Control of metal-insulator transition temperature in VO₂ thin films grown on RuO_2/TiO_2 templates by strain modification

Cite as: AIP Advances **9**, 015302 (2019); https://doi.org/10.1063/1.5083848 Submitted: 30 November 2018 . Accepted: 30 December 2018 . Published Online: 09 January 2019

H. Kim 🔟, N. A. Charipar, J. Figueroa, N. S. Bingham, and A. Piqué

ARTICLES YOU MAY BE INTERESTED IN

Strain effect in epitaxial VO_2 thin films grown on sapphire substrates using SnO_2 buffer layers

AIP Advances 7, 105116 (2017); https://doi.org/10.1063/1.5004125

Metal-insulator transition of VO_2 thin films grown on TiO_2 (001) and (110) substrates Applied Physics Letters 80, 583 (2002); https://doi.org/10.1063/1.1446215

Thickness effects on the epitaxial strain states and phase transformations in (001)-VO $_2$ /TiO $_2$ thin films

Journal of Applied Physics 125, 082508 (2019); https://doi.org/10.1063/1.5049551

Sign up for topic alerts New articles delivered to your inbox

Control of metal-insulator transition temperature in VO₂ thin films grown on RuO₂/TiO₂ templates by strain modification

Cite as: AIP Advances 9, 015302 (2019); doi: 10.1063/1.5083848 Submitted: 30 November 2018 • Accepted: 30 December 2018 • Published Online: 9 January 2019

H. Kim,^{1,a)} (D N. A. Charipar,¹ J. Figueroa,¹ N. S. Bingham,² and A. Piqué¹

AFFILIATIONS

¹Naval Research Laboratory, Washington, District of Columbia 20375, USA
²National Research Council Fellow at the Naval Research Laboratory, Washington, District of Columbia 20375, USA

^{a)}Author to whom correspondence should be addressed: heungsoo.kim@nrl.navy.mil

ABSTRACT

Ruthenium dioxide (RuO₂) is an ideal buffer layer for vanadium dioxide (VO₂) heterostructures due to its high electrical conductivity and matching crystal structure with metallic VO₂. VO₂ thin films were deposited on single crystal TiO₂ (001) substrates with RuO₂ buffer layers via pulsed laser deposition. The metal-insulator transition temperature (T_{MIT}) in VO₂ films can be controlled by the epitaxial strain between the VO₂ film and RuO₂ buffer layer by adjusting the buffer layer thickness (10 - 50 nm). We observed a decrease in the T_{MIT} of VO₂ films from 59 °C to 24 °C as the RuO₂ thickness decreased from 50 nm to 10 nm. Additionally, we show that the RuO₂ buffer layer can sustain an intermediate strain state in VO₂ films up to 100 nm in thickness with a subsequently lower T_{MIT} (30 °C). The 10 nm thick RuO₂ buffer layer can reduce the T_{MIT} in VO₂ films by providing a pathway to relieve the strain through grain boundaries.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5083848

I. INTRODUCTION

Vanadium dioxide (VO2) undergoes a sharp metalinsulator transition (MIT) above room temperature at ~67 °C, which is associated with a structural phase transformation (SPT) between a low-temperature insulating monoclinic phase and a high-temperature metallic tetragonal phase.¹ The MIT and SPT can be controlled by external parameters such as temperature,² electric field,³ or photo-excitation,⁴ and the switching time of the transition can be on ultrafast timescales (~100 fs) when the transition is induced optically.^{5,6} As the temperature of the VO_2 increases above 67 °C, the electrical resistivity decreases by several orders of magnitude and the infrared transmittance decreases by ~60 %.7 These unique properties have made VO₂ an attractive candidate in many promising applications such as ultrafast switches,^{8,9} thermooptical modulators,¹⁰ field effect transistors,^{11,12} bolometric photodetection,¹³ plasmonic metamaterials,¹⁴ thermal actuators,¹⁵ and smart radiators for spacecraft.¹⁶

