

 ARL-TR-8937 ● APR 2020

Hands-on Cybersecurity Studies:
Ransomware Key Recovery

by Jaime C Acosta, Adrian J Belmontes, and Salamah Salamah

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8937 ● APR 2020

Hands-on Cybersecurity Studies:
Ransomware Key Recovery

Jaime C Acosta
Computational and Information Sciences Directorate, CCDC Army Research
Laboratory

Adrian J Belmontes and Salamah Salamah
University of Texas at El Paso

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2020
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

August 2019 – March 2020
4. TITLE AND SUBTITLE

Hands-on Cybersecurity Studies: Ransomware Key Recovery
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jaime C Acosta, Adrian J Belmontes, and Salamah Salamah
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLC-ND
White Sands Missile Range, NM 88002

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8937

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Ransomware is a type of malicious software that denies access to a computer system or files until a ransom is paid, usually in
the form of cryptocurrency. It is typically spread through phishing emails or through websites where the software is
downloaded without the user knowing; it can also spread by taking advantage of vulnerabilities in software running on the
victim’s devices. This report presents a hands-on exercise that demonstrates the effects of ransomware on vulnerable machines
and guides participants through a set of steps that will regenerate the key required to decrypt the ransomed data.

15. SUBJECT TERMS

ransomware, WannaCry, key recovery, encryption, hands-on cybersecurity, CyberRIG

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

26

19a. NAME OF RESPONSIBLE PERSON

Jaime C Acosta
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(575) 993-2375
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Setup and Configuration 1

3. Learning Objectives 2

4. Methodology 3

5. Exercise 4

5.1 Activity 1: Dynamic Analysis of the Process Memory 4

5.2 Activity 2: Extracting Encryption Parameters from the Memory
Dump 9

5.3 Activity 3: Calculating the Missing Encryption Values 12

5.4 Activity 4: Regenerate the Private Key 14

5.5 Activity 5: Decrypting Files Using the Regenerated Private Key 16

6. Conclusion 17

7. References 18

List of Symbols, Abbreviations, and Acronyms 19

Distribution List 20

iv

List of Figures

Fig. 1 WannaCry ransomware indicator ... 5

Fig. 2 Processes window ... 5

Fig. 3 Dumping Process window .. 6

Fig. 4 Path to dump file ... 6

Fig. 5 Public key (color-coded) consists of header (in red), exponent (in
yellow), and modulus (in blue) ... 7

Fig. 6 Debugger attach to process ... 8

Fig. 7 Windows Restart screenshot ... 8

Fig. 8 Format with color-coded values .. 10

Fig. 9 Encryption numbers in DMP file .. 11

Fig. 10 Prime 1 and prime 2 placement .. 13

Fig. 11 Public exponent placement ... 13

Fig. 12 Special header entry .. 14

Fig. 13 Key entry ... 15

Fig. 14 Key structure ... 16

Fig. 15 Decrypt button .. 16

List of Tables

Table 1 Key structure ... 9

Table 2 Key structure values found up to this point .. 12

Table 3 Key generation status .. 15

1

1. Introduction

Ransomware is a type of malicious software that denies access to a computer
system or files until a ransom is paid, usually in the form of cryptocurrency. It is
typically spread through phishing emails or through websites where the software is
downloaded without the user knowing; it can also spread by taking advantage of
vulnerabilities in software running on the victim’s devices. This report presents a
hands-on exercise that demonstrates the effects of ransomware on vulnerable
machines and guides participants through the steps that will regenerate the key
required to decrypt the ransomed data.

When the WannaCry ransomware crypto worm spread worldwide in 2017,
consumers and large corporations felt the impact.1 Critical data were locked away
and made inaccessible to owners until a ransom was paid in the form of anonymous
currency known as bitcoin. Over 200,000 victims were affected by this attack,
including the National Health Service hospitals in England and Scotland. Even
though a kill switch was found and implemented, variants of this malware continue
to arise.

The variant that we reference in this report uses the Rivest, Shamir, and Adleman
(RSA) encryption method2 to lock (ransom) files. This method uses a pair of keys,
known as public and private keys.3 The former is used to encrypt while the latter is
used to decrypt data. The malware removes the private key from the victim’s
machine and provides it only after a ransom is paid.

