifold intake has one order in 1999–2017 and a 
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predicted average of 1.4 orders in the Demand Pro model, demonstrating a small 
absolute difference of less than one but a large percent difference of 40 percent. 

In Figure E-2, both the percentage difference and absolute difference between historical 
and predicted part orders are plotted. The customer set a maximum threshold of 
5 percent difference or five parts for absolute difference define the regions shaded in 
green. All parts usage predictions fall within this threshold. 

Figure E-2. Parts Ordered Validity Plot from  
the Demand Pro Model for Asset Fleet 1 

 

Ground Vehicle Fleet 2: Within 3% or Three Parts 
Part orders by component are counted in the model output and compared with historical 
parts ordered in maintenance records. The number of predicted part orders is related to 
failure rate and operational profiles in the model. Parts with many orders are expected to 
have a small percentage difference between historical and predicted parts orders; 
however, the parts might still have a large absolute difference. For example, the track 
shoe assembly has 23,556 orders from February 2012 to July 2017, and 23,591 orders 
predicted in the Demand Pro model during the same period. The difference is 35 parts 
ordered but less than 1 percent. On the other hand, parts with a low number of orders 
historically are expected to predict a low number of orders, but a high percentage 
difference between historical and predicted parts ordered. For example, the skate mount 
assembly has one order from February 2012 to July 2017 and has a predicted average 
of 1.6 orders in the Demand Pro model, demonstrating a small absolute difference of 
less than one but a large percent difference of 60 percent. 

Both the percentage difference and absolute difference between historical and predicted 
part orders are plotted in Figure E-3. The customer set a maximum threshold of 
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10 percent difference or 10 parts for absolute difference define the regions shaded in 
green. All parts usage predictions fall within three absolute parts or 3 percent difference. 

Figure E-3. Parts Ordered Validity Plot from  
the Demand Pro Model for Asset Fleet 2 

 

Aviation Fleet 3: Within 1% Accuracy 
The results for fleets 1 and 2 inventory demand predictions came from analysis of 
ground vehicle fleets. These examples included sparse data sets without information on 
all the maintenance transactions on tracked parts. Fleet 3 is an aviation fleet with a 
robust transactional data base. The millions of maintenance records provided for this 
fleet are conditioned and fed into a reliability-centered maintenance analysis, which 
produces failure distributions customized to the degree of resolution supported by the 
data. Custom failure distributions may be developed for part numbers on specific aircraft 
variants, operating at a specific location, with a specified number of previous repairs. 
These factors are used to improve the accuracy of the failure distributions used in the 
predictive simulation. 

From this improved model, supported by robust data, even more accurate results are 
produced. Figure E-4 plots actual main rotor blade removals in dark blue. Simulation 
predictions using customized failure distributions generated from 5 years of historical 
data are plotted in light blue. Similar simulation predictions wing 10 years of historical 
data are plotted in red. Both sets of predictions fall within 1 percent of the observed part 
removals. 
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Figure E-4. Actual vs. Model Prediction for Rotor Blade Removals 

 

Predictive Simulation Modeling Tools and Methods 
LMI’s Demand Pro platform employs discrete event simulation along with proprietary 
tools and techniques in the modeling and analysis effort. Together with the expertise of 
LMI’s data scientists, the predictive analysis software provides detailed, accurate, time-
dependent insights. 

LMI data scientists employ this asset-focused, high-resolution simulation platform to 
model vehicle fleet operations and sustainment. The simulation represents each asset in 
the fleet to predict future inventory requirements, readiness, and cost. Every 
maintenance event is captured: part failures, removals, inspection, along with tearing 
down components into subparts and rebuilding them. Consumption of supply along with 
part shipments and their costs are captured as simulation events. Each individual asset 
operation is modeled along with component failures that occur during the operation. The 
simulation scenarios used analysis periods that can range from a few weeks or months 
to years or decades. These scenarios model each discrete event encountered by an 
asset, including part failures, repairs, maintenance actions, shipments, and inventory 
status. 

To develop Demand Pro simulation models, LMI evaluates available data and data 
sources for relevancy in support of model development. LMI leverages 20 years of 
experience with Demand Pro, applying varied DoD supply and maintenance data to 
support rapid modeling and analysis. To enhance development of Demand Pro models, 
LMI leverages the MADWTM: a decision support tool that integrates and stores 
maintenance and availability data for equipment, weapon systems, infrastructure, and 
facilities across DoD Services for each level of maintenance (field, intermediate, depot), 
provider (organic, commercial) and nature of cost (labor, materials). Records within the 
MADWTM are cleaned, standardized, resolved, and reconciled. LMI also applies Studio—
an extract, transform, and load analysis and visualization platform—to facilitate rapid 
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baseline model development. LMI applies a repeatable process for conducting 
simulation-based studies and analysis. 

LMI’s Demand Pro models include details from many life-cycle management 
perspectives: platform configuration, equipment and weapons system performance data, 
fleet size and composition, reliability, maintainability, supply capability and capacity, 
logistics constraints, task times, and ongoing programmatic issues, including upgrades, 
reset, retirements, battle loss, service life extension programs, operations tempo, and 
aging and degradation. Demand Pro can model programs experiencing data sparsity 
such as new equipment and weapon systems and programs without robust data 
collection. Likewise, Demand Pro can ingest volumes of input data from data-rich 
programs such as aviation fleets with highly detailed transactional maintenance data. 

LMI develops comprehensive asset maintenance models spanning fleet and weapons 
system populations with serialized platforms and indentured BOM components. This 
model serves as the baseline model for use in determining baseline performance and 
cost. The baseline model is modified to develop any predictive analysis models used in 
modeling alternatives. 

Once baseline Demand Pro models are developed for an asset fleet, use of the 
simulation model extends well beyond inventory predictions. LMI’s predictive modeling 
services and technology enables customers to leverage predictive models for capital-
intensive fleets to meet key objectives: 

• Balance future life-cycle inventory levels as a function of time while controlling 
cost. 

• Measure the effects of uncertainty in terms of future performance and cost. 

• Measure and evaluate the drivers of future repair and maintenance cost-per-unit-
mile as a function of time. 

• Integrate distinct data analysis products and tools—without overlapping existing 
efforts. 

• Predict the future effects of equipment aging. 

• Predict future effects of part obsolescence as a function of time in terms of life-
cycle cost and asset performance. 

• Summarize asset status as a function of time in terms of future performance and 
cost. 

Figure E-5 shows Demand Pro’s holistic concept. This asset-focused simulation platform 
encompasses the operational and logistical aspects of the weapon system fleet and their 
interrelationships. Each platform’s configuration and operational profile are detailed 
along with component reliability. Maintenance concepts, supply chain elements, and 
sustainment strategies are also included for a complete, interacting, time-dependent 
depiction of an asset’s life cycle. 
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Figure E-5. Demand Pro Holistic Concept 

 

Using the input data shown in blue, the Demand Pro model generates many predicted, 
future metrics, including the following: 

• Inventory requirements, by part number, over time and by location 

• Spare parts unavailability 

• Logistic delays 

• Operational availability 

• Planned and unplanned maintenance 

• Achieved operating hours 

• Mean time between failures 

• Repairs and condemnations at operating and depot echelons 

• Life-cycle costs. 

