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EXECUTIVE SUMMARY 
 

Introduction:  This report provides a quantitative assessment and comparison of 
the biophysical properties of the Joint Service Lightweight Integrated Suit Technology 
(JSLIST) Chemical Biological (CB) Protective suit (JSLSIT); the Tactical Advanced 
Threat Protective Ensemble (TATPE) Chemical Biological (CB) Protective suit (TATPE); 
the JSLIST CB suit plus the Improved Outer Tactical Vest (IOTV) body armor with front, 
back and side plates (JSLIST IOTV); and the TATPE CB suit plus the IOTV body armor 
with front, back and side plates (TATPE IOTV).  This work provides quantitative 
comparisons of the thermal properties of these four ensembles as well as predicted 
human thermal responses for each of them at five work intensities and in three 
environmental conditions.  Methods:  Standard tests for the thermal and evaporative 
resistances (Rt and Ret) were conducted (ASTM F1291-16 & ASTM F2370-16) for four 
ensembles.  Modeling methods were used to make predictions of human responses for 
three work intensities (120 (Rest), 150, 250, 350, and 425 W) in three environmental 
conditions, desert (48.89°C; 20% RH), jungle (35°C; 75% RH), and temperate (25°C; 
50% RH). Results: Biophysical testing found increased thermal insulation (clo) and 
slight change in evaporative potential (im/clo) for each additional level of clothing, 
JSLIST (1.76 clo, 0.18 im/clo), JSLIST with IOTV (2.07 clo, 0.15 im/clo), TATPE (1.30 
clo, 0.04 im/clo), TATPE with IOTV (1.69 clo, 0.05 im/clo) at 0.4 m•s-1 wind speeds.  
Predicted maximal work times were reduced for each level of ensemble based on work 
intensity and environmental condition. 
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INTRODUCTION 
 

Personal protective clothing and equipment (PPE) are an essential part of 
military operational equipment.  Chemical, biological, radiological, and nuclear (CBRN) 
PPE are designed to provide individual protection from CBRN threats; while body armor 
PPE are designed to increase survivability from ballistic threats.  The increased weight 
and design of these systems compromise mobility, agility, situational awareness, and 
impede heat loss/dissipation [1-5].  Developing systems that optimize these protective 
elements while minimizing impediments is a top goal of material developers. 
 
 Humans regulate body by generating or dissipating heat.  Thermoregulatory 
balance or storage (S) is determined by heat generation (via natural metabolic heat 
production or from external work (M and W) and the four heat dissipation pathways - 
radiation (R), convection (C), conduction (K), and evaporation (E).  The heat balance 
equation is expressed as: 

 

𝑆 =  𝑀 ± 𝑊 ± 𝑅 ± 𝐶 ± 𝐾 − 𝐸 [W/m2]  
 

The balance of heat loss and gained translates to decreases or increases in body 
temperature.  The protective features of PPE add insulation and vapor impermeability to 
the garment, which impede heat loss (Figure 1) [5].  Newer designs attempt to achieve 
a balance between chemical and ballistic protection and the imposed insulative and 
vapor impermeability to create equipment suitable for law enforcement [6-7], military [8], 
and healthcare responder [9-11] work situations; but design improvements are still 
needed to optimize performance capabilities.   
 
Figure 1. Heat exchange in typical clothing ensembles compared to personal protective 

ensembles where routes of heat loss are restricted [5] 

 
This report provides a quantitative assessment of the biophysical properties of 

the Joint Service Lightweight Integrated Suit Technology (JSLIST) Chemical Biological 
(CB) Protective suit; the JSLIST plus the Improved Outer Tactical Vest (IOTV) body 
armor with front, back and side plates; the Tactical Advanced Threat Protective 
Ensemble (TATPE) CB suit; and the TATPE CB suit plus the IOTV body armor.  This 
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work also provides quantitative comparisons of the thermal properties of these four 
ensembles as well as predicted human thermal responses when worn at five work 
intensities (120 (Rest), 150, 250, 350, and 425W) and in three environmental conditions 
representing desert (hot – dry), jungle (hot – humid), and temperate conditions. 

