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ABSTRACT: The liquid—liquid phase separation (LLPS) of intrinsically disordered proteins 1
(IDPs) is a commonly observed phenomenon within the cell, and such condensates are also highly = =
attractive for applications in biomaterials and drug delivery. A better understanding of the
sequence-dependent thermoresponsive behavior is of immense interest as it will aid in the design

Two phases
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of protein sequences with desirable properties and in the understanding of cellular response to Single phase
heat stress. In this work, we use a transferable coarse-grained model to directly probe the Two phases -
sequence-dependent thermoresponsive phase behavior of IDPs. To achieve this goal, we develop a W

unique knowledge-based amino acid potential that accounts for the temperature-dependent effects Concentration

on solvent-mediated interactions for different types of amino acids. Remarkably, we are able to

distinguish between more than 35 IDPs with upper or lower critical solution temperatures at experimental conditions, thus
providing direct evidence that incorporating the temperature-dependent solvent-mediated interactions to IDP assemblies can
capture the difference in the shape of the resulting phase diagrams. Given the success of the model in predicting experimental
behavior, we use it as a high-throughput screening framework to scan through millions of disordered sequences to characterize
the composition dependence of protein phase separation.

Temperature

B INTRODUCTION As temperature is a factor that is easily controlled in vitro,
there is a large interest in thermoresponsive LLPS.*>*
Thermoresponsive protein-based polymers can be designed
such that they are miscible at high temperatures and demix at
low temperatures, showing an upper critical solution temper-
ature (UCST), or such that they demix at high temperatures
and are miscible at lower temperatures, displaying a lower
critical solution temperature (LCST).”” Tropoelastin and
resilin are two proteins which are commonly used as templates
to design elastin-like and resilin-like peptides (ELPs and RLPs)
exhibiting LCST and UCST phase behaviors, respectively.’’
Some variants of RLPs have also been shown to exhibit a dual-
response phase separation and will condense upon both
heating and cooling, with a region of miscibility in
between.”®*” The amino acid composition and sequence

have been implicated as being responsible for the differences in
37

It is now well recognized that cellular compartments may form
in the absence of lipid membranes through liquid—liquid phase
separation (LLPS), driven by proteins, nucleic acids, and other
biomolecules."”” These “membraneless organelles” or “bio-
molecular condensates” have since been shown to be highly
diverse and ubiquitous within biolo§icd systems and constitute
organelles such as the nucleolus,” ribonucleoprotein (RNP)
granules,s’é stress granules,7’8 and many others.””™"! Protein
LLPS is commonly associated with proteins containing regions
that are intrinsically disordered'”" and is mediated by a
myriad of interaction types such as electrostatic attraction,
cation—z, w—x, hydrogen bonding, and hydrophobic inter-
actions.'*™'® External stimuli such as changes in salt
concentration, pH, other biomolecules such as RNA or ATP,
and temperature are all factors that may be used to modulate .
protein LLPS.%%!71921 phase behavior.

Intrinsically disordered protein-based polymers have been Designing intrinsically disordered proteins (IDPs) with
used for decades in the design of functional polymeric controllable LLPS is a nontrivial task due to the near-infinite

materials for applications in biomaterials and drug deliv- selection of possible IDP sequences. Computational modeling
ery.”>™>" The advantages of protein-based polymers include can be an effective approach to inform experimental design and
direct control over the sequence and length by using to gain insights about the sequence—determi.nants of Femﬁ)e:l—
recombinant expression”” and the ability to directly encode ature-dependent LLPS and the underlying physics.™

functional domains such as enzyme- cleava%e sites,” light- Temperature-dependent amino acid properties have previously
activated domains,31’32 cross-linking motifs,3‘ and substrate- been used in understanding properties of both folded and

specific binding motifs.”” The high degree of control over the
protein sequence also allows one to finely tune the protein Received: February 1, 2019
LLPS in response to solution conditions and external stimuli.** Published: May 1, 2019
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unfolded/disordered proteins including cold denaturation®
and temperature-induced collapse.*’ All-atom explicit-solvent
simulations can in principle provide an atomically detailed view
of the interactions driving phase separation'>** but are
computationally demanding and prohibitive to the direct
simulation of protein LLPS. To overcome this obstacle, coarse-
grained (CG) models, in which amino acids are simplified into
CG beads, and solvent is accounted for implicitly, can be used
to handle sufficiently large systems and to compute phase
behavior of a large number of protein sequences.””*® In these
cases, the solvent-mediated interactions are indirectly captured
via interactions between the CG beads composing the protein
molecules.”™* Most existing CG models were built at a
specific temperature (e.g., room temperature)‘w’@’50 without
taking into account the temperature dependence of such
solvent-mediated interactions.”’ ~>> These models are not able
to capture properties like disordered protein collapse with
increasin temperature“’56 and the emergence of LCST
behavior.”>*” Therefore, there is an urgent need for a
temperature-dependent CG model, given the compelling
prospect of using IDP LLPS in designing thermoresponsive
materials.