LMI has developed Demand Pro predictive models and delivered life-cycle sustainment 
analyses for ground programs including the AAV, ITV, HMMWV, M1A1, M1A2, M88, 
LAV, MTVR, LVSR, MPC, M9 ACE, EFV, M-ATV, Cougar, Buffalo, M777, and TQGs. 
Aviation Demand Pro models delivered by LMI include the UH-60, AH-1, OH-58, CH-47, 
and V-22.
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Appendix F  
Abbreviations  

ADF augmented Dickey-Fuller 

AFAST Aviation Financial Analysis Tool 

ANOVA analysis of variance 

BOM bill of materiel 

CBM+ Condition Based Maintenance Plus 

CLS contract logistics support 

CNN convolutional neural network 

DBSCAN density-based spatial clustering of applications with noise 

DLA Defense Logistics Agency 

DECKPLATE Decision Knowledge Programming for Logistics Analysis and Technical 
Evaluation 

DoD Department of Defense 

EDA exploratory data analysis 

EWMA exponential weighted moving average 

FFNN feed forward neural network 

FINISMTM Financial and Inventory Simulation ModelTM 

GCU Generator Converter Unit  

GMM Gaussian mixture model 

GSS Global Strategic Solutions, LLC 

IID independent and identically distributed 

k-NN k-Nearest Neighbors 

LASSO least absolute shrinkage and selection operator 

LDA linear discriminant analysis 

MADWTM Maintenance and Availability Data WarehouseTM 

MAE mean absolute error 

ML machine learning 

MSE mean squared error 

MVP minimum viable product 

NIIN National Item Identification Number 

NMCM not mission capable maintenance 
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NMCS not mission capable supply 

PBL performance-based logistics 

PIS period in stock 

PM program manager 

P-R precision-recall 

R&D research and development 

RCB Reliability Control Board 

RNN recurrent neural network 

SD standard deviation 

SE standard error 

ServiceWBS Service work breakdown structure 

TMS Type/Model/Series 

TWG technical working group 

WUC work unit code 
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Executive Summary 

Forecasting demand for repair parts to support weapon systems is a challenging task for 
the Defense Logistics Agency (DLA) and the Services that requires advanced analytics. 
The demand for repair parts varies greatly, maintenance patterns change, and multiple 
inventory levels shroud true consumption patterns. Through research and development, 
DLA wants to create and test a minimum viable product using machine learning (ML) 
techniques. LMI conducted this project by exploring the application of these techniques 
on historical data from Service maintenance records and a Condition Based 
Maintenance Plus (CBM+) program to forecast parts demand. Improved forecasts will 
enable DLA to better manage the supply chain, enhancing support to retail customers. 

Traditionally, DLA has based parts forecasts on historic supply demands and the 
application of statistical models. These techniques do not account for the actual use 
(operating environment), actual weapon system reliability, and ad-hoc business 
processes used by the Services to meet operational demands and tackle readiness 
issues. As CBM+ becomes the norm for all Services, weapon system maintenance 
patterns will change and impact supply support. Using Service maintenance records and 
CBM+ data, with advanced analytics, offers the opportunity to improve forecasting and 
supply support for weapon systems. 

This volume presents an approach using Service CBM+ data from multiple sources to 
establish the foundation for developing an artificial intelligence (AI)/ML model that best 
fits the data currently available from the Services and the problem addressed by this 
project. The method employed by Global Strategic Solutions (GSS) considers the 
current state (across the Services) in implementing CBM+ and other digital 
transformation initiatives. We wanted to explore the practical implications of using ML on 
CBM+ data, in the context of the DLA operational use case for improving the parts 
forecasting and planning process. 

As defined in Department of Defense (DoD) Instruction 4151.22, CBM+ is a collaborative 
DoD readiness initiative focused on the development and implementation of data 
analysis and sustainment technology capabilities to improve weapon system availability 
and achieve optimum costs across the enterprise. CBM+ turns rich data into information 
about component, weapon system, and fleet conditions to more accurately forecast 
maintenance requirements and future weapon system readiness to drive process cost 
efficiencies and enterprise activity outcomes. The DoD CBM+ policy endorses proactive 
equipment maintenance using system health indications to predict a functional failure 
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ahead of the event and take appropriate preemptive actions. Adding to the health 
indications, is the potential use of historical operational, sustainment, and repair data to 
generate useful information and drive enterprise activity outcomes. The preemptive 
actions include more efficient maintenance planning, efficient and effective maintenance, 
and proactive supply support planning. This perspective is used in exploring the use of 
AI/ML on CBM+ data to improve parts forecasting. Given this perspective, CBM+ data 
types include the following: 

• Onboard and offboard aircraft health management data; system built-in-test 
(BIT), sensor data, flight profile, health condition indicators, etc. 

• Operational, sustainment process, and repair analysis data; curated data sets 
linking operational performance issues and health state data to data collected 
throughout the sustainment process, including testing and repair at the 
intermediate and depot/original equipment manufacturer (OEM) levels of 
maintenance. 

• Planned maintenance event information; information on life limited parts, 
scheduled maintenance events, planned equipment upgrades, etc. 

The analysis process employed by GSS included meetings and data exchange with the 
U.S. Navy (Naval Air Systems Command) and DLA (Center for Planning Excellence, 
DLA Aviation) stakeholders to gain more insight into the issues, understand the data 
available for the project, establish a solution hypothesis, and characterize the ML 
modeling technique that best fits the problem and the available data. Based on the 
analysis, we hypothesized that “the Services could employ advanced analytics 
techniques—using CBM+ operational, maintenance event, and depot repair data—to 
obtain advance signals (proactive supply alert identifiers) of part demand and point-of-
use data for DLA through formal collaboration channels.” 

With approval from DLA, the project analyzed the F/A-18 Generator Converter Unit 
(GCU), which the F/A-18E/F Reliability Control Board classified as a top reliability 
degrader, with a high not mission capable supply rate. It should be noted that the GCU 
itself does not have sensors to monitor its health condition other than BIT which is 
monitored by the aircraft mission computer. Analysis of the GCU data obtained from the 
Navy, resulted in the following insights: 

• For the GCU, the actual health management data is limited to diagnostics (i.e., 
BIT). From a parts forecasting perspective, it provides the foundation for flagging 
a degrader component. Tracking and computing the actual component mean 
time between failures (MTBF) or mean flight hours between failures (MFHBF) 
and comparing the metrics with the design MTBF/MFHBF provides an early 
warning of a “reliability degrader.” 

• Combining weapon system data with GCU maintenance event data: test results, 
Shop Replaceable Assembly (SRA) callouts, narrative (corrective action, action 
taken description, and malfunction description), and the GCU and SRA depot 
repair data is the most promising approach for using ML on CBM+ data to 
improve the DLA parts forecast and planning process. The idea is to use 
advanced analytics to identify influential supply demand features or proactive 
supply alert identifiers (PSAIs). These features can then be used to provide a 
more efficient means for notifying DLA planners when demand patterns have 
changed or are changing due to actual use (operating environment), reliability, or 
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ad hoc business processes used by the Services to tackle operational demands 
and readiness issues. 

• For the GCU, there is an ongoing effort to replace or convert older units (G2/G3) 
to the latest G4 version. The schedule and rate of conversions at the depot or 
OEM can be used to develop projected demand signals for parts supplied by 
DLA. 

GSS applied the CBM+ method described in this volume without determining a specific 
model or set of models to address forecasting improvements. Following our hypothesis, 
we found that this method can be used to generate a list of PSAIs that can be integrated 
into the existing DLA forecasting and planning models to define the recommended 
operation framework to exchange data more efficiently. The findings of the analysis and 
recommended PSAI classes are detailed in Chapter 4 of this volume. 

Using this approach, DLA planners can use the constant streams of PSAI class data to 
identify demand indicators and trends in projected parts demand. Services could supply 
to DLA degradation trends, soft-threshold trends, and revised maintenance schedules 
derived from the CBM+ data analysis. DLA parts planning could use this additional 
information about Service part repair demand levels to automate collaboration and 
development of future demand projections. This approach can be used by DLA and the 
Services to improve forecasting and supply support for DoD weapon systems. 

It should be noted that, in executing CBM+ within a weapon system, the Services 
employ data from multiple data sources throughout their operational and sustainment 
operations. While data connectivity, data quality, and curation continue to be difficult 
challenges for the Services, they are moving forward in implementing CBM+. Therefore, 
with respect to the use of CBM+ data and AI/ML to improve parts forecasting, GSS 
makes the following recommendations as the next course of action for DLA: 

1. Collaborate with the Services in developing the recommended PSAI classes 
described in Chapter 4, Table 4-1, of this volume. The PSAI classes would serve 
as a stream of data to be analyzed and sent from each Service to DLA to render 
a more complete picture of demand for DLA-provided parts. Each PSAI class of 
information would show trends and a timely picture of the actual condition driving 
supply support issues with DLA supported weapon systems. The PSAI classes 
and information would identify top degraders and root causes, reliability and 
monitoring, logistics life limited parts, service actual usage, and weapon system 
maintenance scheduling. 

