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ABSTRACT

Spatial beamforming using distributed arrays of RF sensors is treated. Un-
like the observations from traditional RF antenna arrays, the distributed array’s
data can be subjected to widely varying time and frequency shifts among sensors
and signals. These shifts require compensation upon reception in order to perform
spatial filtering. To perform beamforming with a distributed array, the complex-
valued observations from the sensors are shifted in time and frequency, weighted,
and summed to form a beamformer output that is designed to mitigate interference
and enhance signal energy. The appropriate time-frequency shifts required for good
beamforming are studied here using several different methodologies.
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For space-time adaptive processing (STAP), the beamformer combines scaled,
delayed outputs from all sensors. Each tap at each antenna element is asso-
ciated with a particular delay. Complex-scaled versions of the tap outputs
are added to mitigate interference and equalize the desired signal.

As an alternative to the tapped delay line architecture of Fig. 1, the signals
can be passed through a filter bank, which cuts them into narrow subbands.
The subband bandwidth is chosen so that signals do not decorrelate between
sensors significantly within the subband. Beamforming occurs within each
subband. The full signal must be stitched together after beamforming.

The beamformer combines scaled, delayed, and frequency shifted outputs
from all sensors. Each tap at each antenna element is associated with a
particular delay and, in the case of dense taps, with multiple frequency shifts.
The diagram illustrates the frequency shifts as time-dependent weights. This
model also allows other time-domain weight behaviors. The tap outputs are
added to mitigate interference and, as required, equalize the desired signal.

We can plot the sample support (i.e., the number of samples T'B observed
in the subband of bandwidth B over observation time T') divided by the
number of unknowns for a dense delay-Doppler STFAP approach. The latter
number is taken to be the number of taps in the delay spread, sampled at
twice Nyquist, times the number of taps in the Doppler spread, sampled at
twice the frequency resolution cell 1/T. Of course, this assumes that taps
need not be placed beyond the boundaries formed by delay and Doppler
spreads. This is not always the case, as we will see when there is more than
one signal nulled, but it is the smallest number of dense taps spaced thusly
that can align the signal in delay and Doppler for the two-sensor case. We
can see in the figure that the sample support is inadequate for a large range
of combined delay and Doppler spreads no matter what subband bandwidth
is used for array processing.
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LIST OF FIGURES
(Continued)

SNR loss is shown for several sparse-tap algorithms. The scenario consistes
of two interferers and three sensors. The differential delays spreads are
about 1 ms and the differential Doppler is about 1 kHz. This places the
delay-Doppler product outside the region that can be handled with dense
tap placements. Signal bandwidth is 1 MHz. Although space-time array
procesing (STAP) appears to offer good performance with rapid weight up-
dates, not enough samples are available to determine the STAP weights
and maintain good performance. With delay-only taps, the performance
of STAP weights can be extended by allowing weights dynamics, such as
the linear time-varying weights shown for derivative-based update (DBU)
STAP. In this case, each time-delayed tap output is weighted additionally
with a linearly, time-varying ramp, doubling the number of taps. The useful
update intervals increase by much more than a factor of 2 to improve sam-
ple support for estimating tap weights. Performance is best when the time
variation of the weights matches the time variations in the signals, which is
primarily due to Doppler shifts. Thus, space-time-frequency array processing
(STFAP) weights offer the largest update intervals. Each tap is associated
with a particular delay and Doppler shift. In other words, each delay tap
has a time-varying weight that varies as a complex exponential. Performance
is stable over all update intervals shown given the Doppler model of signal
dynamics. The Doppler model is a consequence of a linear motion model for
sources and sensors. This model will eventually require replacement of taps
as differential delays change.

For a fixed signal bandwidth of 1 kHz and a fixed update rate of 300 Hz,
we show the null depth of a two-sensor array as a function of the differential
delay and Doppler between the sensors. Null depth decreases as either delay
or Doppler spread increases and is limited to a worst-case value of about
20 dB at the extreme delay-Doppler spreads shown of 20 Hz and 20 us.

Since the signal is cut into subbands and weight-update intervals before
array processing, it is important to consider the bandwidths and temporal
extents of the processing intervals. We show null depth as a function subband
bandwidth and update rate for a fixed delay spread of 20 ps and Doppler
spread of 20 Hz, corresponding to the extremes of delay and Doppler spreads
shown in Fig. 6. Note that the largest null depth occurs with update rate
and subband bandwidth parameters close to those of Fig. 6.
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Figure

LIST OF FIGURES
(Continued)

For a tapped-delay-line architecture with 10 delay values, spaced at one-half
bandwidth, by 5 Doppler values, spaced at one-half a frequency resolution
cell, null depth is shown for a two-sensor array at fixed differential delay and
Doppler shifts, as a function of update rate and subband bandwidth. Note
that there are a total of 50 taps per sensor since each delay and Doppler tap
combination is utilized. Large sections of the plots correspond to regimes
where the number of samples in the subband over the update interval is
smaller than twice the number of unknown parameters that must be esti-
mated from the data. These sections of the plots are shown with 0 dB null
depth. From this plot one can deduce that a subband bandwidth of around
75 kHz and an update rate of around 300 Hz provide the best performance
for the chosen fixed delays and Dopplers.

Having chosen the design parameters of 75 kHz for the subband and 300
Hz for the update rate, we can evaluate null depth for a range of delay and
Doppler spreads. Instead of the median 25 dB null depth realized without
using any delay-Doppler taps, we now achieve a median of 35 dB of null
depth and often more. The plot shown has null depth limited to at most
60 dB for numerical reasons. The periodicities evident in this plot and in
Fig. 8 result from delay spreads matching the lattice spacing of the tapped
delay line.
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(Continued)

Shown is the median performance of a five element array employing four
beamforming algorithms over an ensemble of environments that are charac-
terized by the maximum delay and Doppler spreads allowed. The algorithms
consist of STAP, using 6 taps per antenna channel, DBU STAP, STFAP, us-
ing 6 x 3 delay-Doppler taps per antenna channel, and DBU STFAP. The
environment contains maximum delay spreads of 100 us and Doppler spreads
of 5 Hz. The scenario includes three signals, two of which are considered
interferers. The interferers have element SNRs of 50 dB while the desired
signal has an element SNR of 20 dB. It is assumed that the desired signal
is time and Doppler aligned at all antenna elements. This is typically not
true initially, but can be arranged upon synchronization. The receiver’s de-
lay taps are spaced at Nyquist sampling rates for a 25 kHz signal. Doppler
taps are spaced at frequency intervals that are the reciprocal of the values
on the x-axis, which specify the time duration of the weights. For signals
with 25 kHz bandwidth, .01 s is equivalent to 250 samples of the signal. The
effective SINR shown on the y-axis is expressed by Equ. (37), based on the
residual error associated with a least-squares fit of the beamformer output to
the observed data shown in Equ. (36). STFAP offers the best performance
with little improvement using DBU STFAP. However, the DBU variant of
STAP does offer better performance than STAP by itself. For all the curves
shown here, the effective SINR over 250 samples (time duration .01) is large
enough to provide good performance when demodulating a low spectral ef-
ficiency signal such as QPSK.

Reducing the delay and Doppler taps degrades performance significantly.
Note that there is still substantial benefit to using more than one Doppler tap
(i.e., employing some Doppler compensation). Even with these tap counts,
there can still be adequate SINR for demodulation.

Shown is the CDF of the difference I(X;Y|Z)—I1(X;Y|Z, S) for an example
where we use the approximation Equ. (88). V has dimensions 10 x 3 while
V; has dimensions that vary between 9 x 3 (curve 1) and 3 x 3 (curve 7).
The array elements are drawn uniformly randomly from a planar box 10
wavelengths on a side. The CDF is largely, but not entirely nonnegative,
indicating an approximate validity of the submodularity criterion of Thm.
7. Similar results hold for V and V; with other dimensions.
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The submodularity criterion of Thm. 7 is examined under the approximation
Equ. (88) when V is drawn from a random distribution with with i.i.d. com-
ponents of unity magnitude and uniformly distributed phases. The CDF's
are labeled according to the dimensions of V and V; as before. Performance
is very similar to that shown in Fig. 12, with even smaller negative tails.

For a weak signal (-40 dB SNR) and a strong interferer (asymptotic limit), we
show the sensor locations for a one-dimensional antenna array chosen using
a greedy search over the average capacity Equ. (94). The search occurs over
a universe of 1000 possible tap locations spread over 40 wavelengths. The
greedy solutions build nearly uniform linear arrays with an element spacing
between 1/2 and 1 wavelength. The spacing is related to the spatial distri-
bution of the interference. There is a slight variation in element spacings
between the first two sensors and the rest of the adjacent pairs. This could
be a numerical artifact.

For a signal of 10 dB SNR and a strong interferer (asymptotic limit), we
show the sensor locations for a one-dimensional antenna array chosen using
a greedy search over the average capacity Equ. (94). The search occurs
over a universe of 1000 possible tap locations spread over 40 wavelengths.
The greedy solutions build uniformly spaced subarrays with wide spacings
between subarrays. The smallest sensor spacings are roughly consistent with
the spacings in Fig. 14 but are not identical. Again, numerical artifacts may
cause the small variations in sensor spacings.

We consider an example scenario with 100 kHz bandwidth signals of dura-
tion 40 ms. Two of the three signals have 40 dB element SNRs while the
remaining signal has a 10 dB SNR. The delay spread as seen among the six
sensors is about 200 u s and the Doppler spread is about 50 Hz for each
signal. The time-bandwidth product provides about 4 10* samples while the
delay spread and Doppler spread require about 6 x 160 = 960 taps to fully
cover with dense taps spaced apart on a % X T:lfs grid. Thus, there may be
enough sample support to estimate tap coeffcients, but the number of taps is
large. Instead, we consider other tap placements using mutual information
as the design metric. Shown here is a baseline delay-only tap placement with
129 taps, densely spaced, for each sensor. Performance is evaluated using
effective SNR out of the beamformer, which is about -21 dB in this example.
Even though the delay taps span over three times the signals’ delay spread,
delay-only taps cannot perform well.
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In the same scenario as Fig. 16, we show the performance of the same tapped
delay-line, but this time each sensor has a different frequency shift. The
frequency shifts are chosen from a large range of possibilities using greedy
selection based on mutual information. Performance is still poor, with an
effective SINR of -14 dB.

In the same scenario as Fig. 16 and Fig. 17, we show the performance of
sparse delay-Doppler taps. The taps are chosen one at a time from a large
range of possibilities using greedy selection based on mutual information.
Performance is good now, with an effective SINR of 6 dB. The total number
of taps is only 108 rather than the 960 or more that would be required for a
dense grid of delay-Doppler taps.

Nulling and equalization is illustrated for a simple delay-Doppler channel
matrix. Three nulling weights provide independent beamformers that distort
the signal in three different ways. The signal is time and Doppler aligned
among the sensor outputs and is represented by the first column of the 4 x 2
channel matrix. The second column represents an unaligned interferer. Each
of the nulling weights shown cancels the interferer, but the signal output from
the desired signal is distorted in each case.

The outputs of the nulling beamformers can be combined, using additional
delay and Doppler shifts, to form an equalized copy of the desired signal.
Taking two pairs formed from the three nulling beamformers, the delay dis-
tortions are removed first. Next, the output of the two pairs is combined to
eliminate the Doppler distortion. What remains is a scaled version of the
identity operator I acting on the desired signal. In other words, the desired
signal is not distorted while the interferer is cancelled.

Two different monomial orders are shown, lexicographic and total degree.
The color represents the sensor associated with each monomial term. Note
that the terms are the same in the figures but the ordering is different.

A Groebner basis for a module is formed. The basis and the S-polynomials
can be used to form zero-forcing weights.
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The initial channel matrix is shown along with the matrix containing (in
rows) the module’s Groebner basis. The row-space of the channel matrix
on the left, as generated by multiplying on the left with Ore polynomials
and then adding componentwise, is also generated by the rows on the right.
However, the right-hand-side generators form a Groebner basis. In par-
ticular, this basis solves the membership problem for determining whether
an arbitrary row vector is in the module. Furthermore, in the process of
constructing the Groebner basis, we build the zero-forcing weights for the
original channel matrix.

The interference channel matrix is first converted to a module Groebner ba-
sis. The combinations of rows of the channel matrix that zero-force are com-
puted from the coefficients used to form the Groebner basis. This provides
generators for all zero-forcing weights. If required, the zero-forcing genera-
tors are applied to the array response of the desired signal. The resulting
Ore polynomials generate a left ideal whose Groebner basis is evaluated. If
the ideal contains a monomial, equalization is possible.

Zero-forcing weights are shown for the channel with the algebraic channel
matrix. One typical weight from a generating set of zero-forcing weights
is illustrated. The disks in the subplot indicate nonzero terms (i.e., delay-
Doppler taps) in the zero-forcing weight. The number of taps required to
cover densely the full range of the shown delay and Doppler taps is very
large, equaling Nsensors * Ndelay - VDop- The sparse-taps solution shown above
uses less the .3% of the taps in the dense solution. As a consequence, the
amount of data needed to train the unknown tap coefficients is dramatically
reduced.

Degeneracies in the space of candidate solutions can be resolved by finding
the solution closest to the origin. This procedure amounts to determining
the smallest contour of constant Euclidean norm that intersects the solution
space. Note that the solution is almost never sparse.

When sparse solutions are desired, a better approach finds the smallest con-
tour of the L1 norm that intersects the solution space. These contours are
shaped in a way that results in solutions with few nonzero coordinates.
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Shown are the tap placements for delay-only taps using the algebraic tech-
niques of Section 5. Taps are placed for the purpose of zero-forcing and
equalization based on the differential delays of the signals. The subplots,
one for each sensor, show tap locations within a dense grid of potential tap
locations. Although the subplots show an integer grid, true grid spacings are
5 in delay (y-axis) and 5 in frequency (x-axis). The number of taps used
for each sensor is indicated by the notation nz = tap count. Characteristic
of the tap placements when equalization is required is the filling-in of the
tap regions. Thus, the taps are generally uniformly spaced, with different
numbers and offsets at each sensor. The signal bandwidth is 50 kHz and
performance is measured over a time extent of 20 ms. There are 8 sensors
and 4 signals. The desired signal, for which performance is measured, has
an element SNR of 10 dB while the interfering signals have equal SNRs of
40 dB. Delays spreads are around 200us and Doppler spreads are about 75
Hz. Performance with delay-only taps is poor, with an effective SNR of
about -23 dB. The number of taps used is 156.

The same example used in Fig. 28 is treated here with 524 sparse delay-
Doppler taps derived using compressive sensing. Performance is much better,
with an effective SNR of 7 dB. For a dense tap solution over the same time
and bandwidth, we would require at least 3200 delay-Doppler taps. Since
the TB product is 1000, there are enough samples to support sparse taps,
but not the dense tap placement. Note that the real delays and Dopplers
are randomized versions of the design values, with the random displacements
sized to % in delay and % in Doppler.
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1. INTRODUCTION AND EXECUTIVE SUMMARY

1.1 PROBLEM SETTING AND CHALLENGES

We treat spatial beamforming using distributed arrays of RF sensors. Unlike the observations
from traditional RF antenna arrays, the distributed array’s data can be subjected to widely varying
time and frequency shifts among sensors and signals. These shifts require compensation upon
reception in order to perform spatial filtering. To perform beamforming with a distributed array,
the complex-valued observations from the sensors are shifted in time and frequency, weighted, and
summed to form a beamformer output that is designed to mitigate interference and enhance signal
energy. The appropriate time-frequency shifts required for good beamforming are studied here
using several different methodologies.

Adaptive beamforming for wideband signals suffers from a lack of null depth due to signal
decorrelations between sensors and source and/or sensor dynamics. Signal decorrelations occur
when the sensors are separated by spatial intervals that result in differential delays in the signal
arrival times that are comparable to the reciprocal bandwidth of the signal. For closely spaced
sensors, decorrelation occurs with large signal bandwidths. For distributed arrays such as UAVs,
decorrelation can occur even with small system bandwidths due to the large separations of sensors.

In addition to decorrelation caused by wide signal bandwidths and/or large sensor separa-
tions, source or sensor motion can lead to decorrelation over time that significantly degrades null
depth. For linear motion models, the dominant short-term effect of motion is differential Doppler
between sensors for each signal. This Doppler can be well-modeled as a frequency shift of the
signal modulation, as long as the fractional bandwidth of the RF signal is small. When the sensors
are closely spaced and moving together, the differential Doppler is small. From the viewpoint of
beamforming, the common Doppler shift can be attributed exclusively to the source and, thus,
has only an incidental effect on beamforming (e.g., a demodulator in the loop must account for a
Doppler shift).

When differential Doppler is not a problem, signal processing that handles large delay spreads
can take several forms. One architecture, space-time adaptive processing (STAP, [War98]) Fig. 1,
utilizes tapped delay lines to create correlations between signals at different sensors with different
delays. These correlations can be used to suppress interference and maintain gain, or even equalize
a desired signal. Taps are often spaced at one-half sample spacings, given Nyquist sampling, to
allow for interpolation. An alternative architecture Fig. 2 processes the signals through a filter
bank that cuts them into subbands that are narrow enough to avoid significant sensor-to-sensor
decorrelation. This architecture has better scaling properties to large differential delay spreads than
does the STAP architecture. However, channelized architectures require reconstruction of signals
from the beamformed subband outputs.

With distributed arrays, differential Dopplers can be significant and different for each signal.
Neither the STAP nor the channelized architectures are able to cope with large differential delay and
differential Doppler spreads. It is possible to elaborate on the STAP architecture of Fig. 1 as shown
in Fig. 3. Each tap is associated with a time delay and a time-domain modulation, which is typically
a frequency shift, although the modulation can also be more general. For example, derivative-based



Figure 1. For space-time adaptive processing (STAP), the beamformer combines scaled, delayed outputs from
all sensors. Fach tap at each antenna element is associated with a particular delay. Complez-scaled versions
of the tap outputs are added to mitigate interference and equalize the desired signal.

updates (DBU) utilize a linear ramp. With frequency shifting as the time-domain weight behavior,
this signal processing architecture is called space-time-frequency adaptive processing (STFAP).

A more practical approach to beamforming can involve a combination of the channelized
and STFAP architectures. More precisely, a filter bank is used to divide the band into subbands.

Channelization Architecture

Downsample

Sensor 1 Filter sum | Beamformed
IQ Samples F=r Signal Frequency
Cell 1
Sensor 2 Downsample
Filter 5 X
IQ Samples FFT Beamforming
Frequency
Channelization
sum > Bgamformed
Sensor N Downsample Signal Frequency
Filter
IQ Samples FFT Cell F

Figure 2. As an alternative to the tapped delay line architecture of Fig. 1, the signals can be passed through
a filter bank, which cuts them into narrow subbands. The subband bandwidth is chosen so that signals do not
decorrelate between sensors significantly within the subband. Beamforming occurs within each subband. The
full signal must be stitched together after beamforming.



In each subband, a STFAP architecture is used for beamforming in the subband. Subbanding is
effective in handling delay spreads, but, as the subband size decreases, the sensitivity to differential
Doppler increases within the subband. For example, as the subband size decreases, the separation
of Nyquist samples increases, allowing the Doppler shifts to have a large effect on smaller numbers
of samples. By combining the channelized and STFAP architectures, there is an opportunity for
a better beamformer. It is also possible to elaborate on the combined architectures by allowing
beamforming to take into account correlations between nearby subbands. This topic will not be
considered here.

In Fig. 4, we treat an example of beamforming using two sensors and a dense array of delay-
Doppler taps (STFAP) applied to a subband. There is only a single interferer. The only requirement
is that the number of samples available in the subband of bandwidth B over an interval of time
T be larger than the number of unknown complex tap coefficients (the number of delay-Doppler
taps). All delay-Doppler taps are spaced by ﬁ X % to support interpolation. It is assumed that
the taps span the delay and Doppler spreads. This is sufficient for this two-sensor problem, but
is inadequate, in general. The results show a significant range of (large) delay-Doppler spread
products that do not have enough sample support to estimate the unknowns.

The previous example, in effect, uses the unknowns to locate the signal’s differential delay and
frequency shift. If these parameters were known (at least approximately) ahead of time, fewer taps
could be placed appropriately and there would be enough data to estimate the tap coefficients.
Such solutions are called sparse tap solutions as opposed to the dense taps solutions treated in
Fig. 4.

The bulk of this report is focused on sparse tap placement algorithms and associated aspects
of performance assessment. The tap placement for beamforming is based on knowledge of the
differential delays and differential Dopplers of the sources. Such information can be obtained by
channel probes in cooperative systems and by geolocation techniques otherwise. Since geolocation
can take advantage of distributed beamforming, there is a bit of a chicken and egg story here.
However, it is possible to geolocate in interference without waveform knowledge.