In this paper, we take advantage of our recently developed
CG model in which amino acid hydrophobicity was used in
modeling the pairwise interactions between different amino
acids* and introduce an amino-acid-type-specific temperature
dependence into the hydrophobicity scale. We then tune the
model parameters using knowledge from both single molecule
Forster Resonance Energy Transfer (smFRET) experiment
and all-atom simulations on the dimensions of disordered
proteins across a wide range of temperatures. The optimized
model successfully predicts the experimentally known phase
behavior of a large library of ELPs and RLPs qualitatively by
distinguishing between UCST and LCST. This strongly
suggests that the difference in the thermoresponsive behavior
of a protein sequence is encoded in its amino-acid-specific
solvent-mediated interactions and how these change with
temperature. Using this newfound knowledge, we apply the
new model to propose sequence-determinants of the protein
LLPS in terms of their UCST or LCST characteristics, which
should allow for the design of protein-based polymers with
controllable thermoresponsive phase behavior.

B RESULTS AND DISCUSSION

Using Amino Acid Contact Potential and IDP Size as
a Function of Temperature To Tune Solvent-Mediated
Interactions. Given our recent success using amino acid
resolution CG models to study IDP LLPS,*>* we apply a
similar philosophy to build a model based on amino acid
hydrophobicity with temperature-dependent interactions. We
previously used a top-down approach to parametrize the CG
model to reproduce experimental measurables using the radius
of gyration (Ry) of a large number of IDPs"™ at a single
temperature (300 K). Building a model that accurately
captures temperature-dependent IDP dimensions, and there-
fore LLPS, necessitates a set of data for IDPs spanning a range
of temperatures. The temperature-induced expansion and
collapse of a diverse set of IDPs and denatured proteins
have been observed previously in smFRET experiments” and
all-atom simulations.”® The proteins examined in these studies
include the cold-shock protein from Thermotoga maritima
(CspTm), the N-terminal domain of HIV integrase, the DNA
binding domain of A-repressor, and the N- and C-terminal
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segments of human Prothymosin-a (ProTaN and ProTaC).
For protein sequences, please refer to the Supporting Methods
1.1 section in the Supporting Information. These two data sets
are complementary as the experimental study is limited to a
smaller temperature range, whereas the all-atom results were
obtained using an older force field which results in protein
dimensions smaller than expectecl.57 Here, we merge the two
data sets to a single reference data set to take into account the
desirable features of each, i.e, the wider temperature range
from simulation and the quantitative accuracy of experiment.
More details can be found in the Supporting Methods 1.2
section and Figure S1.

The amino acid composition of a protein is largely
responsible for the differences in the observed phase
behavior.”” To account for the sequence-dependent behavior
of proteins, we aim to develop a physics-based CG model
which can capture amino acid residue-specific changes induced
by temperature. Van Dijk et al. used a library of solved protein
structures at different temperatures to build a knowledge-based
contact potential as a function of temperature between protein
residues.”® They used a reduced classification by lumping the
temperature dependence of all 20 amino acids into five
different types, generally having similar responses to temper-
ature within each group (Table 1). We note that the

Table 1. List of Amino Acids and Type Classifications

hydrophobic (H)
aromatic (A)
other (O)

polar (P)
charged (C)