This report demonstrates how a machine becomes infected, allowing participants
to experience the effects of the malware. Participants are then guided through the
process of identifying and recovering data that is inadvertently left behind by the
malware after encrypting files. The data are used to regenerate the private key, and
decrypt and regain access to the ransomed files. This hands-on exercise is related
to a previous exercise that we developed, showing how to analyze and implement
a kill switch for the WannaCry ransomware.4 It is based on the program logic from
the wanakiwi5 software, developed by Benjamin Delpy and made available on
GitHub.

2. Setup and Configuration

The hands-on exercise consists of two virtual machines: one is used to infect a
machine and create a memory dump, and the other is used to analyze the memory
dump and public key to look for prime numbers and construct a private key. The
setup configuration consists of the following software elements:

2

• VirtualBox (Version 6.0)

• Two Windows 7 Home Basic 32-bit virtual machines

• LibreOffice 6.4.a

• IDA Pro Free (Version 5.0)

• HxD Hex Editor (Version 2.3.0.0)

• WannaCry malware variant with MD5 hash:
ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa

• RSA Key Generator6

• Little/Big Endian Converter

The first machine, named Ransomed, was set up with IDA Pro Free, HxD Hex
Editor, and the WannaCry variant. The second machine, named MemoryAnalysis,
was set up with LibreOffice, HxD Hex Editor, and the RSA Key Generator. In
addition, the MemoryAnalysis machine was updated to include the WannaCry
patch to prevent the malware from infecting the machine. Finally, a shared folder
was set up to allow file transfers between the two machines.

The entire exercise runs on the US Army Combat Capabilities Development
Command (CCDC) Army Research Laboratory (ARL) South Cyber Rapid
Innovation Group (CyberRIG) Collaborative Innovation Testbed (CIT), which
provides an isolated environment, ensuring that all the environmental artifacts are
segregated from any real systems.

3. Learning Objectives

This exercise will teach participants the following points:

• Participants will have a better understating of how ransomware works,
specifically the WannaCry crypto worm. The effects of the ransomware on
the sandbox environment should emphasize the importance of having files
and other data backed up.

• Participants will gain experience in creating memory dumps and extracting
necessary data by examining memory using the IDA Pro software. Working
in a timely manner to avoid losing data in memory is important.

• Participants will gain a better understand of RSA encryption. They will learn
how a private key is constructed as they calculate all of the necessary values
and constructs using the HxD Hex Editor software and RSA Key Generator.

3

4. Methodology

In creating this exercise, we started by downloading Benjamin Delpy’s wanakiwi
software onto a virtual machine with the Windows 7 32-bit Operating System.
According to the software documentation5, this version of Windows is the most
recent platform on which wanakiwi was written to work correctly. We found that
the software works on both Windows 7 32-bit Pro and Home versions. We later
realized that the wanakiwi software does not work if additional updates are installed
(including those required to recompile the wanakiwi software). Therefore, we
created two separate virtual machines: MemoryAnalysis and Ransomed.

To fully understand the inner workings of the software, we traced through the
source code. We installed the latest software updates and patches on the
MemoryAnalysis machine as well as the Visual Studio integrated development
environment. The Ransomed machine was left untouched, except for the inclusion
of the wanakiwi executable binary.

We modified the source code to skip some of the longer procedures and to narrow
down where, in memory, the prime numbers are placed when the ransomware
infects a machine. The Visual Studio debugger was extremely helpful in tracing
through the statements that traversed memory.

To support this interactive exercise, we chose IDA Pro because it is an ideal tool to
help participants replicate the logical steps in wanakiwi. Using the prime numbers
found with wanakiwi, IDA Pro was able to attach to the ransomware process and
show their location in the virtual address space.

We encountered slight differences when comparing the wanakiwi logic and the
standard RSA algorithm: the key formatting within the file that stores the key values
was not the same. The ransomware used an altered form, with parameters in a
different order and an additional value—a magic number that seemed to indicate a
signature for the malware key that existed as a precursor to the standard values. To
calculate the key values, we used an RSA Key Generator website. Values in
memory are represented in little-endian format, which is expected by the
ransomware. However, the RSA Key Generator expected values in big-endian
format, so we developed a small application to handle these conversions.

