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Abstract

Cognitive biases negatively affect the human decision-making process and can

result in a sub-optimal outcome. Decisions made during the high-stress and fast-paced

operations of the military are extremely prone to cognitive biases. One cognitive bias

is known as confirmation bias. Confirmation bias, or the inappropriate bolstering of an

unknown hypothesis whose truth is in question, can gravely impact a key component

of military operations: a visual search. A visual search is a type of search where the

operator must perform a visual scan of an environment for a specific object or feature

while ignoring other distracting objects or features. In order to perform a visual

search quickly, operators will often fall back upon prior knowledge of a situation.

However, falling back upon prior knowledge can have ill effects if that prior knowledge

is biased. Thus, for military operators to safely and effectively perform their jobs,

it’s necessary to detect biases that could arise during a visual search. While there are

currently successful mitigation techniques for a confirmation bias, there exists little

research into successfully and consistently mitigating a confirmatory, or an inefficient,

visual search. This work investigates possible ways both to detect and to mitigate

confirmation biases in a visual search.

In this study, the Efficient Search Experiment (ESE) was completed by 16 participants.

The ESE elicited inefficient Visual Search Patterns (VSPs) while both behavioral

and physiological data was collected. Various mitigation techniques were employed

throughout the experiment to encourage efficient VSPs. The effects of the mitigation

techniques on the number of efficient searches performed were examined.

Efficient VSPs significantly increased the accuracy of a visual search and also

decreased the time it took find the target. The mitigation techniques of a “nudge”

iv



and a “hint” had the most impact on the number of efficient searches with each

mitigation technique having a p-value of < 0.0001. To classify an inefficient search

from brain activity, the relationship between Electroencephalography (EEG) signals

and inefficient searches was modeled through machine learning. Five models were

examined: a Linear Discriminant Analysis (LDA), a random forest classifier (RFC),

an Artificial Neural Network (ANN), a Long Short-Term Memory (LSTM) Network,

and a Temporal Convolutional Network (TCN).

The best models in terms of participants that achieved better than 50% balanced

accuracy were the RFC models with 14
16

participants achieving higher than 50%. The

models with the highest mean balanced accuracy were the LDA models with an

average balanced accuracy of 58.1%.

While certain participants’ models performed well, overall the models for each

dataset only marginally perform better than chance. However, these results do suggest

that it is possible to classify an efficient or inefficient search from EEG signals.
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AUTOMATED DETECTION AND MITIGATION OF

INEFFICIENT VISUAL SEARCHING USING

ELECTROENCEPHALOGRAPHY AND MACHINE LEARNING

I. Introduction

1.1 Background and Motivation

When humans must make a decision in an uncertain environment, cognitive biases

can affect the decision making process and can result in sub-optimal outcomes [1].

These outcomes can range from a slight delay in the decision-making process to

making a judgement based in error. When the decisions to be made are in a military

context, the resulting decision can be disastrous. In 1988, the USS Vincennes mistakenly

shot down an Iranian commercial airliner which resulted in the loss of the 290

passengers on-board the aircraft [2]. The accident was attributed in part to the

USS Vincennes’ Captain’s over-reliance on incorrect information. Despite many clear

signs that the airliner was not a military fighter jet, the Captain of the USS Vincennes

chose to focus on the few mistaken signs that the approaching aircraft was an Iranian

F-14. Thus, the Captain’s cognitive biases were partly to blame in the accident.

Decisions made during the high stress and fast paced operations of the military are

prone to cognitive biases. As the availability of information grows ever more prevalent,

so too does the challenge of making decisions which effectively use all of the available

information. With the rapidly increasing amount of information available for military

operators, it grows ever more necessary to detect the sub-optimal decisions made from

cognitive biases. With the ability to detect cognitive biases, disasters due to a poor
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decision-making process can be averted.

A key aspect of many military operators’ jobs involves a visual search. A visual

search is a type of search where the operator must perform a visual scan of an

environment for a specific object or feature while ignoring other distracting objects or

features [3]. In order to perform a search quickly, operators will often fall back upon

prior knowledge of the situation [4]. Falling back upon prior knowledge can have ill

effects if that prior knowledge is also subject to a cognitive bias as the visual search

process can then become biased. An example of this situation occurring would be a

pilot scanning the instrument panel and not noticing a dangerous situation. The pilot

believes that the plane is working properly, and thus will perform a visual search in

order to confirm this hypothesis. Because of the pilot’s confirmation bias, the pilot

could either see the gauge and discount the gauge’s information due to the pilot’s

belief that nothing is wrong, or the pilot could avoid looking at the gauge completely

because of the pilot’s belief that nothing is wrong. Thus for military operators to

safely and effectively perform their jobs, it’s important to be able to detect cognitive

biases that arise during a visual search.

1.2 Problem Statement

Confirmation bias is the “inappropriate bolstering of hypotheses or beliefs whose

truth is in question” [5]. A biased visual search is a search in which the user falls

prey to biases such as a confirmation bias. The effect of a confirmation bias on a

visual search in military operations is crucial. When an operator falsely believes a

hypothesis and thus performs a visual search to confirm that hypothesis, the operator

can miss critical information that would otherwise be obtained by performing a total,

efficient visual search.

While there are currently successful mitigation techniques for confirmation bias,
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there exists little research into successfully and consistently mitigating a confirmatory,

or inefficient, visual search. This study intends to replicate a visual search experiment

in which a confirmatory search can be induced. Once induced, the confirmatory search

can be identified and then successfully and consistently mitigated.

However, because it is still possible to perform a confirmatory search while also

being efficient and also because it is possible to perform a non-confirmatory search

while being inefficient, this research focuses on encouraging efficient searches rather

than discouraging confirmatory searches.

Although this experiment used gaze tracking to determine when an inefficient

search occurred, in a real world context, gaze tracking is normally not a realistic

option to indicate whether an inefficient search is occurring. Thus, it is necessary to

also be able to detect an efficient or inefficient search through physiological signals.

1.3 Research Questions and Hypotheses

The objective of this research is to determine whether an inefficient visual search

during a visual search can be detected and subsequently mitigated. To complete this

objective, the following research questions are investigated.

1.3.1 Research Question 1 - Categorizing Natural Behavior

What visual search patterns do participants naturally use during a visual search

task?

Hypothesis: The majority (> 50%) of participants will naturally resort to an

inefficient Visual Search Pattern (VSP).
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1.3.2 Research Question 2 - Behavior Detection

Can physiological signals such as Electroencephalography (EEG), Electrooculography

(EOG), and Electrocardiography (ECG) be associated with an efficient visual

search?

Hypothesis: Physiological signals can differentiate a participant performing an

efficient visual search from a participant performing an inefficient visual search.

Research Objective: Develop a machine learning model that receives physiological

data and is able to determine an efficient visual search with an equal-class-weighted

classification accuracy of greater than 50%.

1.3.3 Research Question 3 - Behavior Mitigation

For a participant who is performing an inefficient search, can mitigation techniques

change the participant’s search patterns to an efficient search pattern that will

persist for the remainder of the search tasks?

Hypothesis: By applying the mitigation techniques of a nudge, a hint, and by

teaching the participant how to perform an efficient search, a participant will

perform an efficient search pattern for the remainder of the search tasks.

1.4 Methodology

An experiment was adapted from an existing experiment designed to induce a

confirmation bias during a visual search [6]. The experiment was adapted to a new

experiment, named the Efficient Search Experiment (ESE), that dynamically applied

various mitigation techniques based on the individual participants’ search patterns

over the course of the experiment. In each block of trials, participants are presented

with search stimuli consisting of 8 colored circles, arranged in a ring, with white letters

in the center of each colored circle. The white letters were one of “p, q, b, d” which
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were chosen to reduce the chance that the target letter was easily distinguishable

amongst the other stimuli. There were only two colors per block. Participants were

instructed to indicate whether a specific target letter’s circle was a specific color, called

the target color. There would only ever be one instance of a target letter present per

trial, and the target color would not change for the duration of the block. During the

block, various proportions of the target color and non-target color appeared. A block

was marked as an efficient block if the participant searched the minimum required

number of circles to determine what color the target letter’s circle was, while the block

was marked as inefficient if the participant searched more than the required minimum

number. During part of the experiment, a mitigation technique known as the “nudge”

was applied on the following block if the participant performed an inefficient search on

more than half of the search trials of the previous block. The nudge consisted of hiding

the letters on the colored circles unless the participant visually fixated upon a circle.

Additionally, a “hint,” an “explanation,” and “instructions” mitigation techniques

were given to the participant during the experiment. The hint consisted of showing

the participant how to perform an efficient search, the explanation involved telling

the participant why the nudge was occurring, and the instructions instructed the

participant to perform an efficient search.

During the ESE, behavioral and physiological measures were collected. Behavioral

measures included the participants’ VSP and the effects of the mitigation. Physiological

measures included EEG, EOG, and ECG. The collected behavioral data was investigated

to determine which VSP most participants initially used as well as the effect of the

mitigations on their VSPs. The physiological data was investigated to determine

whether machine learning classification models could be trained to identify when a

participant performed an efficient or inefficient search. The machine learning models

were trained within-participant and cross-validation metrics are reported. Finally,
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model feature salience was evaluated to determine important features for estimating

an efficient or inefficient search.

1.5 Assumptions

To answer the proposed research questions, the following assumptions about the

experiment design were made:

• Participants had no knowledge of the ESE’s research purpose or the mitigations

present other than what was presented during training sessions.

• Participants would seek to perform a visual search that is both efficient and

accurate.

• Participants would use a consistent VSP during the experiment.

• EEG activity is different when performing an efficient search versus when performing

an inefficient search.

• The physiological recording equipment operates and records correctly.

• Participants would complete the ESE to the best of their ability.

1.6 Limitations

Each experimental session had a 2.5 hour time limit. To accomplish the ESE

within this time, and to prevent participant fatigue, the experiment was designed

with only 480 trials. With a dataset of this size there arises several opportunities

for issues. First, the limited amount of data means that it may not be possible to

split the data into the training, validation, and test sets that are normally used for

machine learning and for metric reporting. Datasets such as this one also can lead to

overfitting. Overfitting can be reduced by reducing the model’s complexity, however,

this limits the classifiers that can be used. During experimentation, it was observed
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that the system used to record the electrophysiological data was malfunctioning and

not recording the signals as it should. Because of this, certain participants’ data may

not reflect the truth. The participants for which the recording errors occurred are

annotated.

1.7 Contributions

This work contributes to the field of cognitive biases within visual search by

determining the effectiveness of various mitigation techniques. Furthermore, it contributes

to the field of visual search by establishing base patterns of a VSP. At the time of this

work, dynamically mitigating an inefficient, or a confirmatorily biased, search had not

been explored. Additionally, no research had been conducted into which VSP humans

tend to initially favor during a visual search. This work builds a foundation for further

research into efficient visual searches.

This work determined that performing an efficient search increased the accuracy

of target detection by 2.41% (t(15) = 5.59, p = 0.00005). Efficient searching also

decreased search times by an average of 0.30 seconds (t(15) = 5.53, p = 0.00005).

Initially, participants overwhelmingly performed inefficient searches. In the first eight

blocks, 73.68% of searches were inefficient, 19.14% were efficient, and 7.18% were

circular. At the end of the experiment, because of the use of mitigation techniques,

participants performed more efficient searches than inefficient searches. In the last

seven blocks, 47.53% of searches were inefficient, 51.41% were efficient, and 1.06%

were circular.

The most effective mitigation techniques were the addition of the nudge and the

hint which informed the participants how to perform an efficient search. In regards to

increasing the number of efficient searches, both mitigation techniques had a p-value

of < 0.001. However, the nudge’s log worth (−log10(p − value)) was 10.664 and the
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hint’s log worth was 8.493 which indicates that the nudge had more of an effect on

increasing the number of efficient searches.