 

METHODS 
 

Standard thermal manikin assessments were conducted for three ensembles.  
These biophysical properties were then entered into a thermoregulatory model to make 
predictions for maximal work times in various environments at different work intensities. 

 
Biophysical Manikin Tests 
 

Testing was conducted using a 20-zone sweating thermal manikin (Thermetrics, 
Seattle, WA http://www.thermetrics.com/) located in a climatically controlled 
environmental chamber (USARIEM, Natick, MA, room 232C).  

Standard biophysical assessments for the thermal and evaporative resistances 
(Rt and Ret) were conducted (ASTM F1291-16 & ASTM F2370-16) [12-13] for three 
ensembles.  These values of (Rt and Ret) were converted to total insulation (clo), a 
permeability index (im) [14-16].  A ratio of clo and im (im/clo) is used as a measure of the 
ensembles evaporative potential [14-16].  Testing for Rt and Ret measurements were 
conducted at three wind velocities (V) to enable the calculation of coefficient (gamma) 
values (g) to describe the change in insulation and evaporative potential with increasing 
wind speeds [5,17-18]. 

 
Ensemble Details 
 

1) JSLIST:  JSLIST CB suit over standard issue cotton briefs, wicking t-shirt, and 
cotton socks; M50 CB mask without hood; JB1GU CB gloves; AFS CB socks; 
and desert tan suede combat boots (Figure 2a). 
 

2) JSLIST IOTV:  JSLIST CB suit over standard issue cotton briefs, wicking t-shirt, 
and cotton socks; IOTV with front back and side plates; ACH; M50 CB mask 
without hood; JB1GU CB gloves; AFS CB socks; and desert tan suede combat 
boots (Figure 2b). 
 

3) TATPE:  TATPE CB suit over nude manikin; ACH, Cloutier CB gloves, M50 CB 
mask, and GORE CB tan suede combat boots (Figure 3a). 
 

4) TATPE IOTV:  TATPE CB suit over nude manikin; IOTV with front back and side 
plates; ACH; Cloutier CB gloves; SCBA TATPE Pack; M50 CB mask; and GORE 
CB tan suede combat boots (Figure 3b). 

 
 

http://www.thermetrics.com/
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Figure 2.  Thermal manikin wearing the JSLIST (a) and JSLIST with IOTV (b). 

  
 

Figure 3.  Thermal manikin wearing the TATPE (a) and TATPE with IOTV (b). 

  
 

Predictive Modeling 
 

Modeling and simulation of predicted human responses were conducted using 
USARIEM’s Heat Strain Decision Aid (HSDA) [19-22].  The c code variant of HSDA 
(HSDAC, version 8) was used to make predictions in three environmental conditions: 
Desert (48.89°C; 20% RH), Jungle (35°C; 75% RH), and Temperate (25°C; 50% RH).  
For each of these environments, the model was run at three working metabolic rates:  
Very Light (150 W), Light (250 W), and Moderate (425 W).  Additionally, minute-by-
minute predictions of core body temperature rise were modeled using a version of 

a b 

a b 
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HSDA in mathematical long-form [19] for each of the above environmental conditions 
while the simulated Soldier was walking at approximately 3.5mph (1.34m•s-1) (350W) 
and while at rest (120W). 
 
Modeling assumptions:  A ‘Standard male’ was used for each simulation, and all 
modeling assumed the conditions of full sun and 1.0 m•s-1 wind speed, with the wearer 
at normal hydration (-1.24%), 12 days of heat acclimation, and utilizing a standard 
man (176 cm height, 76 kg weight, and 1.9 m2 surface area).  The c code model was 
used to predict a one-time maximum work duration (minutes) (based on the time for 
core temperature to reach 39°C), for a maximum of 300 minutes; while minute-by-
minute predictions of core temperature rise are for 120 minutes. 

 

RESULTS 
 
Biophysical Assessments 
 

The total thermal insulation (clo) and evaporative potential (im/clo) for each 
configuration measured at different wind velocities are shown in Figures 4 and 5 as well 
as in Table 1.  Testing showed the JSLIST configurations have a higher thermal 
insulation (clo) compared to the TATPE configurations (Figure 4); where higher clo 
values indicate more dry heat will be retained within the clothing.  However, testing 
showed the JSLIST configurations also had higher evaporative potential (im/clo) values 
than the TATPE configurations (Figure 5); where they are allow for more evaporative 
heat exchange through the ensemble (e.g., from sweat). 
 