2. Collaborate with Services in Automating the generation of PSAI classes of 
information and the stakeholder collaboration process. Using Services CBM+ 
data, their integrated data environment, and advanced analytics tools; the 
Services can derive data streams of PSAI information for DLA parts projection. 
The Services PSAI classes of data streams can be used by DLA to generate ML 
models of actual part usage with current repair levels of demand. These models 
can help identify changes in low demand, not seen on the bill of material (BOM), 
to high demand parts as needed. With the PSAI classes of data streams from the 
Services, TensorFlow models can be used by DLA planning to adjust current 
DLA planning models with actual usage. Automated exchange of actual repair 
information in addition to BOMs give DLA a more complete picture of Service 
DLA National Item Identification Number (NIIN) actual usage and demand. ML 
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algorithms can be developed in collaboration with the Service PSAI data points 
for specific NIINs to monitor Service trends and adjust DLA parts forecasting and 
planning. 

3. Collaborate with a specific Service and Weapon System Program Office (e.g., 
F/A-18) to develop a Visualization App of PSAI information for a specific weapon 
system component (e.g., GCU) for stakeholder collaboration. The idea is to pilot 
the use of ML analysis against PSAI classes of data to develop neural network 
perception points of demand signals. Using data analysis and visualization tools, 
these perception points of demand signals can be merged to develop an overall 
state of supply health for the GCU NIIN. This would require the development and 
integration of multiple models, as described in Chapter 4, Figures 4-4 and 4-5. 
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Preface 

This research and development project seeks to create and test a minimum viable 
product using machine learning (ML) techniques on historical data from Service 
maintenance records to improve parts demand forecasting. 

The report has two volumes: 

1. Volume 1 addresses the efforts in predictive modeling using maintenance data. 

2. Volume 2 discusses use of Condition Based Maintenance Plus (CBM+) data and 
methods. 

In this volume, we highlight the rationale and key considerations behind the method 
used by Global Strategic Solutions, LLC (GSS), to determine whether using ML on 
CBM+ data can improve parts forecasting. The GSS method considers the current state 
across the Services in implementing CBM+ and other digital transformation 
technologies. The goal is to explore the practical implications of using ML on CBM+ 
data, in the context of the Defense Logistics Agency operational use case, for improving 
the parts forecasting and planning process. 
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Chapter 1  
Introduction 

The Defense Logistics Agency (DLA) wants to apply a Condition Based Maintenance 
Plus (CBM+) program to improve its retail customer support through better supply chain 
management. 

This research and development (R&D) project seeks to create and test a minimum 
viable product using machine learning (ML) techniques on historical data from Service 
maintenance records to improve parts demand forecasting. The customers for this effort 
are DLA J3 (J31 Mission Support, National Account Managers, and J34 Process 
Owners), J6, DLA Land and Maritime, Troop Support, and Distribution. The Service 
program manager, weapon system, and associated maintenance depot are all key 
stakeholders. 

Background 
DLA manages over 2 million unique spare parts. These items are not all stocked, many 
have no demand, some are shipped directly from suppliers to DLA customers, and some 
are buy-on-demand. DLA uses two types of forecasting. The first employs statistical 
models using DLA historical demand data. The second initiates with the customer 
organization and is finalized through collaboration. Both are based on item supply data 
and are filtered across multiple levels of inventory. Forecasts that produce too little stock 
result in backorders and may decrease readiness. Forecasts that produce too much 
stock consume DLA acquisition funds and depot space, incurring the associated costs of 
maintaining inventory. 

DLA does not exploit information-rich Service maintenance data to develop parts 
forecasts. The private sector has known the value of this point of consumption data for 
years. Traditional DLA supply forecasts, based on depot demand information, have 
errors in types, quantities, timing, and location of required parts. The inclusion of Service 
historical maintenance records, which have more detailed information, and CBM 
records, which predict future maintenance failures and subsequent parts needs, can 
improve the forecast of parts requirements. 

DLA Needs and Benefits 
The Department of Defense (DoD) is implementing CBM+ across the Services to 
achieve the target availability, reliability, and operation and support costs of weapon 
systems and components throughout their life cycles. CBM+ uses a system engineering 
approach to collect data, enable analysis, and support the decision-making processes 
for system acquisition, modernization, sustainment, and logistics operations, including 
supply support. 

The anticipatory supply chain management method developed during this project will 
identify innovative ways to use ML with Service maintenance records and CBM+ data to 
enable proactive business processes and identify the actionable information the Service 
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maintenance records and CBM+ system should make available to DLA. This information 
will enhance DLA’s wholesale support and any actions (including R&D) it needs to take 
to enable those improvements. The actionable information will improve DLA business 
processes and enable the following: 

• Setting and managing the DLA supply chain support strategy for its DoD retail 
customers 

• Improved collaboration and increased visibility through Service maintenance 
records and CBM+ data exchange across the supply chain 

• Enhancement of the automated data exchange between Service enterprise 
resource planning (ERP) and DLA ERP to directly transmit parts needs 
associated with depot production plans to DLA 

• A consistent set of business solutions that support repeatable, standardized 
processes for both DLA and Service managers. 

DLA wants to explore the value of applying Service historical maintenance records in 
evaluating whether CBM analysis (which predicts future maintenance failures and 
subsequent parts needs) can improve the forecast of parts requirements. This R&D 
project seeks to answer the following question: Does analysis using Service historical 
data support CBM that improves parts forecasts and resulting supply support? 
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Chapter 2  
CBM+ Method 

In general, our method considers the current state across the Services in implementing 
CBM+ and other digital transformation technologies. We wanted to explore the practical 
implications of using ML on CBM+ data, in the context of the DLA operational use case, 
for improving the parts forecasting and planning process. 

CBM+ 
As defined in DoD Instruction 4151.22 (pending revision), CBM+ is a collaborative DoD 
readiness initiative focused on the development and implementation of data analysis and 
sustainment technology capabilities to improve weapon system availability and achieve 
optimum costs across the enterprise. 

CBM+ leverages reliability-centered maintenance (RCM) principles to enhance safety, 
increase maintenance efficiency, improve availability, and ensure environmental 
integrity. It diminishes life-cycle costs by reducing unscheduled maintenance and 
enabling predictive maintenance. 

CBM+ turns rich data into information on component, weapon system, and fleet 
conditions to more accurately forecast maintenance requirements and future weapon 
system readiness to drive process cost efficiencies and enterprise activity outcomes. 

In summary, the DoD CBM+ policy endorses proactive equipment maintenance using 
system health indications to predict functional failures and take appropriate preemptive 
actions. In addition, historical operational, sustainment, and repair data can be used to 
generate useful information and drive enterprise activity outcomes. The preemptive 
actions include more efficient maintenance planning, efficient and effective maintenance, 
and proactive supply support planning. We took this perspective in exploring the use of 
ML on CBM+ data to improve parts forecasting. 

CBM+ Data Types 
When assessing what can go wrong in a weapon system, it is intuitive to monitor the 
operational performance of individual components that contribute to the most critical 
functions. It also makes sense to focus on components with a history of failures and 
those that undergo accelerated usage or excessive duty cycles, have costly repair or 
maintenance profiles, lack redundancy within the platform, or are difficult to replace. 
Some suppliers provide “health-ready components” with embedded sensors for 
detecting failures, while others offer comprehensive monitoring strategies associated 
with their equipment’s critical failure modes. 

The assessment of individual equipment health within a weapon system can be further 
enhanced by embracing the use of historical operational, sustainment, and repair data to 
generate actionable information for driving enterprise activity outcomes. Maintenance 
and Logistics enterprise operations can leverage advanced analytics to predict future 
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states of the weapon system, optimize maintenance and logistics processes, and drive 
weapon system readiness—thus enhancing maintenance and logistics enterprise 
operations. Advanced analytics can produce actionable intelligence regarding 
availability, quality, sustainability, and reliability of a weapon system. This information is 
also useful for establishing proactive supply support strategies that strive to keep the 
weapon system operational. 