1.2 NULLING SOLUTIONS

The main product of all tap placement methodologies is the sparse pattern of delay and
Doppler taps that can be used to cancel interference. The tap coefficients are estimated from the
data by forming covariance estimates of the environment.

Tap placements can be complicated and highly nonintuitive when there is more than a single
interferer. It is clear that a single interferer can be aligned among sensors using a single delay-
Doppler tap at each sensor. The interferer can then be cancelled in multiple ways, using, for
example, different sensor pairs. With more than a single interferer, it is not clear how to find tap
patterns that align all interferers in a manner that allows cancellation with a linear combination
of the tap outputs. This is not, in fact, difficult to show when only delay spreads or only Doppler
spreads are present. The combination of delay and Doppler spreads complicates tap placement.
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Figure 8. The beamformer combines scaled, delayed, and frequency shifted outputs from all sensors. Fach tap
at each antenna element is associated with a particular delay and, in the case of dense taps, with multiple
frequency shifts. The diagram illustrates the frequency shifts as time-dependent weights. This model also
allows other time-domain weight behaviors. The tap outputs are added to mitigate interference and, as
required, equalize the desired signal.

We investigate several methods for placing delay-Doppler taps. One method utilizes mutual
information to place taps in a greedy manner. This is not an optimal procedure, but one that works
well in practice. As somewhat of a digression, we also illustrate the application of this approach to
the design of narrowband antenna arrays.

The other methods we consider for tap placement all rely on nulling, also called zero-forcing
here. Taps are placed to support nulling of all interference signals. One approach taken here utilizes
compressive sensing to find sparse solutions of an underdetermined nulling equation. Another
approach formulates zero-forcing as a problem in noncommutative polynomials (i.e., Ore rings)
that is addressed by using the algebraic machinery of noncommutative Groebner bases and syzygies.
The last approach, which is just sketched here, solves a nulling equation using Gaussian elimination
over fractions based on Ore polynomials, clearing denominators at each step using noncommutative
common multiple constructions. All approaches have their merits and offer different types of results.
Thus the main contribution of this report is a toolbox of techniques for tap placement.



Along with the description of tap placement algorithms, we develop a set of performance
measures. Mutual information is required for one tap placement procedure. Based on this we
develop an effective SNR that has more intuitive appeal since it can be used to express an SNR
loss. We also develop a capacity expression for certain channels with delay and Doppler spreads.

As an example of the performance benefits of sparse delay-Doppler taps, Fig. 5 illustrates
the SNR loss achieved by space-time adaptive processing (STAP), derivative-based update (DBU)
STAP, and space-time-frequency adaptive processing (STFAP) in a scenario that involves large
delay and Doppler spreads with two interferers. Update intervals must be short if only delay taps,
themselves sparse, are employed. Short update intervals do not provide, necessarily, enough data
samples to determine tap coefficients. The benefits of sparse-tap STFAP solutions is the availability

Figure 4. We can plot the sample support (i.e., the number of samples TB observed in the subband of
bandwidth B over observation time T ) divided by the number of unknowns for a dense delay-Doppler STFAP
approach. The latter number is taken to be the number of taps in the delay spread, sampled at twice Nyquist,
times the number of taps in the Doppler spread, sampled at twice the frequency resolution cell 1/T. Of course,
this assumes that taps need not be placed beyond the boundaries formed by delay and Doppler spreads. This is
not always the case, as we will see when there is more than one signal nulled, but it is the smallest number of
dense taps spaced thusly that can align the signal in delay and Doppler for the two-sensor case. We can see
in the figure that the sample support is inadequate for a large range of combined delay and Doppler spreads
no matter what subband bandwidth is used for array processing.



of ample data for estimating tap weights. This is achieved, in the case of large delay and Doppler
spreads, by reducing the number of taps required for nulling to a level that does not scale with the
delay and Doppler spreads.

Next, we discuss some previous work and present somewhat more detail on the tap placement
methodologies.

Previous work using mutual information for antenna array design includes [SJW17] and
[STW19], where submodularity is demonstrated and used to provide performance guarantees. Sub-
modularity is an analog of convexity for functions defined on finite sets. In this case, the function is
a type of mutual information among the members of the set (e.g., antenna elements). The benefit of
submodularity is that a greedy approach to optimization is guaranteed to lie above a large fraction
of the global optimum. For our applications, submodularity does not hold, but still can motivate
the same design procedure and leads, as we show, to reasonable levels of performance as shown in
Section 3.

Figure 5. SNR loss is shown for several sparse-tap algorithms. The scenario consistes of two interferers and
three sensors. The differential delays spreads are about 1 ms and the differential Doppler is about 1 kHz. This
places the delay-Doppler product outside the region that can be handled with dense tap placements. Signal
bandwidth is 1 MHz. Although space-time array procesing (STAP) appears to offer good performance with
rapid weight updates, not enough samples are available to determine the STAP weights and maintain good
performance. With delay-only taps, the performance of STAP weights can be extended by allowing weights
dynamics, such as the linear time-varying weights shown for derivative-based update (DBU) STAP. In this
case, each time-delayed tap output is weighted additionally with o linearly, time-varying ramp, doubling
the number of taps. The useful update intervals increase by much more than a factor of 2 to improve
sample support for estimating tap weights. Performance is best when the time variation of the weights
matches the time variations in the signals, which is primarily due to Doppler shifts. Thus, space-time-
frequency array processing (STFAP) weights offer the largest update intervals. Each tap is associated with
a particular delay and Doppler shift. In other words, each delay tap has a time-varying weight that varies
as a complex exponential. Performance is stable over all update intervals shown given the Doppler model
of signal dynamics. The Doppler model is a consequence of a linear motion model for sources and sensors.
This model will eventually require replacement of taps as differential delays change.



Algebraic approaches to nulling have been treated for different applications and under dif-
ferent names in the computer science community. The terminology syzygies used there refers to
nulling weights in our context. The machinery for computing these weights utilizes Groebner basis
concepts and algorithms, as well as faster, more sophisticated techniques still under development.
In [BGTVO03], a very thorough treatment of the Groebner basis approach is presented in the gen-
erality (noncommutative polynomials) needed here for applications to scenarios with large delays
and Doppler spreads. We provide a self-contained treatment of the special scenario in which delay
spread (or, dually, Doppler spread) is solely significant. This is used to introduce the concepts basic
to the noncommutative Groebner basis approach, which is sketched. These algebraic techniques
provide not just examples of nulling weights, but a method for finding all weights that null. In
addition, these techniques provide a means for equalizing a desired signal that would otherwise
be distorted by a nulling weight. Again, more than a single solution is provided. The algebraic
approach provides the means of generating all nulling solutions that equalize a desired signal.

Compressive sensing (CS) has beeen used for channel estimation problems in the past [BWHZ10].

We apply CS techniques [NT09] to find sparse solutions for nulling equations that are built from
the known (approximately) differential delay and Doppler shifts of the cochannel signals. CS so-
lutions, unlike the algebraic solutions, are designed to be sparse. This can be both good and bad.
The sparsity is good in the sense that complexity is reduced for the beamformer. Sparsity can be
bad since gain and, more significantly, the ability to equalize the desired signal can be adversely
effected. These are not necessarily serious problems with CS approaches, since it is possible to use
algebraic techniques for equalization and CS for nulling.

The most obvious approach to solving nulling equations is Gaussian elimination, discussed in
Section 4.4. Gaussian elimination is applied to the channel matrix, which characterizes propagation
to the sensors. The same procedure can be applied to delay-Doppler problems, where the channel
matrix has delay-Doppler operator entries. Unlike the narrowband case, we encounter operator
polynomial expressions that, if we follow Gaussian elimination precisely, must be inverted. To
surmount this barrier, we use the solution of common multiple problems (e.g., Section 4.2) to clear
denominators, in effect, at each stage in the process of elimination, yielding fraction-free triangular
matrices with delay-Doppler polynomials as entries.

Nulling of interference is a constraint placed on adaptive beamforming weights which must
also provide an output that contains a desired signal. For the fundamental problem of narrowband
nulling, the number of signals that can be handled, nulling interferers and providing nonzero gain
on the desired signal, equals the number of sensors. This is a consequence of linear algebra. Placing
nulls forces linear constraints on the potential beamforming vectors. With one less interferer than
sensors, the beamformer weight is completely determined (typically) up to a complex scalar. Thus
the signal-to-interference-plus-noise ratio (SINR) is completely determined for the desired signal.

The situation is more complex when delay and Doppler spreads are at play. Again, it is
possible to null one less interferer than the number of sensors, but the beamformer no longer has
only gain on the desired signal. It also distorts the desired signal with delayed and Doppler shifted
replicas. When there are two fewer interferers than sensors, more than one nulling weight can be
found. These weights are unrelated in a sense explained later. With only delay spreads (or only



Doppler spreads), there are at least two nulling weights, whose outputs can typically be combined
to equalize the desired signal. In other words, we can find a nulling weight that also produces an
undistorted replica of the desired signal. Thus, with one more sensor than the number of signals,
it is possible to null interference and equalize the desired signal (typically).

With the combination of significant delay and Doppler spreads, three unrelated nulling weights
can be combined to find a weight that equalizes. Thus, when there are two more sensors than signals,
it is possible to null all interferers while equalizing the desired signal (again, typically).

Although equalization is desirable for legacy signals, it is not necessary to achieve good
spectral efficiency utilizing sparse delay-Doppler taps. In fact, equalization tends to fill-in otherwise
sparse tap placements, significantly reducing sparsity. Levels of sparsity are reduced to the extent
that CS tap placement, which requires the existence of sparse solutions, has difficulty finding
equalized solutions.

For modems with adaptive coding matched to the channel characteristics, multiple nulling
weights can be used to provide both interference suppression and gain on the desired signal. With
strong interference and large, unrelated delay and Doppler spreads, the principal loss to channel
capacity due to interference is reflected (for weak signals and approximately) by the loss in sensor
degrees of freedom from the number of sensors to the number of sensors minus the number of
interferers.

1.3 MERITS OF DIFFERENT TAP PLACEMENT METHODOLOGIES

It is worth making some comments on the strengths and weaknesses of the various tap place-
ment techniques.

It is a challenge for all of the techniques to null large numbers of interferers. Although we
don’t have good estimates of the number of taps required for arbitrary scenarios, we do have an
upper bound on the number of taps required in the delay-only case, namely ng,!, the factorial of
the total number of signals. For large delay-Doppler spreads the number appears to be significantly
higher. These large numbers are indicative of the complex, combinatorial alignments required to
simultaneously null multiple signals.

The CS technique appears to have the best scaling properties but also offers the least in terms
of performance guarantees. It does not handle equalization, unless that happens to have a sparse
solution. It does not provide more than a single nulling weight. There are remedies for all of these
deficiencies, but the remedies are ad hoc.

Tap placement based on mutual information uses a relevant performance metric. It does not
require nulling and thus, in principle, should offer better performance. However, greedy placement
based on mutual information has no performance guarantees in the presence of interference. Placing
nulls on interference may be suboptimal, but in a more predictable way.

Algebraic approaches to tap placement offer not just one or a few nulling weights, but a
generating set for all nulling weights. This approach also provides the ability to equalize the desired
signal. Tap placement is slow with the Buchberger algorithms we implemented, but should be much



faster using more recent approaches (e.g., noncommutative version of Faugere’s F4 algorithm)
implemented in a few symbolic algebra packages (e.g., Magma Computational Algebra System).

Fraction-free Gaussian elimination (GE) as formulated here requires the repeated solution of
noncommutative common multiple problems. The latter can be solved using algebraic approaches
(syzygies) or CS approaches (common multiple problems are solutions to linear systems of equa-
tions). Gaussian elimination, used for different subarrays, can provide a useful set of nulling weights.
It remains to understand the efficiency and performance of GE approaches.

Other approaches to fraction-free Gaussian elimination, in the commutative case, are de-
scribed in [LS95]. For the noncommutative case, some recent work is described in [LS12], where
a number of other references can be found. More generally, in [GGRWO05] we find a discussion of
the solution of noncommutative linear systems using a theory of quasideterminants and a type of
Cramer’s rule. These approaches are not pursued here, but could provide interesting alternatives.
It’s worth mentioning that there are some other array processing applications of noncommutative
linear algebra (e.g., [BMO04]).

1.4 SECTION WALK-THROUGH

The definitions of delay and Doppler operators and their basic properties are treated in Sec-
tion 2. Included in these properties are covariance matrices, channel capacities, and effective SNRs,
all derived under the assumption of Gaussian signal models. Channel capacities are derived under
an additional assumption of cyclostationarity. The calculations presented here are essential for
performance assessment and can also be used as a tool for tap placement. As formulated, the
propagation channel is assumed to be line-of-sight, with simple delay and Doppler shifts between
each source and sensor. More general channel models can be handled using straightforward ex-
tensions of the calculations presented. It is worth noting that all of the tap placement algorithms
considered here are formulated for this same propagation model, but each placement technique can
be extended to handle more general models.

The remainder of this report addresses tap placement procedures. In general terms, tap
placement is treated by finding a good adaptive beamformer and observing the delay and Doppler
taps it requires. When channel dynamics are well-modeled by delay and Doppler, the specific gains
of the propagation channel are not required for tap placement. Thus, it is possible to place taps
based only on delay and Doppler shifts. When additional information is available, involving a
specific channel, this information can be used by some of the tap placement algorithms, namely
the algorithm described in Section 3.

Section 3 discusses an information theoretic criterion that has been used for sensor placement
[STW17], [SJW19]. The utility of this criterion is based on a property called submodularity that is
discussed in this section. Submodularity provides guarantees on the optimality of its solutions to
sensor placement. However, submodularity does not hold for the tap placement applications that
interest us. Nevertheless, in some situations, submodularity has approximate validity. We give
some examples of sensor and tap placement using this criterion.



The approach of Section 3 relies on channel capacity or effective adapted SINRs in order to
place taps. The remainder of this report focuses on techniques that use another criterion. These
techniques null interfering sources. This is commonly called zero-forcing. Section 4 treats zero-
forcing in terms of solving linear systems. These systems involve matrices and vectors with operator
entries, which complicates their solution. The entries can be interpreted as polynomials in two vari-
ables, representing delay and Doppler. However, these variables do not commute with each other.
The solution that we desire for adaptive beamforming should involve a weight vector whose compo-
nents are themselves delay-Doppler polynomials. In Section 4, we illustrate several procedures for
arriving at such a solution. Along the way, we provide some examples where a complete solution
can be written down. More generally, we illustrate the problems that are encountered in finding a
solution. These problems often involve common multiple concepts for delay-Doppler polynomials.
Given a solution to these common multiple problems, a modified Gaussian elimination procedure
is sketched in Section 4.4 . This procedure finds adaptive beamformers of the type we require.
The solution to the beamforming problem also provides the solution to tap placement. The reader
can skip Section 4.2.2 on a first reading since it deals largely with an existence proof of common
multiples in a very general setting and is not required for the rest of this report.

Section 5 considers an algebraic approach to zero-forcing. Delay-Doppler polynomial algebras
can be studied using tools developed for computer algebra systems. After a simpler introduction in
Section 5.1 to the algebraic viewpoint in the delay-only case, we provide a very breezy introduction
to the methods used for the much more complicated case of delay-Doppler polynomials, which
is treated in much more detail in [BGTVO03]. These techniques provide not just a method for
finding zero-forcing solutions and tap placement, but also provide a set of generators for all zero-
forcing solutions. Algebraic techniques also provide a mechanism for equalizing the desired signal
in addition to nulling interferers. These methods also provide insight into the construction of sparse
(minimal tap) solutions. One should be aware that a minimal zero-forcing solution is not necessarily
the most desired solution. Minimizing the number of taps often means minimizing the number of
sensors employed for beamforming, throwing away gain on the desired signal.

Finally, in Section 6, we apply compressive sensing techniques to adaptive beamforming and
tap placement. Unlike the algebraic, bottom-up solutions to zero-forcing, which create small gener-
ator solutions from which one can build all solutions, compressive sensing is a top-down approach
which proceeds from an underdetermined set of zero-forcing equations based on a large number
of densely placed taps. Compressive sensing is used to find the sparsest (numerically) solution to
these underdetermined equations.
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2. DELAY-DOPPLER OPERATOR MODEL OF BEAMFORMING

The delays and Doppler shifts of signals arriving at a distributed array can be represented
by the application of delay and Doppler operators to a fixed reference signal for each independent
source. The algebraic relations between delay and Doppler operators show that these operators do
not commute with each other, leading to additional complexities in signal processing.

The receiver architecture that we address primarily is shown in Fig. 3. The taps in this figure
represent sensor outputs that are subject to delay and Doppler shifts that involve the application of
delay and Doppler operators at each tap. These operators are monomials in delay and Doppler in
a sense that will become clear below. The weighted combination of taps in each sensor represents
a delay-Doppler polynomial applied to the sensor output. In this sense, the architecture of Fig. 3
can be interpreted as beamforming with beamforming weights that have delay-Doppler polynomial
operators as entries in the weights.

The machinery of delay-Doppler operators is developed in this section. Statistics of the
sensor outputs are calculated in terms of delay-Doppler operators for stationary, Gaussian signal
models. These statistics are use to evaluate channel capacities analytically for certain structured
(e.g., cyclostationary) propagation channels. Some useful SNR expressions are derived and will be
used in later sections for performance evaluation and, in one case, for receiver design in the sense
of tap placement.

Tap placement is the topic of the bulk of this report. It refers, in the context of Fig. 3, to
the taps (monomial terms) that are used (have nonzero coefficients) in the combining (applying
delay-Doppler polynomials) of sensor outputs. Receiver complexity is impacted significantly by the
number of taps required. Furthermore, since signal dynamics require the update of beamformer
weights, there must be sufficient samples in the update intervals to determine the tap coefficients
(monomial coefficients) from the data. In some cases, this is possible only the taps are sparsely
located with respect to a sampling grid in time and frequency.

2.1 DELAY DOPPLER OPERATORS

Assume that the time-varying delay §(¢) has a linear approximation §(t) ~ dg + d1t. Define

the Fourier transform of the signal s(t) by §(w) def [ s(t)e~™! dt. Then the Fourier transform of
s(t — d(t)) can be approximated by

/OO s(t— S())e—t dt /OO S((1 = 1)t — bg)e~" dt

—0o0 —00

—iw-20 /°° it dt —iw-20 A< w >
= e 14 s(t)e 1701 ——— =¢ 101§ . 1
_ (t) = s, (1)

We have 61 = v/c, where v is the component of radial velocity and c is the speed of light. Denote by
s(t) a complex signal of bandwidth B centered about the frequency w,. Since v/c K 1, |w — we| <

7B, and since |525| > 1 for typical RF signals, we can make the approximation 1:51 ~ w+ p,
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where p def wev/c defines the Doppler shift. We can put this together with Equ. (1) to get

/ s(t — 6(t))e ™t dt ~ e WP 5w + p). (2)

—00

The delay A% and Doppler D? operators can be defined as
(A%s)(t) X s(t—0)
(DPs)(t) X emirts(t). (3)
Then, in the spectral domain, these operators become
(Aos)(w) = §(w)e
(Drs)(w) = $(w+p). (4)
Note that the operators have the commutation relations

DPA’ = e " A°DP. (5)

The failure of these operators to commute with each other is at the heart of the difficulty of
beamforming challenged by the combination of large delay and Doppler shifts.