Ala, Ile, Leu, Met, Val
His, Phe, Trp, Tyr
Cys, Gly, Pro

Asn, Gln, Ser, Thr
Arg, Asp, Glu, Lys

temperature dependence from this knowledge-based potential
is also consistent with the changes in solvation free energy of
amino acid side chain analogues as a function of temper-
ature.”’ 7>**” The resulting potential was successfully used to
obtain the estimates of protein thermal stability® and to
explain protein cold denaturation by invoking the changes in
solvent-mediated interactions with temperature.*” For further
use, we fit the temperature-dependent contact potential to a
parabolic function for each amino acid type (Supporting
Methods 1.3 in the Supporting Information). At low
temperatures, the interactions between hydrophobic groups
will strengthen with increasing temperature, whereas these
interactions will weaken with a further increase in temperature
after a point of maximum strength. This behavior arises from
the dominance of the enthalpic component of the free energy
at low temperatures and its entropic part at higher temper-
atures.”*”°" The parabolic functional forms fit the bio-
informatic contact potential®® within a small temperature range
and allow us to extrapolate to a wider range of temperatures
relevant to the experimental studies of thermoresponsive phase
separation. We anticipate this is a reasonable assumption to
capture the qualitative changes in single chain compaction and
phase behavior.

The nonbonded interactions in our original CG model are
based on the hydrophobicity (1) of each amino acid (see the
Methods section).*” Therefore, the contact potential described
above can be used to introduce temperature dependence on 4
in the model by an appropriate scale as
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Table 2. Optimized Parameters for the 3-Parameter and 15-Parameter Model

parameter hydrophobic aromatic other polar charged 3-parameter model
a (kyT™) 0.995 2.0 2.0 2.0 2.0 0.7836
T (K) 250.0 308.8 250.0 253.6 250.0 296.7
Toa (K) 97.07 48.72 100.0 100.0 4924 61.97
1 A B
/11-(T) = /1,' HPS + _[Ex(T) - Ex(Tref)] 2.0 HPS -- Aromatic 3.0 F Reference
’ € (1) < HPS-T— ydrophobic : CspT HPS
: SPIM sy
£ 15F i
where i is the amino acid, X is the amino acid type, Ey is the 5 Charged
corresponding parabolic function from eq S2, € is 0.337 k3T 2 104 — 25 |
(0.2 kcal/mol), as in the original HPS model®” (see the 2 /4 Lo
Methods section) to convert to the correct units for use with g 05 < 50l
the LJ-like functional form, T, is the reference temperature e
(300 K) for which the model will be equal to the original HPS g \/\
model, and A;yps is the hydrophobicity value for residue i in 05 L1 I 1 L Rl L L 1
the original HPS model (Table S1). To test the new model, we 300350400 450 300 350400 450
simulate the five proteins for which the radius of gyration is c soF D soF
available as a function of temperature from experiment and all- ' Integrase ' A-repressor
atom simulations.*>*® In contrast to the original HPS model,
we are able to observe a nonmonotonic trend in R, as seen in z 25 | z 25
experiment (Figure S2), although it is in poor qualitative < <
agreement. Specifically, CspTm, integrase, and A-respressor do < 5ol < 5ol
initially collapse and then expand; however, the turning point
of R, is at about 300 K instead of about 350 K seen in the
reference data set, which suggests that allowing for the shifting L5F 1 A I 151, L L !
of the contact potential extrema is necessary for further 300 350 400 450 300 350 400 450
refinements. E F
To better capture the reference data, we modified our or ProTaC or ProTaN
approach to empirically define a temperature-dependent model
which quantitatively agrees with the reference data by making _ 25 — 25+
T.¢ a free parameter and introducing two additional free E £
parameters as the prefactor (a) apd a shift along the € Lol 5P
temperature axis (Ty,) into the function: : :
A(T) = li,HPS + a[Ex(T — Tya) — Ex(Tor — Tpi)] 15l 15k
: 1 1 1 1 : 1 1 1 1
) 300 350 400 450 300 350 400 450

To find the optimal parameters for eq 2 with minimized
deviation from the reference data, we need a way to estimate
the R, from our CG model in an efficient manner. Toward this
goal, we use a homopolymer-based predictor which can be
used to quickly calculate the R, for a specific protein sequence
on the basis of its chain length and average hydrophobicity
(see the Methods section). Using a standard global
optimization method,’> we minimize the difference between
the predicted R, and that from the reference data set. We
optimize two different models, one where the free parameters
are allowed to vary for all five amino acid types (Table 1),
yielding a 15-dimensional optimization, and the other where
the free parameters are made universal for the different amino
acid types, yielding a 3-dimensional optimization problem.
Optimized parameters for both models are listed in Table 2.
We find that the 3-parameter model is sufficient to achieve
good agreement with the reference set (Figure 1). By allowing
parameters for each amino acid type to vary independently in
the 15-parameter model, we are able to match the empirical
predictions to the reference data very well, while imposing the
following constraints on the parameters: 0 < o < 2; 250 < T¢
< 350; =100 < Tgux < 100, to search through the physically
meaningful parameter space. While the empirical R,
predictions become more similar to the reference data, we
find that results from simulations are actually less accurate than
the 3-parameter model (Figure S3). We believe this is due to
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Temperature (K) Temperature (K)