Figure 4.  Total thermal insulation (clo) for the 4 ensemble configurations.  
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Figure 5.  Evaporative potential (im/clo) for the 4 ensemble configurations. 

 
 
Table 1. Total thermal insulation (clo) and evaporative potential (im/clo) at 1.0 m•s-1 and 

0.4 m•s-1 wind speeds for 4 ensembles tested. 
 

 0.4 m•s-1 Wind (Still air) 1.0 m•s-1 Wind 

 clo im /clo clo im /clo 

JSLIST 1.761 0.185 1.552 0.216 

JSLIST IOTV 2.069 0.150 1.764 0.179 

TATPE 1.547 0.033 1.299 0.044 

TATPE IOTV 2.041 0.040 1.690 0.052 

Note: lower clo = less thermal resistance, higher im/clo = better evaporative potential. 
 

The added thermal burden imposed by body armor is of significant interest to the 
military [23-27].  This is of particular interest in CB operations because of the already 
high vapor impermeable nature of these clothing ensembles.  Table 2 presents the 
relative impact of wearing body armor over JSLIST and TATPE on heat transfer 
resistance and evaporative potential. 
 
Predictive Modeling 

 
Table 3 shows the predicted results for maximal work time (minutes), based on 

the time for core body temperature to reach 39°C.  Figures 6 – 9 show the predicted 
core body temperature rise for each clothing configuration during work (350W) in each 
environmental condition (desert, jungle, and temperate).  From these figures minor 
(expected) differences in increased rate of rise in core body temperature can be 
observed in the JSLIST and JSLIST IOTV ensembles within each environment (Figures 
6-7). 
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Table 2.  Predicted Results for One Time Maximum Work Duration in Minutes for core 
temperature to reach 39°C, for a maximum of 300 minutes. 

  
 

 Ta (°C) RH% 
Work 

(watts) 
Max Work (min) 

Time to reach 39°C 

JSLIST 

Desert 48.89 20 

150 101 

250 58 

425 35 

Jungle 35.00 75 

150 161 

250 65 

425 38 

Temperate 25.00 50 

150 300 

250 300 

425 60 

JSLIST 
IOTV 

Desert 48.89 20 

150 100 

250 57 

425 35 

Jungle 35.00 75 

150 152 

250 64 

425 37 

Temperate 25.00 50 

150 300 

250 300 

425 55 

TATPE 

Desert 48.89 20 

150 52 

250 37 

425 21 

Jungle 35.00 75 

150 79 

250 51 

425 32 

Temperate 25.00 50 

150 300 

250 80 

425 42 

TATPE 
IOTV 

Desert 48.89 20 

150 60 

250 42 

425 25 

Jungle 35.00 75 

150 89 

250 54 

425 33 

Temperate 25.00 50 

150 300 

250 81 

425 42 
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Figure 6.  Predicted core body temperature rise wearing JSLIST in jungle, desert, and 
temperate conditions working at 350W. 

 
 

Figure 7.  Predicted core body temperature rise wearing JSLIST with IOTV in jungle, 
desert, and temperate conditions working at 350W. 

 
 
In contrast to the JSLIST expected differences, we see a steep increase in the 

rate of rise for the TATPE and TATPE IOTV ensembles in response to desert conditions 
(Figures 8-9).  This steep increase in the TATPE compared to the JSLIST ensembles 
can be directly contributed to the lower im/clo values (worse) in the TATPE 
configurations. 
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Figure 8.  Predicted core body temperature rise wearing TATPE in jungle, desert, and 

temperate conditions working at 350W. 

 
 

Figure 9.  Predicted core body temperature rise wearing TATPE with IOTV in jungle, 
desert, and temperate conditions working at 350W. 
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seen in in jungle conditions (Figure 10); while slightly more can be observed in 
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temperate conditions (Figure 12).  More pronounced differences can be observed from 
working in desert conditions (Figure 11). 
 
