ARL-TR-8937 e APR 2020

Hands-on Cybersecurity Studies:
Ransomware Key Recovery

by Jaime C Acosta, Adrian J Belmontes, and Salamah Salamah

Approved for public release; distribution is unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-8937 e APR 2020

Z DEVCOM

Hands-on Cybersecurity Studies:
Ransomware Key Recovery

Jaime C Acosta
Computational and Information Sciences Directorate, CCDC Army Research
Laboratory

Adrian J Belmontes and Salamah Salamah
University of Texas at El Paso

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE oo Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
April 2020 Technical Report August 2019 — March 2020
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Hands-on Cybersecurity Studies: Ransomware Key Recovery

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Jaime C Acosta, Adrian J Belmontes, and Salamah Salamah

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER
CCDC Army Research Laboratory
ATTN: FCDD-RLC-ND ARL-TR-8937

White Sands Missile Range, NM 88002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Ransomware is a type of malicious software that denies access to a computer system or files until a ransom is paid, usually in
the form of cryptocurrency. It is typically spread through phishing emails or through websites where the software is
downloaded without the user knowing; it can also spread by taking advantage of vulnerabilities in software running on the
victim’s devices. This report presents a hands-on exercise that demonstrates the effects of ransomware on vulnerable machines
and guides participants through a set of steps that will regenerate the key required to decrypt the ransomed data.

15. SUBJECT TERMS
ransomware, WannaCry, key recovery, encryption, hands-on cybersecurity, CyberRIG

17. LIMITATION | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF OF Jaime C
ABSTRACT PAGES aime C Acosta
a. REPORT b. ABSTRACT c. THIS PAGE UU 26 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified (575) 993-2375

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

1

Contents

List of Figures

List of Tables

1. Introduction

2. Setup and Configuration
3. Learning Objectives

4. Methodology

5. Exercise
5.1 Activity 1: Dynamic Analysis of the Process Memory

5.2 Activity 2: Extracting Encryption Parameters from the Memory
Dump

5.3 Activity 3: Calculating the Missing Encryption Values
5.4 Activity 4: Regenerate the Private Key
5.5 Activity 5: Decrypting Files Using the Regenerated Private Key

6. Conclusion
7. References
List of Symbols, Abbreviations, and Acronyms

Distribution List

i1

12
14
16

17

18

19

20

List of Figures

Fig. 1 WannaCry ransomware indiCatorccccveeerveeerieeeiieeeieeesieeesveeenns 5
Fig. 2 Processes WINAOWoeiuieiuiiiiiiiieiiieiie et 5
Fig. 3 Dumping Process WindOWwcccceeiieriiiiiienieeieenie et 6
Fig. 4 Path to dump file.......cooovieiiiiiiieiee e 6
Fig. 5 Public key (color-coded) consists of header (in red), exponent (in
yellow), and modulus (in bIue)c.cccceevvieiiiniiieiecieeeee e, 7
Fig. 6 Debugger attach t0 PrOCESSccvvierveeerieeeiiieeieeeree e eeeeevreeeree e 8
Fig. 7 Windows Restart screenshot...........c.oocveeviiiiiiiiiiiiiinieieeeeeee, 8
Fig. 8 Format with color-coded values............ccceeiiiiiiniiiiiieniceieee 10
Fig. 9 Encryption numbers in DMP file.........cccceviiiiiiiniiiiniiiieieieee 11
Fig. 10 Prime 1 and prime 2 placementccceeoveeevieeerieennieeeiieeeieeeeeeeenn 13
Fig. 11 ~ Public exponent placementccceevveeriierieenieenieeieeie e eee e 13
Fig. 12 Special header entry........ccccveeeiiieiiieciie e 14
Fig. 13 K@Y @NIY .ottt et 15
Fig. 14 Key StUCIUIEeoiuiiiiiiiiieie et 16
Fig. 15 DeCrypt DULION ...c..eeeiiiiieiiecieee et 16

List of Tables

Table I KEY SIUCLUICc.eeiiiieiieiie ettt 9
Table 2 Key structure values found up to this point..........cccceevverciienienneennen. 12
Table 3 Key generation Statls.........ccc.eeveeeiieriierieenieeeteeieesreeieeeveeneesveeeeas 15

v

1. Introduction

Ransomware is a type of malicious software that denies access to a computer
system or files until a ransom is paid, usually in the form of cryptocurrency. It is
typically spread through phishing emails or through websites where the software is
downloaded without the user knowing; it can also spread by taking advantage of
vulnerabilities in software running on the victim’s devices. This report presents a
hands-on exercise that demonstrates the effects of ransomware on vulnerable
machines and guides participants through the steps that will regenerate the key
required to decrypt the ransomed data.

When the WannaCry ransomware crypto worm spread worldwide in 2017,
consumers and large corporations felt the impact.! Critical data were locked away
and made inaccessible to owners until a ransom was paid in the form of anonymous
currency known as bitcoin. Over 200,000 victims were affected by this attack,
including the National Health Service hospitals in England and Scotland. Even
though a kill switch was found and implemented, variants of this malware continue
to arise.

The variant that we reference in this report uses the Rivest, Shamir, and Adleman
(RSA) encryption method? to lock (ransom) files. This method uses a pair of keys,
known as public and private keys.? The former is used to encrypt while the latter is
used to decrypt data. The malware removes the private key from the victim’s
machine and provides it only after a ransom is paid.

This report demonstrates how a machine becomes infected, allowing participants
to experience the effects of the malware. Participants are then guided through the
process of identifying and recovering data that is inadvertently left behind by the
malware after encrypting files. The data are used to regenerate the private key, and
decrypt and regain access to the ransomed files. This hands-on exercise is related
to a previous exercise that we developed, showing how to analyze and implement
a kill switch for the WannaCry ransomware.* It is based on the program logic from
the wanakiwi® software, developed by Benjamin Delpy and made available on
GitHub.

2. Setup and Configuration

The hands-on exercise consists of two virtual machines: one is used to infect a
machine and create a memory dump, and the other is used to analyze the memory
dump and public key to look for prime numbers and construct a private key. The
setup configuration consists of the following software elements:

« VirtualBox (Version 6.0)

« Two Windows 7 Home Basic 32-bit virtual machines
« LibreOffice 6.4.a

« IDA Pro Free (Version 5.0)

. HxD Hex Editor (Version 2.3.0.0)

« WannaCry malware variant with MD5 hash:
ed0lebfbc9ebSbbeas545af4d01bf5f1071661840480439c6eS5babe8e080e41aa

. RSA Key Generator®
. Little/Big Endian Converter

The first machine, named Ransomed, was set up with IDA Pro Free, HxD Hex
Editor, and the WannaCry variant. The second machine, named MemoryAnalysis,
was set up with LibreOffice, HxD Hex Editor, and the RSA Key Generator. In
addition, the MemoryAnalysis machine was updated to include the WannaCry
patch to prevent the malware from infecting the machine. Finally, a shared folder
was set up to allow file transfers between the two machines.