Two datasets were considered in this work: a dataset with extracted features

based on the five frequency bands of the alpha, beta, delta, gamma, and theta bands

from each electrode; and raw time-series voltage values from each electrode.

Three models were examined for the frequency feature dataset: Linear Discriminant

Analysis (LDA), random forest classifier (RFC), and Artificial Neural Network (ANN)

models. The LDA models achieved greater than 50% balanced accuracy on 13
16

participants,

the RFC models achieved greater than 50% balanced accuracy on 14
16

participants, and

the ANN models achieved a greater than 50% balanced accuracy on 6
16

participants.

The highest balanced accuracies were 74.75%, 66.71%, and 64.45% for the LDA, RFC,

and ANN models respectively.

Two models were examined for the time-series dataset: Long Short-Term Memory

(LSTM) and Temporal Convolutional Network (TCN) models. The LSTM models

achieved greater than 50% balanced accuracy on 13
16

participants and the TCN models

achieved a greater than 50% balanced accuracy on 7
16

participants. The highest

balanced accuracies were 65.12% and 61.18% for the LSTM and TCN models respectively.

While certain participants’ models performed well, overall the models for each

dataset only marginally perform better than chance. However, these results do suggest

that it is possible to classify an efficient or inefficient search from EEG signals.

1.8 Structure of the Document

The remainder of this document is structured into four chapters. Chapter II

provides an overview of the literature on confirmation bias and visual search. Additionally,

it provides a review of various machine learning approaches for classifying EEG.

Chapter III describes the details of the experiment that was conducted to collect
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behavioral and physiological data as well as the machine learning pipeline used to

analyze the data. Chapter IV presents and discusses the results of the analysis of

the behavioral and physiological data. Finally, Chapter V concludes this work by

summarizing the significant findings of this research and by discussing areas for future

work.
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II. Literature Review

2.1 Chapter Overview

This chapter provides an overview of decision-making research on confirmation

bias, confirmation bias mitigation, and visual search. Confirmation bias definitions,

measures, and task environments used in research are discussed. Additionally, confirmation

bias mitigation techniques and their effects are discussed. A brief overview of visual

search is provided. Lastly, current state-of-the-art machine learning models for use

in classifying Electroencephalography (EEG) are discussed.

2.2 Cognitive Biases

Today, military operators have more access to real-time information than ever

before. No longer can poor results be blamed on a lack of information - rather, the

blame lies on the operators’ failure to appropriately rely on the information at their

disposal. A failure to appropriately rely on the information at hand is more likely

to result in a poor decision-making process that ends in a sub-optimal outcome. To

ensure an optimal outcome, the operators’ recognition and prevention of errors due

to cognitive biases is paramount. The consequences of allowing cognitive bias errors

to occur leaves a bloody trail throughout history. In 1998, the USS Vincennes shot

down Iran Air Flight 655 killing all 290 passengers aboard [2]. The cause of the

accident is tragic: the captain of the USS Vincennes received conflicting information

about the type of aircraft seen on the radar and mistakenly believed the approaching

airliner to be an Iranian Air Force F-14 fighter jet. One cause of the accident that

was cited in the incident report was the high tension of the situation coupled with

recent incidents in the area that caused the captain to suffer from a confirmation bias.

Because the captain suffered from a confirmation bias, he overvalued the information
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that supported his hypothesis that the incoming airliner was a hostile enemy aircraft.

Although the destruction of Iran Air Flight 655 is one of the most prominent examples

of a cognitive bias that has led to a loss of life, not all of the results of confirmation

bias are so deadly. Other effects of a confirmation bias can include the persistence

of discredited beliefs, the preference for information discovered early in the decision

process, and the tendency to see non-existent correlations in a set of data [5], [7],

[8]. Although not deadly in and of itself, these effects can have drastic consequences

in a military environment. From military pilots making timely decisions in a rapidly

evolving environment, to intelligence analysts making decisions given a vast amount of

information, to cyber operators deciding how to mount a cyber attack, all situations

require that the decision maker perform objective assessments of information to make

an unbiased decision.

When there is limited information, or when in an unknown situation, people

use heuristics, or mental shortcuts, to help simplify complex decisions [1], [9]. One

example of a heuristic is when judging the distance of an object. Objects that are

closer to the viewer appears sharper and clearer when compared to an object that

is far away. Because of this, when objects are clear we tend to estimate that the

object is closer than it actually is [1]. There are situations in which using heuristics

are useful and can dramatically simplify a decision making process, but overall, using

heuristics can lead to errors [10], [11], [12], [13]. When the use of a heuristic results

in a systematic error, it is known as a cognitive bias [1]. Cognitive biases are not just

limited to arbitrary examples such as estimating distance, but are prevalent in many

widespread real-world contexts such as national policy, intelligence analysis, medical

practices, the judicial process, and science [5].

A believed source of cognitive biases comes from the interaction of System 1

and System 2 thinking. Many contemporary models of cognition conceive of the
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mind as composed of two overarching yet interconnected sets of processes, known

as System 1 and System 2 [14]. System 1 thinking is fast, effortless, emotional,

and is unavailable to conscious introspection. System 1 thinking excels at pattern

recognition and works by association, meaning that it can grasp the essence of a

situation and identify appropriate responses. It is also essential for recognizing safe

foods, avoiding dangerous animals, and behaving appropriately in social situations.

On the other hand, System 2 thinking is slow, effortful, conscious, logical, and is only

capable of processing information sequentially. The main function of System 2 is to

monitor System 1 and to identify potentially incorrect responses and then to correct

those responses. Generally, the busier that people are, the more they have on their

minds, and the more time constraints they face, the more likely they are to rely on

System 1 thinking. This is not always a bad thing: in many situations, System 1

thinking leads to superior decision making by improving efficiency without sacrificing

quality [15], [16]. However, in situations where we know that cognitive biases are

likely to occur, relying exclusively on System 1 thinking is likely to lead to costly

errors.

There are many cognitive biases that can significantly impact the decision making

process. Some of the most prominent biases include availability bias, anchoring,

and confirmation bias. The availability bias occurs when people over-estimate the

probability of an event because they are easily able to recall a similar event [1]. For

example, because a person is able to recall specific instances of a plane crash, they

may be more likely to believe that his or her chance of getting in a plane crash is

higher.

Anchoring occurs when individuals use an initial piece of information to make an

estimate and fail to properly adjust their estimate in light of new information prior

to making their final decision[17], [1]. Once an anchor is set, all information is judged
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against the anchor. A common instance of anchoring is when negotiating a price for

a car: the first price offered sets the standard for the rest of the negotiations, so that

prices lower than the initial price seem more reasonable even if they are still higher

than what the car is actually worth.

Last of the most prominent cognitive biases is confirmation bias. Confirmation

bias is the inappropriate bolstering of a believed hypothesis in the face of uncertainty

[5]. In an intelligence analysis of a cyber-attack, confirmation bias occurs if the

analyst forms an initial hypothesis on which country is responsible for mounting

the attack and consequently only searches for or overvalues evidence which supports

their hypothesis. As seen in this example, confirmation bias is especially damaging

in an intelligence analysis because it could cause the analyst to completely disregard

or to misinterpret information. For this reason, this work focuses exclusively on

confirmation bias.

2.2.1 Confirmation Bias

Although known at first by other names, the concept of confirmation bias

has long been known to decision makers. Over 400 years ago, Sir Francis Bacon

expressed that “the human understanding, when any proposition has been once laid

down... forces everything else to add fresh support and confirmation...” [18]. However,

confirmation bias in its current form first began to be investigated in earnest in 1960

with Peter Wason and his abstract rule discovery experiment [19]. In the experiment,

the test administrator gives participants a sequence of three numbers and states that

the numbers follow an unspecified rule. The participants would then attempt to

determine the rule by generating a sequence of three numbers they thought fit the

rule. After writing down their numbers, the test administrator provided feedback on

whether the participants’ proposed sequence matched the rule. At any point during
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the experiment, the participants were able to declare what they believed the rule

to be. In the experiment, the sequence provided to the participants was “2, 4, 6”

with the unstated rule being “three numbers in increasing order of magnitude.“ If a

participant were to guess “8, 10, 12” they would be told that their sequence conformed

to the rule, while a participant who guesses “3, 2, 1” would be told their sequence

does not conform to the rule. A possible, but incorrect rule, that a participant could

surmise would be “sequences of even integers in increasing order.” During the study,

Wason found that participants generally chose to test sequences that confirmed their

hypotheses, as opposed to those that did not. A second experiment performed by

Wason involved a selection task [20]. In this task, participants were shown a set of

four cards placed on a table. The participants were given a rule and could choose a

card to test to prove the validity of the rule. Each card had a number on one side and

a letter on the other side. The faces of the cards visible to the participants could show

an odd number ( e.g., 3), an even number (e.g., 8), a vowel (e.g., E), or a consonant

(e.g., X). The rule that was then given to the participants was “If a card has a vowel

on one side, then it has an even number on the other.” To solve this puzzle in the

most logical and efficient way, a participant should check the card with the vowel on

it and the card with the odd number on it, for if either are proven false, then the

rule is proven not valid. The results of the experiment showed that most participants

would check the card with the vowel on it, but relatively few would choose the card

with the odd number on it. These results indicated that participants preferred to

resolve uncertainties that could be congruent with the rule being evaluated, but not

those that couldn’t be congruent with the rule.

Another area in which confirmation bias has been heavily studied is social cognition.

In a 1978 experiment, Snyder and Swann performed an experiment in which participants

were asked to determine if someone was an extrovert [21]. The results of the experiment
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showed that participants were more likely to ask questions that, if answered in the

affirmative, would confirm that the person being asked was an extrovert. In contrast,

confirmation bias can be reduced by reframing the problem as a “cheater detection”

question in which a social norm may be violated [22]. In a task where participants are

charged with determining if a person is underage drinking, the participants were far

more likely to select the positive antecedent (modus ponens is drinking) and negative

consequent (modus tollens: isn’t at least the legal age of drinking). Modus ponens

is a mode of reasoning from a hypothetical proposition according to which if the

antecedent be affirmed the consequent is affirmed (as, if A is true, B is true; A is true;

therefore, B is true) [23]. Modus tollens is a mode of reasoning from a hypothetical

proposition according to which if the consequent be denied the antecedent is denied

(as, if A is true, B is true; B is false; therefore A is false) [23]. These experiments have

led some researchers to believe that human hypothesis testing is an evolutionary trait

for tracking social dynamics [24]. This theory could account for hypothesis testing’s

apparently poor performance in non-social problems.

If the drawbacks of confirmation bias are so readily evident, then why would we

as humans ever use it? Despite the negative aspects of confirmation bias, there has

been substantial research into how biased approaches to hypothesis testing could be

globally optimal. Klayman and Ha proposed the positive test strategy as a way in

which biased search is in fact optimal [10]. The positive test strategy is articulated as:

when testing a hypothesis, people are far more likely to seek cases that are believed

to demonstrate the event rather than conditions that are thought to lack the event.

The positive test strategy is optimal when hypotheses are “sparse,” or when a given

hypothesis makes fewer positive claims than negative claims. For example, the claim

“if it is a yellow fruit, then it is a banana” has only one positive consequent (that

given a yellow fruit, it is a banana), but many negative consequents (given a yellow
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fruit, it is an apple, a lemon, or a pear), and so it is a sparse hypothesis. If most

of the hypotheses that humans deal with are sparse, then confirmatory searching, or

Klayman and Ha’s positive test strategy, is much more efficient at testing hypotheses

than attempting to prove every possible negative consequent. Oaksford and Chater

make a similar argument in that if Wason’s selection task is analyzed using conditional

probabilities, then then expected information gain by performing a confirmatory test

(checking to see if the card has a vowel) is greater than the falsification tests (checking

to see if the card has an odd number) [11]. This property holds true as long as the

probability of the positive antecedents and consqeuents are low. Another argument

in favor of the positive testing strategy is from the viewpoint of the expected utility of

hypothesis test. Friedrich argued that hypotheses are generally made about positive

outcomes (e.g. when I eat food, I am no longer hungry) [12]. If a hypothesis is

about a positive outcome, then testing that hypothesis in a confirmatory manner is

optimal. For example, if I am hungry and am only interested in what makes me not

hungry, then it is more important that I become not hungry than whether I learn

that food truly does not make me hungry. Hypothesies testing, Friedrich says, not

only is designed to seek the truth, but is also designed to avoid “costly errors.” When

observed from this viewpoint, rejecting hypotheses that are falsely true is of a low

priority. What is more important is gaining the benefit of an object or an action if the

relationship is in fact true. Because humans are living creatures who constantly need

resources for survival, short-sighted opportunistic confirmatory hypothesis testing is

rational.