2.2 TAP STATISTICS
2.2.1 Signal Models and Statistics

We employ the spectral representation of stationary random processes (a very general treat-
ment with references to more typical variants is contained in [KM71]) with finite first and second
moments. In an informal sense, the representation allows us to write a stationary process s(t) as

0= [ stwyen B, (©)

oo 2

where the i.i.d. increments dN(w) have the covariance structure

2T 2T 2T (7)

. [dN(wl) dN(WQ)] (w1 — wo)dw
Note that we have chosen to restrict ourselves to stationary processes without discrete components
by using the random measure dN(w). In the context of this process model, the delay and Doppler
operators take the form

(Ads)(t) & / §(w)eweiet d]gfr“) (8)
and
0r5)(0)* [ s+ preict TEEL O
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When the limits in the integral sign are left out as in the above two definitions, we imply integration
over (—oo,00). We need to evaluate the behavior of these operators with respect to the inner
product

def /2

(51, 53) %2 / Bl (£)52(¢)] dt. (10)
—-T/2

There are a number of relations that we need. The proofs are highly redundant, so we illustrate

the reasoning with a few examples and then state the needed results. We start with

E [/ 81 (wy + p)e Blwitplgiwnt W/éz(wz)ewﬁ d2(w2)] dt
m m

T/2

<DPA581, 52> = /

-T/2

_ ( /_ i/; oivt dt> ( / 51.(w)Ba(w)e 19 dw/27r>
= Tsinc(pT/2) (/él(w)§2(w)e—i5wdw/2w>. (11)

Next, we evaluate

T/2

<A6D’081,82> = / E
-T/2

= " < /_ i/; et dt) ( / 31 (w)3a(w)e™ v dw/27r>

= €M Tsinc(pT/2) </ 81(w) g (w)e v dw/27r>
= €P(DPA%s, sy). (12)

i iwnt AV N
[ s et T [yt (m)] ar
T

Note that the results are consistent with the commutation relations of A% and D?, as they should
be. There are a few more relations we need that are derived in an almost identical manner. They
are

<DPA681, A(SISQ) = <DpA675l81, 82>
(DPs1, D" s9) = (DP~7s1,s5). (13)

Finally, note that from Equ. (11),
(DPA°s, s) = Tsinc(pT'/2) < / |8(w)[2e~ 1w dw/27r> = T Bsinc(pT'/2)sinc(r BS), (14)

where the last equality results from the assumption that |$(w)| = X[—rB,xp](w) is the rectangular
function over the baseband support of a signal of bandwidth B.

The signal received at the j* element of the array has the form v; D? A% s(t), where s(t) has
the stochastic model treated above. The complex scalar v; represents the effects of delay at the RF
center frequency. The element output can be subject to a further delay and doppler shift, resulting
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in the output 2,5 = v; DP A’ DPi A% s(t). We emphasize that this represents the output of the
(p,d) tap from the j* element. Using the commutation relations, we have

(Zjps,8) = vjeidpj (DPFPINTH g 5) = vjeiéprBsinc((p + pj)T/2)sinc(nB(6 + d;)). (15)

The latter expression provides a matched filter output for a given element and delay-Doppler tap
combination, averaged over the modeled class of bandwidth-limited and time-limited stationary
waveforms. The covariance matrix of the element-tap outputs can be expressed in the form

(Zipo, Zhps) = vuR(DPASDPIA%G s DP AY DPEA )
— vj@keﬁpje—ié’ﬂk <D(P+Pj)_(PI+Pk)A(‘S‘Hsj)_(‘sl‘f‘&k)s, s)

) /
= vTReie” Pk . TB - sinc[T Ghdz) 2 £ pk)]

sinc[rB((d 4 &;) — (6" + k)], (16)

using first the commutation relations, then Equ. (13), and finally Equ. (14), for the last equality.

2.2.2 Receiver Subbanding and Large Doppler Shifts

The relations given above assume that the receiver is open to a bandwidth that includes
the signal and all of its Doppler shifts. This is a reasonable assumption when the Doppler shifts
are small, but may not be physically plausible with large Doppler shifts or in the case that only
a subbanded portion of the signal is treated, by applying a bandpass filter to the environment
before employing delay-Doppler taps in the signal processing. Thus, we need an elaboration on the
calculation given above that incorporates bandpass filtering at each sensor.

First, note that the delay-Doppler shift of a signal s(¢) can be written in the form

(DpAés)(t) — e—ip& / §(w + p)e—iwdez’wt dN(‘;ﬂ—"" ;0). (17)

Thus, we have

. , . 4 . dN ;
(DpAJDpj A5j8>(t) _ efzpéefzp]ﬁj /§(w +p+ pj)efzwéefz(erp)éj elwt (w ;—Trp + p]) ) (18)

This allows us to rewrite the covariance calculation previously given in Equ. (85) in terms of

T/2

(DPAODPi A% s, DP' AV DPx A% ) = /
—T/2

T sine[((p + p;) — (o' + p))T/2] - / [8(w) e OO0 duo /2, (19)

E [(DPMDPJMs)(t)(DpMDméjs)(t) dt

after a straightforward calculation that is a more elaborate version of the the calculation used in
Equ. (79), for example.

To incorporate bandpass filtering in this result, note first that

—iwéez’wt dN(OJ + ,0)
2 ’

(h* (DPA%s))(t) = e~ / h(w)s(w + p)e (20)
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where h(t) denotes the impulse response of the bandpass filter and * denotes convolution. The
result we need is expressed by

(DA (h (D A%is)), (D A7) (b (D Avs)) (21)
= Tewde Y sine[((p+ p3) — (o + pu))T/2)
[ b= phler = pu)ls(e) P66 50 oo

Again, the calculation is straightforward. To the extent the transfer function h(w) is bandlimited,
one can see that large differential Doppler shifts (i.e., large |p; — px|) can reduce the size of the
integral factor in Equ. (21) significantly, resulting in signal decorrelation between sensors. This is a
new behavior (compare Equ. (19)), introduced by the bandpass filtering, that becomes important
with large Doppler shifts.

2
We want to evaluate the integral in Equ. (21) for the specific i (w) def (277)_1/46_16:w, which
has RMS bandwidth B. We choose §(w) = 1 to represent a wideband signal, a portion of which
we are processing. Note that [ |h(w)[?|3(w)[?dw/2r = B. Thus, with the noise assumed to have
unity spectral density, the covariance scales with the signal-to-noise ratio. We have, by a short
calculation,

/ﬁ(w — pj)(w — pp)|3(w) Pe D= gy o (22)
L 2 ;
_ B 2B (0400 | g (P ) [(048) (¢ )]

Putting things together, Equ. (21) becomes
(DPAS) (1 x (DP AT 5)), (DF AT (b (DP- A% 5))) (23)
= TBET T sincl(p+ py) — (6 + pi))T/2] - 2 D=4

N2 ot
P € Oty

As a point of comparison, a signal with flat ensemble spectral distribution over the band [—B, B] has
RMS bandwidth B/+/12. The Gaussian filter shape is chosen for ease in computations. Filters with
flatter passbands and narrower transition bands are likely to be more interesting in applications.

2.2.3 Derivative-Based Updates (DBU)

The DBU version of beamforming algorithms take the vector observations z(t), whether di-
rectly from the array outputs or out of taps that introduce delay and Doppler shifts, and form the

extended data 0
def [z
v = (4. (21)

All performance calculations are based on

T/2 T/2 E[Z( )ZT(
T _
[, Evoyiona= [ (GO

t)z'(t)] tE[z(t)sz(t)]
(D)z'(1)] t*Elz(t)z" ()] > di (25)
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and

T/ _ _ (T [ Elz(t)3(t)]
/ 1y DD OSO]dE = /m ( E[z(t)3(1)] > . (26)

These statistical expressions for the DBU versions of beamforming algorithms can be evaluated by
taking derivatives of the expressions that have already been derived. For example, define

T/2
(51, 52) pety = / F (B [s1 (1)) dt. (27)

—T/2

Thus, from Equ. (81),

T2 _ 4
(DPA%s1,85)y = (/ telptdt> /él(w)§2(w)ez‘5wdw/27r>

where sinc’(z) def %sinc(x). In particular,
) T . .
(DPA°s,s)y =TB - i7 - sinc (pT'/2)sinc(mBJ). (29)
In a similar manner,
T/2
oo = [ PR, (30)
~T/2

so that (see Equ. (85))

(DPA%s, D A% s) 2

= (DA ) (1)
T p—r
- _TB. T sinc” [T ] - sinc[rB(§ — &), (32)

where sinc”(x) def %sinc(x). The equations Equ. (29) and Equ. (32) in addition to the previous

equations Equ. (85) and Equ. (83), allow us to compute the statistics required to characterize the
performance of the best STFAP or DBU STFAP beamformer over the ensemble of signals and
noise, as we will see next.

2.2.4 Architecture

Operator expressions such as DI?A* can be implemented by forming tapped delay lines whose
outputs are first delayed in time by ké and then shifted in frequency by jp. It is typical to assume
that the basic delay ¢ is related to the spacing of samples at the Nyquist or, potentially, higher
rates. The basic frequency spacing p is related to the time extent over which the beamformer is
trained and applied. If T denotes the duration of the interval within which the weights are applied,
then p = T, !, or smaller. When taps are spaced systematically in delay and Doppler, the basic
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receiver architecture is represented by Fig. 3. The special case without frequency shifts, called
space-time adaptive processing (STAP), is treated in many places (see [War98], for example). In
the more general case, we use the terminology space-time-frequency adaptive processing (STFAP).

The architecture of Fig. 3 models the application of delay-Doppler operators to the data.
Each delay has its output shifted in frequency, resulting in a delay-Doppler tap. Just as the delays
shifts consist of all multiples of a basic delay § up to a maximum, the Doppler shifts consist of all
multiples of a basic Doppler shift p up to a maximum. Each delay shift and Doppler shift pair
is implemented. We refer to this as a dense (delay-Doppler) tap pattern. It is possible to use a
subset of all possible pairs, forming sparse delay-Doppler tap patterns that considerably reduce the
number of unknowns used in beamforming. This reduction in unknowns has both performance and,
potentially, complexity benefits, especially in the cases of large differential delays and Dopplers.

It is desirable to minimize the number of delay-Doppler taps used for array processing. One
way to accomplish this, for scenarios with insignificant Doppler spreads, is to apply a filter bank
to the received signal and perform array processing (interference suppression) in the subbands
created. If the subband bandwidth is sufficiently small, no delay taps will be required to obtain large
null depths. The complexity is subsumed by the filter-bank architecture, which can be efficiently
implemented using fast transforms on parallel hardware. This approach is problematic when the
Doppler spreads are significant. Small subbands are more sensitive to Doppler shifts as the shift
becomes a significant fraction of the subband bandwidth. Thus, when delay spreads are large,
suggesting small subbands and Doppler spreads are large, decorrelating signals over the subbands,
the choice of subband size becomes an important consideration in regard to null depth.

2.2.5 Performance Examples

One way of designing the signal processing for a distributed array subject to delay and Doppler
spreads involves examining null depth. The covariances just described can be used to quantify the
residual signal energy left after attempted nulling. For the particular case of a two-sensor problem,
the null depth is conveniently quantified by the condition number of the covariance, which is a
2 x 2 matrix in that situation. Null depth is shown in Fig. 6 for just such a model. The signal is
assumed to possess a bandwidth of 1 kHz and is observed over an interval of about 3.33 ms. It is
assumed that beamforming occurs over this update interval, and hence, occurs at a rate that is the
reciprocal of the update interval. Null depth is shown in Fig. 6 as a function of differential delay
and differential Doppler for a fixed signal bandwidth and update rate. To be explicit, covariance
calculations are based on Equ. (23), which is based on a Gaussian filter.

Since the signal is divided into subbands before array processing is applied, it is natural
to ask for an optimally sized subband and update rate. The answer depends on the delay and
Doppler spreads seen by the two sensors, so there is no simple solution. However, null depth is
worst, roughly speaking, at the largest delay and Doppler spreads. Thus, it makes sense to choose
subband bandwidth and update rates based on that largest delay-Doppler spreads.

One major issue must be addressed for this evaluation to make sense. The number of samples
observed in the update interval within the subband bandwidth must support estimation of the
unknown parameters required for signal suppression. For the case of a two-sensor problem, this
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Figure 6. For a fized signal bandwidth of 1 kHz and a fized update rate of 300 Hz, we show the null depth
of a two-sensor array as a function of the differential delay and Doppler between the sensors. Null depth
decreases as either delay or Doppler spread increases and is limited to a worst-case value of about 20 dB at
the extreme delay-Doppler spreads shown of 20 Hz and 20 us.

means we need at at least two samples. We will be slightly more conservative and ask for twice as
many samples as the number of unknown parameters.

In Fig. 7, we show null depth for a fixed delay spread of 20 s and Dopper spread of 20 Hz as
a function of update rate and subband bandwidth. When the sample support is less than or equal
to 4, we set the null depth to 0 dB. One can see that the largest null depth occurs for bandwidth
and update rate values similar to those used in Fig. 6. The largest null depths are around 20 to
25 dB.

In Fig. 8 we show the null depth of a STFAP architecture involving dense delay-Doppler
taps. A 10 by 5 grid of delay-Doppler taps is used for each sensor. The delays are spaced at a
four times the reciprocal RMS subband bandwidth and the Dopplers at four times the reciprocal
update rate. Delay spread and Doppler spread is fixed for the two sensors at values comparable to
those in the previous figures. Null depth is shown as a function of subband bandwidth and update
rate. We see that performance improves until about 75 kHz subbands. Performance is best at the
highest update rates allowed based on the minimal sample support required: twice the number
of unknowns, which, in this case, means more than 200 samples over the update interval in the
subband.
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Figure 7. Since the signal is cut into subbands and weight-update intervals before array processing, it is
important to consider the bandwidths and temporal extents of the processing intervals. We show null depth
as a function subband bandwidth and update rate for a fived delay spread of 20 us and Doppler spread of 20
Hz, corresponding to the extremes of delay and Doppler spreads shown in Fig. 6. Note that the largest null
depth occurs with update rate and subband bandwidth parameters close to those of Fig. 6.

Using the selected subband bandwidths of 75 kHz and update rates of 300 Hz, we can evaluate
null depth as a function of delay and Doppler spreads. The results are shown in Fig. 9. Instead
of the 20 to 25 dB null depths that could be achieved without the use of STFAP, null depths are
increased to around 30 to 35 dB and often more with STFAP as used in the example. In both cases,
the signal processing cuts the desired signal into subbands, within which the array processing is
implemented. The size of the subbands yielding optimal performance differ markedly between the
two approaches. In both cases, depending on the modulation and coding of the signal, it may be
necessary to reconstruct the signal from its subband components.

A choice of subband bandwidth should be undertaken along with an optimization of the num-
ber of dense taps required for good performance. Since there are a number of performance measures
that will be considered here, including channel capacity and effective SNR, of a beamformer, as well
as null depth, a choice of an array processing subband size will be entangled with the details of
particular applications, including full-band signal reconstruction and channel coding. Only some
tools for performing these kinds of tradeoffs are presented here.

The example chosen illustrates the tension between choosing a small bandwidth to handle
delay spread and a large bandwidth to handle Doppler spread. For the chosen example, the ar-
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Figure 8. For a tapped-delay-line architecture with 10 delay values, spaced at one-half bandwidth, by 5
Doppler values, spaced at one-half a frequency resolution cell, null depth is shown for a two-sensor array at
fized differential delay and Doppler shifts, as a function of update rate and subband bandwidth. Note that
there are a total of 50 taps per sensor since each delay and Doppler tap combination is utilized. Large sections
of the plots correspond to regimes where the number of samples in the subband over the update interval is
smaller than twice the number of unknown parameters that must be estimated from the data. These sections
of the plots are shown with 0 dB null depth. From this plot one can deduce that a subband bandwidth of
around 75 kHz and an update rate of around 300 Hz provide the best performance for the chosen fixed delays
and Dopplers.

ray processing subband bandwidth is chosen to place the delay spread within a few reciprocal
bandwidths. This delay spread can be easily handled by the ten delay-tap values available. The
subband bandwidth is wide enough to accommodate training samples in a short enough interval
to avoid Doppler sensitivity. This situation would remain roughly the same if the Doppler were
increased by an order of magnitude, since the subband bandwidth still allows fast weight updates.
A problem arises when both delay and Doppler spreads are large enough that the number of dense
delay-Doppler taps required for good null depth is too large to be trained. It is then necessary to
reduce the number of taps. In other words, delay-Doppler taps must be distributed sparsely or the
training must only address a subset of the unknowns.

In Fig. 4 we see the ratio of training samples to unknowns for the subband nulling problem
using a two-sensor array. The number of unknowns can be expressed by the product of the number
of delay taps ns = 2 Delpax B and the number of Doppler taps np = 2Dop,, 1. We have assumed
oversampling by a factor of 2 in each case to allow for interpolation for delays and Dopplers off
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Figure 9. Having chosen the design parameters of 75 kHz for the subband and 300 Hz for the update rate,
we can evaluate null depth for a range of delay and Doppler spreads. Instead of the median 25 dB null depth
realized without using any delay-Doppler taps, we now achieve a median of 35 dB of null depth and often
more. The plot shown has null depth limited to at most 60 dB for numerical reasons. The periodicities
evident in this plot and in Fig. 8 result from delay spreads matching the lattice spacing of the tapped delay
line.

TB _ 1

nsnp 4 Delnax Dop, ..
combination of large delays and Doppler spreads, the number of training samples is inadequate for
estimating all unknowns using densely spaced delay-Doppler taps. For many practical applications,
the sample-starved region is not approached. However, distributed arrays that are in relative motion
with large velocities can present scenarios that lie in the sample-starved region. Approaches that
take advantage of channel models can significantly reduce the number of delay-Doppler taps that
must be trained. Several of these approaches will be treated in later sections.

. For a

lattice. Thus, the ratio of training samples to unknowns becomes

2.3 BEAMFORMING, MUTUAL INFORMATION, AND EFFECTIVE SNRS

We now have enough machinery to form adaptive beams and evaluate the performance of
the beamformer. The data consists of element-tap outputs that comprise delayed and Doppler
shifted versions of the outputs of each antenna element. These signals have been denoted Zj , s,
representing the output of the k' antenna, delayed by § and shifted in frequency by p. If this data
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consists of a single emitter, correlation statistics of the form

(Zr,ps,8) and (Zg s, Zip6) (33)

have been calculated above. Here, s = s(t) represents one of the signals in the environment. It
is assumed that different signals decorrelate in the ensemble averages. If we treat Z like a matrix
with rows Zj , 5, then beamforming can be expressed as

WTZ = Z wk7p,52k’975. (34)
k,p,d

We will use (Z, Z) and (Z, s) to represent the matrix and vector, respectively, associated with the
entries expressed in Equ. (33).

As a slight digression, consider the observations Z and signal s as the partition components X
and Y in Equ. (77). We can use Equ. (78), to obtain the mutual information per sample between
Z and s as expressed by

|Rzz|

oty o et — o1~ v Rghe) = logy(1+ ol (Raz — v ), (39)

where v & Rzs/v/Rss. This calculation suggests an expression like vT(Rzz — vv!) v can serve as
an effective SNR for our delay-Doppler channel.

The beamforming problem we wish to solve minimizes the least-squares difference between
the beamformer output and the desired signal. More precisely,

rr&n(wTZ —s,wiZ—s) = min(w — (2, 2y Uz, )2, 2)(w—(2,2)71Z,s))
+ (s,8)— (s, 2)(Z,2)71(Z,s)
= (s,s5)— (s, 2)(Z,2)71(Z,s). (36)

This gives us the beamformer weights w and the residual. Using the form of effective SNR just
presented, we can write the residual as

(5. 5) (1 (s Z><2<7;i)>_1(2,s>> — (s, 5) (1 +ol((2,2) — WT),LU)—l’ 37)

with

SNReg & 0 ((2, 2) — vol) o (38)
representing the effective SNR. Here, v © (Z,8)/1/(s,s). Maximizing SNReg is equivalent to
minimizing the least-squares residual.

The data Z is summed over all signals in the environment. It is assumed that all taps
contribute thermal noise, so that (Z, Z) has a white noise covariance (i.e., multiple of the identity)
added to it. The signals are assumed to decorrelate in the ensemble average, so that the results of
Section 2.1 apply to both (Z, Z) and to (Z, s).
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Although the notation suggests STFAP, we can consider processing DBU-extended (see Sec-
tion 2.2.3) data using the results of Section 2.2 in Equ. (37).

Beamforming performance is shown in Fig. 10 and Fig. 11 for STAP, STFAP, and their DBU
variants. The examples treat a five element array with three co-channel signals, two of which are
strong interferers while the third is the desired signal received at 30 dB below each interferer. The
performance relevant to the desired signal is shown in terms of the duration of the weights. Longer
weight durations are more subject to dynamics, resulting in degraded performance. Performance
is measured by the effective SINR given by Equ. (37). This is an ensemble level of performance
that does not account for sampling effects. Hence, the good performance at low weight intervals
is less achievable due to the small sample support during those short time intervals. As a point of
reference, the example waveform has 25 kHz bandwidth and thus provides 250 samples at .01 s,
which should be an adequate number of samples for determining the beamformer weights. For
these figures, the desired signal is assumed to be aligned in delay and Doppler. The delays 6; and
Dopplers p; take values centered (roughly) about zero to aid matching the reference signal.