The entire exercise runs on the US Army Combat Capabilities Development
Command (CCDC) Army Research Laboratory (ARL) South Cyber Rapid
Innovation Group (CyberRIG) Collaborative Innovation Testbed (CIT), which
provides an isolated environment, ensuring that all the environmental artifacts are
segregated from any real systems.

3. Learning Objectives

This exercise will teach participants the following points:

« Participants will have a better understating of how ransomware works,
specifically the WannaCry crypto worm. The effects of the ransomware on
the sandbox environment should emphasize the importance of having files
and other data backed up.

« Participants will gain experience in creating memory dumps and extracting
necessary data by examining memory using the IDA Pro software. Working
in a timely manner to avoid losing data in memory is important.

« Participants will gain a better understand of RSA encryption. They will learn
how a private key is constructed as they calculate all of the necessary values
and constructs using the HxD Hex Editor software and RSA Key Generator.

4. Methodology

In creating this exercise, we started by downloading Benjamin Delpy’s wanakiwi
software onto a virtual machine with the Windows 7 32-bit Operating System.
According to the software documentation®, this version of Windows is the most
recent platform on which wanakiwi was written to work correctly. We found that
the software works on both Windows 7 32-bit Pro and Home versions. We later
realized that the wanakiwi software does not work if additional updates are installed
(including those required to recompile the wanakiwi software). Therefore, we
created two separate virtual machines: MemoryAnalysis and Ransomed.

To fully understand the inner workings of the software, we traced through the
source code. We installed the latest software updates and patches on the
MemoryAnalysis machine as well as the Visual Studio integrated development
environment. The Ransomed machine was left untouched, except for the inclusion
of the wanakiwi executable binary.

We modified the source code to skip some of the longer procedures and to narrow
down where, in memory, the prime numbers are placed when the ransomware
infects a machine. The Visual Studio debugger was extremely helpful in tracing
through the statements that traversed memory.

To support this interactive exercise, we chose IDA Pro because it is an ideal tool to
help participants replicate the logical steps in wanakiwi. Using the prime numbers
found with wanakiwi, IDA Pro was able to attach to the ransomware process and
show their location in the virtual address space.

We encountered slight differences when comparing the wanakiwi logic and the
standard RSA algorithm: the key formatting within the file that stores the key values
was not the same. The ransomware used an altered form, with parameters in a
different order and an additional value—a magic number that seemed to indicate a
signature for the malware key that existed as a precursor to the standard values. To
calculate the key values, we used an RSA Key Generator website. Values in
memory are represented in little-endian format, which is expected by the
ransomware. However, the RSA Key Generator expected values in big-endian
format, so we developed a small application to handle these conversions.

The final step was to understand how the prime numbers could be found in memory
without relying on the wanakiwi application. Wanakiwi uses a brute force
approach—it iterates through memory and attempts to compute sequences of bytes
and then determines if the values are prime. This was computationally expensive
and time consuming, so we looked for another way. We first attempted to find the
entire private key in memory using IDA Pro, but this did not work. We noticed that

after infection, a public key is placed on the user's desktop. Looking deeper into
key structure, we searched memory for the individual values. Using the modulus,
which is a product of the two prime numbers, yielded success. Consequently, the
prime numbers were always only a few bytes away from the modulus.

To address the issue of timing and overwriting key in-memory values, participants
must create a nonvolatile image immediately after infection. We task participants
with creating a memory dump of the ransomware process. To demonstrate the
importance of this task, participants must then reboot their machines; they will find
that the values required for recreating the keys are no longer resident in memory or
anywhere on their machine.

5. Exercise

This exercise is separated into five main activities:
1) Infect one machine and take a memory dump of the malware process.
2) Analyze the memory dump to recover the two prime numbers.
3) Calculate the remaining variables needed to create a private key.
4) Combine all variables to create a private key.
5) Decrypt the infected machine using the generated key.

The exercise requires about 1.5-2 h to complete.

5.1 Activity 1: Dynamic Analysis of the Process Memory

Run the WannaCry malware in your sandbox and observe its behavior on the
machine.

1) Start the Ransomed computer by clicking the corresponding link in your
browser. You should see a Windows desktop. If prompted, log in using the
following credentials:

Username: Reversing

Password: malware

2) Open WannaCry by double-clicking this filc Isssiss®l on the desktop. Click
No on any prompts that may come up.

3) The program will execute and finish once you receive the message shown
in Fig. 1.

(% Wena Decrpttr 2 .
Qoops, your files have been encrypted! i I
‘What Happened to My Computer? :
o —

‘Your important files are encrypted.

| l Many of your documents, photos, videos, databases and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without

our decryption service.
yment wi 5 o
Payment will be raised on _| KNS ETRININS My Files?
62017 1511314 Sure. We guarantee that vou can recover all vour files safely and easily. But you have
not so enough time.
You can decrypt some of your files for free. Try now by clicking =Decrypt>.
But if vou want to decrypt all vour files, vou need to pay.
You only have 3 days to submit the payment. After that the price will be doubled.
Also, if yvou don't pay in 7 days, vou won't be able to recover vour files forever.
We will have free events for users who are so poor that they couldn’t pay in & months.

Your files will be lost on

How Do [Pay?
Payment is accepted in Bitcoin only. For more information, click <About bitcoin>.
Please check the current price of Bitcoin and buy some bitcoins, For more information,
click <How to buy bitcoins>.
And send the correct amount to the address specified in this window,

payment, click <Check Payment>. Best time to check: 9:00am - 11:00am

LT PPN YT TN W P Py

52002017 15:13:14

ime Left

Send $300 worth of bitcoin to this address:

13AM4VIW2dhxYgXeQepoHkHSQuyBNgaEbad

Fig.1 WannaCry ransomware indicator

Be sure to create a memory dump of the malware process to analyze later. This has
to be done as soon as possible to ensure the ransomware and the operating system
do not remove important artifacts that are essential for undoing the chaos.

4) Open Task Manager by clicking the Windows start key and searching for
Task Manager. Select View running processes with Task Manager.