The Services are in the process of implementing CBM+ using system health indications 
to predict a functional failure ahead of the event and take appropriate preemptive 
actions. Adding to the health indications, is the use of historical operational, sustainment, 
and repair data to generate useful information and drive enterprise activity outcomes. 
The preemptive actions include more efficient maintenance planning, efficient and 
effective maintenance, and proactive supply support planning. Given this perspective of 
CBM+, we explore three general CBM+ data types: 

1. Onboard and offboard aircraft subsystem health monitoring data 

2. Operational, sustainment process, and repair data 

3. Planned maintenance event information. 

ML Modeling Technique 
Figure 2-1 provides an overview of the analysis process employed by Global Strategic 
Solutions, LLC to understand the problem, understand the data available for the project, 
establish a solution hypothesis, and characterize the ML modeling technique that best 
fits the problem and the available data. As shown in the diagram, the project team 
included data scientists and supply chain and CBM+ subject matter experts. Using the 
company’s cloud-based infrastructure and application development environment, the 
team conducted the exploratory modeling and analysis of the source data obtained for 
this project. 

Figure 2-1. Characterizing the ML Modeling Technique 

 
Note: AI = artificial intelligence; MADWTM = Maintenance and Availability Data WarehouseTM; NAVAIR = Naval Air Systems 

Command; R&M = reliability and maintainability; SDR = Standard Data Repository. 
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Chapter 3  
Technical Concept and Approach 

We met with the DLA Center of Planning Excellence (CoPE) staff to review the project 
objectives and get an understanding of their perspective on the problem. We found the 
following: 

• DLA has many forecasting tools and has tried many others. Stakeholders view 
the development and value of new forecasting models with skepticism. 

• One or more of the following improvements will constitute success: 

- Providing better data from the Services to DLA models with AI curation 

- Helping the Services provide better collaboration input 

- Creating a more effective means for notifying DLA planners when demand 
patterns have changed or are changing. 

The collaboration data contain much noise: 

• How can they determine what’s important? 

• What Service data (features) are important to improve planning? 

• Planners need to account for important exceptions, changes in assumptions, etc. 

• How can they know what “they don’t know”? 

The underlying message is, “DLA wants to project what its customers will buy in the 
future, instead of forecasting what the demand will be in the future.” More effective 
collaboration between the Services and DLA is key in accounting for the actual use 
(operating environment), reliability, and ad hoc business processes used by the Services 
to meet operational demands and tackle readiness issues. Historical demand-based 
forecasting and planning is not enough to accurately project what the Services will buy in 
the future. DLA needs better situational awareness. 

Source Data 
The project analyzed the F/A-18 Generator Converter Unit 
(GCU), which the F/A-18E/F Reliability Control Board (RCB) 
classified as a top degrader. We validated this classification 
by analyzing Navy data from the decision knowledge 
programming for logistics analysis and technical evaluation 
(DECKPLATE) in the MADWTM. Our analysis showed the 
GCU suffered from high not mission capable supply (NMCS) 
hours. Historically, it has experienced low reliability and has 
gone through three design upgrades. We collaborated with 
DLA and Navy stakeholders to obtain DECKPLATE source data for the project (Table 3-
1). 

It should be noted 
that the GCU has not 

specific sensors 
assigned. The data is 
captured from by the 

onboard test 
computer. 
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Table 3-1. DECKPLATE Data 

Data source Data description 

Navy Service demand change request example 

Navy F/A-18 E/F RCB analysis report of readiness top degraders 

Navy GCU Maintenance actions (2011 to present) 

Navy GCU Depot data: 2016 to present full GCU and Shop Replaceable Assemblies (SRAs) 
repairs 

Navy Flight records related to GCU repairs and corresponding Maintenance Status Panel 
(MSP) Codes  

Navy Specific GCU maintenance actions: (Jan 1, 2019 to Oct 7, 2019), National Item 
Identification Number (NIIN) History of Failure (HOF): 015459351, 014793739, 
014708688, 015452665, 016432784, 014793815, 014938781, 015452661 Circuit Card 
Assembly 

Navy Specific GCU maintenance actions: Jan 1, 2019 to Oct 3, 2019) and NIIN HOF: 
015664393, 015997663, 016270932, 014708681, 015452670, 014553692 Generator 

 

 

Aircraft Subsystem Health Monitoring Data 
Using the industry standard Society of Automotive Engineers JA6268, Figure 3-1 
provides an overview of the F/A-18E/F CBM+ capabilities, highlighting the capability 
level 1 functions in red. The Navy uses built-in test (BIT) and MSP codes to drive 
maintenance actions on critical components and is implementing a predictive analytics 
function on the Environmental Control System. For the GCU, the actual health 
monitoring capability is limited to diagnostics. GCU BIT/MSP codes are captured and 
downloaded to the ground station. The GCU test station results are captured in 
DECKPLATE; SRA callouts, malfunction (MAL) code, and narrative. Flight records are 
downloaded from the aircraft memory unit. 

Figure 3-1. F/A-18E/F CBM+ Capability Level Overview 

 
Note: IDE = Integrated Data Environment; PLR = performance life remaining. 
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Weapons system diagnostic data help in assessing failures once they occur and in 
reducing the time to reliably replenish (TRR) and the number of parts ordered per repair. 
TRR is the time required to troubleshoot and repair failed equipment and return it to 
normal operating condition. From a parts forecasting perspective, it provides the 
foundation for flagging a degrader component. Tracking and computing the actual 
component mean time between failures (MTBF) or mean flight hours between failures 
(MFHBF) and comparing the metrics with the design MTBF/MFHBF provides an early 
warning of a “reliability degrader.” Using advanced analytics on BIT/MSP data across the 
fleet may render insight into the underlying root cause. 

Operational, Sustainment Process, and Repair Data 
Figure 3-2 shows the classes and sources of data in this approach. As shown, we 
combine the weapon system data with the GCU maintenance event data: test results, 
SRA callouts, narrative (corrective action, action taken description, and malfunction 
description), and the GCU and SRA depot repair data. From the advanced analytics 
perspective, this framework is the most promising for using ML on CBM+ data to 
improve the DLA parts forecast and planning process. The idea is to use advanced 
analytics to identify influential supply demand features. These features can then be used 
to provide better collaboration input: a more efficient means for notifying DLA planners 
when demand patterns have changed or are changing due to actual use (operating 
environment), reliability, or ad hoc business processes used by the Services to tackle 
operational demands and readiness issues. 

Figure 3-2. Analysis of Operational, Sustainment Process, and Repair Data 

 
Note: OEM = original equipment manufacturer. 

Connecting the three classes of data shown in Figure 3-2 provides the ground truth for 
advanced analytics using ML. The GCU features extracted from the flight data can be 
correlated with the maintenance event and depot repair data. Once the data classes are 
correlated, we use advanced analytics algorithms. The algorithms analyze all relevant 
information, including flight data and maintenance event data, plus structured and 
unstructured data such as technician notes and depot repair records. Analysis of the 
GCU data obtained for this project can render key insights and benefits, including being 
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able to leverage large amounts of historical data to inform engineering, maintenance, 
and supply support planning. Figure 3-3 provides an example illustrating the correlation 
of data across the sustainment process for a specific GCU serial number. 

Figure 3-3. Correlation of Data Across Sustainment Process  
for Specific GCU Serial Number 

 

We used the following analytics and modeling techniques on DECKPLATE data of 
known GCU NIINs: 

1. Clean data: 

- Remove duplicate data fields 

- Remove observations with too many missing values 

- Eliminate uninformative variables. 

2. Select features on the basis of 

- residual sum of square, 

- adjusted R squared, 

- Mallow’s Cp, and 

- Bayesian information criterion. 