The nature of the MIT and SPT in VO₂ has been a longstanding debate. It is generally acknowledged that the mechanism of the MIT in bulk VO₂ is considered to be a collaborative Mott-Peierls transition. The SPT from monoclinic (M1) phase to tetragonal rutile (R) phase is most commonly reported; however, some intermediate phases, such as M2-phase,^{17,18} B-phase,¹⁹ A-phase,¹⁹ have also been recognized during the phase transition. On the other hand, recent reports have revealed that ultrathin VO₂ films deposited on lattice matched TiO₂ substrates show no monoclinic phase at room temperature, suggesting that the VO₂ films are tetragonal rutile in both the insulating and metallic states, i.e., the films undergo an electronic phase transition without the structural phase transition.²⁰⁻²²

The ability to tune T_{MIT} is important in many device applications.^{23,24} Doping with high-valence metal ions into the VO₂ lattice is a commonly used method to achieve tuning of the T_{MIT} in VO₂ films.^{25,26} Introducing epitaxial strain between

VO₂ and the substrate has also been realized as an effective way to control the T_{MIT} in VO₂ films. TiO₂ rutile substrates are most commonly used for the growth of epitaxial VO₂ films due to rutile's matching crystal structures and similar lattice parameters with metallic VO₂ (P42/mnm). Muraoka et al. reported that ultrathin VO₂ films show a reduced T_{MIT} (299 K) when grown on TiO_2 (001) substrates, while the T_{MIT} increased up to 369 K for VO₂ films grown on TiO₂ (110) substrates.²⁷ In the former case, the compressive strain in the c-axis of the VO₂ films resulted in the reduced T_{MIT} while in the latter, the tensile strain in the c-axis led to the increased T_{MIT} . Fan et al. also reported the thickness-dependent interfacial strain dynamics of epitaxial VO₂ films grown on TiO₂ (001) substrates, demonstrating that a large epitaxial strain occurred in the initial growth stage of the VO₂ films and the epitaxial strain was relaxed as the film thickness increased, leading to an increase in the T_{MIT}.²¹ In addition, various buffer layers have been introduced between VO2 films and substrates in order to control the strain and MIT properties in VO2 films.²⁸⁻³¹ Among them, RuO₂ was proposed as an excellent buffer because it has the same crystal structure and space group as both TiO_2 and metallic VO_2 .³¹ In this report,³¹ they showed that the T_{MIT} of thin VO₂ films can be changed continuously by epitaxial strain in a buffer layer of varying thickness. Here we report a systematic study on the epitaxial strain of VO2 films by varying RuO2 and VO2 film thickness using Xray reciprocal space mapping analysis. Furthermore, the a-axis lattice parameter of VO₂ (a = 4.54 Å, c = 2.88 Å, JCPDS #71-4821) is smaller than the TiO₂ (a=4.59 Å, c = 2.96 Å, JCPDS #21-1276) but bigger than the RuO₂ (a = 4.49 Å, c = 3.11 Å, JCPDS #40-1290), indicating that the VO_2 film can be compressively strained along the in-plane direction when deposited on bulk RuO_2 whereas it would be tensile-strained on the TiO₂ (001) substrate. Thus, the T_{MIT} in VO₂ films can be tuned by adjusting the epitaxial strain of the RuO₂ buffer layer. Another advantage of using a RuO₂ buffer layer is that it can be used as a bottom oxide electrode for VO2 based devices with outof-plane configurations, which would considerably reduce the switching voltage and current (compared to VO2-based planar type devices).

In this work, we demonstrate control of the MIT temperature in VO₂ thin films by adjusting the epitaxial strain in conducting RuO₂ buffer layers. Using a 10 nm thick RuO₂/TiO₂ template, we were able to sustain the intermediate strain states even with large VO₂ film thicknesses (~100 nm), resulting in relatively low $T_{\rm MIT}$ (~30 °C).