Figure 1. Temperature-dependent interaction potential and protein
dimensions. (A) Original 4 values from HPS potential are shown as
dashed lines, and the new temperature-dependent model is shown as
solid lines. Example HPS values are shown for phenylalanine
(aromatic), methionine (hydrophobic), glycine (other), asparagine
(polar), and arginine (charged). (B—F) Experimental/all-atom radius
of gyration data for S proteins used to fit the temperature-dependent
(HPS-T) model.

the homopolymer-based predictor not accounting for the
greater heterogeneity of interaction strengths within this
model.

We also consider the use of a physics-based model from Dill,
Alonso, and Hutchinson® as suggested recently by Lin,
Forman-Kay, and Chan.®* Upon implementing this temper-
ature dependence into the HPS model (see the Supporting
Methods 1.4 section in the Supporting Information), we find
reasonable agreement with the training set from predictions
and simulations for the first three sequences, but the collapse
of ProTaC and ProTaN is not observed (Figure S4), because
this model does not capture the temperature dependence of
hydrophilic amino acid interactions. Thus, we conclude that
the use of the bioinformatics-based temperature dependence
from van Dijk is advantageous in its ability to capture the
temperature dependence of all types of amino acids. Future
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Figure 2. Experimental verification of the model with QC sequences. (A) Simulated v as a function of T for QC sequences with experimental
LCST behavior. (B) QC sequences with experimental UCST behavior. (C) QC sequences without phase behavior in experiment. The red lines
show QC3, QC6, and QC7 with crossing points to v = 0.5 in simulations. The gray bar shows the range of temperature scanned by the

experiment.”

work, however, may focus on a more fundamental approach to
estimate temperature dependence and even pressure depend-
ence of pairwise interactions from all-atom explicit-solvent
simulations.”®

To demonstrate that the use of temperatures outside the
realm of the experimentally realizable range in the reference
data is not negatively affecting the model, we also conducted
the optimization using only temperature points below 400 K.
We find that using this truncated temperature range results in a
nearly identical set of parameters as the full reference data set
(Figure SS). The use of a scaling parameter (eq S1) to create
the reference set may also modify the results due to the
magnitude of R, variation in response to a change in
temperature. To assess this effect, we created a separate
reference data set for the five test proteins, by setting the
scaling parameter equal to 1 (see the Supporting Methods 1.2
section in the Supporting Information). Optimizing to this
reference set results in a similar model to the initial 3-
parameter model, with a somewhat weaker temperature
dependence (Figure S6). We additionally attempt to fit
directly to the experimental data to avoid having to combine
with simulation data but find that the even more limited range
of temperatures does not account for the full shape of the
temperature dependence of R, (Figure S7). Thus, using only
the limited experimental data available is likely not suitable for
describing the thermoresponsive behavior of phase separating
IDPs.

The resulting temperature-dependent interaction strengths
from the 3-parameter CG model are shown in Figure 1A. The
simplified functional forms for the temperature dependence
can be found in the Methods section and in the Supporting
Methods 1.5 section in the Supporting Information. Hereafter,
we refer to this temperature-dependent hydrophobicity-based
model (3-parameter model in Table 2) as the HPS-T model.
Given our previous work, intramolecular interactions driving
single chain collapse and intermolecular interactions driving
LLPS are fundamentally related;** thus, we expect this model
should be sufficient to capture the thermoresponsive phase
behavior of IDPs.

Temperature-Dependent Solvent-Mediated Interac-
tions Can Help Distinguish between UCST and LCST
Proteins. Garcia-Quiroz and Chilkoti synthesized a large
number of low-complexity IDPs mimicking the short,
repetitive amino acid motif characteristic of tropoelastins and
resilins, with a highly diverse range of amino acid
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compositions.”” Through this, they provided an excellent
characterization of how amino acid composition can influence
the thermoresponsive protein phase behavior.”” They found
that RLPs are generally composed of charged and polar amino
acids and show UCST behavior, while ELPs tend to contain
more hydrophobic amino acids and exhibit LCST behavior.
Due to the large number of sequences spanning a wide range
of amino acid compositions and the direct observance of
thermoresponsive phase behavior, this data set is ideal for
testing the applicability of the HPS-T model. We classified the
39 sequences, termed QC sequences, into three groups: LCST,
UCST, and no phase separation (Table S2).