2.4 CHANNEL CAPACITIES

Let us assume that the signal s(t) is wide-sense stationary, complex Gaussian, with zero-mean
and autocovariance E[s(¢1)s(t2)] = R(t1 — t2). Let a = (p,d) represent the pair of Doppler and
delay shifts. Then we have the cross-covariance

R aor(t1, 1) = E[(DPA%S) (1) (D AV 5)(t2)] = Ele 1 s(ty — 8)e25(ty — )]
e~ PR Rty — ty + 6 — 0). (39)

Assume, in addition, that the frequencies p lie on a lattice, in the sense that they have a common
period T}, such that pT}, p'T,, € 2nZ. With this assumption, the cross-covariance becomes cyclo-

stationary in the sense that R oo/ (t1 + Tp,ta + Tp) =R au/(t1,t2). Choose sampling times 0 < ¢; <

ty < ... < ty, < T, and form the vector s, (k) def ((DPAs)(t1 + KTp), ..., (DPAS)(t, + kT,))T,

which has cross-covariance matrix components

Elsa(j)sly (k). (40)
that depend only on the the difference j — k.

We are interested in channel capacity when each sensor receives a signal s(t) delayed by &
and Doppler shifted by p. Assume T}, = M/B for integral M and choose sample times t;, = k/B,
for a signal of bandwidth B. Refining the previous notation slightly, let o = (pa,ds) denote the
delay-Doppler parameters associated with the sensor a for a fixed signal. Then we can define
single-signal covariance at lag 7 = j — k, C(7), as

def

Catsm(i = k) = (Elsali)sh(k)]) (41)

Im

In this manner, we have converted a cyclostationary channel [HC12] into a wide-sense stationary
MIMO channel.
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Figure 10. Shown is the median performance of a five element array employing four beamforming algorithms
over an ensemble of environments that are characterized by the mazimum delay and Doppler spreads allowed.
The algorithms consist of STAP, using 6 taps per antenna channel, DBU STAP, STFAP, using 6 X 3 delay-
Doppler taps per antenna channel, and DBU STFAP. The environment contains mazximum delay spreads
of 100 us and Doppler spreads of 5 Hz. The scenario includes three signals, two of which are considered
interferers. The interferers have element SNRs of 50 dB while the desired signal has an element SNR of
20 dB. It is assumed that the desired signal is time and Doppler aligned at all antenna elements. This is
typically not true initially, but can be arranged upon synchronization. The receiver’s delay taps are spaced
at Nyquist sampling rates for a 25 kHz signal. Doppler taps are spaced at frequency intervals that are the
reciprocal of the values on the z-axis, which specify the time duration of the weights. For signals with 25
kHz bandwidth, .01 s is equivalent to 250 samples of the signal. The effective SINR shown on the y-axis
is expressed by Equ. (37), based on the residual error associated with a least-squares fit of the beamformer
output to the observed data shown in Equ. (36). STFAP offers the best performance with little improvement
using DBU STFAP. However, the DBU variant of STAP does offer better performance than STAP by itself.
For all the curves shown here, the effective SINR over 250 samples (time duration .01) is large enough to
provide good performance when demodulating a low spectral efficiency signal such as QPSK.

Putting things together, we utilize a Grenanader-Szego-Widom theorem [BDES19], [JT00] in
the form

Theorem 1. With appropriate integrability conditions,

Jim N 7Vog, (€~ Blocircx = [ 1og,|C(6)]db/2m, (42)

T

where C(6) def S, C(1)e 0,

Proof. The cited references have more general and precise statements including assumptions. The
narrow application to covariance matrices that we need meets the conditions required, provided, for
example, that the Fourier series expansion for C(6) is finite and C(#) # 0. A continuity argument
can be used to remove the nonvanishing requirement. O
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Figure 11. Reducing the delay and Doppler taps degrades performance significantly. Note that there is still
substantial benefit to using more than one Doppler tap (i.e., employing some Doppler compensation). Even
with these tap counts, there can still be adequate SINR for demodulation.

Corollary 1. Let C;(8) =1, + >, vk(Q)v};(Q) and Cs(0) = v(0)vT (). Then we have the channel
capacity

i N log, [5G —B) + C1lG — b)

— 71'1 In ~ —1~ 2 4
N=oc IC1(j — k)] / 08 In + C1 ()" Cs(0)] db/2m  (43)

0<jk<N -

_ / " logy(1 4 v (0)E1(0)v(6)) do 2.

—T

Proof. This follows from the definition of channel capacity and the previous theorem. It’s worth
noting that this result expresses channel capacity in terms of the average of the capacities associated
with each of the spectral, adapted SNRs v1(0)C;(8)~1v(6).

With large levels of interference, C;() can approximate a projection matrix onto the ortho-
complement of the span of the v, (6). If the spectral array SNRs ||v(6)||? are small, then the capacity
is approximately logy(1+ 7 vi(0)C1(0)7'v(#) d/2r). If, in addition, C;(6) is approximately a
projector and behaves independently and randomly from v(#) as a function of 6, then

/_ZVT(O)CI(G)_IV(O)dG/%T ~ tr<</_7;cl(9)—1d9/27r> </_7;v(c9)vT(¢9)d9/27r)>

nokr average ASNR, (44)

Q

where k; denotes the number of interferers (i.e., summands in Cr(6)). O

As another application,
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Theorem 2. Let

Calgm(j —k)=R (lBTn — (00 — 55) +(j— k)g) e~ pal/B gipgm/B (45)
denote the covariance matrix of a single signal with unity complex power observed at multiple
sensors, indexed by «, at delay-Doppler shifts (pa,da), and at offsets 1/B and m/B from the
framing of length T, = M/B. The Doppler shifts p are assumed to satisfy pI, € 2nZ. The
associated MIMO channel is wide-sense stationary with the expressed covariance. Letting Cg denote
the MIMO covariance of a desired signal and Cy the covariance of interfering signals and noise,
the spectral efficiency of the original channel can be expressed as

M=t [ logy |Cs(0)CTHO) + Tapn| dO/2/m, (46)

—T

where C(0) aef S C(1)e~™, and n is the number of sensors.

Proof. This follows from standard capacity calculations for Gaussian MIMO channels along with
the Szego-Widom theorem. The MIMO capacity would not divide by M. Division is required for
the spectral efficiency of the original channel. O

For calculations, we use a specific autocorrelation function R(7) that has a Gaussian shape.
This leads to the result:

Theorem 3. Given the autocorrelation R(T) def 6*2“27232, which has RMS bandwith B, the spectral
form of the MIMO covariance for the cyclostationary delay-Doppler channel becomes

m

(47)
where T,B = M and where
@(Z; t) d:ef Z €i7rk2t€i27rkz (48)
k
s a Jacobi theta function.
Proof. Ignoring the factors associated with Doppler in Equ. (45), we have
l—m MY\ ik —2m2(r4 kM) —ik0
D R(—5 —Ga—dp)thpy e =) e e ™, (49)
k k
withr <7 —m+ B do — 0g). Write Equ. (48) as gk with ¢ def e a dof t, and b &ty
B k
Now
Z 6727r2(r+kM)267ik0 _ 6727r2r2 Z 6727r2M2k267(47r2rM+i0)k _ Z qa’k2+b’k7 (50)
k k k
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with o % 2702 and v < i(47%*rM + i0)/m. Comparing o/, with a,b and reintroducing the
Doppler factors, the theorem follows. ]

Of course, the results above provide little insight into the behavior of channel capacity with
large delay and Doppler spreads. Such insight is attainable in the limiting cases of delay alone or
Doppler alone, but a similar insight can be provided when delay and Doppler are correlated. This
case has independent interest in certain applications and, sometimes, for certain signal types, so
we will treat it briefly here. First, we state a result involving the eigenanalysis of a delay-Doppler
operator.

Theorem 4. Define the operator L such that (Ls)(t) = e#/2e™"!s(t — §). Define g,(t) &f
e igs (tHu/p)? for real w. Then

(LFs)(t) = e knR)2e=ihog _15), ke
/ ()BT d = / AT F)(0) di

(Lgu)(t) = e™gpu(t)
[ o @it = 205 Sionlin — )
/ f(u)gu(w)% =
JECOrE / Fr()F(02) dpf (26)
(7)) = ™ f), (51)
with the 4™ relation interpreted in a distributional sense. Here, we define f(u) < [ f(£)g,(t

Proof. The results follow largely from the definitions. We are cavalier about the domain of the
function f(z) since we don’t need a precise statement of the theorem. For example, it can be
assumed that f is infinitely differentiable with compact support so that f (1) has nice (e.g., member
of Schwartz space) properties. Although the g,(¢) may initially appear mysterious, they can be
seen to be chirped waveforms with chirp slope matched to that associated with the operator L. A
slightly more formal, but, as presented, not rigorous justification interprets L as L = e~ (09:+ipt),
The eigenfunctions of the differential operator d0; +ipt are easily evaluated to be those given in the
theorem. The connection between L in the theorem and the differential operators is provided by
the Lie-Trotter theorem (for finite matrices) which suggests that as n — oo, (e“sat/ ne =it/ ”)n —

e~(09%+irt)  Here, it is important to understand that (€% s)(t) = 320 O s(0) gn — s(t+0) expresses

n!
a shift as a Taylor series expansion. O

For a stochastic version of Thm. 4, let R(7) = E[s(t + 7)3(¢)] represent the autocorrelation
of the stochastic signal s(¢). Then, formally,

E[5(1)5(v) / / (t1 — t2)g,u(t1)gu(ta) dtrdty = & / R(pw)e @) dy. (52)
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Furthermore, we have
(LI8)(0) = [ $(069,(0) /2. (53)

Thus

B[(L7s)(t+ ) (TFs) ()] = 2m6 / Rlpw) ( / Gt + T)eio=in du> - < / g (t)e—ito—k)w du) dw /27
eiap(ﬂ—k?)/z/R(w)e—ww(j—k)e—m dw /2, (54)

using
/g,,(t)ew” dv = \/—i2mdpeidr’ /2 —iwpt (55)

) def

If R(w) is bandlimited to bandwidth B, we can define v;(w) = ¢i0ri®e=i6Bjw g6 that Equ. (54)

becomes x

E[(L7s)(t + k/B)(Lks)(t)] = B/ R(Bw)v(w)vi(w)e™™* dw/2x. (56)

—T

If the array receives a signal 7;(t) f (L7s)(t) at the j*" sensor, then the space-time covariance
of the signal is expressed through Equ. (56). We can apply Cor. 1 to realize channel capacities
built from spectral matrices of the form ", vi (w)v,t (w). We can summarize this more concretely.

Theorem 5. Let L be defined as in Thm. 4. Assume that the k' sensor has input Zj(ij s54)(t),
where {s;j(t)} are stationary signals with autocorrelation matrices proportional to {R;(7)}. Define

the k'™ component of vj(w) as B]fij(—Bw)eMpkﬁz'ei‘SBkj“. If v(w) = vi, then defining Cr(w) =
Zjﬂ Vj(w)v;[(w) + I, and using the notation of Cor. 1, the spectral efficiency of the Nyquist
sampled channel becomes

/Tr logs(1 + vi(w)Cr(w) v(w)) dw/27

—T

~ logy(e)tr <(/T; Cr(w)™? dw/%) : </: v(w)vl(w) dw/27r>>

n—kr, average ASNR, (57)

~ logy(e)

where the first approzimation assumes low ASNR and decorrelation of the C;'(w) and v(w)vf(w).
The second approximation assumes that the C;l(w) behave like random projectors onto the ortho-
complements of the span of the interferers {vi(w)}g>1.

Proof. The results follow from Cor. 1 and its approximations as well as Equ. (56). Note that the
noise floor is represented by I,. Thus Rnoise(w) = 1/B expresses the normalized noise spectral
density over [—7B,7B]. The R(w) for the signals is defined relative to this noise floor. The
decorrelating and random behaviors are typical with distributed arrays that have large delay-

Doppler shifts. Delay is large when it spreads over multiple inverse bandwidths and Doppler is
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large when frequency spreads have multiple cycles over the intervals used for applying beamformer
weights. O

Although the final approximation in the theorem holds when delay and Doppler shifts are
correlated, as expressed through the delay-Doppler operator L defined in Thm. 4, it appears to
hold empirically for unrelated, but still large, delay and Doppler shifts.
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3. MUTUAL INFORMATION AND TAP SELECTION

The choice of element locations to facilitate adaptive beamforming is typically a combinatorial
optimization problem that is prohibitive for all but the smallest arrays. There are many figures of
merit that can be used to design arrays including aperture, Cramer-Rao bounds, and sidelobe levels.
Some of these measures address the direction-finding capabilities of the arrays while others also
apply to beamforming. Of particular interest here is the performance measure involving the mutual
information between a signal and the observations seen at the array elements. In the absence of any
interference, this mutual information has a property, called submodularity, that guarantees that
a greedy optimization procedure will achieve a level of performance that is close to the optimum.
See [SJW17] and [STW19]. Unfortunately, in the presence of interference, submodularity no longer
holds. As examples show, however, it is still possible to obtain good array designs using greedy
approaches and mutual information. We discuss some criteria for submodularity and examine their
applicability to the design of antenna arrays. We also provide examples of arrays designed using
greedy optimization of mutual information.

Finally, since a main topic of this report is the layout of delay-Doppler taps for the signal
processing architecture of Fig. 3, we treat an example of tap placement using greedy optimization
of the criterion expressed by Equ. (38), which was motivated based on mutual information.

3.1 DEFINITION OF SUBMODULARITY AND ITS UTILITY

We consider functions defined on subsets of a universe ). For example, X C ) can represent
the element locations of an antenna array while f(X) represents the mutual information between
the array’s observations and a particular signal. Optimizing f(X) is typically difficult since the
optimization involves a combinatorial search. It is possible to employ a greedy search in case the
function f possesses a property called submodularity that is related to convexity. Given X,Y, Z
disjoint, we say f is submodular if

fXUYUZ)—f(YUZ)< f(XUZ)—-f(Z). (58)

The functions we consider are also monotonic in their arguments. In other words, X C Y implies
f(X) < f(Y). In the following, monotonicity is assumed.

We present a simple argument that shows the importance of submodularity and monotonicity.
Stronger results are known.

Theorem 6. Form the successive greedy estimates xy, def max, f(x U {Ujcxx;}) for singleton sets
xr C Q. Define X def Ul xi. If Y C Q mazimizes f over all sets Y with card(Y') = m, then
f(X) = f(Y)/2.

Proof. Define, and note for k < m,

r PO ) — FURT 20) < fam U{UE 23)) — FUE 20) < F(UE ) — F(UR 20) = e (59)
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Letting f(0) = 0, we have f(X) = > /", r; > mry,. Assuming for the moment that X NY = 0,
observe

m

FYUX)=f(X) = [F{U5myy X)) = FUUIZ 5 UX) <> Fud{U) 5 e D= F (U5 53) < mir,.
=1

i=1
(60)
Putting things together,

fY) = f(X) < fYUX) = f(X) <mrp < f(X) (61)
and hence, f(Y) < 2f(X), as required. To handle the case when X NY = X, write

fY)=f(X) < FYUX)—f(X) = FNIUX1UXo)— f(X1UXp) < F(1UXy)—f(X1) < f(X3) < f(X),

(62)
where Y = Y1 U Xy, X = X U Xy, with disjoint subsets. The reasoning used to obtain Equ. (62)
is the same used for Equ. (61), but applied to Y1 U X7 and Xj. O

3.2 CONDITIONS FOR SUBMODULARITY

Theorem 7. The mutual information between the random variables S and the collection of random

variables X drawn from the universe Q, f(X) def I(X;S) for X CQ, is submodular if and only if

I(X;Y|Z) > I(X;Y|Z,5) (63)

where X, Y, Z C Q are disjoint.

Proof. Submodularity amounts to showing
I(X,Y,Z;8) - 1(Y,Z;8) < I(X,Z;S) - 1(Z;5). (64)
Expanding the definitions,
I(X,Z2;9)—-1(Z;8)=H(X,Z)-H(X,Z|S)— (H(Z) — H(Z|S)) (65)

and

I(X,Y,Z;8) - I(Y,2;S) = H(X,Y, Z) — H(X,Y, Z|S) — (H(Y, Z) — H(Y, Z|S)).  (66)
Subtracting Equ. (65) from Equ. (66), we get
(H(X,Y,2)-H(Y,2)) - (H(X,Y, Z|S) - H(Y, Z]5)) - (H(X, Z) - H(Z)) + (H (X, Z|5) - H(Z]5)).

(67)
Using the information theory chain rule (i.e., H(A,B) = H(A) + H(B|A)), we can write this as
H(X|Y,Z) - H(X|Y, Z,S) — (H(X|Z) — H(X|Z,8)) = (H(X|Z8)-H(X|Y,ZS))

- (H(X|2) - HX|Y, Z))
= I(X;Y|Z,8) - I(X;Y|Z). (68)
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In some cases, it is easy to show submodularity. For example:

Theorem 8. Assuming X,Y,Z are independent when conditioned on S, 1(X;S) is submodular.
Proof. In this case I(X;Y|Z,S) = 0. Then Thm. 7 implies submodularity. O

However, it is easy to construct cases where Thm. 7 fails.

Theorem 9. If either of the random variables X orY are independent of S, then

I(X;Y]S) > I(X;Y). (69)

Proof. Employing the standardly abused notation (e.g., p(s) and p(y) refer to probability density
functions associated with the random variables S and Y, respectively),

1) = 1) - 1) = [ [ ([ otolsints) as)

([ P

which follows by computing the inner integrals explicitly (e.g., [p(y|s)p(s)ds = p(y)). By the
log-sum inequality, Equ. (70) is less than or equal to

/ ( [ ptalshots) ds) p()p(aly, 5) log % dsdady = [ ply)p(sp(aly.s)log p]ﬂ(’y,)) dsdx(c;yl.)

In turn, Equ. (71) becomes, when p(y|s) = p(y),

[ pluls)pe)ptaty. ) tog % dsdedy = H(X|S) — H(X|Y,8) = I(X;Y|5).  (72)

So far, the result has been demonstrated when Y is independent of S. The symmetry of the mutual
information expressions shows that the same result holds when it is X that is independent of S. [

A simple example of a situation when independence implies increased mutual information
under conditioning is given by the additive model Y = X + N, where S and X are independent,
but S shares information with N. Conditioning on S increases the mutual information as can be
seen from

I(X;Y) =
I(X;Y]8) =

(X) — H(N) (73)
(X) — H(N), (74)

since conditioning only reduces entropy.

33



3.3 GAUSSIAN SIGNAL MODEL

Based on the discussion of Section 3, it may seem that submodularity can fail for the mutual
information between a signal and the random variables representing observations of data. This
is indeed the case. However, the failure of perfect submodularity as characterized by Thm. 7 is
mitigated by the approximate submodularity exhibited in some interesting problem regimes. To
proceed, we examine mutual information and the criterion of Thm. 7 using a Gaussian signal
model.