II. EXPERIMENTAL METHODS

 VO_2/RuO_2 thin films were epitaxially grown on single crystal TiO₂ (001) substrates by pulsed laser deposition. A pulsed laser beam generated by a KrF excimer laser (LPX300, 248 nm, and pulse duration of 30ns) was introduced into a deposition chamber through a quartz window and focused on the target. The energy density of the laser beam was 2 J/cm^2 at the target surface. A RuO₂ target (American Elements) was used for the buffer layer growth and the $\ensuremath{\text{VO}}_2$ films were grown from a V₂O₅ target (Kurt J. Lesker). Before thin film deposition, the chamber was evacuated to a background pressure of 10⁻⁵ Torr. The RuO₂ buffer layers (10 - 50 nm) were deposited at 500 °C and at 10 mTorr of oxygen partial pressure, followed by VO₂ layers (20 - 100 nm) grown at 390 °C and at 10 mTorr of oxygen. The structure of deposited films was characterized by x-ray diffraction (XRD) θ -2 θ scans using a Rigaku x-ray diffractometer with Cu Ka radiation. The electrical properties of the VO₂/RuO₂ heterostructures were characterized in a probe station equipped with a heating stage (Linkam) at temperatures between 0 and 100 °C using a Keithley 4200 semiconductor characterization system.

III. RESULTS

In order to investigate the effect of the RuO₂ film thickness on the epitaxial strain of VO₂/RuO₂ heterostructures, RuO₂ buffer layers (10 - 50 nm) were prepared on TiO₂ (001) substrates while holding the VO₂ film thickness constant at 50 nm. Figure 1a shows the θ -2 θ XRD patterns of the VO₂/RuO₂/TiO₂ thin films with various RuO₂ film thicknesses (10, 30 and 50 nm). The strong peak at 62.8° is assigned to the TiO₂ (002) substrate whereas the peak at ~60° is indexed

FIG. 1. (a) XRD θ -2 θ patterns of VO₂(50nm)/RuO₂ thin films grown on TiO₂ (001) with three different RuO₂ thicknesses (10, 30, 50 nm). The red and black broken lines represent the trend line of RuO₂ (002) and VO₂ (002) peak positions, respectively. (b) XRD ϕ -scans of VO₂ (101), RuO₂ (101) and TiO₂ (101) peaks for VO₂ (50 nm)/RuO₂ (10 nm)/ TiO₂ heterostructure.

to rutile RuO₂ (002), and the peak at ~65° is indexed to the tetragonal VO₂ (002) plane. No other peaks were observed, indicating that pure VO₂ was formed during film growth. With increasing RuO₂ buffer layer thickness, the RuO₂ (002) peak moves to lower 2 θ angles (approaching the bulk RuO₂ (002) angle) and the VO₂ (002) peak moves to lower 2 θ angles (approaching the bulk RuO₂ (002) angle). This result suggests that the c-axis lattice parameter of both the RuO₂ buffer layer s and the VO₂ thin films increases as the RuO₂ thickness increases, meaning that the epitaxial strain can be adjusted using different thicknesses of the RuO₂ buffer layer.

XRD ϕ -scans were performed to establish the epitaxial relationship in the VO₂/RuO₂/TiO₂ layers. Figure 1b shows XRD ϕ -scans on VO₂ (101), RuO₂ (101) and TiO₂ (101) for the 50 nm thick VO₂ film on RuO₂ (10 nm) buffered TiO₂ substrate. The ϕ -scan of the TiO₂ exhibits four peaks separated by a 90°, suggesting fourfold symmetry about the out-of-plane axis. The ϕ -scans of the RuO₂ buffer layer and VO₂ film also show fourfold symmetry with the same azimuth angles of the TiO₂ substrate, thus showing the epitaxy of the VO₂ film on the RuO₂/TiO₂ template with a relationship of [100]VO₂||[100]RuO₂||[100]TiO₂ along the in-plane direction and [001]VO₂||[001]RuO₂||[001]TiO₂ along the out of plane direction. Four-fold symmetry of all peaks suggests that all of these materials show their characteristic tetragonal symmetry at room temperature.