5) Click the Processes tab and then Show processes from all users. Find the
WannaCry process (it starts with ed01ebfbc...). See Fig. 2.

OWTIT.EXE USET T v, T90 R DESRIOP V.-
ed01ebfbc9eb5... Userl 00 14,064 K DiskPart
ovnloror ayp Llcard a0 22 01A K Windowe E

Fig.2 Processes window

6) Right-click and select Create Dump File. You should see the screen shown
in Fig. 3.

Dumping Process E

The file has been successfully created.

The file is located at:

CUsers\User1'\AppData\LocaliTemp
\ed01ebfbcO9eb5bbea545af4d01bf5f10716618404580439c6e5b

abedel80ed4 1aa. DMP

Fig.3 Dumping Process window

7) Open the File Explorer icon “&ii! and enter the path in the path bar as
shown in Fig. 4.

=]}
@ Ov | S C:\Users\Userl\AppData\Local\Temp| v |‘7 || Search Temp

Organize ~ Open Share with ~ New folder == - [

.7 Favorites = Name

M Desktop = DMI3F1C.tmp

1% Downloads DMI3F6B.tmp

=i Recent Places ed0lebfbc9eb5bbea545af4d01bf5{1071661...

FXSAPIDebuglogFile

=" - |l | I B s inattand

Fig.4 Path to dump file

8) Drag and drop the memory dump file to the desktop.

9) Copy a few files to a shared folder in order to analyze them on a separate
machine. Double-click the folder on the desktop named Shared Folder.

10) Locate the public key file named 00000000.pky on the desktop. Copy both
this public key file and the memory dump file to the shared folder.

11) Open HxD Hex Editor by double-clicking the EI icon on the desktop.
Then click File->Open and select the public key located on the desktop.

The next step is to determine the attacker’s private key, but in order to do so, we
need to look at a few values from the public key. The public key is shown in Fig. 5
and consists of a special header (red), the public exponent (yellow), and the
modulus (blue). Figure 5 is colored to identify components easier. When using
HxD, the components will not be colored.

L L 00000000.pky

0| jp6020000 DOA40GG0 52534131 DOOE00EE ©1000100 S76DAFDB BS@GE76 63CBSBEA § RSAl Wmdep A cAXI
32| 340B1D4E EECOA@I9 6C47BD76 SOD269AC A19A4246 BAGAIAC4 E46B352F 9SESFBIC| |4 NO..TOLGOVP*i"°"8BFNj f&k5/iA"

64| F4A4CASE 1E5331B@ GAOACS48 DGDCEBBT 32B3@26F 997C(9C76 7CFC2OCT 43CE6205||U§ X S51= ts=H:<1dZz odliv|, «CEb

96| 8DA1B7B2 BBDRCFDS 3DEB4DC4 7DBI71F3 8C603BDY 40483464 B61B4496 47020BEE | | ¢°I<a-wy=EMf} qla’;Ye@4dd DAG O
128 | 9FFRGCE2 DDOSZOBC 94206F(2 12465588 2FSBBEB4 GBASFTBS 7BOTSFI7 ZA39EEAZ | |Usl(&i o~ FUa/[e¥he p{ _o+*a0¢
160 | EGZALANG 8BDDASC3 DO7F9S66 AASAE@ZS SA9882B9 2B78D21C 57D@4990 629D59C4 | |E* fas>ey- If™53%XZoCm+x* W-I&baYf
192 | EF5263E1 @59AE998 41027225 9643EDIL 41A4ABDD 89SF7C26 7F201ABD E9C7ID64 | |ORc. BESA“r¥ACIEAS®ra_1& ¢Ewidd
224 BSZA4FBA 440E3FC2 FOASTESE SCCADA29 9FO2B4AD 2CFB74D4 2CS9B76B C@33SF7E | |p*04D 7-e®-V\ /)0i¥=, t*,YEk;3_~
256| AB3628D9 S4F3400B 4A73ISDSF 4DAFD468 DEIBTEBA “6CYTO® Jsg_MB*hydw[

Fig.5 Public key (color-coded) consists of header (in red), exponent (in yellow), and
modulus (in blue)

Note an issue with the values: they are in reverse order. For example, if we
encounter the eight digits 12 34 56 78, we would need to convert them to the
following: 78 56 34 12. This is a known issue in computing called little versus big
endianness. Consider the public exponent bytes in little endian: 01 00 01 00. The
actual value of these bytes would be 00 01 00 01. The bytes are reversed. Follow
the steps below to notate the correct order of the bytes.

12) Look at your hex editor and identify your public exponent. Write down
your public exponent as displayed in the hex editor.

13) Reverse the bytes from number 12 as described previously and write them
here. (Hint: it should match the previous example.)

14) Look at your hex editor and identify your modulus. What are the first eight
characters (or four bytes) of the modulus, as displayed in the hex editor?

15) Look at your hex editor and identify your modulus. What are the last eight
characters (or four bytes) of the modulus, as displayed in the hex editor?

16) Reverse the bytes from number 15 as described previously and write them
here.

Use IDA Pro to search for a few more numbers that were present in the memory
dump. You will then simulate the effects of restarting the machine in the hopes that
everything will go back to normal.

17) Open up IDA Pro Free by double-clicking the EslidEli&d icon on the desktop.
Then click GO.

18) On the toolbar, click Debugger -> Attach -> Local Windows Debugger.
Then look for the WannaCry process (it starts with ed01ebfbc...) and click
OK (Fig. 6).

€® Choose process to attach to E@ |

1D Wame -
1020 diihost exe
1716 rnsdic.exe
1663 Searchindexer.exe
3306 svchost exe
3396 SppsYe.exe

3452 svchostexe

edd1ebfh hbeabd5afAd0Tbfaf1071¢
3562 SearchProtocolHost exe

24785 taskhsvo.exe E
2243 conhost.exe |8
2832 @\anaDecryptor@ exe
4000 taskel ave v
< | e | »
[0]'S] [Cancel | [Help] [Search]
Line 32 of 39

Fig. 6 Debugger attach to process

19) When the main IDA Pro window opens, click the Play icon just below the
toolbar and then click the Pause icon.

20) Now open the search window by clicking Search -> sequence of bytes.
The search window will take a few seconds to open.

21) In the String box, type in your answer for number 16. Make sure Find all
occurrences is selected. How many occurrences did it find?

22)Click the Windows button and select Restart (Fig. 7). Force quit any
processes that are active.