3.3.1 Capacity Expressions

Let the n x [ matrix Z consist of complex, circular, zero-mean, Gaussian observations from
different sensors. Each row of Z is a time series of a sensor output. It is assumed that the columns
of Z are i.i.d., with covariance matrix R between the entries in a column. Then the distribution of

Z can be written )
P(Z[R) = 7 MR (75)

Then
H(Z) = —El[logp(Z|R)] = Inlog(me) + llog |R|. (76)

Consider jointly distributed, zero-mean, complex, circular Gaussian random vectors X, Y with
covariance matrix

Rxx Rxy
R = . 77
< Ryx Ryy > (77)
Then
I(X;Y)=H(X)+H(Y)-H(X,Y) = Imlog(me)+llog | Rxx|+ l(n—m)log(me)

+ llog|Ryy| — Inlog(me) — llog |R|
Rxx — RxyRy3 Ryy]|

= —llo 78
g Ryl (78)
Given an additional Gaussian random vector Z, write
X
X
(x)-(¥ -
Z

with a covariance partitioned analogously to that of Equ. (77). Then we can consider the condi-
tional covariance of X given Z and denote it by RZ. In particular, R)Z{ vy =Rxx—Rx ZREIZRZ X.
Since they both represent the inverted component (R*X)~! of the inverse of the full covariance
matrix of X, Y, Z, we have

R%x — R%y(RYy) 'R{x = Rxx — Rxy' Ry, Ryx. (80)

Thus, we have
I(X;Y|Z) < I(X3Y,2) (81)

using Equ. (78), Equ. (80), and the form of R% .
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3.3.2 Signal Models

To demonstrate submodularity for the a Gaussian signal model, we investigate I(X;Y|Z) —
I(X;Y|Z,S). But first, we describe the relevant additive noise model. Let X =), s + n denote
a random variable consisting of the sum of independent zero-mean, complex Gaussians of complex
variance E[|s;|?] = p. Given m summands s, we denote by V the matrix of wavefronts (in columns
of V) for each of the signals s;. Let Y = Vs + N denote the random vector of observed data in
additive noise N, which has i.i.d. entries that are zero-mean, complex Gaussian, unit complex
variance random variables. Letting p denote the vector with components pg, we find
Ryx = Vp
Rxx = 1+trP
Ryy = I+VPV!
RxyRyiRyx = p/'VII-v(EP!+Viv)-lvhvp
= p/(VIV)!2(I— 1+ (VIV)72P (VIV)"12) = (VIV) 2p
p! (VIV)2[(VIV)" 2P (VIV) " 21 4 (VIV) 2P (VIv) 12 T (viv) V2
p! (VIV) 21+ (VIV)PP(VIV) /)~ (ViV)!/2p
= p'W(I+WPW) 'Wp, (82)

with W & (viv)1/2,

3.4 HIGH SNR APPROXIMATIONS

When WPW > I, we have the following approximations, letting A < wpw:

pPW(I+WPW) 'Wp = p'WI+A) 'Wp
= pWA 21+ A7) TAT2Wp
~ p' WA 'Wp - p'WA2Wp
= pP lp-pP'W?P'p
= P -1"W21=tP - 17(Viv) 1. (83)
Thus,

Rxx — RxyRyyRyx| P — 17(viv)y=l1  14+17(viv)~l1

’RX)(| 1+ trP 1+ trP

(84)

Now, we can put together expressions to get the mutual information metrics we want. First,

Rxx — Rxy'Ryh Ryrx|| 1+17(viv)—11
I(X;Y,Z)=-l1 ~ —11
( y Ly ) 0og |RXX| og 1 uP ,

(85)

where we have used the general result Equ. (84) for a particular example using random vectors X,
Y, Z. Similarly, we have

Rxx —RxzRyRox|| _  REy|  ,,  1+17(Viv)™1

I(X;Z) = —llo :
(X52) g Roxx] Rxx| & 1+ trP

(86)
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where V = (VngVZ)T is the partitioning of V corresponding to the random vectors X, Y, Z,
and Vi = (VIVT)T, Using Equ. (80) as well as Equ. (85) and Equ. (86), we have

IR x — R%y (RYy) 'REL| ~ —llo 1+17(viv)"1

I1(X;Y|Z) = —llog R g .
Hviz) IR x| 1+17(Viv)-11

(87)

The primary advantage of this high SNR expression is the elimination of the specific SNR param-
eters pg.

Both V and V; have m columns, corresponding to the m signals {s;}. Consider conditioning

on one of these signals, say S def Sm- The effect of conditioning is to remove the signal s, from the
data, since conditioning puts s,, in the mean of the Gaussian random variables whereas it is only
the covariance that matters for mutual information. Then the matrices V' and V that apply upon
conditioning on S consist of the first m — 1 columns of V and Vj, respectively. Since Equ. (87)
applied to V', V] is still valid after conditioning, we have

14+ 17(viv)—11 1+17(viv)-11
1(X;Y]2) ~ I(X;Y|2,8) ~ —llog -2 V- V) g LFL VIVI)T L
1+ lT(V’TV/)fll 14+ 1T(V/J{V/1)711

(83)

It is easy to see that the LHS of Equ. (88) is nonnegative if m = 1, which is a fact we already knew
from the conditional independence of X, Y, and Z from S that holds when m = 1.

The expression Equ. (85) holds when n > m, where V has dimensions n x m. More generally,
we have the relation

1+17(viv)-11

—llog n>m
(XY, 7) ~ LHP = (89)
{ —llog HlT[P*Il)ft‘;g PyPIL o,

This expression leads us to the conditional mutual information

1+17(viv)—11
—llog ——— ——5——
1+17(V]vy)—11
. ~ - 1+17(viv)—11
I(X;Y|Z) = llog TFiTP—PP,, P TPy Pl " >m > n (90)
1+17[P-PPyP Py P]1
1+1T[P—PPy, P 1Py, P]1

n>ny>m

—llog m>n>ni.

where we assume V7 has dimensions n; x m. The projectors Py are defined Py def vi(vvh—lv,

which makes sense when m > n.

The behavior of the submodularity criterion of Thm. 7 is illustrated in Fig. 12 and Fig. 13.
Although the criterion does not hold in the presence of background interference, it is often valid.
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Figure 12. Shown is the CDF of the difference I(X;Y|Z) — I(X;Y|Z,S) for an example where we use
the approzimation Equ. (88). V has dimensions 10 x 3 while V1 has dimensions that vary between 9 X 3
(curve 1) and 3 x 3 (curve 7). The array elements are drawn uniformly randomly from a planar box 10
wavelengths on a side. The CDF is largely, but not entirely nonnegative, indicating an approximate validity
of the submodularity criterion of Thm. 7. Similar results hold for V and V1 with other dimensions.

Figure 13. The submodularity criterion of Thm. 7 is examined under the approximation Equ. (88) when 'V is
drawn from a random distribution with with i.i.d. components of unity magnitude and uniformly distributed
phases. The CDFs are labeled according to the dimensions of V and V1 as before. Performance is very
similar to that shown in Fig. 12, with even smaller negative tails.
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3.5 APPLICATIONS OF GREEDY TAP SELECTION

We present some examples of array designs and tap placements that utilize mutual informa-
tion.

3.5.1 Array Design

First, we present a criterion for locating antenna elements when a cochannel interferer is
present. The technical discussion treats the design of linear arrays, but the extension to planar
arrays is clear.

Define the response vector .
(v(u)), = et (91)

The variable v designates the angle-of-arrival of a signal. All units of array element placement are
in wavelengths. We assume an interference background due to a single signal with angle-of-arrival
w. Then the interference background is expressed through the covariance matrix

c¥ry, + prv(w)vi(w) (92)

with interference SNR pj.

The capacity of the channel for the signal u with SNR pg in interference w is expressed by

- VT u)viw 2
log, <1 +pSV(U)TC IV(U)> = log, <1 +nps <1 — 7 f;pj V' )n( ) >>
2mx, (w—u)|2
~ log, <1+nps (1— 2 — | >) (93)

where the limit is taken as p; — oo.

If we now let u denote the angular separation between signal and interferer, then the average
capacity over signal separations becomes

1 2T u|2
1/2/ log, (1 + nps <1 - %)) du. (94)
1

In Fig. 14 we show an example of array design based on Equ. (94) when the desired signal is
weak. In this case, greedily optimal arrays tend to have uniform distribution for element locations.
Note that this design, as with the others shown in this section, is not claimed to be optimal, given
that it is determined in a greedy fashion.

When the desired signal is stronger, the greedy mutual information approach designs sparser
arrays, as show in Fig. 15 for the case of a 10 dB SNR. The array consists of subarrays with
uniformly (roughly) spaced elements, but the subarrays are widely separated.
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3.5.2 Tap Placement

A key application of the mutual information criterion involves the placement of delay-Doppler
taps to support interference suppression. We show an example of tap placement in a scenario with
three signals, two with 40 dB SNR and one with a 10 dB SNR. The delays and Doppler spreads are
large and it would require around 1000 taps to cover the spreads. Of course, covering the spreads
is not, in itself, enough to guarantee good performance. In Fig. 16, we examine the performance of
a 129-tap solution in delay alone. The delay spread of the taps is more that enough to cover the
delay spread of the signals. However, the Doppler has not been compensated and the performance
is poor.

In Fig. 17 we show an intermediate form of signal processing. The tap delay line of Fig. 16
is used, but each sensor’s output has a different Doppler shift applied. The Doppler shifts help
performance, but it is still poor.

When a sparse tap layout is based on the greedy optimization of Equ. (38), the good perfor-
mance of Fig. 18 results. In this case, only 108 taps are used. For both figures Fig. 16 and Fig. 18,
there is enough data to support estimation of the beamformer weights.

Many of the approaches to tap placement that we consider in this report require estimates of
the propagation channel in terms of the delays and Doppler shifts of the signals. Mutual informa-
tion, or more explicitly, Equ. (38), only needs estimates of the some signal covariances at a range
of delay and Doppler shifts. Assuming slow variations in the ideal tap locations, it is possible to use
the data to estimate these covariances. One of the required covariances is really the cross-covariance
between the data and a desired signal (for which the beamformer is designed). Estimation of the
cross-covariance is possible if a portion of the desired signal is known and can be correlated with
the data. We do not go into further details here, but the approach is straightforward.
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(a) As the number of sensors increases, so does the av-
erage capacity. Some of this capacity increase is due
to additional gain. If we write the spectral efficiency
as log, (1 + nSNRais), where n is the number of sen-
sors, we can plot the discounted capacity SNRgis as a
function of the number of sensors.

(b) The greedy search adds additional sensors one at a
time as shown in the rows of the figure, from bottom
to top.

Figure 14. For a weak signal (-40 dB SNR) and a strong interferer (asymptotic limit), we show the sen-
sor locations for a one-dimensional antenna array chosen using a greedy search over the average capacity
Equ. (94). The search occurs over a universe of 1000 possible tap locations spread over 40 wavelengths. The
greedy solutions build nearly uniform linear arrays with an element spacing between 1/2 and 1 wavelength.
The spacing is related to the spatial distribution of the interference. There is a slight variation in element
spacings between the first two sensors and the rest of the adjacent pairs. This could be a numerical artifact.
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(a) As the number of sensors increases, so does the av-
erage capacity. Some of this capacity increase is due
to additional gain. If we write the spectral efficiency
as log, (1 + nSNRais), where n is the number of sen-
sors, we can plot the discounted capacity SNRgis as a
function of the number of sensors.

(b) The greedy search adds additional sensors one at a
time as shown in the rows of the figure, from bottom
to top.

Figure 15. For a signal of 10 dB SNR and a strong interferer (asymptotic limit), we show the sensor locations
for a one-dimensional antenna array chosen using a greedy search over the average capacity Equ. (94). The
search occurs over a universe of 1000 possible tap locations spread over 40 wavelengths. The greedy solutions
build uniformly spaced subarrays with wide spacings between subarrays. The smallest sensor spacings are
roughly consistent with the spacings in Fig. 14 but are not identical. Again, numerical artifacts may cause
the small variations in sensor spacings.
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Figure 16. We consider an example scenario with 100 kHz bandwidth signals of duration 40 ms. Two of
the three signals have 40 dB element SNRs while the remaining signal has a 10 dB SNR. The delay spread
as seen among the six sensors is about 200 u s and the Doppler spread is about 50 Hz for each signal. The
time-bandwidth product provides about 410* samples while the delay spread and Doppler spread require about
6 x 160 = 960 taps to fully cover with dense taps spaced apart on a % X ﬁ grid. Thus, there may be
enough sample support to estimate tap coeffcients, but the number of taps is large. Instead, we consider
other tap placements using mutual information as the design metric. Shown here is a baseline delay-only tap
placement with 129 taps, densely spaced, for each sensor. Performance is evaluated using effective SNR out
of the beamformer, which is about -21 dB in this example. Even though the delay taps span over three times

the signals’ delay spread, delay-only taps cannot perform well.
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(b) Shown are the frequency shifts at each tap at for

(a) The tapped delay-line remains the same as each sensor (subplot). The shifts are chosen to be the
that in Fig. 16. same for all taps on the same sensor.

Figure 17. In the same scenario as Fig. 16, we show the performance of the same tapped delay-line, but
this time each sensor has a different frequency shift. The frequency shifts are chosen from a large range of
possibilities using greedy selection based on mutual information. Performance is still poor, with an effective

SINR of -1/ dB.
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(a) The delay components of the delay-Doppler taps (b) Scatter plots for the placement of taps in delay and
are shown for each sensor. frequency are shown for each sensor (subplot).

Figure 18. In the same scenario as Fig. 16 and Fig. 17, we show the performance of sparse delay-Doppler
taps. The taps are chosen one at a time from a large range of possibilities using greedy selection based on
mutual information. Performance is good now, with an effective SINR of 6 dB. The total number of taps is
only 108 rather than the 960 or more that would be required for a dense grid of delay-Doppler taps.
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4. SPARSE TAP SELECTION FOR ZERO-FORCING

In Fig. 4, we see that dense grids of delay-Doppler taps are limited in the extent of differential
delay-Doppler products that they can handle. This is not intrinsically a problem if delay-Doppler
taps are placed sparsely. The number of taps required for zero-forcing will not depend on the
particular differential delay-doppler product. It will only depend on details such as number of
sensors and signals. Thus, the problem of an increasing number of unknowns as the delay-Doppler
spreads increases, does not occur, since the number of taps remains fixed; only their location
changes. From the viewpoint of determining the tap coefficients, the number of unknowns remains
fixed. Of course, the tap locations must be determined separately by other means.

In Section 4.1, we treat the special case of delay-only tap placement. It is relatively easy to
describe a set of tap locations that support zero-forcing. The delays of the signals can be arbitrary.
The solution presented is not the only one, nor is it a solution with the minimal number of taps.
A more complete solution of the delay-only problem is treated in Section 5.

The delay-Doppler quasi-polynomials built from linear combinations » cp(sw/’z‘s, cps € C, of
the monomial terms w”z’ = DPA? are known as a special class of noncommutative polynomials
called Ore polynomials [Ore33], at least in the case when the p and § are nonnegative integers.
Recall that the polynomials are noncommutative due to the relations w?z’ = e~ 20",

Zero-forcing is expressed in terms of the solution of a set of linear equations whose vector
and matrix entries consist of Ore polynomials. To solve these quasi-polynomial systems, we need
to form fractions of Ore polynomials in a meaningful sense. In order to accomplish this, we need
to write p(z, w)q (2, w) equivalently as q/fl(z, w)p'(z,w) using the relation

p/(sz)Q(Zaw) = q/(sz)p(zaw)' (95)

This is just cross-multiplying the required equality, preserving the order of the factors. One can
interpret Equ. (95) as finding a common multiple for the pair p(z,w),q(z,w) in terms of Ore
polynomials. It is known that Ore polynomials have common multiples. There are several methods
for determining common multiples. Some approaches are discussed in Section 4.2.2, including a
case when the p, § are not necessarily integers. Section 4.2 begins with a more detailed discussion of
the solution of linear equations using vectors and matrices with entries that are quasi-polynomials
in delay-Doppler operators. A toy example is provided that also treats equalization of the desired
signal, as well as zero-forcing for the interference.

In Section 4.3 we provide a simple example of zero-forcing for a low-dimensional, but nontrivial
problem. The zero-forcing tap placements are explicit in terms of the signals’ delay and Doppler
spreads.

One general approach to finding the solution to a zero-forcing problem involves, in the com-
mutative (i.e., delay or Doppler alone) case, Gaussian elimination. This can be accomplished using
fractions in the delay or Doppler operators, as the case may be. With fractions of Ore polynomials,
the same procedure can be employed more generally for delay-Doppler operators. However, the
resulting expressions are complicated sums of products of Ore polynomials and their inverses. As
shown in Section 4.2.2, it is possible to use a common multiple construction to clear denominators
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along the way, resulting in zero-forcing weights with entries that are only Ore polynomials. The
Gaussian elimination procedure is sketched in Section 4.4, assuming an ability to find common
multiples.

4.1 ZERO-FORCING WITH DELAY-ONLY OPERATORS

Let the matrix (d;,) represent the delays of the kth signal in the j** channel. As above, we
consider the polynomial-like delay operators ) co2®, with z = A®. Let the (j, k)" entry of the
matrix (a;j) represent the complex amplitude of the k' signal in the jth channel. Let V(z) be a
matrix operator with delay-operator entries of the form V' (2);, = a;r2z %jk. Partition V(z) into its
top s x s submatrix V 4(z) and a bottom (n — s) X s submatrix Vg(z). We have

(=VE(2)Va(z) ™!, Ii—s) V(2) = 0. (96)
Pulling out a determinant factor, we can write this as
(=Vp(z)cofac(Va(z)), |[Va(z)|I,—s) V(2) =0 (97)

where cofac(M) of a square matrix M is the cofactor matrix of the same dimensionality. Recall
that the (4, k)" entry of cofac(M) is the product of (—1)7** and the determinant of the submatrix
formed from M by deleting the k** row and j** column. We have used M~! = |M|~!cofac(M)
above. Since the cofactor is a matrix with delay-operator entries and the determinant is a delay-
operator, it follows that the matrix

(=Vp(z)cofac(Va(z)), |Va(z)|I—s) (98)

has delay-operator entries and can be used to null interferers.

We can expand the determinant of V 4(z) as follows:

VA= S [y | 555 9

where the sums and products involving j range over 1 < j < s, and where 7 ranges over all
permutations of {1,2,...,s}.

The (I, k)" entry of —Vg(2) cofac(V 4(z)) is expressed by

(km)
- Z gy 20 m (—1)FFm Z sen (] A(km 2k Bix () (100)
J7#k

where the permutations 7 of the inner summation can be viewed as all permutations of {1,2,..., s}
subject to m(k) = m as long as sgn 7 is computed without regard to 7(k). The matrices Akm)
and A*™) are built from (§;;) and (aj;) respectively. They both consist of their top s x s block
components with the £ row and m!* column omitted.
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The previous equation can be simplified somewhat. Let () denote the s x s matrix formed
from the top s x s block component of § by replacing the k** row with the row vector Ogt,.-
Similarly, let a*) be the upper s x s block of a with row k replaced by the row vector astq.. By
absorbing the sign factor (—1)**+™ into the sgn function of the permutation 7 and using 7 (k) = m,

we can write Equ. (100) as
(k)
S (o) 5. o
To be a bit more explcit concerning the exponents of z in the delay-operators, denote
def >
€
ldls = U Z dj n(j) (102)
T j=1
for any s x s matrix d. Then each of the last (n — s) channels uses the taps |d|y;. For channel k,
1 < k < s, the taps are given by
U 16%)s. (103)

1<Il<n—s

Since the previous unions are all disjoint given indeterminates ¢;;, the total number of taps over
all channels is (n — s)(s + 1)!.

There are clearly n — s independent delay-operators that null the interference. There cannot
be any more as a transformation to the frequency domain demonstrates.

For a given tap and signal there is one other tap on a different channel that aligns the signal
at the same delay. For example, choose an element of [§(*)|y; and consider the delay of signal m:

Okm + D O ey + Ositt, m(h)- (104)
r#k

If w(k) = m, then the same delay can be written as

6s+l,m + Z 5r7r(7")7 (105)

in other words, as the delay of signal m in channel s + [ out of a unique tap in [§|x. If w(k) # m,
assume there is a permutation 7’ satisfying

Okm + Z o, w(r) t 5s+l,7r(k) = 6jm + Z Oy ' (r) + 5s+l,7r’(j)' (106)
r#k r#j

If j # k, we must have 7'(j) = n(k), 7'(k) = m = 7(j), and 7 and 7" agree everywhere else. In
particular, 7’ is uniquely determined by .
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4.2 ZERO-FORCING AS LINEAR SYSTEMS
4.2.1 Solving Linear Operator-Valued Equations

It is possible to treat beamforming problems in terms of the solution of matrix algebra prob-
lems in which the matrices have entries that are drawn, themselves, from a noncommutative algebra.
For our applications, the underlying algebra of matrix entries is the algebra of delay-Doppler op-
erators. Although the material presented here is not central to the main results, it does provide
an important point of view of the beamforming problem. The treatment is concise, emphasizing
the fact that beamforming solutions can be found that null interference and equalize the signal of
interest. The beamforming weights have delay-Doppler operators as entries. These operators can
be interpreted as tapped delay lines at each sensor that provide delays and Doppler shifts at each
tap. The tap outputs are combined over all sensors outputs, resulting in the beamformed output.

Adaptive array processing involves solving linear equations of the form
I'x=Db (107)

where the components of I, x, and b have values as operators. For our purposes, the operator
components will be quasi-polynomials (finite number of terms) in delay and Doppler of the form

> ajRDIPAR, (108)
ik

All delays and Doppler shifts are multiples of the atomic delays and Dopplers § and p, respectively.
The entries are quasi-polynomials in the sense that the delay and Doppler monomials do not
commute. These polynomials form a noncommutative (also called nonabelian) ring of operators
that has the mathematical structure called an Ore ring [Ore33]. The ring can be extended by
forming fractions of the form ¢(D,A)~'p(D,A) for quasi-polynomials p,q. In order for this to
make sense, it is necessary to handle products of the form g, 1p1q§ Lo, which, in essence, means
being able to write p1g;* = ¢'5 1p/1 for some p},q,. This, in turn, is related to finding a (least)
common multiple of g2 and p;, i.e., solving ¢bp1 = pjga. Common multiples exist for the Ore ring
based on quasi-polynomial delay-Doppler operators. The results on the Ore ring mentioned here
are not proved, but can be found in the original sources as well as more recent literature.