In order to understand the epitaxial strain of VO₂/ RuO_2/TiO_2 heterostructures we performed x-ray reciprocal space mapping (RSM) measurements. Figures 2a–d show the RSMs around the TiO₂ (112) peak for 50 nm thick VO₂ films on RuO₂ buffer layers with various RuO₂ thicknesses (10, 20, 30 and 50 nm). The Q_X and Q_Z values of bulk VO₂ are represented with a square symbol and the Q_X and Q_Z values of

bulk RuO₂ are marked with a circular symbol. The VO₂ film on a 10 nm RuO₂ buffer layer shows that the Q_Z value of the VO₂ peak is slightly larger than the bulk Q_Z value of VO₂, suggesting that the film shows compressive strain in the c-axis. Furthermore, the Q_X value for the VO₂ peak is observed to be slightly smaller than the bulk Q_X value of VO₂, indicating that the film shows in-plane tensile strain. As the thickness of the RuO₂ buffer layer increases, the Q_X and Q_Z values of deposited VO₂ films are approaching the bulk VO₂. This shift of the diffraction positions suggests that the VO₂ film on thicker RuO₂ is more relieved that the film on thinner RuO₂. More strain is induced in the VO₂ films grown on thinner RuO₂ buffers (10-20nm) due to a decrease in the RuO₂ c-axis (compared to 50 nm RuO₂), which leads to a concomitant increase in its *a*-axis.

In order to investigate thickness effects on the MIT properties of VO₂, we have prepared VO₂ films with various thicknesses (20 - 100 nm) on 10 nm RuO₂ buffered TiO₂ substrates. Figures 2e-h show the RSMs data for various thicknesses of VO₂ films grown on 10 nm thick RuO₂ buffer layers. For the 20 nm thick VO_2 film, the Q_X values of the VO_2 film, RuO_2 buffer and TiO₂ substrate are almost the same, suggesting that large parts of the VO₂ film and RuO₂ buffer layer are coherently strained to the TiO₂ substrate. As the VO₂ film thickness increases, the Q_X and Q_Z values of VO_2 peaks approach those of bulk VO₂ (square symbol), indicating that the thicker VO₂ film (100 nm) is more relaxed than its thinner (20 nm) counterpart but still exhibiting a partially strained state. The streaks present in all maps are due to the saturation of the position sensitive detector. Furthermore, the RSM data for 50 nm VO₂ films grown on TiO₂ substrates with and without a RuO₂ buffer layer is also shown in Fig. S1 in the supplementary material. Notably, the VO₂/RuO₂/TiO₂ sample is more strained than the VO_2/TiO_2 sample.

FIG. 2. (a-d) XRD RSMs of VO₂ films (50 nm) deposited on various thicknesses of RuO₂ buffer layers; (a) 10 nm, (b) 20 nm, (c) 30 nm and (d) 50 nm. (e-f) RSMs of various thicknesses of VO₂ films; (e) 20 nm, (f) 50 nm, (g) 75 nm and (h) 100 nm, deposited on 10 nm-RuO₂ buffers. All RMSs are collected around the (112) diffraction spot of TiO₂ at room temperature. The square symbols mark the Q_X and Q_Z values for bulk VO₂ (112), the triangle symbols mark the bulk TiO₂ (112), and the circular symbols mark the bulk RuO₂ (112) spot.

FIG. 3. (a) Room temperature resistivity and sheet resistance of RuO_2 thin films grown on TiO₂ (001) substrates as a function of the film thickness (10 - 50 nm). (b) Resistivity and sheet resistance of the RuO_2 thin film (25 nm) grown on TiO₂ (001) substrate as a function of temperature (heating and cooling).

Thickness-dependent electrical properties of the RuO₂ buffer layers were measured in order to examine the feasibility of the RuO₂ thin films as a bottom electrode. Figure 3a shows the room temperature resistivity and sheet resistance data of the RuO₂ thin films grown on TiO₂ (001) substrates as a function of the film thickness (10 - 50 nm) while the film growth temperature and oxygen pressure were fixed at 500 °C and 10 mTorr, respectively. The room temperature sheet resistance decreases from 225 to 43 Ω/\Box with increasing RuO₂ film thickness from 10 to 50 nm while the film resistivity remains almost constant (~220 $\mu\Omega$ -cm), which is similar to that of commercial indium tin oxide (ITO) electrodes [50 nm-thick ITO films with ~50 Ω/\Box ; ~250 $\mu\Omega$ -cm]. Thus, the RuO₂ buffer layers with a thickness range from 10 to 50 nm can be used as a bottom electrode for VO₂-based devices with out-of-plane configurations. Figure 3b shows the resistivity and sheet resistance of a typical RuO2 film (25 nm) as a function of temperature (20 - 120 °C). The resistivity rises slightly from 220 to 240 $\mu\Omega$ -cm while increasing temperature from 20 to 120 °C. Upon cooling, the film resistivity follows the same line (during heating) with a positive slope, which is typical behavior of metals. The room temperature resistivity remains the same (220 $\mu\Omega\text{-cm})$ after the cooling process. The electrical properties as a function of oxygen deposition pressure of the RuO_2 thin films are also shown in Fig. S2 in the supplementary material.