Whether confirmation bias is rational or not, it stills presents a problem in that

it can lead to the persistence of unsupported beliefs. Research has shown that

confirmation bias is optimal in some situations, but why does it occur in non-optimal

situations as well? First, evaluating evidence in relation to a hypothesis requires
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comparing the evidence at hand to hypothetical data held in the mind. Such a

setting is known as a conditional reference frame [25]. When evaluating evidence

that lends itself to multiple varying hypotheses, it is necessary to represent these

varying hypotheses in such a way that they can be updated upon the arrival of new

information. Representing hypotheses in the mind in this way places considerable

demand on any memory processes that are involved in representing the hypotheses.

While humans have a great capacity for long-term memory storage, this long-term

memory is not well-suited to deal with the dynamic updating that is required to

properly update hypotheses during testing. Instead, to evaluate hypotheses, humans

use short-term memory processes, known as working memory [26], [27]. This working

memory has an extremely small capacity for information - most estimates range from 3

to 7 items [28], [29], [30]. Additionally, it’s thought that although humans can store 3-

7 items, really only one item can be “used” at a time [31]. For these reasons, reasoners

tend to evaluate possible hypotheses in isolation. Because of this, an observation that

is seen under two varying hypotheses may be taken to strengthen the hypotheses being

considered [26].

By evaluating hypotheses individually, hypotheses are not able to compete against

one another. Not only does this hinder one’s ability to determine how to interpret a

new observation, but it can lead to a selection bias in how one selects information.

Examining a set of evidence with a specific hypothesis in mind leads to a selection

of information that is “pseudodiagnostic”, or information that allows one to know

whether a given set of observations is likely or not under a pair of hypotheses, but

does not indicate which of the hypotheses are more likely [32]. Pseudodiagnostic

information can exacerbate the confirmation bias by allowing the collection of incomplete

data. In fact, Fiedler argues that incomplete sampling of information by itself can

lead to cognitive biases [33]. Thus, the selection of information is critically important
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in determining the balance of hypothesis evaluation.

2.3 Confirmation Bias Mitigation

Because of the dangerous effects that confirmation bias has on the decision-

making process, there has been a significant amount of research into techniques on how

to mitigate these effects. These mitigation techniques fall into two main categories:

modifying the decision maker (DM) and modifying the DM’s environment [34].

Modifying the DM seeks to provide people with some combination of knowledge

and tools to help them overcome their own limitations and dispositions. Techniques

such as raising the accountability of the DM, having the DM consider an opposing

viewpoint, improving the DM’s education on confirmation bias, training the DM on

how to deal with confirmation bias, providing warnings and feedback about confirmation

bias, and having the DM go through a series of checklists and analysis have all

been proven to be partially or fully effective at mitigating the negative effects of

confirmation bias [35], [34], [36], [37], [38], [39], [40], [41], [42], [43], [44]. Despite

the positive results of mitigation through modifying the DM, there are some issues

with this technique. Most of these techniques rely on the DM to debias themself,

but people naturally resist being biased for many reasons. Most people don’t want

to be told that they have been “doing it wrong” for their entire lives and they don’t

want to relinquish control over the decision process. Most importantly, people fail to

understand the benefits of many debiasing techniques relative to their own abilities,

not just because they are overconfident, but because the techniques themselves are

alien and complex, and the benefits are noisy, delayed, or small [38], [45].

The second category of mitigation, modifying the environment, attempts to take

the DM out of the mitigation equation. Modifying the environment seeks to alter the

setting where judgments are made in a way that either encourages better strategies
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or is a better match for the decision strategies that people naturally apply. It

accepts that there is a bias, but it strives to create situations in which a bias is

either irrelevant or may be helpful [34]. The techniques included in this category are

conveying social norms, providing nudges, settings defaults, providing easy models

to work through, forced breaks, and forced planning [46], [47], [48], [49], [50], [51],

[52]. These techniques have all been proven effective, and because they provide an

environment in which the mitigation technique is removed from the DM, they do not

fall prey to the same issues as modifying the DM techniques.

In the modifying the environment category, nudges are perhaps the most effective

debiasing technique. A nudge is a design choice that does not restrict a choice,

but instead makes use of psychological principles to influence behavior for good

[46], [49]. Nudges include a broad range of techniques and include methods such

as setting a default option, kind representations of information, and nudges to induce

reflection. One possible source of confirmation bias is from an under-reliance on

System 2 thinking or from an over-reliance on System 1 thinking. By encouraging

reflection, an under- or over-reliance can be reduced by requiring people to devote

more time and attention to a decision. In this work, the debiasing technique used

will be a nudge.

2.4 Visual Search: Attention

In cognitive psychology, the word attention is synonymous with information

selection. Because there is far more information flowing through the senses than

humans are able to handle, only a certain subset of available information can be

analyzed at a time. Determining which subset gets chosen at any given time has long

been an area of intense research [53], [54], [55]. The subset that gets selected for

processing is often controlled by relatively simple aspects of its ability to stand out,
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such as a sudden onset, movement, or its uniqueness [56], [57], [58]. Most importantly

for confirmation bias, the subset can be selected by the intentions and goals of the

searcher [59], [60]. This ability to adjust the processing of sensory information due

to intentions and goals is a very important component of all goal-oriented behavior

- if humans were not able to restrict the flow of information then we would simply

be overwhelmed and would never be able to accomplish any tasks [61]. In order to

properly control one’s behavior while attempting to accomplish a goal, natural and

necessary attentional mechanisms must ensure that the information needed to choose

the correct actions is available for decision making. For example, when driving a car

on the highway and attempting to change lanes, the driver must know where the other

cars are and their trajectory; knowing the other cars’ colors and passenger count is

not important to accomplish the goal of changing lanes.

During goal-driven behavior, humans often seek very specific information as it

relates to their goal. For example, an owner feeding his dog in the morning needs

to be able to find the dog food. To find the dog food, he might putter about the

kitchen, testing hypotheses for where the dog food is. His hypothesis of “is the dog

food in the pantry?” would guide his subsequent information seeking behavior, leading

him to open the pantry door and search the shelves until he found the food. Any

object that he fixates upon is compared to his question of “is this dog food?” If it is

not, it is unlikely that this object remains in his attention for very long and is most

likely immediately forgotten. Seen this way, the controlled selection of information

in vision, known as top-down visual attention, can be described as perception that

is guided towards the goal of verifying or falsifying some hypothetical state of the

perceiver’s environment. In fact, the most often used laboratory task in the study of

visual attention is visual search [62], [63], [64], [65].

In the usual visual search task, the participant is presented with an array of
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discrete stimuli and is asked to determine the presence of one particular type of

stimulus in the given display. Participants must then search the array of stimuli to

determine whether the target is present or absent. Normally, the stimulus that is

being searched for is known as the “target” while all other stimuli in the display are

known as “distractors.” Because the term “target” could mean the specific stimulus

present in the display, or the more abstract description of a target, the term “target

template” is helpful when referring to the description of the target during a visual

search. This template can be used to select and process the aspects of the visual

display that are most likely to yield information about a target [65]. While it is not

common to refer to a template as such, in order to link a confirmation bias with visual

search, it is useful to think of the template as a visual hypothesis.

Many theories of the top-down mechanisms used for visual selection in visual

search propose that information processing is biased towards goal-relevant information.

Similar to hypothesis testing, core information processing units have a limited capacity

[26], [27]. The theories of Guided Search, Feature Integration, Visual Attention, the

Boolean Map Theory of Visual Attention, and Biased competition all conclude that

visual search is guided, biased, or is otherwise prioritized towards template matching

stimuli [65], [66], [64], [67], [68], [69]. These theories do not make it clear whether the

stimuli is prioritized through applying gain to template-matching stimuli or whether it

is through suppression of template-mismatching stimuli. Again, similar to hypothesis

testing, research on working memory during a visual search has led some researchers

to conclude that visual selection can only be guided by a single template at a time

[70], [42]. Visual search theories determine that a visual search performed in this way

is more economical as it prioritizes aspects of the visual search that are task-relevant.

However, prioritizing stimuli that are similar to a target template combined with the

fact that only a single template can be maintained at any given time is theoretically
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sufficient to produce a confirmation bias in a visual search. Looking at a target

template as a hypothetical visual state, it will take long enough to gather evidence for

an alternative visual state that by the time this information is gathered at all it will be

incongruent with features in the template. This type of visual search is confirmatory

in nature; any information that supports the presence of a goal is going to receive

increased importance in working memory. Additionally, in the case where crucial

visual information is brief in nature, the alternative states may never reach awareness

in a top-down guided search. A search where this occurs has been demonstrated in

studies of inattentional blindness, where conspicuous events go unnoticed because one

is engaged in a demanding visual task [71], [72]. For example, observers of a game of

basketball are easily able to focus on a template of people playing basketball while

completely ignoring information that is grossly inconsistent with this template, such

as a gorilla walking through in the middle of the game.

The current evidence supports the possibility that top-down visual selection mechanisms

automatically lead to confirmatory searching. However, the design of most visual

search tasks encourage confirmatory searching as a useful and efficient strategy. The

typical visual search task is for a user to report whether a target is present or absent

in a given array of stimuli, any one of which could be the target. In these tasks,

where a target is either present or absent, the non-targets provide no information

about the presence or absence of the target. Therefore, in order to find out if the

target is present, the user must search the entire array of stimuli until they either find

or do not find the target. This is a confirmatory search, as the proposition “there is a

target” can be checked in less time than it can be proven wrong because the detection

of the target can occur before the entire array has been searched. The falsification of

the proposition can only occur once the entire array of stimuli has been checked and

the target has not been found. Therefore, it is unclear if the task of visual selection
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is confirmatory by its nature, or whether confirmatory selection is simply adopted as

the most useful strategy for visual search.

Even if a confirmatory search is useful, it is often not the most strategic and

efficient method of search. It is possible that humans use a confirmatory search

pattern because they are unaware of other, more strategic, methods of search. An

experiment designed to test whether participants, once taught a more strategic method

of searching, used a more strategic search strategy in place of a confirmatory search

strategy was undertook by Rajsic, Wilson, and Pratt [73]. Participants were given a

circle of eight letters consisting of b’s, d’s, q’s, and p’s and told to search for one of the

possible letters, with only one occurrence of the target appearing in each trial. The

letters were one of two different possible colors. In each trial, participants were told

to press a certain key if the letter matched the template color given and to press a

separate key if the target did not match the template color. The results from their first

experiment showed that most of the participants did in fact perform a confirmatory

search by searching each possible template-matching color before moving onto the

template-mismatching colored letters. This confirmatory searching occurred even

when a confirmatory search was not efficient, for example, when 6/8 of the letters were

template-matching and the other two were template-mismatching. In this example,

an efficient and strategic searcher would search the 2 template-mismatching colored

letters as they could determine the color of the target letter quicker than by searching

the 6 template-matching letters. To test whether the participants were unaware of this

more strategic searching strategy, the test administrators taught the participants the

strategic method of search and then retested the participants. Even after being taught

the strategic search method, the majority of participants still elected to perform a

confirmatory search, showing that humans elect to perform confirmatory searches

over more strategic and efficient search methods.
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In a follow on experiment, Rajsic, Wilson, and Pratt hypothesized that humans

use a confirmatory search because the cognitive cost of using a strategic search is too

high while the cost of using a confirmatory search is low.[74]. They tested whether

participants would still choose a confirmatory search pattern even if the cost of using

such a search was raised. To implement this raised cost, eight colored circles were

displayed arranged in a circle. Similar to the first experiment, the participants were

told to search for a target-letter and to press different keys if the letter appeared on a

template-matching circle versus a template-mismatching circle. However, using gaze-

tracking equipment, the letter would only be displayed on the circle if the participant

fixated upon a specific circle. Under these search conditions, the participants were

able to prioritize their search towards the color with the smallest amount of circles

present, thus reducing the confirmation bias present in visual search. Therefore,

by raising the cost of performing a confirmatory search, confirmatory search can be

reduced in a visual search.