3. Model using 

- linear regression, 

- weighted regression, 

- robust regression, 

- decision tree, and 

- random forest. 

Planned Maintenance Information 
Every weapon system has a predetermined schedule for maintenance events based on 
its depot-level integrated maintenance concept (IMC)/preventive maintenance interval 
(PMI). The RCM analytical process determines the appropriate failure management 
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strategy, including preventive maintenance (PM) requirements and other actions 
warranted to ensure safe operation and cost-wise readiness of the weapon system. 

In addressing readiness issues, the Navy is shifting from fly-to-failure strategies to 
planned proactive removals. This new soft-time threshold maintenance strategy is based 
on the commercial best practice used in the civil aviation sector (first used by Delta). 
After removal, the assets will be inducted for depot maintenance to restore the level of 
reliability. The depot will do this restoration in accordance with a comprehensive build 
specification, instead of the “inspect and repair as needed” concept. To implement this 
strategy, the Services will have to develop a schedule of removals and servicing of the 
components. The Services and DLA planners can use these schedules and build 
specifications to develop projected demands for parts supplied by DLA. 

Using DECKPLATE data and MAL codes, ML can render insights into demands for 
future parts. For example, in the case of the GCU, there is an ongoing effort to replace 
or convert older units (G2/G3) to the latest G4 version. Figure 3-4 shows G3 to G4 
upgrades done in 2019 as recorded in DECKPLATE. As in the case of soft-time 
threshold removals, the schedule and rate of conversions at the depot or OEM can be 
used to develop projected demands for parts supplied by DLA. 

Figure 3-4. G3 to G4 Upgrades in 2019 
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Chapter 4  
Findings and Recommendations 

Findings 
We applied the CBM+ method without determining a specific model or set of models to 
address forecasting improvements. We found that application of this method can 
generate a list of proactive supply alert identifiers (PSAIs) that can be integrated into the 
existing DLA forecasting and planning models to define the recommended operation 
framework to exchange data more efficiently. Figure 4-1 illustrates the DLA business 
model with the integration of the PSAIs. 

Figure 4-1. DLA Business Model Using PSAIs 

 

Using this approach, DLA planners can use the constant streams of PSAI class data to 
identify demand indicators and trends in projected parts demand. Services could supply 
to DLA degradation trends, soft-threshold trends, and revised maintenance schedules 
derived from the CBM+ data analysis. DLA parts planning could use this additional 
information about Service part demand levels to automate collaboration and 
development of future demands. 

Recommendation for use of CBM+ Data to Improve Parts 
Forecasting 

The recommended PSAI classes are provided in Table 4-1. The PSAIs are defined in 
the context of the F/A-18 GCU, but they can be generalized and applied to any weapons 
system component supported by DLA. 
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Table 4-1. Service PSAIs Classes Matrix 

PSAI class 
Service 

organization Data sources PSAI resultants Benefit 

RCB Top 
Degrader 
Program 

NAVAIR RCB top degrader list  Top degrader list with root 
causes, courses of action, 
and help needed sections

Quick identification of 
overall problem systems 
and DLA-specific issues 

R&M—actual 
vs. design 
reliability  

NAVAIR DECKPLATE, AFAST, 
and FAME (BIT/HAT and 
MSP tests) 

NIIN MTBF, MFHBF, and 
LRU cannibalization 
trends; correlation of 
entries with NIIN; and 
flight data analysis 

Current NIIN usage and 
early projection alerts of 
NIIN failure; correlation to 
other parts in failing 
system 

Life limited 
parts (logistics) 

NAVAIR Time-sensitive item 
maintenance at the O/I/D 
levels; 
AFAST/DECKPLATE 
systems 

Specific category of NIIN, 
listing time on wing, 
RTAT, installation, 
expected shelf-life, and 
service area installed 

DLA supply and planning 
demand schedule of 
expiring parts 

Usage BOM 
trends 
(logistics) 

NAVAIR FRC O/I/D levels, 
AFAST/DECKPLATE, 
and FAME 

IMC/PMI BOM, number of 
parts ordered per repair, 
correlation of same part 
on different systems by 
TEC, NIIN, and MAL code

Rate of replacement for 
specific part 

Scheduled 
maintenance 
(RCM/PM) 

NAVAIR RCB HAT, DECKPLATE, 
and AFAST 

Weapon system IMC/PMI 
maintenance schedule, 
NMCM scheduled-to-
unscheduled trends, 
NAVAIR soft-time 
threshold conversion 
analysis and part 
replacement/servicing, 
degrader upgrade or 
replacement schedule 

Time for DLA to order 
parts for availability; if the 
part is obsolete, time to 
adjust spare SOH parts 

Note: AFAST = Aviation Financial Analysis Support Tool; BOM = bill of material; FAME = F-18 F/A-18 Automated Maintenance 
Environment; FRC = Fleet Readiness Center; HAT = Hornet Asset Tracker; LRU = line replacement unit; NMCM = not mission 
capable maintenance; O/I/D = organizational, intermediate, and depot; RTAT = repair turnaround time; SOH = stock on hand;  
TEC = type equipment code. 

 

PSAI Classes 
Service-provided PSAI classes would serve as a stream of data to be analyzed and sent 
from each Service to DLA to render a more complete picture of demand for DLA-
provided parts. Each PSAI class of information would show trends and a timely picture of 
the actual health of F/A-18E/F weapons system. The following subsections describe the 
PSAI classes and information Services can gather and automate for DLA. 

Top Degrader and Root Causes 
This PSAI class uses Services’ current analysis and centralizes the Service top degrader 
list and root causes for F/A-18E/F weapon systems. Services generate this report 
annually by monitoring DECKPLATE and other Service maintenance system trends. The 
annual report on the F/A-18E/F top 20 degraded systems includes root cause analysis, 
remedies (current trends), and help requests from outside the Service if needed. These 
reports give DLA a PSAI watch list to begin monitoring and actual requests to DLA for 
help in policy and procedures. Over time, these reports show the historical trend of bad 
actors in the F/A-18E/F top degradation list. 
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For example, using an RCB, the Navy employs trend analysis to determine maintenance 
top degraders using data from DECKPLATE and other NAVY systems. The RCB trend 
analysis shows the F/A-18 E/F GCU has been a top degrader system for several years. 
The GCU was also verified as a top degrader system based on NMCS hours computed 
from MADWTM records. Historically, the GCU has experienced low reliability and has 
gone through three design upgrades. There are two GCUs on each F/A-18 E/F weapon 
system. Figure 4-2 illustrates the process to determine the root cause of top degraders. 

Figure 4-2. Navy’s RCB Process Overview 

 

The RCB top degrader information on the GCU could be used to generate 
(automatically) this type of PSAI class information for each DLA supplied NIIN. DLA 
planners can use the constant streams of this PSAI class data to identify demand 
indicators and trends in projected parts demand. Services could supply degradation 
trends, actual reliability parameters, and NIIN’s involved to DLA derived from analysis of 
the GCU CBM+ data. DLA parts planning could use this additional information to 
determine future GCU parts projections. 

Reliability and Monitoring 
This PSAI class includes MTBF and MFHBF from the Navy reliability and monitoring 
system. Services have done this analysis with the estimated systems hours before GCU 
failure. This class also includes cannibalization trends, flight record analysis, and 
maintenance trends. Because analysis has been done for entire systems (GCU), 
Services should monitor information related to all parts consumed in repairs to give a 
better picture of demand to DLA. Creating scripts from commands (listed in Appendix A) 
and filtering on a specific NIIN, the rate of cannibalization of parts is generated by 
organization or aircraft tail number, including all DLA-provided GCU parts. 

Logistics Life Limited Parts 
This PSAI class comprises the Navy logistics life limited parts, a subset of the repairs 
and service FRC inventory and verified with Service DECKPLATE repairs. The Services 
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provide install date, DECKPLATE repair data, purchase date, and time in use (AFAST 
flight information) for each part. 

Service Actual Usage 
This PSAI class identifies actual usage, including the count of repairs that used the part 
across all Services, depot-level repairs, and special agreements where parts are 
supplied to Services from the DLA OEM. These data are consolidated from each of the 
Service’s maintenance systems and include Service analysis of repair frequencies or 
issues. 