Temperature-dependent electrical transport properties were measured for VO₂ (50 nm)/RuO₂ heterostructures with varying RuO₂ buffer layer thicknesses (10 - 50 nm). The effective sheet resistance (R_{eff}) of the VO₂/RuO₂ heterostructures is shown in Fig. 4a. It shows that the T_{MIT} of all VO₂/RuO₂ films is lower than that of typical bulk VO₂ (~67 $^{\circ}$ C). The T_{MIT} surely decreases from 59 to 24 °C as the RuO₂ buffer layer thickness decreases from 50 nm to 10 nm. This reduction in T_{MIT} can be explained by a difference in epitaxial strain between the VO_2 and RuO₂ films. In general, when VO₂ films have the highest inplane tensile epitaxial strain, the lowest T_{MIT} in the VO₂ would be expected.^{21,32} Therefore, the 10 nm RuO₂ seems to be an ideal buffer layer to produce the largest epitaxial strain in VO2 films, showing the lowest T_{MIT} (24 °C). The VO₂ films grown on thicker RuO₂ buffer layers (>10 nm) all showed higher T_{MIT} , indicating that these films are less strained than the VO₂ film on 10 nm RuO₂ buffer. It is noted that the magnitude of resistance change diminishes with increasing RuO₂ thickness. This

FIG. 4. (a) Effective sheet resistance vs temperature for 50 nm thick VO₂ films grown on RuO_2/TiO_2 as a function of RuO₂ buffer layer thickness (10 - 50 nm). (b) Effective sheet resistance vs temperature for various thicknesses of VO2 films (20, 50, 75 and 100 nm) grown on RuO₂ (10 nm)/TiO₂ templates. (c) Effective sheet resistance vs temperature for 100 nm VO2 films grown on TiO₂ substrates with/without RuO₂ buffer layer. Arrows show measurement direction. (d) - (f) Corresponding derivative curves during heating process for plots in (a), (b) and (c), respectively.

Transition temperature	50 nm-VO ₂ grown on TiO ₂ with various thicknesses of RuO ₂ buffer				Various thicknesses of VO ₂ films grown on TiO ₂ with 10 nm RuO ₂ buffer				100 nm-VO ₂ on TiO ₂ with/without 10 nm RuO ₂ buffer	
	10 nm	20 nm	30 nm	50 nm	20 nm	50 nm	75 nm	100 nm	With RuO ₂	Without RuO ₂
T _{heat} (°C)	28.3	41.6	56.2	60.7	26.7	27.3	29.1	31.2	31.2	63.6
T _{cool} (°C) T _{MIT} (°C)	$22.9 \\ 25.6$	$\begin{array}{c} 38.4 \\ 40.0 \end{array}$	52.4 54.3	57.1 58.9	19.6 23.2	21.3 24.3	26.6 27.8	28.4 29.8	28.4 29.8	56.8 60.2

TABLE I. Transition temperatures of VO₂/RuO₂/TiO₂ heterostructures during heating and cooling processes. T_{heat} and T_{cool} are the transition temperatures determined from the derivative curves during heating and cooling, respectively. T_{MIT} is determined by the average between T_{heat} and T_{cool} .

is primarily due to the low resistivity (~220 $\mu\Omega$ -cm) of the RuO₂ layer and the associated current shunting through the RuO₂ layer as the RuO₂ sheet resistance decreases from 225 to 43 Ω/\Box with increasing RuO₂ thickness from 10 to 50 nm (shown in Fig. 3a).