Devices and Printers

Switch user
Log off
Leck

» Al Programs
Restart

Search programs and files P | Sleep

@ -J

Fig.7 Windows Restart screenshot

23) After restarting, run the WannaCry icon on the desktop again.
24) Repeat steps 17-21.

25) How many occurrences did it find this time?

26) Did the number of occurrences change? Write down a few reasons why you
think this is the case.

5.2 Activity 2: Extracting Encryption Parameters from the
Memory Dump

Recall that in the previous activity, you froze a copy of the process data before you
restarted. Now you can look in that image to find all of the values needed to recreate
the decryption key.

Before building the private key, we will take a closer look at the full structure of
the RSA keys. The RSA structure contains several items in addition to the ones you
captured previously; you will need many of these to recreate the private key. The
memory dump will provide us with the two prime numbers, and the rest can be
obtained with a calculator. Table 1 shows the values that make up a private key
structure, and Fig. 8 shows a sample public key with values.

Table 1 Key structure

Variable name in

Name Size RSA equation Color-code
Heading 16 bytes (32 characters) N/A Red
Public Exponent 4 bytes (8 characters) E Yellow
Modulus 256 bytes (512 characters) N Blue
Prime Number 1 128 bytes (256 characters) P Green
Prime Number 2 128 bytes (256 characters) Q Orange
CRT Exponent 1 128 bytes (256 characters) dp Purple
CRT Exponent 2 128 bytes (256 characters) dQ Light Blue
CRT Exponent Coefficient 128 bytes (256 characters) qlnv Black
Private Exponent 256 bytes (512 characters) D Pink

L
@
3z
64
96
128
160
192
224
256
288
320
352
384
416
448
480
512
544
576
608
640
672
704
736
768
860
832
864
896
928
960
992
1024
1056
1088
1120
1152

Signed Int

1) Exit the current Windows machine by clicking the Back button in your

2) Open HxD Hex Editor by double-clicking the EI icon on the desktop.
Then open the public key that you stored in the shared folder

When WannaCry creates the public key, it uses two prime numbers to calculate a
key value. The primes are stored in memory until they are overwritten or cleared.
Creating the dump file in a timely manner decreases the chance of losing that data.

2 00000000.dky

j07020000 ©2A40000 52534132 @O080000 01000100 S76DAFDB BS@GE7@6 63CBSBEA

34@B1DAE EEC9ARI9 6L47BD76
F4AACASE 1ES331B@ QASACS48
EDA1B7B2 BBDACFDE 3DEB4DC4
9FFBEC82 @OB5288C 94206FC2

S@D2E9AC A19A4246 BAGA1ACA E4BB35ZF 95ESFBLC
DeDCEB87 32B3026F 997(9C76 7CFC20C7 43CE6205
7D@971F3 2C6@3BD9 40403464 B61B4496 47020BEE
12465588 2FSBBEB4 GBASF7BS 7B@7SFI7

2A39EEAZ

E62A1AAG BBDDASC3 DA7FIS66 AAGAEQ2S SA9882B9 2B78D21C 57004990 629D59C4

EF5263E1 @59AE998 41027225 9643ED91 41A4ABDD 895F7C26 7F2@1A8D
SCCADAZ9 9F92B4AD 2CFB74D4 2C59B768 CO335F7E

B52A4F8A 440E3FC2 FOABTES6E

AB3628D9 54F34@0B 4A738D5F 4DAFD468 D8IB76BA 6I5BI755 ZA768982
SEAF7FDS 9DB136C1 @AGEES1E 4BEAEAES
5C270FDA 8E620DC18 FFB1F727 BO3ER7SB
2C87BFAC SFSDFC20 BCABSS53 QEB@ABEB A3487AD0

67683627 BEGOGAST T46OFAGE
F6662337 3BB59EAE E279A033
E2CEB1DO @BE83214 ABTF20(6
5B3EB258 BDA46204 @F9BBEGC 6B13AZ2E
426091C8 @@69EZEA 1FB1C1EA
ABBACBS9 36F25133 B7@3BE72
952BEAAZ GALTEES4
86437659 B4AB6441

278B30A1

01397042

EABC2DE6 AD3ACE43 (9CBEC16 496B8206 C4@F3E34
E4QE7DDF QCDFDOC4 @9F3099A COCELCES

E9C79D64

53F38031
D8F4A7BZ
E30759FB

59CEBBFZ BFZA4BEB B4792312 74CB9895

8A2F@953 A7DAZEAB 4324852A 64AC26DA 6381C262

B1AE3461 2BE19B13 BSDSF35F @5C487FA
780ES558
35ED7DC3

©@86E1291 CDFDCBA4 BFOEDIAE @F42842F 693E395A 9@98F397 4C138D24 BES4A49F

132672@D 2DC3A623
CO4471EF 9674083C
E236325C 30B12A16 4984C1D8 @7CCDFAF
04D8B86B E3EFDF12 (7C9422C A438532A
4C62DDC4 427033DF DSAA7966 F67C13F0
20E20F54 A212D112
4A211196 BB52AS7F
95580A1D 438723C3
7DDB406A 49F32A7F
BEBSDFFO 1CA46252

6152EASE

8@4DFCC4 3AB43756

170E3EDD
4FA4C128

397DD4FB 6F@IAA4D
3DDDBOBC BEAB3SFE
B1E17081 B55437FB

F@4@9547 45707004
EABSF1EG
1BFDE11Z 955DDFSE

CADGEA94 825DE489 BOASBOCO ABSB1882

87FFB30D @DF316EC
ZAAC7423 1BZEFD4A F7E41542 958A10E8
C287ACE7 9ECTEA45 41F93A1A
47357EA4 AZBGDAAS
BB173B8C 637AD3E7

little <

195C@EAB

Fig. 8

browser. Start the MemoryAnalysis by clicking on the corresponding link.

(00000000.pky).