Weapon System Scheduling 
This PSAI class includes current scheduled vs. unscheduled trends, IMC/PMI-scheduled 
modifications computed from Service maintenance data trends, and whether or not 
Service analysis was performed and determined to be advantageous to create a soft-
threshold part replacement. The actual repairs scheduled in DECKPLATE are sent to 
DLA. 

Weapon System Health Monitoring 
For this PSAI class, Services continue documentation of RCB trend data to give top 
degrading overall health of weapon systems using flight data (BIT/Health Ready 
Components and Condition Indicator/Health Condition Indicator trends), flight analysis, 
actual DECKPLATE and AFAST maintenance data, and estimated residual performance 
life of the weapon system. This provides a comprehensive compilation of previous PSAI 
class data to develop a DLA overall weapon system parts tracking health monitor. 

Recommendation for Automating PSAI Generation and 
Stakeholder Collaboration 

Figure 4-3 illustrates the potential introduction of points of presence in support of the 
collaboration process. 

Figure 4-3. CBM+ Notional Points of Presence to Process  
CBM+ Data and Collaboration 

 

Services and DLA would need to identify POPs at maintenance locations and DLA FRC 
to consolidate the data and generate PSAI classes of information. These are 
placeholders to process data and do not necessarily have large data stores. 
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Services currently use CBM+ data to more efficiently identify GCU G2/G3 remedy repair 
by maintenance locations, F/A-18E/F usage, and GCU redesign. Using the technique 
outlined in this study, Services can provide part PSAI classes to DLA. DLA can combine 
current DECKPLATE and AFAST CBM+ data to develop a repair baseline of demand 
from the PSAI classes above. This repair Service CBM+ data would be combined with 
DLA/Service ordering systems to develop more accurate NIIN usage. From Service 
analysis, maintenance data scripting, and data classifications, the Services would 
provide streams of PSAI classes to DLA health monitoring systems. 

Services have known specific maintenance data points of interest that scripting can 
develop into streams of data to help in the procurement of parts. Services can start by 
automating these pivot tables and maintenance data charts to give a stream of data to 
DLA on a specific point of interest for PSAI class of data. DLA would be able to 
automate the CBM+ data stream to generate a repair trend for any weapon system RCB 
degradation systems. We started this process by creating Python scripts of 
DECKPLATE malfunction code 815 (cannibalization due to part not on hand) on a 
specific GCU NIIN DLA-supplied part that is out of stock at time of repair. 

From Service analysis, we identified common repair kits by DECKPLATE corrective 
action and narrative description. Performing pattern matching of text searching these 
fields for specific SRA and MSP code, Python scripts can be generated to identify most 
common repairs of GCU NIINs. For example, a weeks’ worth of DECKPLATE data 
enable analysis of the frequency of specific repairs. 

From text mining of MSP/SRA flight data codes, specific DECKPLATE hits for SRA and 
MSP codes can be filtered and merged, and count summaries of repairs generated as 
summaries of DECKPLATE maintenance information. This, combined with DECKPLATE 
information of cannibalization rate, gives a repair trend for a specific part. This stream of 
data would be provided to both Services and DLA planning for parts investigation/future 
procurement. This is a PSAI class to inform DLA and Services to investigate root causes 
listed earlier and the potential change demand signal of current purchasing from 
Services to DLA. 

Python scripts can analyze results for new trends in CBM+ data, previous MSP problem 
codes, and soft-threshold NIINs. Previous Service research has observed differences 
between DECKPLATE maintenance repairs and actual BOM requests. These data can 
be correlated with actual GCU repair usage and SOH buffering. 

In summary, using CBM+ data, the Services can derive data streams of PSAI 
information for DLA. The Services PSAI classes of data streams can be used by DLA to 
develop TensorFlow models that correlate overall demand needs of GCU NIINs to 
determine F/A18-E/F weapon system parts demand over time, by maintenance location 
and developing usage trend. DLA would grab specific information resultants (PSAIs) 
from the Services to assist in collaboration in parts needed as well as changes in low 
demand to high demand parts as needed. With the PSAI classes of data streams from 
the Services, TensorFlow models using TensorBoards Graphical User Interfaces can be 
used to adjust DLA planning model proficiencies in supply data streams with actual 
usage compared with purchasing. Automated exchange of actual repair information in 
addition to BOMs give DLA a more complete picture of Service DLA NIIN actual usage 
and demand. ML algorithms can be developed in collaboration with the Service PSAI 
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data points for specific NIINs to monitor Service trends and adjust DLA parts planning 
forecasting. 

Recommendation for Visualization App of PSAI Information 
for Stakeholder Collaboration 

One example of obtaining a PSAI class data point walkthrough that would assist DLA 
planning immediately is the creation of cannibalization rate trends of DLA-supplied NIINs 
(GCU NIIN Generator/Alternator used). The Navy RCB program has already established 
that GCU has been listed as top degrader in the RCB top degrader report. A list of GCU 
parts for each version (GCU G2, GCU G3, GCU G4, and hybrid) was created. Analysis 
of GCU NIINs reveals an increasing trend in cannibalization for specific parts needed in 
overhaul and upgrades of the GCU. Simple Excel spreadsheet pivot tables of 
DECKPLATE repair data show a growing trend of GCU NIIN demand for repairs. 
Because cannibalization rates are not captured in current BOMs supplied to DLA by the 
Services, part identification of low to high demand is not known from the Services until 
parts are not available and a Service demand change letter is created. 

Using GCU NIINs for Generator/Alternator, we developed a Python script to automate, 
filter, and create pivoted tables and charts of DECKPLATE data search of a specific 
NIIN. The DECKPLATE pivot information would have NIIN HOF counts (year and month 
from Comp Date Time), type/model/series, malfunction code, and action organization 
code. This is PSAI class 2, reliability and monitoring of current GCU NIIN parts. Using 
this generic NIIN HOF script, we ran all DECKPLATE repair data of F/A-18E/F repairs to 
generate tables and charts of output. This generates the PSAI of cannibalization rate of 
specific NIIN HOF information to supply to DLA planning. (Appendix A contains the 
Python script.) 

Because the Python scripts are generic enough to run any DECKPLATE data but 
specific enough to identify the cannibalization rate of all GCU NIIN parts, Services would 
provide a total GCU NIIN cannibalization rate to DLA. Services would provide these 
trend rates for each GCU NIIN part to give a demand PSAI signal to DLA on base NIIN 
parts used to correlate with Services current BOMs. Services would also give this GCU 
NIIN cannibalization rate for analysis of why cannibalization is occurring. DLA currently 
tracks Services’ orders but not cannibalization. Therefore, whole GCU SRAs are taken 
out of Service with no supply tracking to order new parts. 

Service CBM+ data from Service maintenance data (DECKPLATE, AFAST, Aviation 
Store Keeper Information Tracking moved into [FAME], etc.) would be processed, 
filtered, and merged to create single PSAI class data points of interest to generate a 
single actual maintenance demand data point of interest (Figure 4-4). From analysis with 
pivot tables, CBM+ data (DECKPLATE, FAME, and AFAST) can document the 
cannibalization trend of single GCU NIIN. The training model of data to give DLA a 
neural network perception point of data for DLA would use ML to give stream of dates, 
counts, and action organizations of all repair hits of specific streaming maintenance data 
instants. Using data analysis and visualization tools, we can merge these perception 
points and develop them into a DLA NIIN PSAI, the answer (stream of repair data rate 
over time) that supply’s trend of GCU NIIN demand (PSAI) over time and schedule 
points of when to replace. This would require development of multiple models to develop 
an overall F/A-18E/F system health of specific degraded part. 
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Figure 4-4. Service Data Processing to Create Single PSAI Neural Network Percept 

 

Figure 4-5 shows the RCB top degrading system parts demand dashboard. It gives an 
overview of DLA Service part demand ML models based on PSAI classes of data. This 
analysis could easily be repeated for GCU parts repairs using the existing generic 
scripts. 