The electrical transport properties were also affected by the VO₂ film thickness. Figure 4b shows temperaturedependent sheet resistance plots of VO₂ films with varying thickness (20, 50, 75 and 100 nm) while the thickness of the RuO₂ buffer layers was fixed at 10 nm. As the film thickness increases from 20 nm to 100 nm, the resistance change amplitude increases threefold, while the T_{MIT} of VO₂ films slightly increases from 23 °C to 30 °C. For comparison, the sheet resistance curves of 100 nm VO_2 films on TiO_2 substrates with and without the RuO₂ buffer layer are plotted in the same figure (Fig. 4c). Without the RuO_2 buffer layer, the T_{MIT} of the VO₂ film increases from 30 $^\circ\text{C}$ to 60 $^\circ\text{C}.$ It is clear that the 10 nm RuO₂ buffer layer is responsible for lowering the T_{MIT} by preventing relaxation of the strain on the 100 nm thick VO₂ film. Furthermore, this low T_{MIT} (30 °C) for 100 nm thick VO₂ films is ideal for operating switching devices because the transition occurs near room temperature. The T_{MIT} of VO₂ films are deduced from the derivative curves in Fig. 4d-f and are summarized in Table I.

IV. DISCUSSION

The T_{MIT} in VO₂ has been observed to be dependent on epitaxial strain in thin films.^{27,33} In general, compressive strain along the c-axis of VO₂ (i.e., in-plane tensile strain) leads to a reduced T_{MIT} in epitaxial VO₂ films. Furthermore, since the aaxis lattice parameter of RuO₂ (a = 4.49 Å) is smaller than TiO₂

(a = 4.59 Å), the initial epitaxial RuO₂ film layers are subject to tensile-strains at the RuO_2/TiO_2 interface. As the thickness of RuO2 increases, its lattice parameter monotonically decreases due to relaxation by misfit dislocations. Thus, the T_{MIT} in VO₂ films can be modified efficiently by the epitaxial strain in RuO2 buffer layers. Figure 5a shows the axial ratio (c/a) for 50 nmthick VO₂ films with varying RuO₂ thickness. The a- and caxis lattice parameters of VO2 films were calculated from RSM data. Clearly, the tendency of the c/a ratio is similar to that of the T_{MIT} in strained VO₂ films. The c/a ratio in VO₂ films decreases as the RuO_2 thickness decreases which, in turn, results in a lower T_{MIT}. The lowest T_{MIT} (24 °C) is observed in the VO₂ film having the smallest c/a ratio (for a 10 nm RuO₂ buffer layer), indicating that the VO2 film is under tensile strain along the in-plane axis and under compressive strain along the out-of-plane axis. However, as the RuO₂ buffer layer thickness increases, its epitaxial strain becomes more relaxed and the induced strain in the VO₂ film is relieved, thus increasing the VO₂ c/a ratio, leading to an increased T_{MIT} (59 °C), closer to the bulk VO₂ value (67 $^{\circ}$ C).

Figure 5b shows the axial ratio (c/a) for VO₂ films as a function of film thickness while the RuO₂ thickness is fixed at 10 nm. As the VO₂ thickness increases from 20 to 100 nm, the c/a ratio in the VO₂ films slightly increases from 0.621 to 0.628, which is still much smaller than that of a fully relaxed VO₂ film (0.634). This low c/a ratio results in a reduced T_{MIT} (23 - 30 °C) for 20-100 nm thick VO₂ films, indicating that a significant portion of strain is still present even in 100 nm thick VO₂ films. In general, the VO₂ film is coherently strained below its critical thickness, and above the critical thickness the strained film is relaxed by the formation of misfit dislocations until it becomes fully relaxed.³⁴ VO₂ films grown

FIG. 5. (a) The axial ratio (c/a) and MIT temperature (T_{MIT}) for 50 nm VO₂ films grown on RuO₂/TiO₂ templates with various thicknesses of RuO₂ buffers (10, 20, 30 and 50 nm). (b) The axial ratio (c/a) and T_{MIT} for various thicknesses of VO₂ films (20, 50, 75 and 100 nm) grown on 10 nm RuO₂/TiO₂ templates.