Common multiples allow us to clear denominators from sums of fractions. For example, if we
have the expression a~tc, + b~ !¢y, we can find (in our Ore ring) a’, b’ which provide the common
multiple b'a = m(a,b) = a’b. Then a e, +b71e, = (Va) 1 co+(a’b)"ta'cy = m(a,b) "t (Vea+d'cp),
whose denominator is cleared by multiplying on the left by m(a, b). This procedure can be iterated
to cover more terms with the result that any element of the ring of fractions can be written in the
form ¢~ 'p and hence, it can be made an element of the original ring of quasi-polynomials upon
multiplying from the left by a quasi-polynomial.

To solve the system Equ. (107), we proceed by using Gaussian elimination on the linear
system, expressing entries at each stage as fractions of the form ¢~'p. This is accomplished by
solving common multiple problems, as discussed above. The final solution vector has entries of the
same form, whose denominators can be cleared, in the case when b = 0, to arrive at nulling weights
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that are fraction-free. In other words, the nulling weights have delay-Doppler quasi-polynomial
entries.

When equalization must be performed, as well as nulling, there are ways to combine nulling
weights to form an equalized output. In the case of delay alone (or, dually, Doppler alone), poly-
nomial operators form a conventional polynomial algebra in one variable. This algebra admits
a greatest common divisor (ged) for any two polynomials p(z),g(z). Furthermore, we can find
polynomials a(z),b(x) such that a(x)p(z) + b(x)q(z) = ged(p, ¢). For generic (chosen at random)
polynomials p(z), (), we have ged(p, ¢) = 1. If both p(z) and g(x) represent the effects of two dif-
ferent interference-nulling beamformers on the desired signal, then, as long as we have ged(p, q) = 1,
the beamformer outputs can be combined to achieve both nulling and equalization. Combining,
of course, involves multiplying each beamformer output by the delay-Doppler quasi-polynomial
derived from the gcd algorithm, and then adding the results. When delay and Doppler are taken
together, the Ore ring that results has a ged algorithm. In this case, the ged is formed by viewing
the Ore polynomial as a polynomial in either delay or Doppler alone, with coefficients conventional
polynomials in the remaining variable. Since the gecd algorithm creates fractions, the solution
a(z)p(z)+b(x)g(x) = 1 has factors a(x), b(x) whose coefficients are fractions (rational functions) in
the remaining operator. The denominators can be cleared, but what results is a signal of interest
that is equalized in the x-variable but not in the remaining variable. To handle the remaining equal-
ization problem, we assume that we have three beamformer weights that perform nulling. These
weights must, of course, be linearly independent over the Ore ring with fractions. We can use two
pairs of beamformers to provide two different x-equalized solutions. Now we have arrived at the
original, single operator, equalization problem, which we can solve using the polynomial ged. An
implication of this procedure is that it takes s 4+ 2 sensors to null s — 1 interferers and equalize the
one remaining signal of interest (s signals in total). If only delay or Doppler is present, it only takes
s + 1 sensors. For conventional narrowband beamforming, only s sensors are required. Below we
construct tap configurations that are somewhat less pessimistic. In a very simple example, nulling
and equalization are achieved as shown in Fig. 19 and Fig. 20.

Some of the algebraic manipulations mentioned above are accomplished by solving systems
of linear equations. We give a few examples next. Consider finding the common multiple of
a(z) = Y1, axx® and b(z) = Y} _, bpx® where the polynomials can also have operator coefficients.
For example, the x variable can represent either delay or Doppler shifts while the coefficients aj can
be polynomials in the other operator. After finding a common multiple polynomial with fractional
(i.e., rational) expressions in its coefficients, we can clear the denominators of these fractions by
multiplying through by a common multiple, found in the normal fashion since these coefficient
fractions are elements of a commutative ring. More concretely, we want to solve

deg m+n
d@)  bz)= V@) alo) (109)
—— ~——
m+1 unknowns n+1 unknowns

where the coefficients are polynomials in the remaining delay or Doppler operator. The solution is
obtained in terms of rational functions of the coefficients, which all commute with each other. The
homogeneous system has more unknowns (m + n + 2) than equations (m + n + 1); hence it has a
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Figure 19. Nulling and equalization is illustrated for a simple delay-Doppler channel matriz. Three nulling
weights provide independent beamformers that distort the signal in three different ways. The signal is time
and Doppler aligned among the sensor outputs and is represented by the first column of the 4 x 2 channel
matriz. The second column represents an unaligned interferer. Fach of the nulling weights shown cancels
the interferer, but the signal output from the desired signal is distorted in each case.

nontrivial solution. This solution provides a means of pushing inverses to the left and also a means
of clearing denominators by multiplying on the left by a common factor. The common multiples still
have fractions in the coefficients that result from solving the homogeneous system. These remaining
fractions are easily cleared by multiplying through by the product of their denominators.

More generally, the quasi-polynomial expressions ax(x) of degree mj have the common mul-
tiple aj (z)ay(x) upon solving (N — 1) Zi\il(ml + 1) equations in Z]kV:1 212 (mu + 1) unknowns.
As before, there is one more unknown than equation, providing a nontrivial solution.

4.2.2 Constructing Sparse Common Multiples

Consider the problem of finding the common multiple of 2 noncommutative polynomials

dopapl'™ and -, b Pk with T def AD¥ . where a def (0,w) is a 2-tuple of exponents. It is

convenient to use polynomial terminology even though the exponents are not nonnegative integers
(or even integers). The polynomials represent linear operators, but their algebraic properties, in
particular the commutation relations rore’ = ei‘*"s/l“a*al, allow these operators to be treated as
noncommutative polynomials that share some features with normal polynomials, including the
existence of common multiples.

Below, it is assumed that the two given polynomials each have n monomial terms. The
number of terms n is chosen to be at least 2 for some of the arguments below; otherwise the
common multiple problem is trivial. The complex coefficients can be arbitrary, so polynomials
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Figure 20. The outputs of the nulling beamformers can be combined, using additional delay and Doppler shifts,
to form an equalized copy of the desired signal. Taking two pairs formed from the three nulling beamformers,
the delay distortions are removed first. Next, the output of the two pairs is combined to eliminate the Doppler
distortion. What remains is a scaled version of the identity operator I acting on the desired signal. In other
words, the desired signal is not distorted while the interferer is cancelled.

with different numbers of terms are handled implicitly. Some of the arguments given below assume
implicitly that the complex coefficients of both polynomials are nonzero. However, this assumption
is required only to establish dimensional parameters for a sytem of equations. These parameters
continue to hold when the coefficients vanish. In effect, vanishing coefficients allow more economical
solutions than those based on the size n.

Finding the common multiple of >, a;I'® and 3, bI'* amounts to finding the solution to

) (g (g (gem) o

Both the exponents {c}, 3} and the complex coefficients {aj,b}.} are unknown. A solution is
derived by counting the number of complex unknowns {a}, )} and the number of equations: one
for each exponent in the products given by either the LHS or equivalently the RHS of Equ. (110).
Since the equations are homogeneous in the complex unknowns, we need at least one more unknown
than equation to guarantee a nontrivial solution.

Of course, the exponents must be determined before the complex unknowns can be deter-
mined. To do this, elaborate on the solution in the commutative case by writing

m+1 m
> @I ~ <Z akr%> (Z bkrﬂk> (111)
k k k
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where ~ indicates that the LHS and RHS expressions have common terms (terms with the same
2-tuple exponents). Similarly, we have

m+41

PIRALES (Z akr%> (Z bkFﬁk) . (112)
k k k

We need to count the number of terms in these expressions.

Consider the number f,,,, of terms in (21 +...z")™. We show inductively that

(m+n1)~-(m+1):<m+”1> (113)

frnn = (n—1)! n—1

provided there are no linear relations between the {l;} with integer coefficients. The following
special cases are apparent:

fln = n
fOn =1
for n > 1. Also evident is fj,1 = 1 for m > 0. Define
def [ O m#0
fmo—{1 me0 (114)

Assuming the formula is established for fy,, establish it for fi,1 by observing

- (k=1 (k+1)
fmn = fn:fn+
+1 Zk 0 ;

— (n—1)!

:1+§:[(n+k)...(k+1)_(n+/€_1)...k} (m+n)---(m+1)

n! n! n!

proving the induction.

The RHS of Equ. (111) has fo+1n - fmn terms (i.e., exponents) given {ax, i} without linear
relations over the integers. Similarly, the RHS of Equ. (112) has fin - fim+1n terms. Thus the total
number of unknowns {a}, )} is 2fpm+in - frn. The number of terms in the product Equ. (110) is

expressed by f2, t1n- Each of these terms provides an equation for the complex unknowns. Now

. . . )
2fm+in frn = Q(TZZ:;) %Hn. Choosing m = n — 2 provides equality between the number (277_12)

of unknowns and the number of equations.

Generating at least one more equation than unknown is accomplished using a procedure that
is best illustrated by an example. Let a(I') = a1 T + apl'*2 and b(T') = b 151 4 boI'%2 and assume
there are no integer-linear relations among the {ay, ;. }. Define /(T") and ¥'(T") so that

d(T) ~ (1 + 1“52_51) a(T)

YI) ~ (1+F’32’51)b(1“).
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Then the relation a’b = b'a involves 7 variables. Normally, there would be 8 variables, but the
monomial I'*2=1 causes a degeneracy between two terms, losing a variable. Similarly, there would
normally be 8 equations for the unknown constants, but since T®+51 becomes T'* 52 when mul-
tiplied by the monomial I'*>=#1_ there are only 6 equations.

The same reasoning applies when a’b = b'a for ¢’ and ¥ as in Equ. (111) and Equ. (112)
above and the number of variables and equations are equal. To see this, consider redefining o’ as
(1+T7)a" and V' as (1 +T'7)b'. Depending on the choice of v, the number of complex variables
associated with the monomials in o’ and V' is twice the number in the original a’ and ' minus
degeneracies, which are counted by #[{a} = aj +v} U{f; = B, +~}]. Here, # denotes cardinality.
The number of equations for the new a’ and b’ is similarly twice as large minus the degeneracies
counted by either #{a + B = aj + Bm + v} or #{ay + B, = au + B, + 7}. Since the equality
o = o)+ implies o} + 8 = o, + B + v for all §;, if we choose v so that #{aj = o} +79} =1
and #{B;- = B, + v} = 0, then more equations are lost to degeneracies than variables, as long as
b(T") has at least two terms, as is assumed. It follows that there is at least one more variable than
equation, guaranteeing a nontrivial solution to a’b = ba.

When there are linear relations among the {«;} U {3;} with integer coefficients, some of the
terms of o’ or b as defined in Equ. (111) and Equ. (112) may be degenerate. Thus the system
of equations a’b = b'a can have a different number of variables and equations. If {a} and {3}}
represent the exponents of unique terms in @’ and V' respectively, let m; (respectively n;) represent
the corresponding degeneracies (multiplicities of each term). The number of variables lost to
degeneracies becomes j(mj -1+ j(nj — 1), while the number of equations lost to degeneracy
is at least n - max(d_;(m; —1),> ,(n; — 1)) = > :(mj — 1) +3_,(n; — 1) provided n > 2, as is
assumed. Thus at least as many equations are lost to degeneracies as variables. What this means
is that the system a’b = V’a has at least as many variables as unknowns and thus can be solved
nontrivially or extended to a larger system as described above and then solved nontrivially.

Summarizing, two n-term noncommutative delay-Doppler polynomials a(I') and b(I") have a
common multiple a/(T')b(T") = ¥'(I')a(T") in which the polynomials ¢’ and b’ have in total at most

2(2::12)2 — 1 terms.

4.3 ILLUSTRATIVE EXAMPLE OF DELAY-DOPPLER BEAMFORMING

We present a simple example of zero-forcing for a low-dimensional problem that, nontheless,
has a nontrivial solution. There are three sensors and two signals to be nulled. The approach taken
uses Gaussian elimination. Fractional delay-Doppler operators are handled by moving denominators
to the left and eventually out. The meaning of this will become clear in the example. The machinery
for moving fractional factors is the ability to compute common multiples. This can be accomplished
in several different ways, some of which are treated in Section 4.2.2. We apply a simple example
presented near the end of Section 4.2.2 to the zero-forcing problem treated in this section.
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Recall the basic definitions of delay and Doppler operators:

(D¥s)(t) X emiwts(y)

(Ads)(t) X st — o)
a ¥ w0
re € pUad
Lipn 2 ajIls.

The delay and Doppler operators obey the commutation relations

rore = e~wopata’ (115)

Nulling weights are constructed by using Gaussian elimination on channel matrices. Since
matrix entries are delay-Doppler operators (noncommutative polynomials of a specific kind), order
is important in the calculations. An example will illustrate the procedure.

A 3 x 2 channel matrix can be written in terms of the monomials L as

Li1 Lqo
Loy Lo (116)
L31 L3

Gaussian elimination results in the expression

1 0 0 1 0 O L1 Lo
0 1 0 ~Ly Lt 1 0 Loy Lo
0 —(Lss — L31 Ly L12)(Log — Lo Ly L1a) ™! 1 ~LyL 01 L31 Ls2
L1 Lo
= 0 Loy — LoyLi{'Lia
0 0

Assume without loss of generality that Ly = 1 (i.e., a3 = 0 and ag; = 1). The notation
simplifies significantly. Define a(T") def L3s — L12 and b(T") def Loo — L15. Then a zero-forcing weight
can be expressed as

1 0 1 00
(00 1)fo0 1 0 1 10 |=(aDbI) =1 —a@bI)*t 1).
0 —a(pI) ! 1 1 01

By solving
' a'(T)b(T) = b'(T)a(T), (117)

the zero-forcing weight can be expressed alternatively as

V' ()7} (a'(T) = (1), —a'(T), /(). (118)
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This form of the weight contains only delay-Doppler operators as entries, with the exception of the
overall factor on the left, which is the inverse of a delay-Doppler operator. This factor plays no
role in zero-forcing and will be removed. It remains to find a’,b’.

The simple example illustrated near the end of Section 4.2 suggests the forms

a/(r) = 982 4 yp T2 +731P2a32*0412
b’(r) = %22 4 U2 _|_732F0432—a12+0é22_}_74211&32.

The resulting relations
o/ (D)B(T) = ¥ (D)a(I), (119)

involve 6 equations in 7 unknowns and hence have a nontrivial solution.

The number of terms in each entry of the zero-forcing weight is given by (4, 3,4). Only the
number of terms in the first entry is not obvious from the definitions above. In this case, the
number of terms is 5 a priori, but the system of equations (6 equations in 7 unknowns) causes one
of the terms to vanish.

The exponents involved in the zero-forcing weight can be written as

{{as2, a2, 2030 — 12, azo — a2 +age }, {2, a12, 2a32—aia }, {ag2, a12, aza —aa+aog, aza b} (120)

For the general case, let ago < apa — g and age < aga/ag;. Only the exponents matter
since the coefficients, in practice, are estimated from the data.

4.4 DELAY-DOPPLER BEAMFORMING IN THE GENERAL CASE

A general approach toward solving the zero-forcing problem with a form of Gaussian elim-
ination is sketched below. This approach can be used to find an interesting set of zero-forcing
weights. The main technical ingredient is the construction of common multiples, as described in
Section 4.2.2. When delays and Dopplers each lie on one-dimensional lattices, the matrix entries
become Ore polynomials, for which other algorithms can be useful in finding common multiples
(both compressive sensing Section 6 and algebraic approaches Section 5.3.3 can be used for common
multiples).

A general procedure for performing Gaussian elimination and clearing denominators is pro-
vided by the following recursive updates on a matrix L(®) = L of size m x m — 1. Let

| 0 0 ... 0
0 1 0 ... 0
k k)\—
Rl GRS P CA 0 (121)
o a1 o
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and

def [ I 0
D, < , ) v (122)
( 0 dlag{L’ék)(r) " )

where L’/ fq]Z)ng) = I(JZ) (T)L%z) provides a common multiple for ng) and Lfﬂ’,?. This relation implic-
itly defines L’ ,gi)(r), which should not be confused with a component of a matrix. It is simply a
delay-Doppler polynomial used to solve the common multiple problem. Then

I, O 0 .0
0 1 0 0
k k
D.Fj, = 0 —Ly, Rk+1) 0 - (123)
' k k
o - 0 o ¥ h(m)

Define L*+1) &f D, F,L®*). As long as all diagonal entries are nonzero, this procedure triangular-

izes L, culminating in the upper triangular matrix L(m—1) = (Djp—1Fpm—1) - - - (D1F1)L, which has

a vanishing last row. The left kernel of L™~ is spanned by w def (0,...,0,1)T. Thus

0=wL™ = [(DF) - (Dp_1Fp1)w]'L (124)

where - denotes a hermitian transpose. Since the matrix entries are operators, one must de-

fine -t on them. But A" = A=% and D¥T = D=, A nulling weight is thus provided by
(DlFl)T e (Dmlemfl)TW.

When we run into zero diagonal entries L,g;) along the way, we can use pivoting to put nonzero
entries, if any exist, into the diagonal position. The algorithm is modified accordingly.
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5. ALGEBRAIC ZERO-FORCING WEIGHTS

The operators that apply delay and Doppler shifts to signals can be written or approximated
by polynomials in two variables. One variable represents the smallest delay shift and the other the
smallest Doppler shift. The algebra formed by these polynomials has a structure that can be used
to aid the formation of zero-forcing (also called nulling) weights.

In the delay-only case, which involves polynomials in the smallest delay shift and does not
involve Doppler shifts in the signal processing, the polynomial algebra is familiar, but the con-
struction of zero-forcing weights using this algebra is not as well known. We treat this special case
in Section 5.1. This serves as an introduction to the more general problem of finding zero-forcing
weights with delay-Doppler polynomials, which is treated in Section 5.3.

The methods utilized to handle the delay-only case are much simpler than the techniques
used for delay and Doppler. The delay-only case is also easier to handle from a computational
viewpoint. In both cases, computer algebra plays a significant role in the solutions for zero-forcing.

5.1 DELAY-ONLY ZERO-FORCING

The next result relies on the fact that systems of linear equations can be solved over the field
of rational functions over C in the same manner as they could be solved over just C. The concepts
of dimension, basis, and rank hold in analogous fashion. Thus, the array processing solutions
we seek can be formulated abstractly in linear algebra over the rational functions. However, we
are ultimately interested in solutions with vectors and coefficient matrices having only polynomial
entries, so that solutions with rational function entries are only a stepping stone. Our first result
demonstrates that the concept of a basis for the null space for a channel matrix does extend to
vectors and matrices with polynomial entries in certain cases.

Theorem 10. Let

Nu ¥ {w(z)jw(z) - H = 0} (125)

denote the linear subspace of (C[z])", vectors with polynomial entries, that corresponds to operators
that null the channel matriz H € ((C[z])mk If H®) | denoting the bottom k x k minor of H, is full
rank over the rational functions, then there exists a basis of Ng consisting of the columns of

C11 0 ... 0
Co1 C929 ... 0
(€1(2), - enp(2)) = 0 (126)
Ch—kl1 Cn—k2 --- Cn—kn—k
Cnl Cn2 coo Cpn—k

with cj1(2) € Clz]. The degree of cp(2) is the smallest among all nulling vectors ci(z) with zeros
in the first k — 1 components. Nonsingularity of the k x k minor H®) is a generic property of H.
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Proof. Among all zero-forcing weights w(z), find one with the smallest degree nonzero polynomial
in the first component. An algorithm for accomplishing this will be presented later. Next, among
all zero-forcing weights w(z) with zero first component, find a weight with smallest degree in the
second component. Proceed in this manner to create a matrix of the form Equ. (126). We claim
that all zero-forcing weights can be written in the form ), pi(2)ck(2) with polynomial coefficients
pr(2). To see this, note that any zero-forcing weight w(z) with a nonzero first component must have
a first component divisible by ¢11(z), otherwise, we could take a linear (with polynomial coefficients)
combination of ¢1(z) and w(z) that would have a nonzero, smaller degree first component. Since
the linear combination still nulls, this contradicts our choice of ¢;(z). It follows that ¢11(z) divides
the first component of w(z), and hence a linear combination of ¢;1(z) and w(z) has vanishing first
component. We can proceed inductively until we have a linear combination of the cx(z) and w(z)
for which the first n — k components vanish. This results in a zero-forcing weight with at most k
nonzero bottom components, which is impossible since it is assumed that H®) is nonsingular (rank
k over the field of rational functions), unless the linear combination vanishes. Over the rational
function field (i.e., with the components of w(z) consisting of rational expressions), the zero-forcing
weights span a n — k dimensional vector space. By multiplying through by a polynomial p(z) that
clears denominators, we see that p(z)w(z) is in the span of the n — k columns of Equ. (126). Thus
w(z) is in the rational span of the same columns. In other words, the n — k columns of Equ. (126)
span the n — k dimensional vector space of zero-forcing weights with rational entries. Thus these
columns must be independent over the rational functions and hence also over polynomial functions.
It follows that the columns of Equ. (126) are a basis as claimed. The fact that H®) is generically
nonsingular is a consequence of the nonvanishing determinant of this minor. O

This result provides us with the existence and structure of a basis of nulling weights, but does
not provide a constructive solution. In the next sections, we show how the use of GCD and LCM
algorithms can provide a construction for a nulling basis. The steps proceed first by constructing
a basis for nulling a single given vector of polynomials. In other words, H € (C(z))"*!. Next, we
modify this basis to null additional vectors, one at a time.