Since it is impractical to conduct coexistence simulations for
all 39 sequences in the QC data set, we take advantage of a
recently suggested correlation between the critical temperature
T. (which separates the two-phase region from the single-
phase region in the phase diagram) and the ® temperature
(T,) (the temperature at which the Flory scaling exponent, v,
is equal to 0.5™). For conditions where v < 0.5, the effective
intrachain or interchain interactions are attractive causing
chain collapse or phase separation, whereas v values larger than
0.5 imply that repulsive interactions are dominant, causing
chain expansion and inability to phase separate. One can also
approximately calculate T, from the Boyle temperature (T}),
the temperature at which the osmotic second virial coefficient
(B,,) goes to zero. We found these relationships to be non-
model-specific as they were identified using two different
potential energy functions” and therefore should, in principle,
be able to predict both UCST and LCST behavior from T, or
Ty in the new HPS-T model.

In Figure 2, we present the Flory scaling exponent (v) for
each of the QC sequences for a wide temperature range to
determine what conditions will allow for phase separation and
to predict whether these will display UCST or LCST behavior.
For the first set of QC sequences (LCST), we first observe
chain collapse (decreasing v/) with increasing temperature and
a subsequent expansion (increasing v) from our simulation,
with the initial collapse occurring at the range of temperatures
tested in experiment (Figure 2A). For the second set (UCST),
an initial chain expansion is followed by collapse highlighting
UCST behavior within the experimental temperature range
(Figure 2B). Most of these sequences show a dual-response
phase behavior with two crossing points, which was not
observed in experiment. In general, the two T, values are quite
far apart which would be difficult to observe in experiment
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Figure 3. Dual-phase behavior of IDP sequences. (A) Temperature-dependent v, (B) By, and (C) phase coexistence of a hydrophobic
homopolymer (Vy,) and an elastin-like LCST sequence from Garcia-Quiroz et al.>’ (D) Temperature-dependent v, (E) B,,, and (F) phase
coexistence of a hydrophilic homopolymer (Qs,) and a resilin-like UCST sequence from Garcia-Quiroz et al.*’

without making other perturbations to the system. Thus, the
experimental studies would only observe the single phase
transition we see near the experimental range.

For the third group of QC sequences which were shown to
not phase separate in experiment, we find that the v values for
four of the seven proteins never decrease below 0.5, suggesting
that these particular proteins are not expected to phase
separate within the broad temperature range tested (Figure
2C). The three discrepant sequences are all in the set of
proteins mimicking the content of elastin, for which simulation
results predict LCST behavior at experimental conditions as
predicted for the majority of the other proteins in that set
(Figure 2A). The simulation results are at odds with the
experimentally documented behavior for these three proteins,
which raises questions about the general validity of the HPS-T
model despite its strong predictive capabilities for 36 out of 39
proteins. A careful look at these protein sequences highlights
similarities with other sequences in the QC data set, some of
which are nearly identical to QC3, QC6, and QC7 in
composition. As these analogous sequences (QC2 ~ QC3,
QC4/5 = QC6, and QCY9 ~ QC7 in Table S2) show LCST
behavior, the predictions of the model are not entirely
unreasonable. Another possibility is that the experimental
temperature range is not sufficiently broad to induce phase
separation at relatively low concentrations, and our results may
provide impetus to revisit these experiments in the future.

We also note that use of the Dill-Alonso—Hutchinson
model captures the sequences which undergo LCST but not
those with UCST, supporting our assertion that temperature-
dependent interactions between polar amino acids must also
be accounted for (Figure S8).