The final step was to understand how the prime numbers could be found in memory
without relying on the wanakiwi application. Wanakiwi uses a brute force
approach—it iterates through memory and attempts to compute sequences of bytes
and then determines if the values are prime. This was computationally expensive
and time consuming, so we looked for another way. We first attempted to find the
entire private key in memory using IDA Pro, but this did not work. We noticed that

4

after infection, a public key is placed on the user's desktop. Looking deeper into
key structure, we searched memory for the individual values. Using the modulus,
which is a product of the two prime numbers, yielded success. Consequently, the
prime numbers were always only a few bytes away from the modulus.

To address the issue of timing and overwriting key in-memory values, participants
must create a nonvolatile image immediately after infection. We task participants
with creating a memory dump of the ransomware process. To demonstrate the
importance of this task, participants must then reboot their machines; they will find
that the values required for recreating the keys are no longer resident in memory or
anywhere on their machine.

5. Exercise

This exercise is separated into five main activities:

1) Infect one machine and take a memory dump of the malware process.

2) Analyze the memory dump to recover the two prime numbers.

3) Calculate the remaining variables needed to create a private key.

4) Combine all variables to create a private key.

5) Decrypt the infected machine using the generated key.

The exercise requires about 1.5–2 h to complete.

5.1 Activity 1: Dynamic Analysis of the Process Memory

Run the WannaCry malware in your sandbox and observe its behavior on the
machine.

1) Start the Ransomed computer by clicking the corresponding link in your
browser. You should see a Windows desktop. If prompted, log in using the
following credentials:

Username: Reversing

Password: malware

2) Open WannaCry by double-clicking this file on the desktop. Click
No on any prompts that may come up.

5

3) The program will execute and finish once you receive the message shown
in Fig. 1.

Fig. 1 WannaCry ransomware indicator

Be sure to create a memory dump of the malware process to analyze later. This has
to be done as soon as possible to ensure the ransomware and the operating system
do not remove important artifacts that are essential for undoing the chaos.

4) Open Task Manager by clicking the Windows start key and searching for
Task Manager. Select View running processes with Task Manager.

5) Click the Processes tab and then Show processes from all users. Find the
WannaCry process (it starts with ed01ebfbc…). See Fig. 2.

Fig. 2 Processes window

6) Right-click and select Create Dump File. You should see the screen shown
in Fig. 3.

6

Fig. 3 Dumping Process window

7) Open the File Explorer icon and enter the path in the path bar as
shown in Fig. 4.

Fig. 4 Path to dump file

8) Drag and drop the memory dump file to the desktop.

9) Copy a few files to a shared folder in order to analyze them on a separate
machine. Double-click the folder on the desktop named Shared Folder.

10) Locate the public key file named 00000000.pky on the desktop. Copy both
this public key file and the memory dump file to the shared folder.

11) Open HxD Hex Editor by double-clicking the icon on the desktop.
Then click File->Open and select the public key located on the desktop.

The next step is to determine the attacker’s private key, but in order to do so, we
need to look at a few values from the public key. The public key is shown in Fig. 5
and consists of a special header (red), the public exponent (yellow), and the
modulus (blue). Figure 5 is colored to identify components easier. When using
HxD, the components will not be colored.

7

Fig. 5 Public key (color-coded) consists of header (in red), exponent (in yellow), and
modulus (in blue)

Note an issue with the values: they are in reverse order. For example, if we
encounter the eight digits 12 34 56 78, we would need to convert them to the
following: 78 56 34 12. This is a known issue in computing called little versus big
endianness. Consider the public exponent bytes in little endian: 01 00 01 00. The
actual value of these bytes would be 00 01 00 01. The bytes are reversed. Follow
the steps below to notate the correct order of the bytes.

12) Look at your hex editor and identify your public exponent. Write down
your public exponent as displayed in the hex editor.

13) Reverse the bytes from number 12 as described previously and write them
here. (Hint: it should match the previous example.)

14) Look at your hex editor and identify your modulus. What are the first eight
characters (or four bytes) of the modulus, as displayed in the hex editor?

15) Look at your hex editor and identify your modulus. What are the last eight
characters (or four bytes) of the modulus, as displayed in the hex editor?

16) Reverse the bytes from number 15 as described previously and write them
here. ________________________

Use IDA Pro to search for a few more numbers that were present in the memory
dump. You will then simulate the effects of restarting the machine in the hopes that
everything will go back to normal.

17) Open up IDA Pro Free by double-clicking the icon on the desktop.
Then click GO.