5.1.1 GCD and Euclidean Algorithm

The first basis we derive algorithmically nulls a single vector: H = h. To express the result,
we need the concept of the greatest common divisor (GCD) among the polynomials {ay(z)}}. We
write

ged(ar(z),...,an(2)) = (Z i)k(z)ak(z)> where deg Zi)k(z)ak(z) = min deg Z br(2)ak(2).
k

A {br(2)} .
(127)
The GCD is determined only up to a complex scalar. It can be computed inductively by using
ged(@1(2), -, an(2)) = ged(a(2), ged(as(2), ..., an(2))). (128)

At the final stage, the GCD of two polynomials is computed using the Euclidean algorithm for
polynomials. Assume without loss of generality that degas(z) < degaq(2).
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Algorithm 1 Euclidean Algorithm
Set k =m, rp(z) = a1(2), 1k—1(2) = a2(z), and rp_o(z) =1
while r;_5(z) # 0 do
Divide to get quotient and remainder: 74(2) = qr—1(2)7rk—1(2) + rr—2(z) with degri_2(z) <
degry—1(2)
k< k-1
end while
ged = (re(2))

The value of m is not important since it only sets an origin for the indexing. We will choose
it later for notational convenience. Note that the iterative step in the algorithm can be written

Tk qe-1 1 Th—1
= ) 129
(Tk—l) ( i 0)(”"k—2) (129)
Taking the inverse transpose of the 2 x 2 matrix in the iteration, we can define an iteration

(P ok—1) = (pr—1 Ok—2) < ? _qt_l > (130)

< gz_l )T < :2_1 > . (131)

When £ is chosen so that r,_1(z) = 0 with r(2) = ged(ag, az), then defining pp, =1 and o1 =0
tells us that Equ. (131) is the GCD for this value of k£ and larger values. Thus ged(ai(z),a2(2)) =
o)1 (2) + 01 (2)as(2).

that preserves the value of

The GCD, as its name suggests, is the greatest common divisor of its arguments. For the two
argument case, using the notation and results above, it is clear that any common divisor of r,, and
Tm—1 is a divisor of the GCD ry. Conversely, using Equ. (129), any divisor of r;_; and r;_2 is also
a divisor of 7. Since (ry rp—1) = (r 0), it follows that the GCD ry(z) divides rp,(z) and ry,—1(2).

5.1.2 Least Common Multiples

It convenient to write the Euclidean algorithm in the form of Alg. 2. Assume that r,+1 =0

and that r, # 0 represents the GCD. Let 6y, &f re(2)r, 1(2) denote the polynomial with the GCD
divided out. Then the recurrence for the r; determines a recurrence 0y = qp+10x+1 + Or+2 for
the 0, ending with 0 = 0 for Kk > n. Note that 6,2 = ¢,_10,—1 so that, evidently, 6, o is
the least common multiple (LCM) of 6,_92 and 6,,_;1. Define, av,—2 = 1 and S,—2 = ¢n—1 so that
Qp—20n—92 = Bpn—20,—1. We would like to maintain the relationship oy0; = 8;0;41 for 1 <1 <n —2.
We do this inductively. Assume it holds for [ > k+ 1. Since we have 0, = qx116511 + k12, multiply
on the left by Bry1 to get

Br+10k = Br+1@h+10k+1 + Br+10k+2 = Bretr1@k+10k+1 + t10k11 = (Brr1@h+1 + Qpr1)0k+1. (132)
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Thus, we can define «y def Br11 and Br = Bri1qrr1 + aga1 so that oy = Brbki1, as desired.

We say that v | (o, 8), read as ~ divides « and 3, iff @« = ya/ and 8 = v3’. We have, from the
induction, v | (ak, Br) iff v | (ak+1, Br+1). We claim that a0 = (105 is the least common multiple
of f1and 6». Suppose otherwise. Then there is a nonscalar multiple of u such that 81602 = v = «16;.
Using 7161 = p = 202, we see that v | (g, 51). But then we would have v | (ap—2, Bp—2), which is
impossible.

The least common multiple of 1 and 79 follows from the previous result and assumes the
form a1 017, = B1027,. To see this, assume instead that «1017, = yu = [1027,, where u is the least
common multiple and + is not a scalar. Then a6, = yur, ' = B16 and ur;, ! is integral not just
rational, since p is a left multiple of r1 (or r2), which has r, as a right factor. This contradicts the
fact that a6 = B16- is the LCM of 64, 0-.

Algorithm 2 Euclidean Algorithm
Set k = 1. Given r1(z), r2(2).
while r;11(z) # 0 do
Divide to get quotient and remainder: ri(z) = qri1(2)rkr1(2) + Tr12(2) with degriio(z) <
degry11(2)
k< k+1
end while
ged = (ri(2))

Algorithm 3 Least Common Multiple

Initialize n = 1. Given r1(z) and ra(2).
while r,41(2) # 0 do
Divide to get quotient and remainder: 7,(z) = @nt1(2)rn+1(2) + rng2(z) with degrp2(z) <
deg Tn-l-l(z)
n<n+1
end while
Initialize a1 = 1 and 5,1 = qn.
fork=n—-2tok=1do

ap = 5k+1
Br = Brt1qQr+1 + pt1
end for

lem = a1ry = 517“2

5.1.3 Nulling A Single Source

Let h(z) € C"(z) be a fixed vector with polynomial entries and let c(z) € C"(z) be a vector
that nulls h: c(z) - h(z) = 0. Among all such nulling weights, we seek one for which deg ci(z)
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is as small as possible. Now, nulling is equivalent to ci(2)hi(2) = — > ;o cx(2)hi(z) which tells
us that ¢1(z)h1(2) equals a lowest degree expression of the form ,_; ax(2)hy(z) with arbitrary

ax(z). An expression of the smallest degree is provided by g(z) def ged(ha(z), ..., hn(2)). Thus,
c1(2)h1(z) is a least common multiple of g(z) and h(z), denoted lem(g(2), h1(2)) and thus ¢;(z) =
—lem(g(2), h1(2))/hi1(2) has the smallest possible first-entry degree among all nulling weights c(z).
The remainder of the components of ¢(z) come from the GCD calculation. In the two arguments
example of the GCD shown in Alg. 1, the calculation follows from Equ. (130). Following the
argument given in Thm. 10, we can complete the basis of nulling weights by computing more
GCDs and LCMs.

5.1.4 Nulling Multiple Sources

Let H(™)(z2) denote the n x m submatrix of H(z) € (C)*** from Thm. 10 consisting the the
leftmost m columns. Assume that we have the matrix C™(z) € (C(z))"*™ ™, each column of
which nulls all the columns of H™ () € (C(2))"*™. When m = 1, C")(2) can be constructed by
the method of Section 5.1.3. We assume that these C(m)(z) have the properties of minimality for
leading components that is described in Thm. 10. We will modify the columns of C(m)(z) one at a
time, from left to right up until the second to last column. The last column will be dropped. The
final result with be a matrix C(+1(2), each of whose columns null all of the columns of H("+1 (2).

First, note that (C(™(2))TH(™ (2) = 0 by definition. Let c](gm) (2) denote the k' column of
C™)(2) and let c,(;;:) (z) denote its first potentially nonzero component. Write hi(z) = c,gm) (2) -
H.,,;1(2) for 1 <k < m. Every nulling weight can be written as w(z) = >/ _}" ak(z)clgm)(z) by
the assumed form of C™(z2). But w(z) - H. y1(2) = a1(2)hi(2) + > i<h<n—m W(2)hi(2). Asin

the argument of Section 5.1.3, we can write a1(z) = —lem(h1(2), ged(h2(z), ..., hAn—m(2)))/h1(2).

Thus we have constructed a polynomial weight cgmH)(z) def > 1<k<n—m @ (2)ck(z) that nulls all

the columns of H(™*+Y () and has the smallest possible degree in the leading entry chH)(z) =

ay (z)c%n) (2). Proceeding through all the columns of C(™)(z) except the last, we construct C(™+1)(z) e
(C(z))™=™=1all of whose columns null all the columns of H(™*1 (), and which satisfies the
structure of Thm. 10. Proceeding inductively, we finally arrive at a nulling basis expressed by the

columns of C*)(z) € (C(2))"**.

5.1.5 Reducing Weight Degrees

The zero-forcing weight c1(z) can have the degrees of its top n—k entries reduced by combining
it with linear combinations of the remaining basis vectors in the null space. Conceptually, the
leading nonzero components of these remaining vectors are used in succession to reduce the degrees
of the corresponding components in ci(z), replacing entries with remainders r4(z). This makes
sense since the leading nonzero entries cgi(2) of the basis weights have low degree, and hence, so
do the remainders ry(z).

This procedure typically results in a nulling weight with small polynomial degrees in its
leading n — k components but comparatively large degrees in the remaining £ components. There
is nothing optimal about this procedure. Reducing total degree across all components may seem
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Algorithm 4 Degree Reduction for Zero-Forcing Weights
cM(2) ¥ e (2)
while 2 <k <n-—jdo
Solve for qx(z) and r(2): cgﬂ_l)(z) = qr(2)cpr(2) + ri(z)
c®(2) = D (2) — gr(2)ex(2)
end while

a desirable goal, but this goal is often accomplished by using the smallest number of components
k 4+ 1 that can theoretically accomodate nulling. A large number of zero components means that a
significant fraction of the power in a desired (not nulled) signal is thrown away. Since nulling (i.e.,
zero-forcing) is not the full story of adaptive beamforming, degree minimization, by itself, is not a
design criterion. Reduced degree weights offer the possibility of degree reduction while maintaining
some control of gain on a desired signal.

5.1.6 Equalization

Once a nulling weight basis of the form C™(z) = [c1(2),...,cm(2)] has been formed, it
is possible to select a vector of the form w(z) = >, ar(a)ci(z) such that w(z) - v(z) has the
smallest degree possible given an arbitrary v(z) with polynomial entries. We find w(z) - v(z) =
ged(v(z2) - €i(2),...,v(2) - em(z)). The {ar(z)} that solve >, ar(2)(v(2) - cx(2)) = ged(v(z) -
ci1(2),...,v(z)-cn(2)) provide the nulling weight w(z) with the best equalization performance. In
practice, it is often the case that w(z)-v(z) = 1, resulting in perfect nulling and perfect equalization.
Note that the solution to the equalization problem requires n —m > 2. Thus, the total number of
signal sources that can be handled, nulling all but one signal and equalizing the remaining signal,
is n — 1. This is one less signal than what could be handled when all response vectors have scalar,
nonpolynomial entries. In this latter case, equalization involves a simple scaling of a nulling weight
since w - v is always a scalar.

5.2 EXTENSION OF RESULTS TO ORE POLYNOMIALS

Let CO)[z y] denote the ring of Ore polynomials p(z,y) = >k cjkaly® with complex
coefficients that satisfy the monomial multiplication rule
(xjyk)(xlym) _ nkl$j+lyk+m. (133)
This rule extends in a natural manner to the whole algebra C(©7¢) [, y] of noncommutative poly-
nomials. Recall that = and y can represent, for example, delay and Doppler operators, which obey
the rule of Equ. (133). For the present, it suffices to treat the algebra abstractly, with 7 a complex
constant.

In order to apply some of the previous techniques to the Ore ring, we need to form inverses
of the polynomials in one of the variables. Specifically, we need to consider expressions of the form

o) = SPRE) b 0oy,
(z,y) Zk:qk($)y € C9) ()[y], (134)
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where C(O7)(z)[y] is implicitly defined by Equ. (134). From Equ. (133), it can be seen that
(p(x)/q(x))y’ = v/ (p(n’z)/q(n’x)). Thus, the polynomials in y have coefficients from the field
C(x) of rational functions in x. Aside from the twist in multipilcation implied by Equ. (133),
these are very much like the polynomials over C treated in Section 5. In particular, the methods of
Section 5 can be used to find a basis of zero-forcing weights which have entries that are polynomials
in y with coefficients rational functions in z.

Care has been taken in the algorithms of Section 5 to handle the order of factors. The chief

impacts of find zero-forcing weights with entries in C(O7¢)(z)[y] instead of Cly] are:

Pr(T) K
@Y

1. the division step r;_1 = ¢;; + 741 works with polynomials in the normal form ),
with ordered factors, and

2. Equ. (133) is employed to put ¢;r; and r;41 into normal form .

Although we don’t pursue this approach any further here, it is an entirely reasonable method for
finding solutions to zero-forcing problems that are sparse in one of the delay or Doppler operators.
Once solutions have been found, the rational coefficients in the remaining variable can have their
denominators cleared by multiplying through by a polynomial in that remaining variable. Thus,
control is exercised over only one of the variables in the problem. We next consider a more principled
approach toward handling both delay and Doppler.

5.3 ZERO-FORCING USING GROEBNER BASES
5.3.1 Ideal Bases

There are alternative approaches to finding generating sets for zero-forcing weights that op-
erate entirely within the Ore algebra C(O7¢)[z), 2] introduced in Section 5.2. To understand the

concepts behind these techniques and to express clearly the relevant algorithms, we need some

. . . . . def .
concise notation. For monomials, we write 27 25% = 2%, with & = (aq, a2) and oy, > 0. We write

any f € ClO™)[z1, 2] as f =, caz®. From Equ. (133), we have z%28 = no2f1.8,2.

There is an obvious partial ordering defined on the ordered pairs @ = (a, ) defined by
a <? Biff a;, < Bj. Of course, not all pairs o, 3 can be ordered in this manner. However, in order

to write 2%2P = const 27 with ~ def a+ 03, if is necessary and sufficient to have o <? ~. In this case,

we say z® | 27; in other words, the monomial z® divides the monomial z7. Thus, the smallest (in the
def

= aVP = (max(aq, 51), max(ag, £2)).

We need to consider a total (all monomial pairs can be compared) ordering < on the exponents
a of z® that is compatible with products in the sense that a < 3 if and only if a +v <X 3+ 7.
Furthermore, we require (0,0) < « for all exponents c. One example of such an order is called
lexicographic (lex) order, where e < 3 iff either o; < 1 or both a3 = 51 and ag < f2. Another
order is called deglex. In this case, & = Biff Y ax < D B or both Y ax = > Bk and oy < 1. The
algorithms below only require a compatible total order, but produce different results with different
orders. The two orders just mentioned are of practical interest.

sense of <?) 4 for which 27 is divided by both 2% and 2# is ~
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It’s worth mentioning that the ordering terminology we use differs from [BGTV03] but seems
more consistent with the literature. Furthermore, since we use only two indeterminates zi, zo for
all Groebner basis calculations, we do not run into issues of improved algorithm efficiency with
different orderings.

It’s worth keeping in mind that the two orders <2and < are very different and are both
used extensively. In a very rough sense, polynomial order and basis selection is based on =< while
divisibility is based on <2.

Each element of C(O7)[z, 2] can be written as f = 3, caz®. Under a total, compatible
monomial order, there is a largest term cq,, 2*™**. We define deg(f) = (deg;(f), degs(f)) = Qmax
and lc(f) = Cayay- Thus, we can write f = le(f)z98() + L.O.T., that is f is the sum of its top
order monomial plus lower order monomial terms.

One of the central concepts we need is that of an ideal in the algebra COT®)[z, z5]. A left
ideal I C C(O7¢) [21, 22] is a subset that is closed under addition and under multiplication by any
element of C(O7)[z, zy]. Specifically, if a(z),b(z) € I and ¢(z) € CO7) [z, 2], then a(z) + b(z) € I
and ¢(z)a(z) € I (and, of course, ¢(2)b(z) € I). We say that {f;} € CO7)[z, z5] generate the ideal
Ideal({f;}) iff each f € Ideal({fi}) can be writtten as 3, a;(2)fi(2) for a; € CO™)[zy, z].

Next, we consider a division algorithm Alg. 5 that, given a finite set of divisors f; € C(O7¢) [21, 22],

reduces the degree (in the total, compatible order) of f by dividing successively by the f; until no
further division is possible. This process of reduction produces a remainder r. The ideal generated
by rU{ f;} is the same as the ideal generated by fU{f;}, but the degree of one of the the generators
has been reduced. In the division algorithm, let 1t(f) denote the monomial (including scale factor)
representing the highest order term of f.

Algorithm 5 Division Algorithm

Goal: Given the polynomial f and the finite set of generator polynomials {fi,...,fs} in
CO7)[2, 2], find a remainder r € CO7)[z), 2] of f and coefficient polynomials p; such that
f—>_;pifi =r and deg(r) = deg(f).
Initialize: h == f, p; =0, and r :== 0
while h # 0 do
if some deg(f;) <2 deg(h) then
j = argmin, deg(f;) <* deg(h)

_ et | —(degy () —degs (/7)) des, (1)
le(f:)
B b — Czdeg(h)—deg(fj)fj

p] < p] + Czdeg(h)_deg(fj)

else
r < r +1t(h), 1t(h) is highest order term in h
h h—it(h)
end if
end while
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5.3.2 Groebner Bases

If the algorithm Alg. 5 returns » = 0, then f € Ideal({f;}); in other words, f belongs to the
ideal generated by { f;}. However, it is not true that any f € Ideal({f;}) results in a zero remainder:
r = 0. For example, if I = Ideal(f1, f2) with fi # f2 but with the fj having the same top monomial
terms including scale factors, then f; — fo € I but f; — fo has a lower order top term than either
f1 or fa, so that Alg. 5 applied to f; — fo results in r = f; — fo # 0. We need an enlargement of
the given ideal basis in order to find a basis that determines ideal membership through the division
algorithm Alg. 5.

The cancellation of top terms involving pairwise differences f; — fi. suggests that the fol-

lowing elaboration plays a role in enlarging the basis. First, define ~ def (71,72) with ~g def

max(degy,(f1), degy(f2)). The following is the definition of an S-polynomial.

SP(f1, f2) = (le(f1)) Ly~ (2 desa(fi)degi(fi) yy—deg(f1) g (1¢( f,)) =Ly~ (2~ deg2(f2))deg: (f2) ;y—des(f2) f,

(135)
Conceptually, in bumping up the top terms of f;, fo to a common degree top term and taking
normalized differences to cancel the highest resulting term, we are creating new top terms in the
ideal that must be reachable from a generating set that is capable of solving the ideal membership
problem using Alg. 5. The following algorithm, due to Buchberger, creates a so-called Groebner
basis for the ideal Ideal({f;}) that solves the membership problem.

Algorithm 6 Groebner Basis Algorithm

Goal: Given the finite set of nonzero polynomials F' def {fi,..., fs} € CO)[z 2], find a
Groebner basis {g1,...,¢:} of Ideal({ f1,..., fs})
Initialize: G := F and B = {{f,g} : f # g € G}, set of all pairs from G
while B # ) do
Choose any {f,g} € B
B < B\{f,g}, remove {f, g} from B
W = SP(f,g)
h < remainder of A’ using G and division algorithm Alg. 5
if h # 0 then
B+ BU{{p,h} :p € G}, add all new pairs involving h
G < G U{h}, increase set of generators
end if
end while

Although it is not apparent, Alg. 6 terminates, yielding a finite set of generators for Ideal({ f1, . . .

that includes all of the original generators. The new set, {g1,..., g}, solves the ideal membership
problem using Alg. 5.

For illustration, two monomial orders are shown in Fig. 21.
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(a) Monomial terms are ordered lexicographically, with
primacy given the z-axis variable.

(b) Monomial terms are ordered by total degree, with
ties broken by the order of the z-axis variable.

Figure 21. Two different monomial orders are shown, lexicographic and total degree. The color represents
the sensor associated with each monomial term. Note that the terms are the same in the figures but the
ordering is different.