2.5 Electrophysiological Measurements

Electrophysiology involves voltage or electric current changes as it occurs in the

human body [75]. It includes measurements such as EEG, Electrocardiography (ECG),

and galvanic skin response (GSR). Each of these measurements provides insight into

both physiological and neurological activity inside the human body and can help in

understanding confirmation bias. In addition to utilizing traditional measures, Minas

et al. used electrophysiological signals such as EEG and Electro Dermal Activity

(EDA) to detect and measure confirmation bias [76].
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2.5.1 Electroencephalography

EEG is the measure of electrical activity in the brain. Due to its high sensitivity,

EEG can be particularly useful over behavioral measures in distinguishing various

cognitive processes [77]. In a research study in 2014, Minas et al. correlated the

activation of the right frontal cluster of the brain with the presence of hypothesis

confirming information when compared to disconfirming and irrelevant information

[76]. In this study, participants were given the task of selecting three out of five

applicants to admit to a university. During the experiment, participants wore an

EEG headset. The participants were given incomplete information about the five

applicants and were asked to make an initial decision about whom to admit based

on the incomplete information that they had received. After the first initial decision,

participants were informed that they would be working as part of a team and would

use a text-based discussion tool to discuss the applicants. After this team discussion,

the participants would then make a second decision on whom to admit. The participants

were informed that each team member had received incomplete information and

each team member had information that was unique only to that specific team

member, thus it was important to share any unique information that the team member

had and to carefully consider any new information. However, the “discussion” was

in reality a team simulator that played a 12-minute prepared script. The results

from the experiment indicated that the participants processed the information that

they received from the other team members differently depending on whether it

supported or challenged the decision that they had made previously. Receiving both

supporting and challenging information activated the frontal, temporal, and occipital

regions of the brain which suggested that significant cognitive resources were spent

on figuring out what the information meant and how it related to the participant’s

pre-decision. However, only information that supported the participants pre-decision
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activated the right frontal cluster which indicated that the working memory of the

participant was working, and that the participant was comparing the new information

to information already known. Additionally, preference-supporting information also

triggered increased emotional arousal as indicated by increased skin conductance.

These results suggest that once participants determined that the new information

challenged their pre-decision, they found the new information less interesting and did

not think about it further.

Before Minas et al. correlated the activation of the right frontal cluster when

presented with preference-supporting information, previously the only way to determine

a confirmation bias was through behavioral measures.

2.6 Machine Learning

Machine learning is where computers learn from data to achieve some task [78].

One classic example of machine learning is an email filter that marks incoming email

as spam. A spam filter is a type of machine learning model that can take an email

as an input and return whether the email is spam. For a model to successfully learn

it requires data on which to learn. The data for this particular example takes the

form of emails - both real and spam. The users then partition the data into training,

validation, and test sets of data. The training set is the set of data from which the

model learns patterns that are given certain labels. In the example of a spam filter,

the model may learn to associate certain senders as being spam, or it could associate

certain key phrases such as “free trial” or “sale” in an email as belonging to a spam

email. After a model has been trained to identify spam emails, the model is then

tested on a set of validation data to see how well the model is performing. In this

case, the validation data would consist of previously unseen emails that are then

marked as spam or not spam. The model’s performance on the validation data can
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then be used to tune hyper-parameters in the model so that it performs better in

the future. After finishing training and validating, the model is tested for its true

performance on the test set. This test set has not been previously seen or used by

the model. The test set’s purpose is to assess how well the model will perform in the

real world.

Machine learning problems fall into two wide categories: supervised or unsupervised

learning. In supervised learning, a label is available that details the “truth” about

the data. An email spam filter is an example of supervised learning because an email

is known to be either spam or not spam. Unsupervised learning contains no label or

“truth” about the data. Additionally, supervised machine learning problems can be

sorted into two more categories: regression or classification problems. The goal of

a regression problem is to generate some type of numerical value. An example of a

regression problem would be to predict the price of a stock after observing its behavior

for the past week. A classification problem’s goal is to predict to which category the

data belongs. For example, predicting whether a stock’s price will increase or decrease

is a classification problem.

2.6.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a classification method that linearly separates

classes [79]. There are several reasons to use LDA over other linear models: it is stable

when the differing classes are well-separated, it is stable when there are only a small

number of observations, and it is able to be used for more than just two classes.

LDA attempts to approximate a naive Bayes classifier by using the assumptions that

every class has an approximate Gaussian distribution with a class-specific co-variance

matrix. A naive Bayes classifier is a simple probabilistic classifier that assigns each

observation to the most likely class, given its predictor values. It simply assigns a
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test observation with predictor values x0 to the class j for which Pr(Y = j|X = x0)

[79]. The above assumptions lead to the discriminate function below:

δ̂k(x) = x · µ̂k

σ̂2
− µ̂2

k

2σ̂2
+ log(π̂k)

µ̂k: mean of class k

σ̂2: weighted average of sample variances for each of K classes

p̂ik: proportion of training observations that belong to class k.

LDA calculates the probability that an observation x belongs to each class and

places x in the class of which it has the highest probability of being a member. An

example of an LDA classifier is shown in Figure 1.

Figure 1. An example of an LDA classifier with three classes. The observations from
each class are drawn from a multivariate Gaussian distribution with p = 2, with a class-
specific mean vector and a common covariance matrix. 20 observations were generated
from each class, and the corresponding LDA decision boundaries are indicated using
solid black lines. The Bayes decision boundaries are shown as dashed lines [79].

LDA models are similar to Quadratic Discriminant Analsysis (QDA) models,

however LDA models are much less flexible than QDA. LDA models make the assumption
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that the predictor variables share a common variance across each response. This leads

to a lower variance in LDA models, which can be beneficial if there are relatively few

training observations.

LDA is generally not used for machine learning with EEG classication. However,

it worked generally well in the work of Binias et al. In Binias et al.’s work, an LDA

was used to determine whether EEG signals came from an airplane pilot’s brain before

or after an specific event occurred [80]. In classifying the pre- and post-event brain

signals, LDA performed the second best out of all models with a mean accuracy of

73.01%. The LDA model outperformed all other models except for an artificial neural

network’s performance.

2.6.2 Random Forests

Decision trees are fairly common methods of making a decision. The branches

of a decision tree split at a discrete point with the following path accessible by only

following one side of the split. Random forest classifiers are an ensemble machine

learning method that use large numbers of decision trees that operate as its ensemble.

[78]. Ensemble methods are classifiers that classify using the outputs from multiple

various algorithms, which in the case of a random forest are its decision trees. The

theory behind the success of random forests is that a large number of uncorrelated

models operating as a committee will outperform any of the individual models by

themselves [81].

Random forest classifiers do not normally yield high-performance results when

classifying EEG [82]. However, by their very nature random forests identify the

features that are most important in a dataset and can identify features that allow for

distinction between the classes of a dataset. The use of random forests in an EEG

binary classification problem obtained an accuracy of 75% when classifying brain
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activity during concentration and meditation [83]. This performance is not state of

the art, however it is high enough to be able to identify the important features that

differentiate the two classes.

2.6.3 Artificial Neural Networks

An Artificial Neural Network (ANN) is another approach to a machine learning

task. These models were inspired by the biological makeup of the brain in which neural

networks propagate signals and information [84]. ANNs are proficient at learning

complex relationships amongst the data and are capable of expressing these complex

relationships as more simple relationships.

2.6.3.1 Fully Connected Neural Networks

The first ANN that was developed is the fully connected neural network. In

these networks, each neuron, or unit, is fully connected to every other neuron in the

subsequent layers. Each layer in an ANN receives inputs, multiplies these inputs by

a set weight, and then passes the weighted sum of the inputs through an activation

layer. The output of the nth layer is:

xn = f(W T
n xn−1 + bn)

f : non-linear activation function

xn−1: the input to the nth layer

Wn: the matrix of weights that describes a mapping from xn−1 to xn

bn: vector of biases.

An ANN learns by modifying the parameters of a model until the network can

correctly map an input to the desired output. An example of an ANN can be seen in

Figure 2.
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Figure 2. A simple example of an ANN. This fully connected ANN has two inputs,
two hidden layers, and a single output.

ANNs generally perform well when classifying EEG data. In an attempt to classify

operator workload via EEG data, Wilson et al. used a single, 43-node, fully-connected

ANN [85]. In this task, eight participants performed NASA’s Multi-Attribute Task

Battery (MATB) at one of the three levels of workload: baseline, low, or high. EEG

data was collected over three five-minute sessions during the course of a single day.

Each session corresponded to one of the three levels of workload. Once collected,

the EEG data was processed by using a fast Fourier transform (FFT) to transform

it the frequency domain so that the average power could be computed. The EEG

bands used included delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30

Hz), and gamma (31-42 Hz). The network achieved a mean classification accuracy

of 85.0% on the baseline level, 82.0% on the low workload level, and 86.0% on the

high workload level. Further work in the same area by Christensen et al. showed

that ANNs outperformed both LDAs and Support Vector Machines when classifying

workload level with EEG [86].
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2.6.3.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a neural network that is able to learn

spatial patterns in the input data [84]. There are three main layer types used when

building a CNN: the convolutional layer, the pooling layer, and the fully-connected

layer. In the first layer, the convolutional layer, the input is convolved using a set of

kernels. An activation map is then produced by applying an element-wise application

function. The next layer, the pooling layer, downsamples the spatial dimensions of

the activation map. The last layer, the fully-connected layer, calculates the scores of

each class and classifies the input. An example of a CNN can be seen in Figure 3.

Figure 3. In this CNN, an image of an animal is taken as an input and the output is
the type of animal [87].

Regarding classifying emotions from EEG data, CNNs have been shown to outperform

other machine learning methods. Tripathi et al. used a CNN to classify human

emotion using EEG data fom the DEAP dataset [88]. The DEAP dataset consists

of 40-channel EEG data recorded from 32 participants as they watched 40 one-

minute clips of music videos. The participants completed a self-assessment and scored

themselves on arousal, valance, and dominance for each music video. The CNN model

achieved an accuracy of 81.4% and 73.4% for the binary classification of the valence

and arousal levels of the participants, and an accuracy of 66.8% and 57.6% for the
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three-class classification of valence and arousal levels.

2.6.3.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a form of a neural network that is able to

learn long sequences and their dependencies on each other by maintaining a state or a

memory. This memory is maintained by a recurrent connection to itself which allows

the model to process both the current input as well as previously seen inputs [84]. An

example of a simple RNN can be seen in Figure 4. The major problems with simple

RNNs is that they are a victim of the vanishing gradient problem. The vanishing

gradient problem is a problem in which the gradients that are seen towards the end

of the model become extremely small as they are back-propagated to the beginning of

the model. The effect is that the model is unable to retain information about inputs

seen “a long time ago” and is therefore unable to learn long-term dependencies. The

Long Short-Term Memory (LSTM) model was created in order to solve this problem.