17ECOESC 4QB1C161 43@8A4F2 40EABAGF CBAB39EC

CD71D6A4 41EFFD7A DBF7OF1D 1969F@75
FB4ADCOB 90985177 D301376A 6249B931 F37A2B92 4ADA3G30
67E@CSB5S BAZ82852

2EAF82F1 DGEOZ1EA 96D5C237 851AQ@3E3 9510F@32
BD@2ESCC 9EFI4CEF DIDABRFS BC932B4A 94C915BA 955BA400

19E1F@4D 652B7A35 E27262BD 9EE3892C
7DF938BF BDZ6@AAE AABBB32C 370760DD
BFAZBBES 63459E22 AB937BE3 SDIEASFE

7BFC2646 93684(@2 2458EDI7 ED7AEBFA C18F3D9 468CFEBD

393F0F1C @ADD2423 2ECIE@BE ED@4B769

3D4BBOS2 G9Q40ASF BSSOGBSE 7FL80BAZ FD42DF22 BB84EVE2E
DE99A181 784C5730 72ET7676 G5S9E7SFO
1QEAB3E1 G6CDFI35E 3DA49276 1F4@4B42
E299B3C7 (666526A FCO9BZF6 427E3E19 AF767ELB 413A2CC6 90SOBT1F

54977AC9
7T12713E8
21EE4469
C7eAD43D
80331409
7300FC45
FOA3E7EA
57F06006 ABDDAAZE 5CF39B52 BF373575
E7Q54A2F

EEAEZBAE 1394ZAEA 88305100

16428730 61C1B57F EDBCFE69

0 out of 1172 bytes

§ RSAZ Wmey A cAXi

4 NO..161GOVP*i~°8BFNj f¥kS/iA"
U§ X Sle B=H:+<ia2z odlavl, «CEb
¢ I<d-wy=EMf} ql4" ;Yeesds oAG O
iel¢ ai o~ FUa/[e¥he p{ _6*90¢
E* farey- if™BEXZoCm+x* W-I&buYf
ORc- BEQA“r%¥ACIEAS@ra_|& gE«ud
u*0dD 7-w®~V\ /)Ui¥=, t,YIk;3_~
“6(YT0® Jsg_MB*hyovSilou*vacsl 1
gh6'é jWt" "kve 'ux6; fA effdyirs
CFAT 0k, yTEN' sébe TAT'wsd[, Y°
JEt- 2 ® A,d07_¢, ° XS «» IfHz-
[>(X08b delk ¢.¥»ale*Kivy# thot
B'é» i,1 £j4a/ SBC. (30*d"&/cA-b
@ AY6UQ3Y ér'al’tkd4a+-6 p'l_ fé’
i+1¢j ONIa-E=:EC.AL IKC f >4x UX
UCvYd®dA 9pBd }fl fl-f U 6.G hSi}v

n 80°Asea-£ BN/i>9zéoloL § TsU
&r -yf#aRié.pC0: 1In'-70 1 e2
(DgdAt <0 ERo~LO--a-®i+)i- [i[§
,62\0+* INjy Afl@ .&Me+z5,rbna,a,
yak,0f «.B,§85%} 80 & A™k2,7 ">
LbsfBp3f’™yf" | wod[JAcEL"®i{,J0E"

, T¢ - {.&FihL $xiseizi',; 0¥Fa.n
J! AURe AM £:¥7v97A $#..tel Ji
iX Cé#y=K=Ri &_T[Yké ¢ Bfi"aN-~.
}-8310* >>fio°AxLWOrAvvelusToz..
edfle §bRO§;C Iz.1flir=§iv @KBq' E
,0z«AfRj 65" B~> Bv~ A:,88PT 10DL
9}‘ 0 ™Me@iGE}} 0#&T 1*ia=Q «j‘=
=>=°n®5 I 0 +1iC)%d=Ea;q[(g3
+.pAuT7" “. i]AA BY@ajp I1°is |E
a2 01 loa@tjaC §UIijoA19a¢£§j
*°t# . "1°% Bid EWe' 1>™.\D8R 75u
~dao«IEA": Oq+§A0° 2y~ ieuA 1/
G5-§43/€°J< &oQw” 7jbInilz+il/6A
@ ;acz”h N\ “gi=pd((R

Format with color-coded values

(Note: newer machines clear the memory right away.)

3)

4)

5)

6)

Click File -> Open and select the DMP file on the shared folder (it starts

with ed01ebfbc...).

On the toolbar click Search -> Find. Then click the Hex-values tab and

select All for the search directions.

In the search bar, enter your answer from Step 1, number 15 and click

Search all.

Double-click through the occurrences and find the one that contains the

following characters right after the value you searched: 11000110.

10

Now we need to extract a few numbers from the rest of this memory dump. They are

mixed with other numbers, so we will have to skip a few numbers and paste only
what we need into a temporary spreadsheet file named Calculations Template.

7) Open Calculations Template by double-clicking the E=%##8 icon on the

desktop. In the next steps, you will fill in the green and blue cells.

8) Enter you answer from Step 1, number 12 under Public Exponent (little
endian).

9) Go back to the HxD application (Fig. 9; your values). From the end of
modulus (the number you just found), look eight rows up to find the value
from Step 1, number 15. This is the start of the modulus.

10) Highlight the bytes corresponding with the entire modulus (the length of
bytes you select can be seen at the bottom of the application labeled
"Length(d):" make sure it is 256 bytes). Copy and paste the modulus into
the Calculations Template spreadsheet under Modulus (little endian).
See Fig. 9.

vzemo_:-gmqﬁssz DC
start of modulus 0EEF0178 2% "t S797810F

(smne value as 3C31ECE3 35B0ODADD
AGEEETOA SSAGFDOE
Step 1 number szecppgg 72 BDRAE113
14) TFC10ET3A 1F 4DFES5L4
8F229EBE& EE 2 2Al309CB

06 A47C923E SACL1D9735 797920C3 9607CE2E
C 1E2F7Cl% F DEB5S6EFC
£48584C1 E17CéBAS
E EDCSEQ4D C4A2CCEC
L 04767FES & 62E4750R
L 40E7527 1CF307EB
13 9BD04720

E 4980DF6

peeRaas 7 3C DSE15425 DC Z 0D1B8162 Z D67 E065013C 03
(BEeERr)1 1000110 SFSAOEOE 31ASB4B7 FOA2E968 21E6269B FS549ADEF 2C
/‘ - l \ start of first
e B -
(from Step 1, prime number

number 15)

Fig.9 Encryption numbers in DMP file

11) After the end of the modulus, skip 16 characters (8 bytes); the next 256
characters (128 bytes) make up the first prime number (Fig. 9). Highlight
the bytes corresponding with the first prime number (the length of bytes you
select can be seen at the bottom of the application—make sure it is 128
bytes) and then copy and paste them into the spreadsheet under Prime 1
(little endian).

12) After the first prime number, skip another 16 characters (8 bytes); the next
256 characters (128 bytes) make up the second prime number. Highlight
and copy the second prime number and place it under Prime 2 (little
endian). The length of bytes you select can be seen at the bottom of the
HxD application—make sure it is 128.