Reentrant Phase Behavior as a Function of Temper-
ature. The qualitative agreement of the HPS-T model and
experimental results indicates it is a promising approach to
directly study the LLPS of proteins undergoing UCST and
LCST. It is therefore instructive to ask if the UCST versus
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LCST phase behavior predicted by changes in v as a function
of temperature due to solvent-mediated interactions is present
in the thermodynamic phase diagram. The appearance of
different phases as a function of temperature in a multiprotein
simulation will also allow one to probe the differences in the
molecular structure and dynamics directly from the simulated
trajectories. We select one QC sequence from each of the first
two groups (QC21 and QC37) and conduct slab coexistence
simulations to obtain the thermodynamic phase diagram as
well as two-chain simulations to determine B,, at a range of
temperatures and to estimate Ty following the same protocol
as in previous work.**’

QC21 exhibits a dual-response phase behavior described by
an LCST at 275 K and a UCST at 432 K, with a region in
between where LLPS is observed, having the shape of a closed-
loop phase diagram (Figure 3A). 36,6667 The closed-loop phase
diagram is analogous to the predicted cold denaturation of
folded proteins which unfold at both extreme high and low
temperatures.”” This observed phase behavior is also
qualitatively consistent with the collapse and expansion of a
single protein chain with increasing temperature (Figure 3B)
as well as with the preference for intermolecular attraction (B,,
< 0) and repulsion (B,, > 0) between two proteins as a
function of temperature (Figure 3C). Moreover, there is a
good correspondence between the different transition temper-
atures that can be identified from Figure 3A—C. This suggests
that the previously proposed correlations™ as well as the
homopolymer predictor model used to fine-tune the CG
model parameters can be accurate enough for future use.

QC37, on the other hand, phase separates at low
temperatures and is miscible at temperatures above 294 K.
With a further increase in temperature to a very high value
(692 K), which is not physically meaningful, the system shows
a reentrant behavior by phase separating again into two phases
(Figure 3D). Such dual-responsive phase behavior has been
observed experimentally for various RLPs such as Rec1*® and
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Anl6 resilin® within temperature ranges accessible to
experiment. The qualitative behavior observed from the
other two transition temperatures based on protein collapse
(Figure 3E) and intermolecular interactions between a pair of
protein molecules (Figure 3F) is also consistent with this phase
diagram. However, only the lower transition temperatures (T,
Ty, and Ty;) are in quantitative agreement with each other,
while the LCST (T,,), is significantly higher than Ty, or Tg,
(Figure 3D-F).

A closer examination of the QC37 multiprotein system
between temperatures Ty, and T, suggests that these proteins
prefer to form intramolecular contacts (leading to collapsed
globular conformations) as opposed to the intermolecular
contacts required to stabilize a condensed protein-rich phase
(Figure S9). A possible explanation for this behavior is the
relative importance of enthalpy and entropy in the free energy
of the system. We hypothesize that the entropic cost of
incorporating protein chains into a condensed phase, which is
not appropriately accounted for in a single chain simulation to
estimate T,, becomes more important at higher temperatures.
The system free energy is thus minimized through maximizing
intramolecular contacts by forming collapsed globules and
maximizing the system entropy by keeping the proteins
dispersed in a larger volume. If this is indeed the case, one
would expect the proteins to adopt conformations such that
hydrophobic residues are deeply buried inside, and the protein
surface is more hydrophilic and therefore less likely to form
favorable contacts with other proteins. Indeed, we find that a
single QC37 chain will isolate the more hydrophobic amino
acids toward the center of the globule, while the more
repulsive/hydrophilic residues occupy the surrounding region
at high temperatures (Figure S10). Considering the average
and standard deviation of A values for the amino acids in the
QC sequences, we see that the variation between different
amino acids is much higher for QC37 at Ty, than it is for Ty,
or either T, of QC21 (Figure S11), thus facilitating the
collapse of more attractive amino acids to the center with
repulsive residues at the exterior.

A simple test to determine whether the variation of
attraction and repulsion within an IDP sequence is causing
the unfavorability of the LCST phase transition is to simulate a
simple homopolymeric protein expected to display a similarly
shaped phase diagram. Therefore, we conduct simulations of a
polyglutamine (Qs,) protein sequence to compute the phase
diagram as well as the single-chain and two-chain properties as
a function of temperature as shown in Figure 3D—F. Our
observed v value for Qg, at room temperature is consistent
with the expectation from the work of Singh and Lapidus on
polyglutamine peptides,”® though we do not expect our model
to be in perfect agreement with all available experimental
data.®” In this case, we find that all the transition temperatures
are in quantitative agreement with each other, and the LCST is
also much lower than the heteropolymer QC37 sequence. This
suggests that the heterogeneity of the sequence, having large
variance in attraction and repulsion, contributes to the
breakdown of the general correlations between T, Ty and
Ts.7%”" However, we note that the phase behavior of a
polyvaline (Vgy) sequence expected to have a closed-loop
phase diagram is quite similar to the heterogeneous sequence
QC21 within this model (Figure 3A—C).