8

18) On the toolbar, click Debugger -> Attach -> Local Windows Debugger.
Then look for the WannaCry process (it starts with ed01ebfbc…) and click
OK (Fig. 6).

Fig. 6 Debugger attach to process

19) When the main IDA Pro window opens, click the Play icon just below the
toolbar and then click the Pause icon.

20) Now open the search window by clicking Search -> sequence of bytes.
The search window will take a few seconds to open.

21) In the String box, type in your answer for number 16. Make sure Find all
occurrences is selected. How many occurrences did it find? __________

22) Click the Windows button and select Restart (Fig. 7). Force quit any
processes that are active.

Fig. 7 Windows Restart screenshot

23) After restarting, run the WannaCry icon on the desktop again.

24) Repeat steps 17–21.

25) How many occurrences did it find this time? __________

9

26) Did the number of occurrences change? Write down a few reasons why you
think this is the case.

__
__
__
__

5.2 Activity 2: Extracting Encryption Parameters from the
Memory Dump

Recall that in the previous activity, you froze a copy of the process data before you
restarted. Now you can look in that image to find all of the values needed to recreate
the decryption key.

Before building the private key, we will take a closer look at the full structure of
the RSA keys. The RSA structure contains several items in addition to the ones you
captured previously; you will need many of these to recreate the private key. The
memory dump will provide us with the two prime numbers, and the rest can be
obtained with a calculator. Table 1 shows the values that make up a private key
structure, and Fig. 8 shows a sample public key with values.

Table 1 Key structure

Name Size Variable name in
RSA equation Color-code

Heading 16 bytes (32 characters) N/A Red
Public Exponent 4 bytes (8 characters) E Yellow
Modulus 256 bytes (512 characters) N Blue
Prime Number 1 128 bytes (256 characters) P Green
Prime Number 2 128 bytes (256 characters) Q Orange
CRT Exponent 1 128 bytes (256 characters) dP Purple
CRT Exponent 2 128 bytes (256 characters) dQ Light Blue
CRT Exponent Coefficient 128 bytes (256 characters) qInv Black
Private Exponent 256 bytes (512 characters) D Pink

10

Fig. 8 Format with color-coded values

1) Exit the current Windows machine by clicking the Back button in your
browser. Start the MemoryAnalysis by clicking on the corresponding link.

2) Open HxD Hex Editor by double-clicking the icon on the desktop.
Then open the public key that you stored in the shared folder
(00000000.pky).

When WannaCry creates the public key, it uses two prime numbers to calculate a
key value. The primes are stored in memory until they are overwritten or cleared.
Creating the dump file in a timely manner decreases the chance of losing that data.
(Note: newer machines clear the memory right away.)

3) Click File -> Open and select the DMP file on the shared folder (it starts
with ed01ebfbc…).

4) On the toolbar click Search -> Find. Then click the Hex-values tab and
select All for the search directions.

5) In the search bar, enter your answer from Step 1, number 15 and click
Search all.

6) Double-click through the occurrences and find the one that contains the
following characters right after the value you searched: 11000110.

11

Now we need to extract a few numbers from the rest of this memory dump. They are
mixed with other numbers, so we will have to skip a few numbers and paste only
what we need into a temporary spreadsheet file named Calculations Template.

7) Open Calculations Template by double-clicking the icon on the
desktop. In the next steps, you will fill in the green and blue cells.

8) Enter you answer from Step 1, number 12 under Public Exponent (little
endian).

9) Go back to the HxD application (Fig. 9; your values). From the end of
modulus (the number you just found), look eight rows up to find the value
from Step 1, number 15. This is the start of the modulus.

10) Highlight the bytes corresponding with the entire modulus (the length of
bytes you select can be seen at the bottom of the application labeled
"Length(d):" make sure it is 256 bytes). Copy and paste the modulus into
the Calculations Template spreadsheet under Modulus (little endian).
See Fig. 9.

Fig. 9 Encryption numbers in DMP file

11) After the end of the modulus, skip 16 characters (8 bytes); the next 256
characters (128 bytes) make up the first prime number (Fig. 9). Highlight
the bytes corresponding with the first prime number (the length of bytes you
select can be seen at the bottom of the application—make sure it is 128
bytes) and then copy and paste them into the spreadsheet under Prime 1
(little endian).