LSTMs contain a separate channel in which important information is stored so that

it is able to be used in learning long-term dependencies [84]. An example of a simple

LSTM can be seen in Figure 5

Figure 4. This is an example of a simple RNN.
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Figure 5. This is an example of a single LSTM [89].

RNNs are well-suited for machine learning problems in which time-ordered information

is important or can lend clues as to the current state. Because EEG data is temporally

organized, RNNs have been shown to outperform other machine learning models in

classifying EEG signals. In classification of six different hand motions from a grasp-

and-lift experiment, an RNN obtained an accuracy of 94.8% in classifying which

motion was being performed [82]. This was an improvement of 23.5% over other

machine learning methods. RNNs have also been shown to obtain the lowest test

error of mental load classifications ; the addition of LSTM layers in a CNN reduced

the test error of a four-class mental load classification by 21.5% [82].

Due to its ability to learn long-term dependencies, LSTMs are perhaps more

powerful than simple RNNs when it comes to classification and EEG. Hefron et

al. created a multi-path convolutional recurrent neural network (MPCRNN) that

consisted of CNNs and LSTMs [90]. This network achieved a cross-participant accuracy
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of 86.8% in classifying low and high workload from EEG data. This performance

outperformed CNNs and LSTMs by themselves. These results suggest that RNNs

may perform well in classifying EEG signals.

2.6.3.4 Temporal Convolutional Networks

A Temporal Convolutional Network (TCN) is a specific type of CNN that has

faster training times and longer memory than traditional RNNs when modeling a

sequence [91]. The general structure of a TCN can be seen in Figure 6. The

first layer of a TCN is the dilated causal convolutional layer which is a standard

convolutional layer with a dilated kernel. Using stacked, exponentially increasing,

dilated convolutional layers causes the receptive field of the model to increase exponentially

while the number of parameters increases linearly. The residual blocks used by a

TCN consist of a dilated one-dimensional convolutional layer with a ‘causal’ padding,

a weight normalization layer, a rectified linear unit (ReLU) activation layer, and a

spatial dropout layer which repeats for as many blocks are present. The various layers

of a residual block contained in a TCN can be seen in Figure 7.
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Figure 6. The architecture of a TCN.

Figure 7. A residual block [91].
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2.7 Summary

Confirmation bias is a prevalent cognitive bias in decision making. This bias

results in errors in decision making by inappropriately bolstering a believed hypothesis.

Confirmation bias can also affect visual search by restricting the searcher’s attention

to one visual hypothesis. Mitigating a confirmation bias during a visual search is

possible but it is unknown how such a mitigation would affect the searcher’s search

patterns. Finally, current research indicates that confirmation bias can be detected

through the use of EEG data.
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III. Methodology

3.1 Chapter Overview

This chapter describes the outline of a human-participant visual search experiment

and the process used to analyze the recorded data. First, the chapter discusses the

research questions and hypotheses. Next, a description of the experiment which

includes participant demographics as well as details about the various factors and

variables present in the experiment is presented. This is followed by a description of

how the results will be analyzed. This section will include details about the statistical

tests to be performed as well as the machine learning approach used. Finally, a

summary of this chapter is provided.

3.2 Background

Humans often default to a confirmatory method of searching because it generally

requires less mental processing, it is a simple way to search for a single target, and it is

often the most efficient way to search [10], [65], [73]. Because it is simple to perform,

humans will perform a confirmatory search even when a confirmatory method of

searching is not the most efficient way to search [74]. However, because it is still

possible to perform a confirmatory search while also being efficient and because it is

possible to perform a non-confirmatory search while being inefficient, this research

focuses on encouraging efficient searches rather than discouraging confirmatory searches.

3.2.1 Previous Work

The experiment conducted to answer these research questions was an extension

of Rajsic, Wilson, and Pratt’s 2015 and 2017 experiments [73], [74]. As an overview,

Rajsic’s 2015 experiment was a visual search task in which participants were presented
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with eight letters arranged in a ring. The letters on the screen could be one of

two colors. Participants were instructed to search for a specific letter, called the

target letter, and were given an example of what color the letter could be, or the

template color. The target letter would appear only once amongst the other letters.

The participants were to press a certain key if the target letter’s color matched the

template color and to press a separate key if the target letter’s color did not match

the template color. An example of Rajsic’s 2015 experiment can be seen in Figure 8

Figure 8. Rajsic’s 2015 experiment. The instructions presented to the subject, along
with a template color match and mismatch, and the predicted results can be seen.

The results of Rajsic’s 2015 experiment showed that participants performed a

confirmatory search by searching all of the template-matching colored letters first,

even when there were more template-matching colored letters than template-mismatching

colored letters.

In Rajsic’s 2017 experiment, a cost was introduced to attempt to force the participants
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to perform a non-confirmatory, or an efficient, search. This cost came in the form

of increasing the time necessary to search for the target letter. The experiment

was identical to the 2015 experiment except that instead of letters being present

on the screen, there were now eight colored circles. To make a letter appear the

participant would have to visually fixate on the circle. Under these search conditions

the participants were able to prioritize their search towards the color with the smallest

amount of circles present, thus reducing the confirmation bias present in the visual

search. An example of Rajsic’s 2017 experiment can be seen in Figure 9.

Figure 9. Rajsic’s 2017 experiment.

3.3 Research Questions

The objective of this research is to determine whether an inefficient search during a

visual search can be detected and subsequently mitigated. To complete this objective,

the following research questions are investigated.
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3.3.1 Research Question 1 - Categorizing Natural Behavior

What visual search patterns do participants naturally use during a visual search

task?

Hypothesis: The majority (> 50%) of participants will naturally resort to an

inefficient Visual Search Pattern (VSP).

3.3.2 Research Question 2 - Behavior Detection

Can physiological signals such as Electroencephalography (EEG), Electrooculography

(EOG), and Electrocardiography (ECG) be associated with an efficient visual

search?

Hypothesis: Physiological signals can differentiate a participant performing an

efficient visual search from a participant performing an inefficient visual search.

Research Objective: Develop a machine learning model that receives physiological

data and is able to determine an efficient visual search with an equal-class-weighted

classification accuracy of greater than 50%.

3.3.3 Research Question 3 - Behavior Mitigation

For a participant who is performing an inefficient search, can mitigation techniques

change the participant’s search patterns to an efficient search pattern that will

persist for the remainder of the search tasks?

Hypothesis: By applying the mitigation techniques of a nudge, a hint, and by

teaching the participant how to perform an efficient search, a participant will

perform an efficient search pattern for the remainder of the search tasks.
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3.4 Experiment

In Rajsic’s experiment, the cost was present throughout the duration of the

experiment. However, to answer the questions posed by this research, a more dynamic

approach was needed. The experiment conducted in this research differs from Rajsic’s

experiment in that the added cost of displaying a letter when its circle is fixated upon,

which this research calls a nudge, is only present if the participant is performing an

inefficient search.

3.4.1 Stimuli

This experiment is known as the Efficient Search Experiment (ESE). In the ESE,

a 1920 x 1080 pixel display monitor was used. Each trial consisted of eight circles

that are spread evenly around the perimeter of an imaginary circle that is centered on

a fixation cross in the center. The circles were 100 pixels in diameter, were positioned

360 pixels away from the fixation cross, and are separated by 45° of arc. Centered

inside each circle is a white-colored letter in Arial font. The letter is always one of

four similar lowercase letters (p, q, b, or d). These letters are rotation- and reflection-

isomorphic of each other and were chosen to reduce the chance that the target letter

was easily distinguishable amongst the other stimuli. The circles could be any of

three pairs of colors: blue and orange (color set 1), green and red (color set 2), or

purple and yellow (color set 3). For specific colors, see Table 1. In an effort to reduce

the confusion of the participant, the two colors of a color combination would always

appear together and the target color would always be the first color of the pair. All

of the color combinations can be seen in Figure 10.
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Table 1. RGB Values for Circle Colors

Color 1 Color 2

Blue/Orange (0, 18, 165) (255, 148, 0)

Green/Red (15, 148, 0) (255, 0, 0)

Purple/Yellow (99, 0, 165) (244, 174, 52)

Figure 10. The color combinations used in the ESE: purple and yellow, blue and orange,
and green and red.

Throughout the experiment, the participant’s gaze was recorded using the Smart

Eye Pro gaze tracking system. This gaze tracker updated at a rate of 60 Hz, the same

refresh rate as the experiment stimulus screen. Before the experiment, participants

were calibrated with the Smart Eye Pro system to ensure accurate gaze tracking.

Additionally, the participants wore physiological recording devices that captured

EEG, ECG, galvanic skin response (GSR), and EOG data. For more details about

the equipment listed here, please see Section 3.4.7.1.

3.4.2 Procedure

The experiment began with a pre-experiment questionnaire (details in Section 3.4.8.2)

intended to assess the participant’s physical and mental state to ensure that the
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participant was ready to undertake the experiment. Each experimental session consisted

of 480 trials, partitioned into 24 blocks of 20 trials each. Before the experiment

began, participants were shown the welcome screen that instructed the participant

to press [space] when instructed. Immediately afterwards, a two-minute EEG baseline

assessment was collected. During this time, a screen which simply displayed “Baseline”

was displayed. During this baseline, participants were instructed to sit quietly with

their eyes closed so that a baseline reading of their EEG signals could be recorded.

At the beginning of each block, participants were shown an instruction screen that

defined the target letter and the target color for that entire block. The target letter

was chosen randomly from the available letters and only one instance of the target

letter would appear in a trial. The colors of the circles rotated on a fixed cycle

through color sets 1, 2, and 3. To help the participant remember the color that the

participant was searching for, the target color would only ever be the first color of

the color sets (blue, green, or purple). The target color would never be the second

color of the color sets (orange, red, or yellow). An example of the instruction screen

can be seen in Figure 11. In this example, the target letter is a “d” and the target

color is blue. The participant is to type [c] if the circle that contains the target letter

is blue and is to type [z] if the circle is another color. Once the participant has read

the instruction screen for the block, the participant typed the target letter (“d” in

this example) followed by typing the target color (“blue” in this example).
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Figure 11. An example of an instruction screen displayed before a block of trials. In
this example, the target letter is “d” and the target color is blue. The participant is
to type the [c] key if the circle that contains the “d” is blue and is to type [z] if the
circle is not blue. To continue on from the top screen, the participant must type the
target letter “d.” The participant now must type the word “blue” to continue.

After the block instruction screen has been displayed and the participant has typed

in the correct target letter and target color, the trial instruction screen was displayed.

The trial instruction screen reminded the participant that the circles and letters will

not appear until the fixation cross has been fixated upon. The trial instruction

screen also informed the participant of which trial they were on, and instructed the

participant to press the “space” bar to start the trial.
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Once the trial had started, only the fixation cross was present on the screen.

The cross measured two cm by two cm and was centered in the screen. After 0.5

second, the participant’s gaze was evaluated to ensure they were looking at the fixation

cross. Once the participant had fixated on the fixation cross for three frames, or 80

milliseconds, the search stimuli was displayed and the fixation cross was hidden.

Trials in each block belonged to one of four conditions, as seen in Figure 12:

• Six target color matching circles

• Five target color matching circles

• Three target color matching circles

• Two target color matching circles
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Figure 12. All of the possible trial conditions: six target color matching circles (top-
left), five target color matching circles (top-right), three target color matching circles
(bottom-left), and two target color matching circles (bottom-right).

Out of the 20 trials in a block, there were seven trials each of the six and five target

color matching circles and there were three trials each of the three and two target

color matching circles. The number of circles that match the target color is referred to

as the Matching Subset Size (MSS). These trials were randomly arranged throughout
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a block with the restriction that no more than two of the same MSS appeared in a

row. The search stimuli was displayed on screen until a response was given. At this

point, the search stimuli was removed from the screen and the response feedback was

given as either “Correct” or “Incorrect.” The feedback was displayed for two seconds

before the next trial instruction screen was displayed. The participant was allowed

to take a break after completing blocks 7 and 18 and was presented with the screen

saying “You have reached a break point. Please notify the test administrator.” At

this point, the participant was able to take a break if they chose.