Figure 10.  Predicted core body temperature rise in jungle conditions working at 350W. 
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Figure 11.  Predicted core body temperature rise in desert conditions working at 350W. 
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Figure 12.  Predicted core body temperature rise in temperate conditions working at 
350W. 

 

 

 
 
 

Figures 13-14 show predicted increases in core body temperatures in response 
to environmental conditions while at rest.  Figure 13 shows in a side-by-side comparison 
of JSLIST and TATPE responses to rest in each environment; while Figure 14 shows 
this same comparison with the addition of IOTV.  Figures 13 and 14 both show that at 
rest there is a steeper rate of rise in core body temperature wearing the TATPE. 
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Figure 13.  Predicted core body temperature rise at rest (120W) in jungle, desert, and 

temperate conditions for JSLIST and TATPE ensembles. 
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Figure 14.  Predicted core body temperature rise at rest (120W) in jungle, desert, and 

temperate conditions for JSLIST IOTV and TATPE IOTV ensembles. 
 

 

 

DISCUSSION 
 

Hazmat suits are garments worn to protect from hazardous materials including 
chemicals, biological agents, and radioactive materials. The JSLIST is the sole hazmat 
suit used by all military services for both combat and cleanup operations. The TATPE 
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selectable permeable layer plus a carbon layer that both filters and absorbs 
contaminants while allowing for water vapor permeability. The TATPE suit is an 
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worn continuously for 45 days, and can be laundered six times. The TATPE suit can be 
reused up to ten times, if not damaged exposed or contaminated and laundered twice. 
 

To evaluate the two suits worn alone or with body armor, a combination of 
biophysical testing and mathematical modeling were used to provide quantitative 
comparisons of these ensemble configurations.  A primary finding is that the TATPE 
possess much lower vapor permeability, and this property is predicted to impose a 
greater thermal burden in temperate temperatures with moderate humidity and when 
worn in hot temperatures with low humidity; both situations where sweat evaporation is 
the primary means of dissipating body heat.  The effect was less apparent in the high 
humidity jungle condition where differences in vapor permeability would be less of a 
liability.  The TATPE is also predicted to substantially shorten time to reach 39°C.  At 
250W, maximal work time was shortened 21-73% compared to JSLIST.  Likewise, at 
425W, maximal work time was 16-40% shorter.  At both work intensities the magnitude 
of impairment was greatest in the lower humidity conditions.   
 

This report provides measured and predicted impacts from the addition of body 
armor (IOTV).  The biophysical measures show an increase in thermal insulation (clo) 
for both the JSLIST (3.2%) and TATPE (6.5%) when IOTV is added to the clothing 
worn.  The addition of body armor to the JSLIST decreased evaporative potential 
(im/clo) (4.7%).  In contrast, the addition of body armor to the TATPE slightly increased 
evaporative potential (-4.5%).  Previous work has shown that the change in air layer 
(i.e., space between layers) caused by increasing layers or addition of body armor can 
cause a decrease in insulation due to the shrinking of total air volume [28].  However, 
this change creates less predictable changes in permeability.  The modest changes in 
vapor permeability in the two conditions modeled, had negligible effects when translated 
to the predicted physiological responses to graded increases in ambient temperature, or 
workload.  The addition of body armor to JSLIST produced essentially equivalent 
thermal strain as the ambient temperatures and humidity were manipulated.  Likewise, 
IOTV added to TATPE appeared to have minimal impact when worn in the jungle and 
temperate conditions (Figures 10-12), with modest decrease in thermal strain in desert 
conditions (Figure 11). 
 

This effort combined thermal manikin assessments with predictive modeling to 
provide a quantitative and cost effective approach to the assessment of clothing 
ensembles.  Manikin assessments provide direct measures that can be used for 
comparisons; while predictive modeling offers a simulated response to the human 
wearer.  While the underlying algorithms used for the modeling have been validated or 
developed using appropriate scientific design, there are limitations to the accuracy of 
the predictive simulations.  As such, in order to fully capture the impact on human 
wearers, human factors assessments and human field studies should still be considered 
a required test for completely studying the influences of clothing systems.  
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