The protein assemblies formed by QC37 at extremely high
temperatures resemble solid aggregates when visualized
(Figure S9). Interestingly, we find that the diffusion of protein
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chains within the condensed phase formed above the LCST is
significantly slower than within the condensed phases formed
below the UCST (Figure S12). This behavior is reminiscent of
experimental findings on RLPs which undergo similar
reentrant phase transitions upon cooling and heating, having
slower recovery from the high-temperature LCST.***" It
stands to reason that having few strong interaction sites within
a sequence would lead to slower dynamics than having many
weaker interaction sites. Thus, we postulate that the variation
of attraction and repulsion within a sequence can be used to
manipulate the dynamics within the condensed phase, which
may be tuned by sequence, and temperature-dependent
hydrophobicity.

Role of Amino Acid Composition in the Thermores-
ponsive Behavior of Disordered Proteins. Given the
success of our new HPS-T model in distinguishing UCST from
LCST sequences with the help of a simple predictor, we have a
unique opportunity to identify the molecular determinants of
the temperature-dependent phase behavior of IDPs. We scan a
large number of sequences (~1 million) with the chain length
the same as CspTm (66 amino acids) on the basis of the
relative abundance of each amino acid in the intrinsically
disordered proteome’” (Figure $13) and compute v for these
proteins as a function of temperature (see the Supporting
Methods 1.6 section in the Supporting Information). We can
use this information to infer the shape of the phase diagram
regarding their transition temperatures, number of such
transitions, and their type (UCST or LCST). On the basis
of this analysis, we can classify IDP sequences into four groups:
none (v > 0.5 always) without phase behaviors like QC
sequences in Figure 2C; single UCST with monotonically
decreasing v when increasing temperature; closed-loop with
UCST higher than LCST (Figure 3A); and hourglass with
UCST lower than LCST (Figure 3D).

To understand the role of specific amino acids in the marked
preference for a given type of phase behavior, we compute the
probability of their occurrence with respect to the probability
of those amino acids for a typical IDP sequence from a
bioinformatics study (Figure S13). As shown in Figure 4 and
Table S3, the amino acid probabilities in the types “closed-
loop” and “none” are most similar to a typical IDP sequence,
whereas an enhanced polar and charged amino acids content
would be needed to observe single UCST or hourglass type
behavior. These results present a path forward for the design of
thermoresponsive materials with tunable properties by
changing their amino acid content. However, we caution that
the use of empirical predictions may not be directly applicable
to all IDPs due to sequence-specific effects such as patterning
of charges or hydrophobic regions. Rather, we hope this
analysis serves as a demonstration of the possibilities, with
more work to follow using direct MD simulations.

B CONCLUSION

In this study, we provide a direct interrogation of the
thermoresponsive phase behavior of IDPs through use of a
novel coarse-grained model which explicitly represents the
amino acid sequence and accounts for the temperature-
dependent solvent-mediated interactions of each type of amino
acid. We validate the model using experimental and all-atom
data on the R; of several disordered proteins, as well as the
thermoresponsive phase behavior of a large library of designed
RLP and ELP sequences. The qualitative capture of the
sequence-encoded phase behavior shows promise for the
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Figure 4. Difference between probabilities of H/A/O/P/C type
amino acids (see Table 1) in sequences with a specific phase-diagram
shape (labeled on the x-axis) and the probabilities of those in a typical
IDP sequence from a bioinformatics study’> (see Figure S13). The
definition of the phase-diagram shape is shown in Table S3. Errors are
shown in Table S3 and are not noticeable in the figure.

model to extend to the furthest reaches of the IDP sequence
space when coupled with an empirical homopolymer-based
predictor. From this, we learn that a typical IDP sequence will
undergo phase separation with a closed-loop phase diagram,
having LCST at the more physiological conditions. Sequences
with an hourglass-shaped phase diagram generally contain
more polar or charged residues than a typical IDP sequence.