11

We have found all of the values we need from our memory dump. The next step is
to get the reverse of some of the numbers (or the big endian version) for the

modulus and primes.

13) Open the Endian Converter by double-clicking the

icon on the

desktop. From the Calculations Template copy over the values under
Modulus (little endian), click Convert and then paste the result back into
the Calculations Template under Modulus (big endian).

If the converter prompts you that your number is not even, make sure there is no
space at the end. If there is no space, add a 0 (zero) to the start of your number and

try again.

14) Repeat the conversion process from number 13 for all of the little-endian

values in your spreadsheet (primes, public exponent, special header).
(Hint: Public Exponent [big endian] should match your answer from Step

1, number 13.)

5.3 Activity 3: Calculating the Missing Encryption Values

Table 2 shows the mapping between values and their variable name in RSA

equations.
Table 2 Key structure values found up to this point
Variable name in
Name RSA equation Status
Heading N/A Found
Public Exponent e Found
Modulus n Found
Prime Number 1 p Found
Prime Number 2 q Found
CRT Exponent 1 dp Need to Calc
CRT Exponent 2 dQ Need to Calc
CRT Exponent Coefficient qlnv Need to Calc
Private Exponent d Need to Calc

You will need to calculate a few more numbers using the script located on your

desktop.

12

1) Open the RSA key generation script by double-clicking the sl
the desktop. Scroll down until you see the Imput online RSA key
generation form.

2) Copy and paste the PRIME 1 (big endian) and PRIME 2 (big endian) from
Calculations Template into the boxes (order does not matter; see Fig. 10).

PRIME 1 goes here

Input online RSA key generation:

Step 1: Enter or generate prime numbers

Generate prime numbers (p.q).
The key size 5"

Prime number (p) is a *:

>
(big endian)
Enter prime number (p)”
Prime number (g)isa*:
PRIME 2 goeshere | ——»
(big endian)

Enter prime number (q)*

i@ 1024 v |bits

= OF =

i@ | hexadecimal

i@ | hexadacimal

Auto generate prime number p and q

v Bitsize: 0

v Bitsize: 0

Fig. 10 Prime 1 and prime 2 placement

3) Scroll down further until you see Step 2: Enter public exponent. Enter

your value for the public exponent (big endian) from the Calculations
Template, and then click on the Generate Keys button (Fig. 11).

Enter public
exponent here
(big endian)

Step 2: Enter public exponent

Public exponent (g} isa ™ (@ | hexadecimal
__p |eeerese1
| Public exponent(el™ (7]

Press here to generate
all encryption
parameters (including
private key!)

L
Step 3: Generate public / private keys based on prime numbers and exponent ‘,/

Convert generated keys to * @ | hexadecimal

' Generate keys '
e —

Fig. 11 Public exponent placement

13

4) Scroll down and verify that the modulus matches what you have in your
spreadsheet.

5) Look through the form and copy the private exponent (d) into the private
exponent (big endian) on your spreadsheet. Continue through and also
copy into the spreadsheet the big endian values for CRT exponent 1 (dP),
CRT exponent 2 (dQ), and CRT coefficient (qInv).

6) You should now have all of the values in your spreadsheet under the big

endian column filled. Use the Endian Converter 224 to calculate and then

fill in the missing values in the little-endian column.

Once you are done, close all other windows except for the Calculations Template
and the HxD application.

The values you just added are part of the creation of RSA keys; however, the
formatting and layout may differ.

5.4 Activity 4: Regenerate the Private Key

You should now have all of the values you need to regenerate the private key. Now
you need to put them in the correct order (required by the ransomware) using the
hex editor.

1) Create a new file by clicking File->New to begin creating the private key.
Click on File->Save As... and name the file 00000000.dky (eight zeroes)
on the desktop. You can switch between the two files using the tabs at the
top.

The key that WannaCry reads uses the little-endian format; you will need to create
the key using the values obtained in the previous steps.

2) First, create the special header (Fig. 12). Make sure that your cursor is at
the beginning of the file. Copy the value from your spreadsheet under the
Special Header, Little Endian column. If a warning appears, select the
don’t ask again box and continue.

% HxD - [C\Users\Reversing'\Desktop\Shared Folder\00000000.dky]
#| File Edit Search View Analysis Tools Window Help

ahd= I B RERS 2 [=]| Windows (ANsD [7]| dec =]
8] 00000000.dky

Decoded text

¥
o

Offset(d) 00 04 o8 12 16 20 24
00000000 07020000 00A40000 52534132 00080000 ce...H..RSRZ....L0

Fig. 12 Special header entry

14

3)

Next, copy over the Public Exponent, Little Endian Column and the
Modulus, Little Endian Column. At this point, your file should have values
through eight full rows and five columns in the ninth row. See Fig. 13.

% HyD - [ChUsers\Userl\Desktop\00000000. diy]

2] File Edit

Search View Analysis Tools Window Help

Bl | W @i 2 [=]| windows (ansD [7]| dec &

8] 00000000.dky
offset (d) 00 04 08 12 16 20 24 28 Decoded text
00000000 07020000 00)0 52534132 00 00 01000100 27 89 082270RAA 750BOF03 H.RSAZ2. ... —éd%. "pu. .
00000032 E6ROCIZF)& C3FEE3EA DOZACO15 ALIF4BEAS = Eft.r.Bpdsii=:p:A. 3k . 1@sdcs. n
00000064 D389B72D 22DCBE93 95DE4110 F9C3AE525 0% --p,Nu"UZ"Vn:Z+PBA. .ugoul¥s g z
00000096 2757E92E BTFFEFOA F262DEOE 9R003DE7 'Wé.&:i¢ -¥i.RoH.éb0. *y.3.= 6me.
00000128 85560614 EED4EB5E 858C59CA FBORF2C2 -V..¢c.-208V.%(D.EYE.€Xa0. 6Ag\IE
00000160 A5319E1A 21DBD40C BAB42A1E C& F1CAD26C 0 ¥1z,4,X1100, 28270, % 10xEAECL . axE
00000192 3C227EFD 784DF9B5 3EF9895E 27206780
00000224 D328B513 26LFB4D4 1F 40CEB1B0 & CC040D09 9C
00000256 1DD4BEES 3 4DE3CF6E 762D 298ESFAE
.
Fig. 13 Key entry
4) Continue by filling in the rest of the values starting with Prime Number 1

(use little endian from here on) to create the key structure as shown in
Table 3 and Fig. 14.