3.4.3 Human Responses

In general, an efficient search is the participant viewing the minimum amount of

circles necessary to select the correct answer. Unless the participant finds the target

letter before they searched all of the efficient circles, the minimum number of circles

necessary to be viewed is two circles for the six and two MSS and is three circles for

the five and three MSS.

In addition to determining whether the search was efficient, the participant’s

search was also analyzed to see if it is a “non-normal” search, if the participant missed

the target, if the participant searched in a circular fashion, if the participant performed

a multiple-minority-only search, and if the participant performed a majority-then-

minority search. Each search type and its description can be seen in Table 2.
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Table 2. Search Types

Search Type Description

Efficient

Participant viewed the

minimum amount of circles necessary

to select the correct answer

Non-Normal

The participant first searched all

of the minority-colored circles and then

searched additional majority-colored circles

Miss
The participant gazed at the target letter and

then continued searching additional circles

Circular
The participant searches the

circles in a circular manner

Multiple-Minority-Only

The participant gazed at only the

minority-colored circles but viewed

one or more of the circles more than once

Majority-then-Minority

The participant performs a

multiple-minority-only search except for

the very first circle, which is a majority-colored circle

The fixation area for a letter was defined as triple the area of the circle stimuli, or

6°. For a fixation to occur, the participant’s gaze must fall within this fixation area

for ten or more frames, or about 160 milliseconds. A inefficient search is a search in

which the participant does not search the color for which there are the fewest circles

to determine whether the target letter’s circle is the target color. For example, in

Figure 13, there are six orange circles and only two blue circles. Because there is only

ever one instance of the target letter, the participant can search the two blue circles

and determine that the target letter “d” is not present amongst them. Therefore,

the participant can conclude that the target letter’s circle must be orange. In this

example, an efficient search would be the participant viewing both of the orange

circles and then selecting an answer choice. An example of an efficient search can be

seen in Figure 13.
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Figure 13. This trial has had a nudge applied. The participant is presented with the
top image. The bottom-left image occurs if the participant fixates on the bottom circle,
and the bottom-right image appears if the participant fixates on the right circle.

A trial is marked as inefficient if the participant does not only search the circles

colored with the color that appears the least. A block is marked as inefficient if ten or

more trials of that block are inefficient. If the previous block was a inefficient block,

then the nudge was applied to all of the circles of the following block. However, if the

previous block was efficient, then no nudge was applied to the following block.

3.4.4 Block Design

An overview of the block design can be seen in Figure 14.
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Figure 14. The block design of the experiment

The first seven blocks of the experiments proceeded as described above and are

referred to as the “clean” blocks. However, the middle ten and the last seven blocks

differed. During the middle ten blocks, a mitigation technique known as a “nudge”

was applied to a block if the preceding block had been determined to consist of

inefficient searches. Because of this, the middle ten blocks are referred to as the

“nudge” blocks. The nudge that was used in this experiment is the same nudge that

was used in Rajsic’s experiment: the letters were not visible unless a participant

visually fixated on an area around the letter. An example of a nudge can be seen in
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Figure 13.

The first block of the nudged section never had the nudge applied so that the

blocks could be kept separate. Thus the application of a nudge was wholly dependent

on the search style of the participant during the trials. If the following block was

to have a nudge applied, then the block instruction screen featured the additional

notification informing the participant that they must look at a circle to make the

letter inside appear. An example of a nudged block’s instruction screen can be seen in

Figure 15. Regardless of whether the preceding block was nudged, another mitigation

technique known as the “hint” occurred before the 4th block in the nudged blocks, or

the 11th block overall. This hint informed the participant that there is exactly one

instance of the target letter and that there are only ever two colors present - thus

an efficient way to determine the color of the target letter’s circle is to look at the

circles with the color that appears less on the screen. An example is then shown

that demonstrates the method. The hint can be seen in Figure 16. Before the 7th

block in the nudged blocks, another mitigation technique known as the “explanation”

occurred. The explanation informed the participant why the nudge was occurring and

informed them that the computer would continue to apply a nudge if the computer

detected a inefficient search. The explanation can be seen in Figure 17. Lastly, the

10th and final block in the nudged block was inversely nudged - if the participant

had performed a inefficient search on the 9th block then no nudge would be applied,

and conversely if the participant had performed an efficient search previously then

the block would be nudged. This block was intended to capture the participant’s

reaction to receiving the nudge when it was not needed or to not receiving the nudge

when it was actually needed.
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Figure 15. This screen appears before a nudged block only. It differs from the normal
block instruction screen by the addition of the top line that instructs the subject to
fixate upon a circle to make the letter inside appear.

Figure 16. The hint screen is shown before the 5th block in the nudged blocks. It
instructs the subject on how to perform an efficent search for the target letter’s color.
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Figure 17. The explanation screen is shown before the 8th block in the nudged blocks.
It instructs the subject on how to perform an efficient search for the target letter’s
color.

The last seven blocks are referred to as the “instructed” blocks because the

participant is instructed to perform an efficient search throughout the blocks. This

instruction to perform an efficient search occurs at the beginning of the instructed

blocks in block 18 with the screen seen in Figure 18. Immediately after this screen is

the hint seen in Figure 16 which teaches the participant how to perform an efficient

search. Following these two screens, the instructed blocks behave in the same manner

as the nudged blocks in that the application of a nudge depends wholly on the

preceding block and whether it is an efficient or non-confirmatory block. Similar

to the nudged blocks, the first block of the instructed blocks did not have the nudge

applied. However, the instructed blocks differed from the nudged blocks in that the

instruction screen shown before the trial now featured the instruction to “perform an

efficient search” as seen in Figure 19.

The purpose of including various mitigation techniques is to increase the number

of efficient searches. The first seven blocks did not receive any mitigations so that the

participant’s default VSP could be captured. The nudge was introduced by itself in
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the “nudged” blocks to see how the participant would react with just an additional

cost to the search. However, the participant might not have realized that there existed

a method to perform an efficient search, and so the hint was introduced at the 11th

block to teach them how to search efficiently. At this point, the participant now

knew that there existed an efficient search method but still might not have known

why the nudge was occurring. Thus, the explanation was used at block 14 to explain

why the nudge occurred. Now the participant knows that there exists an efficient

search method and that they will be penalized if they don’t utilize this method. Yet,

knowing all of the above, the participant could still choose to use an inefficient search

method. Therefore, the instruction served to ensure that the participants used an

efficient search method for the final seven blocks.

During the execution of the experiment, a change was made such that the last

seven blocks would not have the nudge applied even if the previous blocks were

inefficient. This was done in an effort to ensure that the EEG data was balanced so

that it contained a similar number of efficient and inefficient searches from which

to learn. Additionally, by removing one mitigation technique, the effect of the

instructions on the participant’s number of efficient searches can be determined.
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Figure 18. The instruction screen is shown at the beginning of the instructed blocks
before block 18.

Figure 19. The instruction screen is shown during the instructed blocks. It differs from
the standard instruction screen shown before trials in that it instructs the participant
to perform an efficient search.

After the last seven blocks of the instructed blocks, the participant was informed

that they had finished the experiment and was instructed to notify the test administrator.

The participant underwent another two-minute baseline and completed a post-experiment

questionnaire.
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3.4.5 Variables

3.4.5.1 Independent Variables

The independent variables in this experiment are:

• The amount of target color matching circles present and thus the amount of

target color mismatching circles

• The presence of a nudge

• Whether the participant has received the hint

• Whether the participant has received the explanation

• Whether the participant has been instructed to perform an efficient search

The independent variables with varying level in the experiment are listed in Table 3.

Table 3. Independent Variables

Independent Variable Type Measurement Predicted Effects

Number of Target Color

Matching Circles
Numerical [2, 3, 5, 6]

The more target color circles

are present, the longer it will take

for the subject to search

Subject has Received

the Hint
Categorical [Yes, No]

The subject will perform fewer

inefficient searches

Subject has Received

the Explanation
Categorical [Yes, No]

The subject will perform fewer

inefficient searches

Subject has Been Instructed

to Perform an Efficient Search
Numerical [Yes, No]

The subject will perform fewer

inefficient searches

3.4.5.2 Response Variables

The participant’s search pattern, and subsequently the classification of the search

pattern as efficient or not, is a response variable for this experiment. Additionally,

the association of physiological signals such as EEG, ECG, GSR, and EOG with an

efficient visual search is an objective of this experiment. Correlations of an efficient
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search with patterns in the physiological signals will be used to determine whether an

efficient search can be detected via physiological signals. EEG consists of electrical

signals recorded over the entirety of the head. ECG captures movements over the

chest as well as heart rate. EOG accounts for eye blinks in the EEG data and can be

used to measure the attention of the participant. All response variables are shown in

Table 4.

Table 4. Response Variables

Response Variable Type Measurement

Participant’s Search Pattern Categorical

[Efficient, Inefficient,

Non-Normal, Miss, Circular,

Multiple-Minority-Only, Majority-then-Minority]

EEG Numerical 64 Voltage Signals Over Time

ECG Numerical Two Voltage Signals Over Time

EOG Numerical Four Voltage Signals Over Time

3.4.5.3 Control Factors

Within the experiment, control factors were:

• The colors of the circle stimuli remained the same, with the same colors appearing

in the same pairs

• The first color in the pair was always the target color

• The set of available letters were always the same letters and each letter in the

set was used at least once

• Each participant completed the experiment in the same experimental station in

the same laboratory

• Except for the nudge, each participant received the same mitigation factors at

the same times throughout the experiment
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Each of the 24 blocks in the experiment contained the same ratio of trial conditions,

as seen in Figure 12:

• Six target color matching circles

• Five target color matching circles

• Three target color matching circles

• Two target color matching circles

However, both the blocks and the trials within the blocks were shuffled to create

four separate sequences of blocks and trials. These sequences were created using the

following conditions:

• 35% of the trials had six target color matching circles

• 35% of the trials had five target color matching circles

• 15% of the trials had three target color matching circles

• 15% of the trials had two target color matching circles

• No two of the same trials appears in a block

• The minority-colored circles are separated by at least one of the majority-colored

circle

Trials with a higher color matching circle count were chosen to appear more because

these trials provide more information than the other trials on whether the participant

is searching efficiently. These sequences were used in a rotating order with the

participants: participant 1 received sequence A, participant 2 received sequence B,

and so on, with the 5th participant receiving sequence A again. All of the control

variables can be seen in Table 5.
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Table 5. Controlled Factors

Controlled Factor Levels

Color Pairs

[Blue, Orange]

[Green, Red]

[Purple, Yellow]

Target Color

[Blue]

[Green]

[Purple]

Letters Present [b, d, p, q]

Timing of Mitigation

Attempts

[Nudges begins at block 8]

[Hint occurs before block 11]

[Explanation occurs before block 14]

[Instructions to perform an efficient

search begins at block 18]

3.4.5.4 Nuisance (Confounding Factors)

With an experiment consisting of human participants, there are many potential

uncontrolled factors. The expected nuisance factors and the mitigation strategies are

contained in Table 6.
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Table 6. Nuisance Factors

Nuisance Factor Strategy Anticipated Effects

Learning Effect: Test

progression may result in

decreasing information

search time, which would

make information search

time a poor behavioral

measure.

Subjects attend a

training session previous

to the experiment day in

which they perform a single

block of trials to familiarize

themselves with the search task.

A decrease in search time due

to task familiarization,

but due to the simple nature

of the search tasks the time

will be negligible.

Misinterpretation of

instructions: Confusion on

tasks could lead to undesired

brain activity and false

measure of efficient searches.

Subjects attend a

training session previous

to the experiment day in

which they perform a single

block of trials to familiarize

themselves with the search task.

Subjects may not understand

the instructions, but a

majority will understand the

instructions presented to them.