AIP Advances 9, 015302 (2019); doi: 10.1063/1.5083848 © Author(s) 2019 on single crystal TiO_2 (001) substrates are well explained by this strain relaxation mechanism: where below 15 nm the VO₂ film is fully strained but when its thickness reaches 100 nm it is completely relaxed due to the formation of misfit dislocations.²¹ However, it is difficult to explain our results on VO₂ films grown on RuO₂/TiO₂ templates using this classical strain mechanism. Instead, the strain relaxation behavior in our films can be explained by grain boundaries. The grain size of the RuO₂ buffer layer was determined by atomic force microscopy to be $\sim 30 - 40$ nm as shown in Fig. S3 in the supplementary material. The boundary between RuO_2 grains is a favorable region for dislocation nucleation. Thus, high density boundaries in RuO₂ buffer layers can provide an alternative pathway to relieve the strain at the VO_2/RuO_2 interface. This explains why our VO₂ films can sustain intermediate strain states for thicker films up to 100 nm. Similar results (strain relaxation through grain boundaries) have been reported for other epitaxial oxide systems.^{29,35-38} It is worth pointing out that 100 nm-thick VO₂ films grown on conducting RuO₂ electrodes can still provide a lower $T_{\rm MIT}$ (~30 °C) presumably due to residual strain induced by the RuO₂ buffer layer. Hence, VO₂ based devices with an out-of-plane configuration can be realized at near room temperature using 100 nm thick VO₂ films and 10 nm thick RuO₂ electrodes.

V. CONCLUSIONS

Epitaxial VO₂ thin films were deposited on conductive RuO₂/TiO₂ templates by pulsed laser deposition. The MIT temperature of VO₂/RuO₂/TiO₂ heterostructures can be tuned from 59 °C to 24 °C by adjusting the strain state of the films by decreasing the RuO₂ thickness from 50 nm to 10 nm. The boundaries between RuO₂ structures are favorable regions responsible for the nucleation of dislocations, which can partially relieve the strain in the film, thereby sustaining intermediate strain states even with large thicknesses (~100 nm). This allows lowering of the MIT temperature to near room temperature. These results suggest that the strain generated by the RuO₂ buffer layer can provide an effective way for tuning the T_{MIT} of VO₂ films and provide a route to realizing out-of-plane electrical switching devices.

SUPPLEMENTARY MATERIAL

See supplementary material for the RSMs data, electrical properties and AFM images.

ACKNOWLEDGMENTS

This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

REFERENCES

- ¹F. J. Morin, Phys. Rev. Lett. **3**, 34 (1959).
- ²D. H. Kim and H. S. Kwok, Appl. Phys. Lett. **65**, 3188 (1994).
- ³J. Sakai and M. Kurisu, Phys. Rev. B. 78, 033106 (2008).
- ⁴A. Cavalleri, C. Tóth, C. Siders, J. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. **87**, 237401 (2001).

⁵R. J. Suess, N. S. Bingham, K. M. Charipar, H. Kim, S. A. Mathews, A. Piqué, and N. A. Charipar, Adv. Mater. Interfaces 1700810 (2017).

⁶M. F. Jager, C. Ott, P. M. Kraus, C. J. Kaplan, W. Pouse, R. E. Marvel, R. F. Haglund, D. M. Neumark, and S. R. Leone, PNAS **114**(36), 9558 (2017).

⁷H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Piqué, Appl. Phys. Lett. **104**, 081913 (2014).

⁸N. A. Charipar, H. Kim, S. A. Mathews, and A. Piqué, AIP Advances **6**, 015113 (2016).

⁹A. Pashkin, C. Küber, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, Phys. Rev. B **83**, 195120 (2011).

¹⁰H. Kim, N. Charipar, E. Breckenfeld, A. Rosenberg, and A. Piqué, Thin Solid Films 596, 45 (2015).

¹¹N. Shukla, A. V. Thathachary, A. Agrawal, H. Paik, A. Aziz, D. G. Schlom, S. K. Gupta, R. Engel-Herbert, and S. Datta, Nat. Comms. **6**, 7812 (2015).