Table 3 Key generation status

Variable name in

Name Size RSA equation Color-code
Heading 16 bytes (32 digits) N/A Red
Public Exponent 4 bytes (8 digits) e Yellow
Modulus 256 bytes (512 digits) n Blue
Prime Number 1 128 bytes (256 digits) p Green
Prime Number 2 128 bytes (256 digits) q Orange
CRT Exponent 1 128 bytes (256 digits) dp Purple
CRT Exponent 2 128 bytes (256 digits) dQ Light Blue
CRT Exponent Coefficient 128 bytes (256 digits) qInv Black
Private Exponent 256 bytes (512 digits) d Pink

15

[XN) S 00000000.dky
007020000 0OA40000 52534132 0008000 01000100 S76DAFDE BS@GE7@6 63CBSBEA § RSAZ Wmpey A cAX
32|340B1D4E EECOARY9 6C47BD76 SOD269AC A19A4246 B46ALAC4 E46B3S2F OSESFBIC| 4 NO..161GOwP“i”°8BFNj fikS/iA*
64 | F4A4CASS 1E5331B@ GAGACS48 DEDCEBS7 32B3026F 997C9C76 7CFC2OC7 43CE6205||U§ X Sle dmH:c<iazz oéluvl, «CEb
96| 8DA1B7B2 88DOCFDS 3DES4DC4 7D@I71F3 8C6@3BDI 40403464 BE184496 4702BEE | | ¢ T<a-ey=EMf} qla’;Yeesda pac 0
128 | 9FF@6C82 BDO5208C 94206F(2 12465588 2F5BBEB4 68ASF7BS 7BO7SFO7 ZA39EEAZ | |ielC ai o- FU&/[e¥he p{ _5*90¢
160 | EG2A1AAG 88DDASC3 DO7FISE6 AAGAE@2S SA9882B9 2B78D21C 57004990 629059C4 | |E* farey— 1f™33%ZoCm+x® W-I&buYf
192 | EF5263E1 @59AE998 41027225 9643EDI1 41A4ABDD 895F7C26 7F201A8D E9C79D64 | |ORc- BEOA“r%ACIEASE®>a_I& cledd
224 | BS2A4FBA 440E3FC2 FOABTES6 SCCADAZ9 OF92B4AD 2CFB74D4 2CS9B76B CO3ISF7E | |p*0aD 7-e®-V\ /)0i¥=, t*,YIk;3_~
256 | AB3628D9 S54F34008 4A7380SF 4DAFD468 DBIB7EBA 695BI755 2A768982 53F3A031| | "6(VYTU@ Jsc_M@*‘hydv[i[s6U*vaCsl 1
288 | 67683627 BEGO6AST 746@FAGB SGAF7FDS 9DB136C1 OAGGES1S 4@EAEAES DEF4ATBZ | |gh6'é jWt™ "kv@ ’uxé; fA effAyURs
320 | F6662337 3BBSOEAE E279AR83 SC270FDA BE620C18 FFB1F727 B@3EA7SB E3O7SAFB || f#7;u0k,ytEN' /ébe "A™'wsd[, Y°
352 | E2CEB1DO @BB83214 A8TF20C6 2C87BFAC SFSDFC20 BCABS853 @BB@ABEB A3487AD0| |G- 2 ® A,de”_¢, °'XS =’ IfHz-
384 | SB3E8258 BDA46204 GFIBBEGC GB13A22E SOC888F2 BF2A4BER B4792312 74CB9895 || [>(X0§b BSelk ¢.Ysale*kKIvy# thsi
416 | 426091C8 OPEIEZEA 1FBLCIBA 8AZFOI53 A7DAZEAB 4324852A G4ACZ6DA 6381C262 | (B é» i,f +jda/ SB*. C$0*d"&/cA-b
448 | ABRACBS9 36F25133 B703BE72 278B30A1 B1AE3461 2BE19B13 BSDSF3SF OSC487FA||® AY6UQ3Y ér'a@°:fda+.6 p'l_ fa~
480 | 952BEAAZ GAL7EEB4 EABCZDEG AD3ACE43 (9C6ECL6 496B8206 CAQF3E34 780ESSSS||i+Itj ONIa-E=:@C.Al IkC F >4x UX
512 | 86437659 64A86441 01397042 GAQE7DDF GCDFDACA QIF3099A C9CE1CE8 3SED7DC3 | |UCvYdBdA OpBd }A fi-f 0 6.€ h5i}y
544 | @86E1291 CDFDCBA4 BFOEDIAE @F42842F 693E395A 9098F397 4C13@D24 @ES4AOF || n &0 A§en-£ BN/i>9zéoloL § TS
576|132672@D 2DC3A623 6152EASE 2EAF82F1 DGGOZ1EA 96D5C237 851A@3E3 9510F@32|| &r -yY#aRié.8CO+ 11A’-70 i 2
608 | (@4471EF 9674083C BOOZEICC 9EFI4CEF DIDBSSFS BCI3ZB4A 94C915BA 955BA400 | | ;DglAt <0 EAO LO--a ®i+li. Ji[§
640 | E236325C 3@B12A16 4984C108 @7CCDFAF 19E1F@4D 652B7A3S E27262BD 9EE3892C||,62\0+* IN;§ AfIG -eMe+z5,rbli,a,
672|@4D8886B E3EFDF12 C7C9422C A438532A 7DF938BF ODZGOAAE AAGBB3Z2C 37076000 || yak,0fl «.B,§85*} 8¢ & £™kz,7 >
704 | 4C62DDC4 427033DF DSAA7I66 F67C13F@ BFA2BBES 63459E22 AS937BE3 SDOEASFS | |Lb>fBp3f’™yf | wod[JAcEa"®i{,]GE"
736| 20E20F54 A2120112 7BF(2646 93684C02 2458EDI7 ED7AEBFA (@18F3D9 468CFEBD|| , T¢ - { &FihL $xIéizl ; 0¥Fa.n
768 | 44211196 8652AS7F BO4DFCC4 3AB43756 393FDFLC @ADD2423 2ECOE@BE ED@4B769||J! AURe AM F:¥7v9?Al >$#..tel Fi
800 | 95580A1D 438723C3 3D4BBOSZ GOG49ASF BBSOGBSE 7F180BA2 FD42DF22 BR4E7EZE| | iX Ca#y=KeRi &6_[[Yké ¢ Bf"aN~.
832 | 7DDO4@6A 49F32A7F 17@E3EDD DE99AL81 784C5730 72E77676 6S9E7SFO 54977AC9 | |}-ejIl* >>fio*AxLW@rAvvedusToz..
864 | BEBODFFO 1CA46252 4FA4C128 1@EAB3EL GCDFI3SE 3DA49276 1F404B42 712713E8| eafle §bROS;(Iz.1flir=§iv @KBq' E
896 | E299B3C7 (666526A FC99B2F6 427E3E19 AF767ELB 413A2(C6 9@S@B71F 21EE4469 || ,02«AfRj, 65 B~> Ov~ A:,NEPY !0Di
928 | 397DD4FB GFBOAAAD FO409547 457D7D04 EEAEZ6A6 13942AFA 88305100 C76AD43D |9} "o ™Me@iGE}} 04RY 1*Ta=Q «j*=
960 | 3DDDB@BC GEAB3SFE EAQSFLEG CADGEA%4 825DE489 B@4SBOCO AGSB1882 80331409 ||=>=°n®5 f O0F +Ii(]&asEs; [C¢3
992 | BIE17@81 BS5437FB 1BFDE112 95SDDFSE 16428730 61C1BS7F EDGCFG63 7300FCAS||+.pApT7’ °. 1]fA BY@ajp I1°is E
1024 | 87FFB3@D @DF316EC 17ECOESC 4@B1C161 4308A4F2 49EAGAGF C6A6398C FOA3E76A||az (I foaetjaC §0ITjory9aefAj
1056 | 24AC7423 1BZEFD4A F7E41542 9S8A1QES S7FO6006 AGDDAAZE SCF39BSZ @F373575| |* t# .°17% Bid Ewe 1>™.\0aR 75u
1088 | (287AC87 9ECTEA4S 41F93A1A CD71D6A4 41EFFD7A DSF7OF1D 1969F@75 E7@S4AZF | |-ddu«iEA”: Oq+§A0-zy~ ieud 1/
1120 | 47357EA4 A2B6DAAO FB4ADCEB 9@9B5177 D301376A 62498931 F37A2B9Z 4ADA3G8Q | |G5~§¢2/0 ¢ &5Qw” 7ibInllz+il/6A
1152 | BB173B8C 637AD3E7 195C@EAB 67E@CSBS 8A2B2852 @ ;acz”h \ “gt=pa((R