5.3.3 Module Definitions and Relations with Zero-Forcing

We are interested in finding generators for sets of vectors with Ore polynomial entries. If the
vectors are of length n, one set of vectors of interest are all vectors of length n with Ore polynomial
entries, denoted @ C(O7) [z, 2] and called the free module of rank n over C(O7¢)[z;, z5]. These
vectors are, of course, a linear space over any componentwise additions and multiplications with
“scalar” Ore polynomial factors f(z1,22) € CO7) [z, 2]. In other words, they behave just like
the space of complex n-vectors, with the exception that the coefficients involved in the linear
combinations are Ore polynomials, just like the vectors’ entries, and these coefficients cannot be
inverted in general. Furthermore, the order of coefficient multiplication matters, since the Ore
polynomials are not commutative. We focus on multiplication on vectors from the left. The
resulting analog of a vector space is called a module over the Ore polynomials. It differs from a
traditional vector space in two significant ways. As mentioned, the coefficients are not invertible
in general. Secondly, the coefficients that multiply vectors act by multiplying on the left.

More generally, we are interested in submodules of the free modules. These submodules are
analogus to subspaces of a vector space and are built from generators associated with matrices.
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For example, the channel matrix H of a communication link can be expressed as a matrix with
entries drawn from C(©7¢) [21, 22]. Each entry of a given row and column represents the delay and
Doppler shifts associated with propagation to a specific sensor (row) and arising from a specific
source (column). If H is n x k with k < n, then the span of the rows of H form a submodule of
the free module @F C(O79)[z, zo]. We say that the n rows of H generate a submodule Mg of the
free module @F C(O7)[z), 2] of rank k.

The submodules of most concern for us are those that provide zero-forcing vectors for M.
A vector w € @7 CO™)[zq, 2] is called zero-forcing iff wH = 0. Implicitly, we assume a matrix
representation of w as a row vector. More specifically, we want to find the submodule Mﬁ C
@' CO7)[2, z9] of all n-vectors w with Ore polynomial entries that satisfy wH = 0. Thus, the
module Mﬁ is the space of all zero-forcing weights. Denote by H- a m x n matrix whose rows
generate the module Mﬁ In other words, My = Mﬁ Although H* is not well-defined (it’s not
unique), the goal of this section is the construction of a H' given H.

5.3.4 Groebner Basis for a Module

As in the case of left ideals of the Ore ring, we are interested in a set of generators for a
module that has small leading order terms in some appropriate sense related to the complexity of
the zero-forcing solutions. With ideals, the multidegree « is ordered compatibly with <? in one
of several possible ways in order to formulate the multivariate division algorithm that is used with
Groebner bases. For modules, we use the same approach, but augment the multidegree with a
vector-component index k (the level) so that the module multidegree takes the form (e, k), with
a representing the bidegree used above for Ore polynomials. The bidegree a applies to the k**
vector-component of the module member. We use the ordering <(2™) to denote the partial ordering
(a,§) < (B,k) iff j = k and a <? 3. Then an ordering < on multidegrees (c, k) is compatible
with <(n) if

(a,i) = (a+B,i)
(a,1) 2(B,7) — (a+7,8) 2 (B+7.1), (136)

where a, 3,7 € N2, the nonnegative 2-tuples of integers.

Write the leading term of a module member h as lc(h)z%ej with leading coefficient le(h),
degree deg(h) = a, and level lev(h) = k. The vector e, is defined to have all zeros except for unity
in the k" entry.

Given a compatible ordering on the a exponent of the Ore monomials, there are two interest-
ing extensions to compatible orders on (e, k) for modules. One, called position over term (POT),
orders the level (k-component) first and then uses the order on «. The other, called term over
position (TOP), orders by the highest order a over any level k with level used to break ties. For
the example presented below, we use the TOP extension of ordering.

Although we are interested in finding zero-forcing weight vectors for the module My generated
the rows of the matrix H, we must first find a Groebner basis for the module My itself. The
techniques for finding this Groebner basis are completely analogous to those used to construct a
Groebner basis for ideals, as presented in Alg. 6, which are based on a division algorithm utilizing
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compatible orders. We simply use the order on module monomials given above. Details can be
found in [BGTVO03].

An illustration of a few steps in the process of computing a Groebner basis for a module
is shown in Fig. 22. The final result of the basis construction is shown in Fig. 23. The steps
involve the cancellation of leading order terms associated with pairs of module elements (rows of
the matrix H) using S-polynomials, and then reduction of the results using the division algorithm
for modules, which is completely analogous to that for ideals ( [BGTVO03] has the details). Any
nonzero remainders are added to the generators, as in the case with ideals.

5.3.5 Constructing Zero-Forcing Weights

Recall that a zero-forcing weight w for a module generated by the rows of a matrix H satisfies
> wrhy = 0, where hy, denotes the kthrow of H.

The zero-forcing module for a Groebner module basis is defined using a variant of S-polynomials.
Let the rows of the matrix G provide a Groebner basis for M. Write the k** row of G as g.
Then S-polynomials for zero-forcing are defined by

SP(gj, gr) = (Ie(g;)) " p~ (72— dega(g;))degy (85) ;7= deg(gg)g]
— (le(gg)) "ty 02 degg(gk))degl(gk)zv deg(gr) g, (137)

when lev(g;) = lev(gy) with v defined as in Equ. (135). Since we can write

P(g;, 8k) Z Cjki8I; (138)
with cjg € COT)[2y, 29, it follows that
Sik def (le(g ))—1,7—(72—deg2(gj))deg1(gj)Zv—deg(gj)ej
_ (lc(gk))*l77*(72*deg2(gk))deg1(gk)z'Y*deg(gk)ek _ Z cjkier (139)

l

is a zero-forcing weight for G.

Theorem 11. If the rows of G are a Groebner basis for the module Mg they generate, then the s,
generate the module of zero-forcing weights for Mq, where j, k range over all pairs of row indices

of G.
Proof. See [BGTVO03]. O

If G is the matrix representing a Groebner basis of H, we can find rectangular matrices of
Ore polynomials Q and P such that G = QH and H = PG. The matrix P can be derived by using
the division algorithm while Q can be derived by keeping track of all the computations involved in
building the Groebner basis. Note that s;3QH = 0 (see Thm. 11). In other words, the s;,Q are
zero-forcing weights for H. Furthermore (I — PQ)H = 0. In fact, we have
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Theorem 12. Let the rows of G be a Groebner basis for the row-space module of H. Find Ore
polynomial matrices Q and P such that G = QH and H = PG. With s;;, defined as in Equ. (139),
the zero-forcing module of H is generated by the s;,Q, as the j,k range over all pairs of rows of
G, combined with the rows of the matriz I — PQ.

Proof. See [BGTVO03]. O

5.3.6 Equalization

We can apply generators w; for the zero-forcing weights to the reponse vector v of a desired
signal: one that has not been nulled. What results are Ore polynomials w; - v applied to the
desired signal. These polynomials represent distortion of the desired signal as the cost of nulling.
All possible distortions due to zero-forcing weights are linear combinations ), ¢;w; - v (with Ore
coefficients ¢;) of these basic distortions due to the generators. In other words, all distortion from
zero-forcing weights form an equalization ideal generated by {w; - v}. The Groebner basis of this
ideal allows us to solve, using the multivariable division algorithm Alg. 5, the ideal membership
problem. In other words, we can easily test whether a particular member of C(©7¢) [21, z2] belongs
to the equalization ideal. The members of C(O7¢)[z;, 2] that do not distort the desired signal are
pure monomials for the form z®. These operators impart a simple delay and Doppler shift to the
signal. If 2 belongs to the equalization ideal, then so does 2P for any e <2 3. Thus, one ad hoc
procedure for finding equalization tests a z* with large a for ideal membership.

For the case of delay-only operators treated in Section 5.1, equalization often leads to zero-
forcing weights that are not sparse. This can adversely impact the complexity of adaptive beam-
formers. When legacy systems are important, equalization of some sort may be unavoidable. But
given the opportunity to design waveforms for distributed array applications, equalization is not
necessary to obtain good performance. Without equalization, channel distortions for the desired
signal must be taken into account in error-correction coding.
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(a) Shown is the channel matriz of a 5 element array
for two interferers, whose response vectors are shown
in each column. The responses have delay-Doppler
monomials as entries that express the appropriate time
and frequency shifts associated with signal (column)
and sensor (row).

(b) Each step in finding a Groebner basis chooses a
pair of rows, multiplies by monomials to find common
leading terms, and subtracts to cancel these leading
terms. This is the beginning step in forming an S-
polynomial (really, a module member).

(c) Next, the module generators (all the current rows)
are used to reduce the result of the S-step. One step
in the reduction is shown. Many others follow until
zero is reached or no further reduction is possible. Any
nonzero remainder is added to the Groebner module

basis.

Figure 22. A Groebner basis for a module is formed. The basis and the S-polynomials can be used to form

zero-forcing weights.
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Figure 23. The initial channel matriz is shown along with the matriz containing (in rows) the module’s
Groebner basis. The row-space of the channel matrixz on the left, as generated by multiplying on the left with
Ore polynomials and then adding componentwise, is also generated by the rows on the right. However, the
right-hand-side generators form a Groebner basis. In particular, this basis solves the membership problem for
determining whether an arbitrary row vector is in the module. Furthermore, in the process of constructing
the Groebner basis, we build the zero-forcing weights for the original channel matriz.
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5.4 PERFORMANCE EXAMPLES

The basic flow for computing zero-forcing weights using Groebner basis techniques is shown
in Fig. 24. First, the interference channel is estimated. This can be accomplished with cooperative
channel sounding techniques or estimation can be based on geolocation techniques. Only the
signals’ differential delays and Dopplers are required. The complex weights needed for phase and
gain control can be estimated from the data once the delay-Doppler taps are located algebraically.
Second, a Groebner basis is computed for the module determined by the channel matrix (see above).
This step provides some generators for the zero-forcing module. The remainder of the generators are
determined by using both the original channel matrix and its Groebner basis, in conjunction with
relations between the two. This process is complicated even in simple cases and relies on efficient
software implementations of the calculations. The final step uses generators of the zero-forcing
weights to find weights that both zero-force and equalize a desired signal.

We present an example of algebraic weights that involves all but the equalization step in the
signal processing chain of Fig. 24.

A known channel matrix is shown in Fig. 25a. Five sensors are used to null two interferers.
Both delay and Doppler spreads are large in the sense that the exponents of the delay A and
Doppler D shifts are large. Typically, these shifts correspond to multiples of fundamental resolution
cells (& x =) associated with bandwidth B and observations time 7. Shown in Fig. 25b are the
locations of the delay-Doppler taps for one zero-forcing weight. The axes indicate the exponents
of the corresponding operators. Each color is associated with a different sensor. We can see that
not all sensors are used for nulling. This is a common situation for generators constructed with

algebraic techniques.

The extent of the delay and Doppler spreads is roughly 36 x 165. If one were to fill the
entire extent with delay-Doppler taps, zero-forcing could be accomplished using a dense grid of
5-36-165 = 29700 taps. Zero-forcing would then involve solving a very underdetermined system of
equations. This is an approach that will be examined in Section 6. However, the algebraic solution
uses well less that 100 taps. Besides a dramatic improvement in computational complexity, a small
number of taps requires much less training data in order to determine the tap coefficients. Other
generators for the zero-forcing weights of this channel matrix have similar delay-Doppler scatter
plots.

Figure 24. The interference channel matriz is first converted to a module Groebner basis. The combinations
of rows of the channel matriz that zero-force are computed from the coefficients used to form the Groebner
basis. This provides generators for all zero-forcing weights. If required, the zero-forcing gemerators are
applied to the array response of the desired signal. The resulting Ore polynomials generate a left ideal whose
Groebner basis is evaluated. If the ideal contains a monomial, equalization is possible.
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(a) Shown is the channel matriz of a 5 element array
for two interferers, whose response vectors are shown
in each column. The responses have delay-Doppler
monomzials as entries that express the appropriate time
and frequency shifts associated with signal (column)
and sensor (row).

(b) One of the zero-forcing weights that generates the
module of syzygies (zero-forcing weights) is shown.
Each color represents a different sensor. The position
of a disk indicates a nonzero monomial term for that
sensor (color). Note that not all sensors are used for
this nulling weight. This is a common situation.

Figure 25. Zero-forcing weights are shown for the channel with the algebraic channel matriz. One typical
weight from a generating set of zero-forcing weights is illustrated. The disks in the subplot indicate nonzero
terms (i.e., delay-Doppler taps) in the zero-forcing weight. The number of taps required to cover densely the
full range of the shown delay and Doppler taps is very large, equaling Nsensors - Ndelay - NDop- The sparse-taps
solution shown above uses less the .3% of the taps in the dense solution. As a consequence, the amount of
data needed to train the unknown tap coefficients is dramatically reduced.
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6. COMPRESSIVE SENSING AND SPARSE TAPS

6.1 INTRODUCTION TO COMPRESSIVE SENSING

Compressive sensing (CS) addresses the solution of an underdetermined set of equations
given a linear, functional relationship between a model and observations. In concrete terms, denote
the observations by the vector z and model by the vector x. In the absence of noise, we have
z = Ax. Since this system of equations is underdetermined when A has more columns than rows,
the degeneracy of solutions must be broken in some manner.

The least-squares approach handles the degeneracy by asking for the solution to z = Ax
with smallest Ly norm (Euclidean). This procedure is illustrated in Fig. 26, which shows a 2-D
problem with a linear constraint space of candidate solutions. The solution closest to the origin is
the intersection of a contour of constant Lo norms with the constraint space. The contour value is
the smallest that yields an intersection.

We are interested in signals that have sparse representations in some basis. Since we allow
degeneracies, and hence linear dependancies between representing vectors, it is more proper to use
the term frame rather than basis. For the linear relationship z = Ax, sparseness is equivalent to
a small number of nonzero components in x given the frame formed by the columns of A. The
approach illustrated in Fig. 27 can provide sparse solutions. The degeneracy is broken by choosing
the smallest contour of L; norms (the box contours) that intersects the constraint space. The
nature of these contours forces a solution that, generically, lies on one of the axes. Thus L; norm
minimization can yield sparse solutions.

The appropriate problem to solve, if a sparse solution is desired, is the minimization of the
Ly norm under the linear constraints. The Ly norm of a vector equals the number of nonzero
components, which is exactly what we want to minimize. If there exists a solution to z = Ax with
sufficiently sparse x, then minimizing the L; norm yields the same solution as minimizing the Lg
norm (see [Don06] for a similar result in the presence of noise).

There are a variety of computational techniques and applications of CS and an extensive
literature. Among the variety of computational approaches, CoSaMP [NT09] offers good efficiency
as well as performance. We use this technique here for sparse tap placement.

CoSaMP requires a sparsity goal as an input argument and has certain technical requirements
on the linear system being solved in order to provide performance guarantees. These technical
requirements are difficult to verify, in practice, but often true with high probability when the linear
systems are randomly chosen. In short, the guarantees possible with algebraic methods are not
readily available with CS. Nonetheless, CoSaMP offers a very useful tool for tap placement. To
handle the unknown degree of sparsity, we employ a binary search to find the sparsest solution,
when possible. We check residuals to make sure a near-solution is found at each stage.
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Figure 26. Degeneracies in the space of candidate solutions can be resolved by finding the solution closest
to the origin. This procedure amounts to determining the smallest contour of constant Euclidean norm that
intersects the solution space. Note that the solution is almost never sparse.

6.2 APPLICATION: SPARSE TAP PLACEMENT

To apply compressive sensing to sparse delay-Doppler taps, we first layout a dense grid of
delay-Doppler taps for each sensor. Typically, both the delay and Doppler extents of the grid will
be small multiples of the differential delay and Doppler spreads. Based on the regularity of the
grid and the channel matrix (really, just delay and Doppler shifts at each sensor for each signal)
of the interfering signals, we can write down the nulling equations in matrix-vector form, as given,
for example, in Equ. (107). In the notation of that equation, x represents the nulling vector with
operator entries. To cast the equation in the form of matrices over the complex numbers, we need
to expand x into a vector with entries labeled by sensor, delay shift, and Doppler shift. The matrix
I', with operator entries, is similarly expanded in size. This gives us a known matrix, call it T,
that expresses the channel. Only the differential delays and Dopplers are available to build T, so
the complex signal amplitudes must be supplied in a somewhat arbitrary fashion. Remember, tap
placement is the goal. The values of the amplitudes should have little effect on where the taps need
to go for zero-forcing.

The linear operator relation I'x = b can also handle equalization through b. As we have
seen, however, equalization tends to fill in otherwise sparse taps. Since the CS algorithms require
the existence of sparse solutions, they are not able to handle equalization as well as the algebraic
techniques of Section 5.

We have an example, in Fig. 28 and Fig. 29, of tap placement in a scenario involving strong
cochannel interferers. Delay-only taps based on the algebraic techniques from Section 5 were used
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Figure 27. When sparse solutions are desired, a better approach finds the smallest contour of the L1 norm
that intersects the solution space. These contours are shaped in a way that results in solutions with few
nonzero coordinates.

in Fig. 28, with poor performance. The algebraic construction achieved equalization but was unable
to do a good job mitigating interference.

For comparison, in Fig. 29 a 50 x 15 delay-Doppler grid of potential tap locations was used,
along with the example’s differential delays and Dopplers, to select sparse tap patterns for zero-
forcing using compressive sensing. The selected tap locations are shown. No equalization was
attempted. Performance is substantially improved with the use of delay-Doppler taps. Furthermore,
the number of delay-Doppler taps employed for this sparse solution is a small fraction of the number
of taps required for a dense solution. There would not be enough training data to determine the
unknown tap weights for the dense solution, but there would be enough data to train the sparse
taps.
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Figure 28. Shown are the tap placements for delay-only taps using the algebraic techniques of Section 5.
Taps are placed for the purpose of zero-forcing and equalization based on the differential delays of the signals.
The subplots, one for each sensor, show tap locations within a dense grid of potential tap locations. Although
the subplots show an integer grid, true grid spacings are % in delay (y-azis) and % in frequency (z-axis).
The number of taps used for each sensor is indicated by the notation nz = tap count. Characteristic of the
tap placements when equalization is required is the filling-in of the tap regions. Thus, the taps are generally
uniformly spaced, with different numbers and offsets at each sensor. The signal bandwidth is 50 kHz and
performance is measured over a time extent of 20 ms. There are 8 sensors and 4 signals. The desired signal,
for which performance is measured, has an element SNR of 10 dB while the interfering signals have equal
SNRs of 40 dB. Delays spreads are around 200us and Doppler spreads are about 75 Hz. Performance with

delay-only taps is poor, with an effective SNR of about -23 dB. The number of taps used is 156.
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Figure 29. The same example used in Fig. 28 is treated here with 524 sparse delay-Doppler taps derived using
compressive sensing. Performance is much better, with an effective SNR of 7 dB. For a dense tap solution
over the same time and bandwidth, we would require at least 3200 delay-Doppler taps. Since the TB product
is 1000, there are enough samples to support sparse taps, but not the dense tap placement. Note that the
real delays and Dopplers are randomized versions of the design values, with the random displacements sized

to % in delay and % i Doppler.
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7. CONCLUSIONS

We examined four techniques for designing sparse layouts of delay-Doppler taps to support
adaptive beamforming with distributed arrays. Delay-Doppler tap placement is a natural wideband
extension of the layout of antenna elements for narrowband adaptive beamforming. For distributed
arrays, tap placement is used to compensate for the large variations in delay and Doppler seen
by each sensor for each signal. Delay and Doppler shifts applied to the sensors are used to align
cochannel signals in a manner that supports adaptive beamforming, which minimizes interference
and equalizes a desired signal.

Three of the tap-placement techniques investigated, greedy mutual information maximization,
algebraic zero-forcing, and compressive sensing, are used to provide examples of tap layout and
beamforming performance. The fourth technique, fraction-free Gaussian elimination is described
and illustrated in detail for a simple, but useful example. The performance of all of the tap layouts
can be evaluated for Gaussian signals using statistics developed here.

The tap placement techniques treated have different strengths and weaknesses with regard
to computational challenges, extensibility to large problems, and flexibility. The algebraic zero-
forcing techniques are the most flexible in that they provide a description of all tap patterns that
support cancellation of interference as well as equalization of a desired signal. Algebraic techniques
are also the most difficult to execute efficiently. Compressive sensing can also provide zero-forcing
solutions, without as much of a computational challenge. However, compressive sensing provides
little control over the form of the solutions and does not provide the nonsparse solutions that
are generally associated with equalization. Maximizing mutual information in a greedy manner is
the most extensible of all the techniques, but does not offer any performance guarantees for the
interference environments that we care about. Nevertheless, all of the algorithms we treat provide
sparse tap layouts that offer good performance in challenging environments involving large delay
and Doppler spreads.
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