12) After the first prime number, skip another 16 characters (8 bytes); the next
256 characters (128 bytes) make up the second prime number. Highlight
and copy the second prime number and place it under Prime 2 (little
endian). The length of bytes you select can be seen at the bottom of the
HxD application—make sure it is 128.

12

We have found all of the values we need from our memory dump. The next step is
to get the reverse of some of the numbers (or the big endian version) for the
modulus and primes.

13) Open the Endian Converter by double-clicking the icon on the
desktop. From the Calculations Template copy over the values under
Modulus (little endian), click Convert and then paste the result back into
the Calculations Template under Modulus (big endian).

If the converter prompts you that your number is not even, make sure there is no
space at the end. If there is no space, add a 0 (zero) to the start of your number and
try again.

14) Repeat the conversion process from number 13 for all of the little-endian
values in your spreadsheet (primes, public exponent, special header).
(Hint: Public Exponent [big endian] should match your answer from Step
1, number 13.)

5.3 Activity 3: Calculating the Missing Encryption Values

Table 2 shows the mapping between values and their variable name in RSA
equations.

Table 2 Key structure values found up to this point

Name Variable name in
RSA equation Status

Heading N/A Found
Public Exponent e Found
Modulus n Found
Prime Number 1 p Found
Prime Number 2 q Found
CRT Exponent 1 dP Need to Calc
CRT Exponent 2 dQ Need to Calc
CRT Exponent Coefficient qInv Need to Calc
Private Exponent d Need to Calc

You will need to calculate a few more numbers using the script located on your
desktop.

13

1) Open the RSA key generation script by double-clicking the icon on
the desktop. Scroll down until you see the Input online RSA key
generation form.

2) Copy and paste the PRIME 1 (big endian) and PRIME 2 (big endian) from
Calculations Template into the boxes (order does not matter; see Fig. 10).

Fig. 10 Prime 1 and prime 2 placement

3) Scroll down further until you see Step 2: Enter public exponent. Enter
your value for the public exponent (big endian) from the Calculations
Template, and then click on the Generate Keys button (Fig. 11).

Fig. 11 Public exponent placement

14

4) Scroll down and verify that the modulus matches what you have in your
spreadsheet.

5) Look through the form and copy the private exponent (d) into the private
exponent (big endian) on your spreadsheet. Continue through and also
copy into the spreadsheet the big endian values for CRT exponent 1 (dP),
CRT exponent 2 (dQ), and CRT coefficient (qInv).

6) You should now have all of the values in your spreadsheet under the big

endian column filled. Use the Endian Converter to calculate and then
fill in the missing values in the little-endian column.

Once you are done, close all other windows except for the Calculations Template
and the HxD application.

The values you just added are part of the creation of RSA keys; however, the
formatting and layout may differ.

5.4 Activity 4: Regenerate the Private Key

You should now have all of the values you need to regenerate the private key. Now
you need to put them in the correct order (required by the ransomware) using the
hex editor.

1) Create a new file by clicking File->New to begin creating the private key.
Click on File->Save As… and name the file 00000000.dky (eight zeroes)
on the desktop. You can switch between the two files using the tabs at the
top.

The key that WannaCry reads uses the little-endian format; you will need to create
the key using the values obtained in the previous steps.

2) First, create the special header (Fig. 12). Make sure that your cursor is at
the beginning of the file. Copy the value from your spreadsheet under the
Special Header, Little Endian column. If a warning appears, select the
don’t ask again box and continue.

Fig. 12 Special header entry

15

3) Next, copy over the Public Exponent, Little Endian Column and the
Modulus, Little Endian Column. At this point, your file should have values
through eight full rows and five columns in the ninth row. See Fig. 13.

Fig. 13 Key entry

4) Continue by filling in the rest of the values starting with Prime Number 1
(use little endian from here on) to create the key structure as shown in
Table 3 and Fig. 14.

Table 3 Key generation status

Name Size Variable name in
RSA equation Color-code

Heading 16 bytes (32 digits) N/A Red
Public Exponent 4 bytes (8 digits) e Yellow
Modulus 256 bytes (512 digits) n Blue
Prime Number 1 128 bytes (256 digits) p Green
Prime Number 2 128 bytes (256 digits) q Orange
CRT Exponent 1 128 bytes (256 digits) dP Purple
CRT Exponent 2 128 bytes (256 digits) dQ Light Blue
CRT Exponent Coefficient 128 bytes (256 digits) qInv Black
Private Exponent 256 bytes (512 digits) d Pink

16

Fig. 14 Key structure

5) Once done, save the key to your desktop.