Figure 4-5. Notional Application Dashboard—Quick View of Parts Status 
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Appendix A  
CBM+ Method 

This appendix provides detailed technical information related to the application of the 
CBM+ method in this study. 

Determining Cannibalization Rates 
To test the applicability of these methods, we sought to determine cannibalization rates 
for specific NIINs within the GCU. The steps included the following: 

• Create scripts to filter and automatically generate pivot tables for specific NIINs 
(starting with known or expected “bad actors”); information would include 

- type/model/series, 

- action organization code, 

- NIIN HOF counts, and 

- completion date (year, month). 

• Run the scripts with DECKPLATE data by date ranges to create trend data. 

Using Service analysis techniques and table of data sources from DECKPLATE, 
analysis shows an increasing trend in the cannibalization rate and past scheduled 
maintenance of specific DLA GCU NIINs (015664393, 015997663, 016270932, 
014708681, 015452670, and 014553692). Figure A-1 shows the cannibalization rate for 
these NIINs by month and year. Figures A-2 and A-3 illustrate cannibalization based on 
malfunction code. In Figure A-3, the cannibalization rates dramatically increase from 
2017 into 2018 and 2019 for malfunction code 815—Cannibalization–Part Carried But 
Not On-Hand in Local Supply System. In other words, this part was cannibalized due to 
a not-in-stock. 

Figure A-1. Total Cannibalization Rate of Known NIINs 
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Figure A-2. Cannibalization Rate for Malfunction Codes 812-814 

 

Figure A-3. Cannibalization Rate for Malfunction Codes 815-816 

 

Navy Service Supplied CBM+ Data 
Table A-1 provides the data description from the Navy DECKPLATE system. 

Table A-1. DECKPLATE Data Description 

Data description 

Service demand change request example 

F/A-18E/F RCB analysis report of readiness top degraders 

GCU maintenance actions (2011 to present) 

GCU depot data: 2016 to present full GCU and SRA repairs 

100 to 1,000 flights records related to GCU repairs and corresponding MSPs 

Specific GCU maintenance actions (Jan 1 to Oct 7, 2019) and NIIN HOF: 015459351, 014793739, 
014708688, 015452665, 016432784, 014793815, 014938781, 015452661 Circuit Card Assembly 
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Table A-1. DECKPLATE Data Description 

Data description 

Specific GCU maintenance actions (Jan 1 to Oct 3, 2019) and NIIN HOF: 015664393, 015997663, 
016270932, 014708681, 015452670, 014553692 Generator 

 
On the basis of data from DECKPLATE, the Navy RCB analyzes the root causes of 
trends on the top degraders. Table A-2 identifies the top three degraders and root cause 
analysis for the F/A-18E/F. 

Table A-2. RCB Top Degrading F/A-18E/F Parts with Root Cause 

Rank Degrader name Root cause 

1 Outboard Leading Edge Flap Lower 
Fairing 

Maintenance induced damage, over-torque during 
removal and replacement. Compounded by demand 
forecast transfer from Naval Supply Systems 
Command to DLA. 

2 GCU G2/G3 not designed to withstand alternating current 
non-linear electrical loads. Erroneous removal while 
troubleshooting wiring discrepancies. 

3 Arresting Tailhook Assembly Nicks, gouges, and corrosion driving excessive RTAT 
at scheduled overhaul. Compounded by inaccurate 
forecast model, Quality Engineer at FRC, and carcass 
constraints. 

 
Figure A-4 illustrates Navy RCB top degrader trending data. 

Figure A-4. Navy RCB Top Degrader Trending Data 

 

Figure A-5 illustrates Navy root cause analysis for GCU G2 and G3 repair issues. 

Figure A-5. GCU G2 and G3 Repair Issues 
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Figure A-6 illustrates the findings that most repair data information is in the Malfunction 
Description, Narrative Description, and Corrective Action fields of DECKPLATE. These 
list the MSP codes of F/A-18E/F flight data to identify the GCU component repaired and 
any common components. Service analysis identify that MSP code 870 and 871 were 
most common and the corrective action taken would be to remove and replace SCR 
component, Integrated Product Team, A11, A13, and adjust SRA components A2 and 
A9. Service analysis of GCU G2 and G3 found 19 common SRA parts repaired due to 
overheat and overload. 

Figure A-6. Data from DECKPLATE—Malfunction Description,  
Narrative Description, and Corrective Action Fields 

 

The graphs in Figure A-7 illustrate the obvious noise within the plot. Moving average 
methods can be applied. 

The tradeoff between cost and benefit is as follows: 

• Suppose X is the number of units provided in a store. 

• If X is larger than the actual number, Xୟ, needed in the store, then X െ Xୟ units 
will be unsalable. Suppose the cost of one unit is C. Then we will lose max ሾሺX െ
Xୟሻ ∙ C, 0ሿ. 

• If X is smaller than the actual number, Xୟ, then Xୟ െ X customers will face the 
shortage problem, and the store will probably lose customers, which will negate 
potential benefits. Suppose the benefit gained from one customer is B and the 
probability of losing one customer is P. Then we lose max ሾሺXୟ െ Xሻ ∙ B ∙ P, 0ሿ. 

• Thus, the function of total benefit should be 

fሺXሻ ൌ B ∙ Xୟ െ maxሾሺX െ Xୟሻ ∙ C, 0ሿ െ max ሾሺXୟ െ Xሻ ∙ B ∙ P, 0ሿ. 

• It is obvious that when X ൌ Xୟ, this store gets the maximum total benefit. Most of 
the time, we have errors in prediction, so our goal is to maximize the mean of 
total benefit given the distribution of X. 



CBM+ Method 

 A-5  

Figure A-7. Data from DECKPLATE—Areas of Maintenance, Action Code Counts,  
and Top Six Malfunction Code Types 

 

We investigated and plotted malfunction code 815 to discern trends in repairs performed 
where parts are not available. This is a specific indicator from Service maintenance data 
that a GCU part is not available at the action organization for repair due to GCU NIIN not 
available. While six cannibalized GCU NIINs in 2017 documented from DECKPLATE 
data this may be okay to keep F/A-18E/F in readiness. When 2018 has 309 Generator 
Alternator parts cannibalized for repairs due to lack of parts and 2019 has 696 parts 
cannibalized with 2019 September seeing a decrease cannibalization rate, DLA would 
have advance indicator that not enough Generator Alternators are being procured or 
Service supplying to area using Root Cause analysis. This doesn’t give a total project of 
GCU NIIN parts but will produce a base demand. 

 

Python script to parse DECKPLATE data can create quick processing the data and send 
results to DLA planning. 

First, Python would need to import the following modules: 

Import pandas as pd 

Import numpy as np 

Import matplotlib.pyplot as plt 

Import datetime 

Data = pd.read_excel(r’<Directory of deckplate file>\<name of deckplate file>.xlsx’) 
#Used to import deckplate search file 
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index = 
[‘col1’,’col2’,’col3’,’col4’,’col5’,’col6’,’col7’,’col8’,’col9’,’col10’,’col11’,’col12’,’col13’,’col14’,’
col15’,’col16’,’col17’,’col18’,’col19’,’col20’,’col21’,’col22’,’col23’,’col24’,’col25’,’col26’,’col2
7’,’col28’,’col29’,’col30’] #Used to rename column names for processing 

column = [‘TEC’,’Type Model Series’,’Action Org Code’,’BCM’,’RFI Ind’,’Comp Date 
Time’,’Last Altered Date Time’,’JCN’,’MCN’,’Maint Level’,’Maint Level Desc’,’Action 
Taken Code’,’Action Taken Desc’,’Malfunction Code’,’Malfunction Desc’,’Malfunction 
Type’,’Work Center Code’,’Repair Net Price’,’NIIN HOF’,’COG’,’SMR Code’,’DLR 
Cost’,’Unit Price’,’Corr Act’,’Descrep Narr’,’Manhours’,’Type MAF Code (OOMA)’,’Type 
MAF Desc’,’NIIN HOF Desc’,’Bu/SerNo’] #column names of Deckplate 