Unbalanced number of

efficient and inefficient

searches

The ESE has blocks

dedicated to obtaining both

efficient and inefficient searches

through the use of mitigation

techniques.

The subject will search

inefficiently during the

blocks with no mitigation

attempts and will search

efficiently when instructed

to do so.

3.4.6 Participants

Sixteen United States Air Force personnel participated in this experiment. Participant

age ranged from 22 to 37 with a mean age of 28.9, a standard deviation of 5.2, and a

median of 27.5. All participants had, at minimum, a Bachelor’s degree and all used

computers daily in their job and personal lives. All participants had a sleep quality

of “fair” or better, and had an average of 6.7 hours of sleep with a 0.9 hour standard

deviation. Inclusion criteria included the ability to operate a computer, be at least

18 years of age, and be a U.S. citizen. Exclusion criteria included:

• Inability to use a keyboard

• Visual impairment causing an inability to view a computer screen
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• Physical impairments causing an inability to use a computer

• Use of hair products which interfere with the EEG electrodes

• Thick hair which prevents a proper fitting of the EEG cap

• A head size that is unable to fit into an EEG cap

No potential participants met the exclusion criteria.

Before starting the training for the experiment, all participants read the informed

consent document (ICD). Because of the placement of the electrodes, specifically the

ECG electrodes, additional participant consent was obtained and the participants

were able to apply the electrodes themselves if they so chose. Participants did not

receive any form of compensation for this experiment.

3.4.7 Materials

Four computers were used in this experiment:

• A computer running the experiment via Pyshcopy v3.2, called the Control

Station PC (CSPC) [92]

• A computer running the Smart Eye Pro gaze tracking software [93]

• A computer running the Multi-modal Analysis of Psychophysiological and Performance

Signals (MAPPS) software for experiment screen and web camera recording [94]

• A computer running the Cognionics recording software to collect physiological

signals [95]

The setup of these computers can be seen in Figure 20.

In addition to the four computers listed above, other necessary equipment includes

the Smart Eye Pro gaze tracker and the three physiological sensors which are covered

in further detail in Section 3.4.7.1. The experimental setup is shown in Figure 21.
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Figure 20. The layout of the computers used in the ESE. More information about the
cognionics recording computer and its use can be seen in Section 3.4.7.1.

The six Smart Eye Pro cameras are visible along with the four infrared (IR) flashers.

During the experiment, only the top monitor was on. The participant was seated

at a chair centered in front of the monitor so that all six cameras obtained a clear

image of the the participant’s eyes. Once the participant was seated and adjusted

properly, the participant was asked not to make large movements as it could impact

the accuracy of the gaze tracking. Once the experiment began, the overhead lights

were turned off and a dark blue backlight behind the top monitor was turned on to

increase the light level of the screen.
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Figure 21. The subject was seated in front of the experimental station. Only the top
monitor was used during the experiment.

3.4.7.1 Physiological Recording Devices

The collection of physiological signals required two computers: the computer upon

which the experiment was running and a separate computer to record the physiological

signals as seen in Figure 22. The CSPC was connected via USB to a piece of

hardware known as the “trigger box.” The trigger box communicated wirelessly with

the data acquisition unit (DAQ) that was physically connected to the EEG cap.

Triggers in byte format were transmitted first from the CSPC to the trigger box,

then from the trigger box to the DAQ, and finally from the DAQ to the computer

which was recording all of the physiological signal data. The triggers sent from the

CSPC corresponded with events and data from the experiment itself, such as the

block number that the participant is in or whether the participant just performed an

inefficient search. These triggers create a marker in the Cognionics recording software

so that certain events are able to be easily associated with physiological signals for

post-processing. The physiological collection computer also received other signals
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such as ECG and EOG.

Figure 22. The architecture of collecting and recording physiological signals.

This experiment utilized the Smart Eye Pro gaze tracking system. This gaze

tracking system features a 60 Hz sampling rate and is capable of a gaze accuracy of

0.5° in ideal conditions. The Smart Eye Pro was capable of outputting data streams

via User Datagram Protocol (UDP) to the PyschoPy program which was used to

trigger stimuli.

For this experiment, the Cognionics Mobile-72 system was used to collect all

physiological signals. In addition to capturing 64 EEG voltage channels, the Mobile-

72 system also collects 8 additional channels such as ECG and EOG. To collect EEG

signals, the participant wore the Cognionics EEG cap shown in Figure 23.
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Figure 23. The Cognionics EEG Cap.

The 64 EEG electrodes present on the cap are located in positions based on the

International EEG 10-20 Standard electrode placement, seen in Figure 24. To ensure

proper collection and to minimize interference, a conductive gel was applied to each

electrode until the electrode’s impedance was below 100k-ohms.
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Figure 24. The International 10-20 Electrode Placement

The ECG electrode positions are shown in Figure 25. The locations for the

horizontal and vertical EOG electrodes are shown in Figure 26. To ensure proper

placement, the test administrators applied the EOG electrodes. For privacy reasons,

the participant was instructed on where and how to place the ECG electrodes and

was then shown to a private room to allow the participant to attach the electrodes

onto themselves.

Figure 25. ECG Electrodes Placement
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Figure 26. Vertical and Horizontal EOG Electrodes Placement

3.4.8 Procedures

3.4.8.1 Training

Prior to the day of the experiment, participants underwent a training session.

During this training session, participants read the ICD and indicated their verbal

consent to continue the experiment. To ensure that participants could correctly

distinguish between the colors of the stimuli circles in the experiment, a color-blindness

test was administered. The color-blindness test consisted of participants counting the

number of circles of each color of an example trial displayed on the training screen.

Participants also completed a single block of trials to familiarize themselves with the

search task. Participants’ heads were measured so that the correct EEG cap could be

made ready for the experiment day, and a random participant number was assigned

at this time.
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3.4.8.2 Experiment Day

Upon arrival to the experiment, participants completed a pre-experiment questionnaire.

This questionnaire can be seen in Appendix Chapter A.

Once the pre-experiment questionnaire had been completed, the electrodes for

ECG, EOG, and GSR were attached. The EEG cap was fitted and a conductive gel

was inserted into each electrode to ensure an impedance below 100k ohms.

The participant was seated in front of the experimental station and a gaze calibration

with the Smart Eye Pro gaze tracker was performed until the participant had a

calibrated accuracy below 3° in each eye. The participant then completed the experiment.

After completing the entire experiment, participants completed a post-experiment

questionnaire. This questionnaire can be seen in Appendix Chapter A.

Once the post-experiment questionnaire had been completed, participants were

instructed to not discuss the nature of the experiment with anyone who had not

already completed the experiment.

The procedures completed before the experiment itself took, on average, around

45 minutes. The experiment itself lasted, on average, 1 hour. Participants were

scheduled individually at different times for 2.5-hour blocks to ensure adequate time

for preparation, the search trials, and cleanup.

3.4.9 Data Collection

Data from the ESE was collected in a Comma Separated Value (CSV) file generated

trial-by-trial. This data includes information about each trial, including:

• The color and location of each circle

• The order in which the participant viewed each circle

• The response, response time, and whether the response was correct
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• The target letter’s location

• Whether the participant performed a confirmatory search, an efficient search,

missed the target letter and kept searching, or searched in a circular manner

All physiological signals are collected by the Cognionics Data Acqusition software

and are saved in the BrainVision .eeg file format. The triggers sent by the CSPC are

captured and inserted into the EEG data. A list of all trigger values can be seen in

Chapter B. An example of this can be seen in Figure 27.

Figure 27. An example of a single efficient search epoch with triggers. The channel
names are on the y-axis while the time is on the x-axis. This EEG sequence represents
a single search from two seconds prior to the pressing of the answer key. In the trigger
values at the -1800 second mark, the 3072 trigger value indicates this is a search in
block 12, 10496 indicates it is trial 12, 18176 indicates there is no nudge present, 18432
indicates the participant has seen the hint, and 19456 indicates that the explanation
has not been seen. In the trigger values at the end of the trial, the 16384 indicates
the participant made a correct response and the 15616 indicates the trial was not
confirmatory.

3.4.10 Analysis Strategy

The data collected during the ESE was analyzed using various statistical and

machine learning packages in Python and JMP. The machine learning process is
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covered in the machine learning pipeline section of this chapter in Section 3.5. The

main objective for the analysis of the ESE data was to:

• Determine the initial VSP of the participant

• Determine whether the mitigation techniques used increased the number of

efficient searches

• Asses whether physiological data can be linked with an efficient or inefficient

search

To first determine the initial VSP used, the VSP that the participant used in

the blocks which had not received any mitigation technique, or the first eight blocks,

will be determined. This will be determined by classifying the VSP of each trial as

either confirmatory, efficient, or circular. A confirmatory search is a search where the

participant first searched a colored circle that matched the target color. An efficient

search is where the participant searched the colored circles that appeared least and

only the minimum required number of circles needed to determine what color the

target letter’s circle was. Given these conditions for an efficient search, it should be

noted that a search could be both confirmatory and efficient. Lastly, a circular search

is a search where the participant searched the circles in a consecutive circular fashion.

Whichever VSP that the participant used during the majority of trials in the first

eight blocks will be deemed that participant’s VSP. This will serve to answer research

question 1 (Section 3.3.1).

During the data exploration phase, the number of efficient searches per block

will be plotted against the block numbers to determine if there is a trend. As the

participant completes more blocks and receives more mitigations, the efficient searches

per block should increase.

To first test whether the mitigation attempts had a significant impact on the

number of efficient and inefficient searches, a linear regression model will be built
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which will determine each mitigation technique’s effect on the number of efficient

searches. The levels and factors can be seen in Table 7.

Table 7. The linear regression’s levels and factors

Factors Levels

Participant has encountered

the nudge
[No, Yes]

Participant has received

the hint
[No, Yes]

Participant has received

the explanation
[No, Yes]

Participant has been instructed

to complete an efficient

search

[No, Yes]

The statistical significance of the above test will determine the answer of research

question 3 (Section 3.3.3).

Lastly, physiological signals both across and within participants will be compared

to determine if a difference occurs in the participants while performing an efficient vs

an inefficient search.

3.5 Machine Learning Pipeline

3.5.1 Data Pre-processing

Once the ESE had finished, the collected raw physiological signals were saved

in a BrainVision .eeg file format. The EEG data was then processed following the

PREP pipeline using the 2019 version of EEGLAB, an interactive Matlab toolbox for

processing continuous and event-related EEG data [96]. A summary of the PREP

pre-processing pipeline is given below:

1. The data was down-sampled from 512 Hz to 250 Hz to speed up computation

and to cut off unnecessary high-frequency information.
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2. A high-pass filter at 1 Hz was applied using a basic finite impulse response

(FIR) filter. The purpose of this filter was to remove low frequency drift.

3. The International 10-20 channel system information was imported to allow for

channel re-referencing.

4. A notch filter was applied at 60 Hz to remove electric line noise.

5. Bad channels were rejected using Automatic channel rejection using kurtosis

with a Z-score threshold max of 5.

6. The information that was lost due to the removal of the bad channels was

interpolated using spherical interpolation to prevent bias when re-referencing.

7. The data’s reference was changed from the mastoid to the average of the

channels.

8. Independent Component Analysis (ICA) was performed to identify the components

that were associated with eye-blinks.

9. The components that were associated with eye-blinks were removed using ICA

Blink Metrics with the vertical EOG channel used as an eye-blink reference [97].