6) Move the key you just created (00000000.dky) to the shared folder.

5.5 Activity 5: Decrypting Files Using the Regenerated Private
Key

You created your own private key. Now it is time to test it on the infected machine.

1) Exit the current Windows machine by clicking the Back button in your
browser. Click again on the link corresponding with the Ransomed
machine.

2) Move the private key (00000000.dky) from the shared folder to the
desktop.

3) Click Decrypt on the message prompting you to pay (Fig. 15).

Fig. 15 Decrypt button

17

4) Click Start.

5) As a test to make sure it worked, open Important.txt to make sure you can
read the data.

Great job! You have successfully analyzed a binary and decrypted your ransomed
files.

6. Conclusion

After completing this exercise, participants should have a better understanding of
how ransomware works, how RSA encryption works, and the steps needed to
develop a new decryption key. This exercise will be shared with collaborators and
partners (including professionals, faculty, and students) to help establish a common
ground for studying ransomware that is similar to WannaCry, analysis tools, and
research in binary analysis, both to secure systems and to develop ways to recover
after compromise.

More specifically, we envision this report being the first of many studies to uncover
the inner workings of ransomware. We hope the information found herein will
enlighten researchers and practitioners in the cybersecurity field to understand
ransomware and develop detection and quarantine mechanisms rather than using
simple signature-based techniques. In addition, this report demonstrates a way to
recover data from devices that have fallen victim to WannaCry. While the wanakiwi
code is currently not capable of decrypting files on recent systems, this report
details the steps associated with analyzing memory to recover the private key. Still
left to future work is whether these or similar techniques can be used to recover
keys on other systems to include Linux, Mac, and newer versions of Windows.

18

7. References

1. Trautman LJ, Ormerod PC. WannaCry, ransomware, and the emerging threat
to corporations. Tenn L Rev. 2018;86:503.

2. Rivest RL, Shamir A, Adleman LM, inventors. Cryptographic
communications system and method. United States patent US 4,405,829. 1983.

3. Jonsson J, Kaliski, B. Public-key cryptography standards (PKCS) #1: RSA
cryptography specification version 2.1. 2003 Feb [accessed 2020 Apr 6].
https://tools.ietf.org/html/rfc3447#appendix-A.1.2.

4. Acosta JC, Escobar de la Torre A, Salamah S. Hands-on cybersecurity studies:
multi-perspective analysis of the WannaCry ransomware. Aberdeen Proving
Ground (MD); Army Research Laboratory (US); 2019 Jan. Report No.: ARL-
TR-8627.

5. Delpy B. Wanakiwi [code]. 2017 May [accessed 2020 Apr 6].
https://github.com/gentilkiwi/wanakiwi/releases

6. Mobilefish. Online RSA key generation. 2019 Dec [accessed 2020 Apr 6].
https://www.mobilefish.com/services/rsa_key_generation/rsa_key_generatio
n.php

https://tools.ietf.org/html/rfc3447#appendix-A.1.2
https://github.com/gentilkiwi/wanakiwi/releases
https://www.mobilefish.com/services/rsa_key_generation/rsa_key_generation.php
https://www.mobilefish.com/services/rsa_key_generation/rsa_key_generation.php

19

List of Symbols, Abbreviations, and Acronyms

ARL Army Research Laboratory

CCDC US Army Combat Capabilities Development Command

CIT Collaborative Innovation Testbed

CyberRIG Cyber Rapid Innovation Group

RSA Rivest, Shamir, and Adleman

20

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 2 CCDC ARL
 (PDF) RDRL CIN D
 J CLARKE
 J ACOSTA

	List of Figures
	List of Tables
	1. Introduction
	2. Setup and Configuration
	3. Learning Objectives
	4. Methodology
	5. Exercise
	5.1 Activity 1: Dynamic Analysis of the Process Memory
	5.2 Activity 2: Extracting Encryption Parameters from the Memory Dump
	5.3 Activity 3: Calculating the Missing Encryption Values
	5.4 Activity 4: Regenerate the Private Key
	5.5 Activity 5: Decrypting Files Using the Regenerated Private Key

	6. Conclusion
	7. References
	List of Symbols, Abbreviations, and Acronyms