Signedint [little < =+

0 out of 1172 bytes
Fig. 14 Key structure
5) Once done, save the key to your desktop.

6) Move the key you just created (00000000.dky) to the shared folder.

5.5 Activity 5: Decrypting Files Using the Regenerated Private
Key

You created your own private key. Now it is time to test it on the infected machine.

1) Exit the current Windows machine by clicking the Back button in your
browser. Click again on the link corresponding with the Ransomed
machine.

2) Move the private key (00000000.dky) from the shared folder to the
desktop.

3) Click Decrypt on the message prompting you to pay (Fig. 15).

Fig. 15 Decrypt button

16

4) Click Start.

5) As a test to make sure it worked, open Important.txt to make sure you can
read the data.

Great job! You have successfully analyzed a binary and decrypted your ransomed
files.

6. Conclusion

After completing this exercise, participants should have a better understanding of
how ransomware works, how RSA encryption works, and the steps needed to
develop a new decryption key. This exercise will be shared with collaborators and
partners (including professionals, faculty, and students) to help establish a common
ground for studying ransomware that is similar to WannaCry, analysis tools, and
research in binary analysis, both to secure systems and to develop ways to recover
after compromise.

More specifically, we envision this report being the first of many studies to uncover
the inner workings of ransomware. We hope the information found herein will
enlighten researchers and practitioners in the cybersecurity field to understand
ransomware and develop detection and quarantine mechanisms rather than using
simple signature-based techniques. In addition, this report demonstrates a way to
recover data from devices that have fallen victim to WannaCry. While the wanakiwi
code is currently not capable of decrypting files on recent systems, this report
details the steps associated with analyzing memory to recover the private key. Still
left to future work is whether these or similar techniques can be used to recover
keys on other systems to include Linux, Mac, and newer versions of Windows.

17

7.

References

Trautman LJ, Ormerod PC. WannaCry, ransomware, and the emerging threat
to corporations. Tenn L Rev. 2018;86:503.

Rivest RL, Shamir A, Adleman LM, inventors. Cryptographic
communications system and method. United States patent US 4,405,829. 1983.

Jonsson J, Kaliski, B. Public-key cryptography standards (PKCS) #1: RSA
cryptography specification version 2.1. 2003 Feb [accessed 2020 Apr 6].
https://tools.ietf.org/html/rfc344 7#appendix-A.1.2.

Acosta JC, Escobar de la Torre A, Salamah S. Hands-on cybersecurity studies:
multi-perspective analysis of the WannaCry ransomware. Aberdeen Proving
Ground (MD); Army Research Laboratory (US); 2019 Jan. Report No.: ARL-
TR-8627.

Delpy B. Wanakiwi [code]. 2017 May [accessed 2020 Apr 6].
https://github.com/gentilkiwi/wanakiwi/releases

Mobilefish. Online RSA key generation. 2019 Dec [accessed 2020 Apr 6].
https://www.mobilefish.com/services/rsa_key generation/rsa_key generatio

n.php

18

https://tools.ietf.org/html/rfc3447#appendix-A.1.2
https://github.com/gentilkiwi/wanakiwi/releases
https://www.mobilefish.com/services/rsa_key_generation/rsa_key_generation.php
https://www.mobilefish.com/services/rsa_key_generation/rsa_key_generation.php

List of Symbols, Abbreviations, and Acronyms

ARL Army Research Laboratory

CCDC US Army Combat Capabilities Development Command
CIT Collaborative Innovation Testbed

CyberRIG Cyber Rapid Innovation Group

RSA Rivest, Shamir, and Adleman

19

(PDF)

(PDF)

(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

CCDC ARL
FCDD RLD CL
TECH LIB

CCDC ARL

RDRL CIN D
JCLARKE
J ACOSTA

20

	List of Figures
	List of Tables
	1. Introduction
	2. Setup and Configuration
	3. Learning Objectives
	4. Methodology
	5. Exercise
	5.1 Activity 1: Dynamic Analysis of the Process Memory
	5.2 Activity 2: Extracting Encryption Parameters from the Memory Dump
	5.3 Activity 3: Calculating the Missing Encryption Values
	5.4 Activity 4: Regenerate the Private Key
	5.5 Activity 5: Decrypting Files Using the Regenerated Private Key

	6. Conclusion
	7. References
	List of Symbols, Abbreviations, and Acronyms