12 Y. Zhou and S. Ramanathan, J. Appl. Phys. 111, 084508 (2012).

¹³H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang, and W. Kubo, Sci. Rep. 8, 12764 (2018).

¹⁴D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, and R. F. Haglund, Jr., Nano Lett **13**, 4169 (2013).

¹⁵K. Liu, C. Cheng, J. Suh, R. T-Kong et al., Adv. Mater. **26**, 1746 (2014).

¹⁶A. Hendaoui, N. Émond, S. Dorval, M. Chaker, and E. Haddad, Solar Energy Materials & Solar Cells **117**, 494 (2013).

¹⁷H. Kim, T. V. Slusar, D. Wulferding, I. Yang, J.-C. Cho, M. Lee, H. C. Choi, Y. H. Jeong, H.-T. Kim, and J. Kim, Appl. Phys. Lett. **109**, 233104 (2016).

¹⁸K. Okimura, T. Watanabe, and J. Sakai, J. App. Phys. 111, 073514 (2012).

¹⁹S. Lee, I. N. Ivanov, J. K. Keum, and H. N. Lee, <u>Scientific Reports</u> 6, 19621 (2016).

²⁰ M. Yang, Y. Yang, B. Hong, L. Wang, K. Hu, Y. Dong, H. Xu, H. Huang, J. Zhao, H. Chen, L. Song, H. Ju, J. Zhu, J. Bao, X. Li, Y. Gu, T. Yang, X. Gao, Z. Luo, and C. Gao, Sci. Rep. **15**, 23119 (2016).

L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, Nano Lett 14, 4036–4043 (2014).
S. Kittiwatanakul, S. A. Wolf, and J. Lu, Appl. Phys. Lett. 105, 073112 (2014).
J. B. Cao, W. Fan, Q. Zhou, E. Sheu, A. W. Liu, C. Barrett, and J. Wu, J. Appl. Phys. 108, 083538 (2010).

²⁴ B. J. Kim, Y. W. Lee, B. G. Chae, S. J. Yun, S. Y. Oh, H. T. Kim, and Y. S. Lim, Appl. Phys. Lett. **90**, 023515 (2007).

²⁵X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, <u>Sci. Rep. 2</u>, 466 (2012).

²⁶ K. L. Holman, T. M. McQueen, A. J. Williams, T. Klimczuk, P. W. Stephens, H. W. Zandbergen, Q. Xu, F. Ronnig, and R. J. Cava, Phys. Rev. B **79**, 245114 (2009).

²⁷Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. **80**, 583 (2002).

²⁸H. Kim, N. S. Bingham, N. A. Charipar, and A. Piqué, AIP Advances 7, 105116 (2017).

²⁹E. Breckenfeld, H. Kim, K. Burgess, N. Charipar, S.-F. Cheng, R. Stroud, and A. Piqué, ACS Appl. Mater. Interfaces 9, 1577 (2017).

³⁰J. Jian, X. Wang, L. Li, M. Fan, W. Zhang, J. Huang, Z. Qi, and H. Wang, ACS Appl. Mater. Interfaces 9, 5319 (2017).

³¹N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samnt, and S. P. Parkin, Nature Physics **9**, 661 (2013).

³²H. Qiu, M. Yang, Y. Dong, H. Xu, B. Hong, Y. Gu, Y. Yang, C. Zou, Z. Luo, and C. Gao, New J. Phys. **17**, 113016 (2015).

³³ J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, Nature Nanotechnology 4, 732 (2009).

34 J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 72, 118 (1974).

³⁵Y. Ding, J. Chen, J. He, M. Liu, C. Ma, and C. Chen, J. Cryst. Growth **383**, 19–24 (2013).

³⁶Y. B. Chen, M. B. Matx, and X. Q. Pan, Appl. Phys. Lett. **91**, 031902 (2007).
³⁷J. Q. He, E. Vasco, R. Dittmann, and R. H. Wang, Phys. Rev. B: Condens. Matter Mater. Phys. **73**, 125413 (2006).

³⁸J. Narayan and V. M. Bhosle, J. Appl. Phys. 100, 103524 (2006).