df = pd.DataFrame(Data, columns= column) #data imported from deckplate 

df2 = df.set_axis(index,axis=1, inplace=False) #data imported from deckplate with 
column name substitute 

i = Data.index.stop # find last deckplate entry 

col6date = pd.DataFrame.to_numpy(df2[‘col6’]) #obtaining and indexing Comp Date 
Time 

col6dateclean = pd.DatetimeIndex(data=col6date, start=0, end=i) 

compdateyear ={‘Year’:col6dateclean.year} # create year dictionary list 

compdatemonth ={‘Month’:col6dateclean.month} # create month dictionary list 

 

compdateday ={‘Day’:col6dateclean.day} #create day dictionary list 

compdatetime ={**compdateyear, **compdatemonth, **compdateday} 

df3 = pd.DataFrame.from_dict(compdatetime) # create year, month, day Dataframe 

 

pivot = df.pivot_table(index=[‘Type Model Series’], values=[‘NIIN HOF’], 
aggfunc=np.count_nonzero) # Simple pivot table to give counts of NIIN for each F/A-
18E/F type 

df4 = pd.concat([df3,df2], axis=1) ] # filters to apply to data to get total cannibalization of 
F/A-18E/F specific systems (may need addition filters on addition a columns to identify 
specific parts) 

df4 = 
df4[df4.col19.isin([‘015664393’,’015997663’,’016270932’,’014708681’,’015452670’,’0145
53692’])] 

df4 = df4[df4.col1 != ‘NMAK’] 
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df4 = df4[df4.col1 != ‘AMAK’] 

df4 = df4[df4.col1 != ‘AMA9’] 

df4 = df4[df4.col14.isin([‘812’,’813’,’814’,’815’])]pivot2 = df2.pivot_table(index=[‘Type 
Model Series’], values=[‘NIIN HOF’,’Comp Date Time’], aggfunc=‘count’) #pivot table of 
filtered data 

index2 = [‘Year’,’Month’,’Day’]+column 

df4 = df4.set_axis(index2, axis=1, inplace=False) #filtering and create datapoints of 
interest for excel spreadsheet export 

df4[‘Month’] = df4[‘Month’].apply(lambda x: calendar.month_abbr[x]) 

df4[‘Month’] = pd.Categorical(df4[‘Month’], categories=months, ordered=True) 

pivot = df4.pivot_table(index=[‘Year’,’Month’,’Type Model Series’,’Action Org 
Code’],values=[‘NIIN HOF’], aggfunc = [‘count’]) 

pivot2 = df4.pivot_table(index=[‘Year’,’Month’,’Type Model Series’],values=[‘NIIN HOF’], 
aggfunc = [‘count’]) 

pivot3 = df4.pivot_table(index=[‘Year’,’Action Org Code’],values=[‘NIIN HOF’], aggfunc = 
[‘count’]) 

writer=pd.ExcelWriter(r’C:\Users\danhu\Downloads\testdata2.xlsx’) 

df4.to_excel(writer,sheet_name=‘MalFunction_Code’,index=False) 

pivot.to_excel(writer,sheet_name=‘pivot_table1’) 

writer.save() 

plt.subplot = df.pivot_table(index=[‘Type Model Series’], values=[‘NIIN HOF’], 
aggfunc=‘count’).plot(kind=‘bar’) # plot simple pivot chart 

plt.xlabel(‘Type Model Series’) 

plt.ylabel(‘NIIN HOF Count’) 

plt.subplot = df2.pivot_table(index=[‘Type Model Series’], values=[‘NIIN HOF’], 
columns=[‘Comp Date Time’], aggfunc=‘count’).plot(kind=‘bar’) #plot filtered pivot chart 

plt.xlabel(‘Type Model Series’) 

plt.ylabel(‘NIIN HOF Count’) 

print(df2) #full deckplate data chart of filtered results. 
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Another trend discovered in DECKPLATE data is scheduled maintenance tasks in 
G3/G4 upgrades. Using number of GCU G3/G4 upgrades by creating pivot table to Type 
MAF Desc = ‘TECHNICAL DIRECTIVE MAINTENANCE ACTION’ and using NIIN HOF 
Desc = ‘GENERATOR,ALTERNATI’. 

With above Python scripting, trending of DECKPLATE data can process all F/A-18E/F 
rates of upgrades and compare with Service provided-estimates to get the trend of GCU 
NIIN parts needed to repair GCU G4 while GCU G2 and G3 parts that are not common 
with other equipment could be phased out of purchase. 

With Service assistance in analysis trending, automated pivot tables creating streams of 
data and plotting charts give data points of low demand changes to high demand. 
Figure A-8 shows the DECKPLATE columns usable to create pivot tables. 

Figure A-8. DECKPLATE Columns Usable to Create Pivot Tables 

 

Table A-3 shows the MSP and SRA codes for 1 week of data against all F/A-18E/F 
repairs from DECKPLATE. 

Table A-3. SRA Words in the 
“Corrective Action” Column 

Word Frequency 

R/R 29 

A1 263 

A2 235 

A3 293 

A4 158 

A5 57 

A6 32 
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Table A-3. SRA Words in the 
“Corrective Action” Column 

Word Frequency 

A7 150 

A8 397 

A9 455 

A10 7 

A11 10 

A12 3 

A13 1 

A14 21 

 

Table A-4 summarizes the frequency of certain MSP hit words used in the “Description 
Narrative” column merged with Air Division MSP definitions for descriptions. 

Table A-4. MSP Words in the “Description Narrative” column 

MSP code Description form NAVAIR MSP code definition Frequency 

041 RADAR TRANSMITTER FAIL 48 

074 L FUSELAGE DECODER FAIL 18 

076 R FUSELAGE STATION DECODER FAIL 12 

112 DMC FAIL 46 

120 XXX 147 

159 MU/AMU FAIL 49 

191 RATE SENSOR ASSY B FAIL 7 

195 READ BLIN CODES 22 

544 CTR EXTERNAL TANK FUEL QUANTITY PROBE 3 

678 R ENGINE OIL PRESSURE SIGNAL FAIL  48 

813 L ENGINE ANTI-ICE FAIL 8 

M RLCS DOOR OPERATION FAIL 19 

871 RIGHT GENERATOR FAIL 24 
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Appendix B  
Abbreviations  

AFAST Aviation Financial Analysis Support Tool 

AI artificial intelligence 

BIT  built-in test 

BOM bill of materiel 

CBM+ Condition Based Maintenance Plus 

CoPE Center of Planning Excellence 

DECKPLATE decision knowledge programming for logistics analysis and technical 
evaluation 

DLA Defense Logistics Agency 

DoD Department of Defense 

ERP enterprise resource planning 

FAME F/A-18 Automated Maintenance Environment 

FRC Fleet Readiness Center 

GCU Generator Converter Unit 

GSS Global Strategic Solutions, LLC 

HAT Hornet Asset Tracker 

HOF History of Failure 

IDE Integrated Data Environment 

IMC  integrated maintenance concept 

LRU  line replacement unit 

MADWTM Maintenance and Availability Data WarehouseTM 

MAL malfunction  

MFHBF mean flight hours before failures 

ML machine learning 

MSP  Maintenance Status Panel  

MTBF mean time between failures 

NAVAIR Naval Air Systems Command 

NIIN National Item Identification Number 

NMCM not mission capable maintenance 

NMCS not mission capable supply 
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OEM original equipment manufacturer 

O/I/D organizational, intermediate, and depot 

PLR performance life remaining 

PM preventive maintenance 

PMI  planned maintenance interval 

POP point of presence 

PSAI proactive supply alert identifier 

R&D research and development 

R&M reliability and maintainability 

RCB Reliability Control Board 

RCM reliability-centered maintenance 

RTAT repair turnaround time 

SDR Standard Data Repository 

SOH stock on hand 

SRA  Shop Replaceable Assembly 

TEC type equipment code 

TRR time to reliably replenish 

 