B METHODS

HPS-T Model. The HPS-T model is mostly identical to our
original framework, which represents proteins as flexible chains
of amino acids with harmonic bonds, screened electrostatics,
and a nonbonded pairwise interaction potential to account for
different amino acid types.*’ The full energy function of the
system is

(I)(l‘) = Z cDbond(rij) + Z [(I)elec(rij) + q)nb(rt/)]
bonds i<j (3)
where @, 4 is a standard harmonic spring:
(I)bond(r) = kspring(r - ’,0)2 (4)

with kgine = 10 keal/ (mol A) and r, = 3.8 A. The electrostatic
term is represented using Debye—Hiickel electrostatic screen-
3

ing:7

(I)elec(r) = ﬂe—f/K
47Dr ()

where g; and g; are the net charges of formally charged amino
acids (D, E = —1; K, R = 1; H = 0.5), D is the dielectric
constant, which is set to 80 for water, and « is the screening
length, which we set to 10 A to represent a salt concentration
of 100 mM. For the nonbonded pairwise interactions, we

utilize a Lennard-Jones-like functional form with a tunable well
depth as used by Ashbaugh and Hatch:**"*

Dy(r) + (1= A(T))e ifr<2%

q)nb(r) =
AT)®yy(r)

otherwise

(6)
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where @y is the standard Lennard-Jones potential, and A(T) is
the temperature-dependent interaction strength. The finalized
HPS-T model uses the optimized set of equations for the
temperature dependence of each type of amino acid:

Aiu(T) = A yps — 25475 + 0.14537T — 0.00020059T"

(7a)
Aia(T) = 4 yps — 26.189 + 0.15034T — 0.00020920T"
(7b)
4io(T) = A 1ppg + 2.4580 — 0.014330T + 0.000020374T"
(7¢)
Aip(T) = A ypg + 11.795 + 0.067679T + 0.000094114T"
(7d)
2. o(T) = A ps + 9.6614 — 0.054260T + 0.000073126T*
(7¢)

where i is the amino acid; H, A, O, P, and C correspond to the
type of amino acid, which i is included in (see Table 1); and
Aups is the original value used for A in the temperature-
independent model,*” adapted from a standard hydrophobicity
scale.”> We originally optimized the free parameter € to 0.2
kcal/mol based on the agreement between the model and
experimentally determined radius of gyration (Rg) of a set of
IDPs. For further details, please refer to our previous work."’

We account for protein—solvent interactions through the
protein—protein interaction term as more hydrophobic amino
acids will have a stronger attraction, and hydrophilic will be
more repulsive. The use of Debye—Hiickel screened electro-
statics, in addition to a standard nonbonded potential based on
the amino acid contact probability, is justified by the
expectation that charge—charge interactions are not fully
captured in data based on folded protein structures and that
attractive and repulsive electrostatic interactions would be
averaged for the charged amino acids. Similar approaches have
been used extensively in the protein CG modeling literature
and have provided accurate information on protein binding
thermodynamics and structure.”’

Molecular Dynamics Simulations. We conduct single
chain simulations using the LAMMPS software package’® and
two-chain simulations using an in-house Monte Carlo code®’
with umbrella sampling to enhance sampling of binding and
unbinding events.”” Results from umbrella sampling were
reweighted using a weighted histogram analysis method
(WHAM).”® To efficiently sample phase coexistence, we
conduct coexistence simulations in slab geometry*””**" using
the HOOMD-blue v2.1.5 software package.”' Single chain
simulations were conducted for 1 ps at each temperature, and
two-chain simulations were conducted for 5 X 10’ Monte
Carlo steps; coexistence simulations are carried out for up to 5
Us.
Empirical Ry and v Predictions. To empirically predict R,
of an IDP sequence based on its average sequence properties,
we conducted simulations on a large number of homopolymers
using the HPS model, varying two important sequence
descriptors, the chain length and the average hydropathy. We
use 8 chain lengths from 25 to 450 residues and 16 average
interaction strengths ({1)) from —3 to 3 and simulated each at
12 temperatures ranging from 150 to 600 K. For each of the
1536 systems, we calculated both R, and the Flory scaling
exponent (v),*” to approximate the dependence of chain
dimensions on each of these three factors. Using this data set,
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we are able to use a 3D linear grid interpolation approximate
R, and v for any sequence of a given (1) and chain length at
any temperature within the range of the data set. The
dimensions of the homopolymers are visualized as a function
of T, 4, and chain length in Figures S14 and S15. To validate
the accuracy of predictions from this method, we tested 2000
randomly generated sequences with a chain length of 80 and
measured R, and v from the simulation to compare with
estimates from the predictor (Figure S16). We find the largest
source of error to be sequences with a high net charge, which is
expected since our predictor only takes into account average
hydropathy of the sequence. However, the predictor gives less
than 10% error on R; for most sequences with a low net
charge.
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