After processing, the data was segmented in EEGLAB. The data was segmented

by a window two-seconds in length, with the end of the window occurring when the

participant pressed the key indicating which color they believed the target letter’s

circle was. Any epochs that overlapped, i.e. they contained data from another epoch,

were discarded. This segmentation produced one file per participant. Due to an

unknown error, the hardware used to transmit and receive the signals dropped certain

epochs. Because of this, some participants did not have the full 480 epochs. Details

about the epochs included for each participant can be seen in Table 25.
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Table 8. Number of trials recorded per participant

Participant
Total Number

of Trials Recorded

0271 475

1437 480

2070 478

2765 458

4030 479

4431 477

4613 480

5617 473

5669 480

5791 474

5952 337

6973 478

6969 480

7669 478

9138 480

9150 480

Following segmentation, any noisy data that was present was rejected by visual

inspection in EEGLAB. Any epoch that had a large amount of noise when compared

to the rest of the data was rejected.

Once the data has been segmented, for a single participant, a single file contains all

of the EEG data of the searches that occurred during the ESE. The last two seconds

of each search were captured, which means that there are at most 960 seconds worth

of EEG data per file.

3.5.1.1 Time Series Feature Extraction

To prepare each segment for machine learning (ML), a sliding window generated

smaller segments from each larger segment. The sliding window that was used was

composed of two adjustable parameters: the window’s size and step. The window’s
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size is the length of the sequence that is generated from the larger segment, while

the step is the time points that the window moves to generate the next sequence.

In this analysis, a sequence lasting two seconds at a sample rate of 256 Hz contains

512 frames. A sliding window with a window size of 0.5 seconds, or 128 frames, and

a step size of 0.5, creates four 0.5-second non-overlapping epochs from the original

two-second sequence. Using a sliding window creates multiple epochs from a single

search. For a time series classification, each epoch is viewed as an observation and each

observation has 64 features where each feature corresponds to the EEG electrodes.

3.5.1.2 Frequency Feature Extraction

All of the epochs present in the data were transformed to the time-frequency

domain using MATLAB. A family of complex Morlet wavelets which spanned 30

frequencies over the logspace from 1 to 80 Hz was used to transform the data into

the five traditional EEG bands: delta (1-6 Hz), theta (7-11 Hz), alpha (12-15 Hz),

beta (16-22 Hz), and gamma (22-30 Hz) [77]. The mean of the power spectral density

was then obtained. Using the mean power for each of the five frequency bands for

a 64 electrode EEG cap produced 320 features for each participant. These features

composed the inputs for a single observation for a ML model.

3.5.2 Datasets

One EEG recording per participant entered the data pre-processing step and two

datasets emerged:

1. The Time Series Signal per Search dataset

2. The Frequency Features per Search dataset

The Time Series Signal per Search dataset contains a single participant’s entire

search, where individual epochs contain data from a single search. The label for each
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epoch is either “efficient” (represented as a 1) or “inefficient” (represented as a 0)

and is described in detail in Section 3.4.4. Because the entire search was labeled as

either efficient or inefficient, all epochs from the same search will possess the same

label. The ML problem for this dataset is a many-to-one binary classification of

which the goal is to classify a time-series sequence of EEG data as originating from

an efficient or an inefficient search. The ML input shape is (batch size, time steps,

features), where batch size is variable and is the number of observations, time steps is

the number of frames in the epoch and is the same as the size of the sliding window,

and the features is 64 and is the same as the number of EEG channels.

The Frequency Features per Search dataset is labeled in an identical manner to

the method above in the Time Series Signal per Search dataset. The major difference

between the two datasets is that in the Time Series Signal per Search dataset, the data

is organized in time series sequences in each epoch, whereas in the Frequency Features

per Search dataset the data is the mean power in each of the five traditional frequency

bands of EEG. The time series sequence for each trial is converted into a single mean

value by the time-frequency transformation. The ML problem for this dataset is a

one-to-one binary classification to classify a search as efficient or inefficient. The ML

input shape is (batch size, features) where batch size is variable and is the number of

observations in the input, and the features consist of the mean power of each of the

five frequency bands of the EEG channels. In this dataset, a single search consists

of 320 features because there are 64 channels of EEG data and each channel has the

mean power of each of the EEG bands.

3.5.2.1 Challenges of EEG

There are many important factors to consider when applying ML to EEG. EEG

signals often have a very low signal-to-noise ratio, meaning that EEG signals are very
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likely to have a large amount of both noise and outliers [98]. One of the purposes

of pre-processing the EEG data was to reduce this noise, however, there are still

significant amounts of noise present in the data.

Additionally, because features can be taken from many channels over many different

time steps, EEG signals are of high dimensionality [98]. In the Frequency Features

per Search dataset there are 320 features, while there are only 480 observations per

participant. The curse of high dimensionality occurs in ML when there are a high

number of features when compared to a low number of observations. Because of the

high number of features, extra steps must be taken to prevent over-training when

applying ML on the EEG classification problems.

3.5.3 Classification Models

Because of the two datasets that were generated by the pre-processing, there are

two ML problems present: a one-to-one classification problem and a many-to-one

classification problem. For the one-to-one classification problem Linear Discriminant

Analysis (LDA), random forest classifier (RFC), and a fully-connected Artificial Neural

Network (ANN) were investigated. The many-to-one problem deals with classifying a

time series of the EEG data. Deep learning models are able to classify sequenced

data well, thus deep learning models for solving this classification problem were

investigated. The deep learning models that were evaluated were an Long Short-

Term Memory (LSTM) model and a Temporal Convolutional Network (TCN) model.

For each model, the data was split into training, validation, and test sets. The training

set size was 60%, the validation set size was 20%, and the test set size was also 20%.

The test set was sequestered from the model until the final testing occurred.
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3.5.3.1 Linear Discriminant Analysis

An LDA was used as a baseline score because LDAs are stable even with a small

number of observations [79]. LDAs have no hyperparameters, thus making tuning

unnecessary. Despite not using feature selection, the high dimensionality of the

dataset was accounted for by choosing the LDA’s shrinkage parameter to be ‘auto’

and its solver to ‘lsqr.’ Using these settings helps improve the LDA’s estimation of

covariance matrices for datasets that have high dimensionality [99].

3.5.3.2 Random Forest Classification

Random forests naturally have the ability to select the best features so all features

were used. The best parameters per participant’s model were chosen based on the

Mathew’s Correlation Coefficient (MCC). MCC can be calculated directly from the

confusion matrix using the formula:

TP × TN − FP × FN√
(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)

The hyper-parameters tested were:

• The number of trees - Increments of 10 from 10 to 500

• The number of features considered - integers from 1 to 25

• Maximum depth of a tree - integers from 1 to 25

The recommended number of features for random forest classifier is the square

root of the total number of features.
√

320 = 17.8, so the recommended number

of features is 18. A sweep to 25 features was performed to ensure that the optimal

number of features was obtained.
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For each participant, an RFC model was trained using the default parameters of

SKLearn’s Random Forest Classifier. This model’s MCC was used to measure the

improvement in performance of the tuned RFC. Next, the optimal number of trees

was found by training an RFC using the square root of the max number of features.

Using the optimal number of trees, a hyperparameter sweep was performed to find

the optimal number of maximum features and the maximum depth. Finally, each

model was tested and the MCC of the tuned model was determined. MCC was only

used during the tuning phase for the RFC and was used to find the best combination

of hyperparameters. The results of the tuning can be seen in Table 9.

Table 9. The RFC optimal hyperparameters for each participant.

Participant Initial MCC Tuned MCC
Number

of Best Trees

Number

of Best Features

Best

Depth

0271 -0.021259 0.367983 10 16 10

1437 0.227690 0.376607 210 22 6

2070 -0.008973 0.314031 30 12 2

2765 0.038338 0.380592 60 21 7

4030 -0.050538 0.241594 100 5 3

4431 0.205798 0.420841 130 24 16

4613 -0.046089 0.423797 30 10 6

5617 0.019038 0.386374 40 8 3

5669 -0.036232 0.345439 300 9 6

5791 0.087689 0.361359 40 9 7

5952 0.157911 0.575537 50 12 6

6973 -0.208656 0.205556 180 4 13

6969 0.259356 0.378002 90 20 8

7669 0.085624 0.273787 10 1 10

9138 0.095168 0.317808 80 12 3

9150 -0.103280 0.460261 20 20 1

3.5.3.3 Fully-Connected Neural Network

ANNs were chosen because they are relatively simple when compared to other deep

learning models. The ANN model parameters was chosen through hyper-parameter
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sweeps. The model that was chosen as the final model was a model that could achieve

a high validation accuracy with a low training time. The hyper-parameters tested

were:

• Number of hidden layers - Integers from 2 to 8

• Number of hidden nodes per layer - 2, 4, 8, 16, 32, 64, 128, 256

• Learning rate - 0.01, 0.001

Model selection was completed using a validation-based early stopping method

with a patience of 10 epochs and a delta of 0.001. Each network was trained using a

batch size of 32.

The first layer in the ANN model consisted of a fully connected Dense layer of the

optimized number of nodes with a rectified linear unit (ReLU) activation function.

Each subsequent layer consisted of a fully connected Dense layer of the optimized

number of nodes and a ReLU activation function followed by a dropout layer of 0.2

and ending in a Batch Normalization layer. This sequence repeats for the optimal

number of hidden layers per participant. The final layer is a fully connected Dense

layer with one unit and a sigmoid activation function which serves as the output of

the model. The sigmoid output of the final layer represents the probability of the

input being one, or efficient. The model uses an Adam optimizer with the optimal

learning rate and a binary cross-entropy loss function. The architecture for this model

can be seen in Figure 28.

The sigmoid function of the final Dense layer returns the probability that the

observation belongs to the efficient class. The classification thresholds determine

which predictions will be classified into each category, i.e., an classification threshold

of 0.5 indicates that an observation will be classified as efficient if the model is only

50% certain that it belongs to that class. While not exactly a tunable parameter, it

is still important to determine a classification threshold that is appropriate for the
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specific problem. Thus, it is necessary to determine an appropriate threshold for this

problem. For each combination of hyperparameters during the sweep, the following

thresholds were considered:

• Threshold values from 0.0 to 1.0 in 0.1 increments

Analysis of the participant questionnaires determined that only 1
16

, or 6.25%, of

participants found the nudge “annoying.” Thus, it was determined that balanced

accuracy should be the metric that the models should be judged. The threshold

value with the highest balanced accuracy was determined to be the best threshold for

that combination of hyperparameters.

A model for each participant was tuned using the parameters above. The results

of the tuning can be seen in Table 10.
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Figure 28. The ANN architecture.
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Table 10. The ANN optimal hyperparameters for each participant

Participant
Hidden

Layers
Width

Learning

Rate
Threshold

Val

Accuracy

Val Balanced

Accuracy

0271 2.0 16.0 0.001 0.6 0.657895 0.660430

1437 2.0 16.0 0.010 0.5 0.558442 0.562078

2070 4.0 64.0 0.001 0.5 0.337662 0.527778

2765 4.0 8.0 0.010 0.5 0.608108 0.568267

4030 2.0 256.0 0.001 0.5 0.610390 0.632695

4431 3.0 128.0 0.010 0.5 0.662338 0.669048

4613 5.0 64.0 0.001 0.5 0.467532 0.575330

5617 5.0 64.0 0.010 0.5 0.631579 0.610994

5669 6.0 128.0 0.001 0.6 0.610390 0.634863

5791 6.0 8.0 0.001 0.5 0.618421 0.623512

5952 4.0 128.0 0.001 0.5 0.814815 0.796537

6973 3.0 2.0 0.010 0.5 0.532468 0.572917

6969 5.0 128.0 0.001 0.4 0.714286 0.695238

7669 3.0 16.0 0.010 0.5 0.584416 0.578716

9138 4.0 256.0 0.001 0.4 0.688312 0.670991

9150 2.0 128.0 0.010 0.5 0.714286 0.718182

3.5.3.4 Long Short-Term Memory

Unlike the other models which were fit using the frequency features of the EEG

data, the time-series EEG data was used to fit an LSTM model. The LSTM model

used was inspired by Kumar et al.’s model used in the Optimized CSP and LSTM

(OPTICAL) predictor [100]. Kumar et al. demonstrated that a two-layer LSTM

model, each with varying numbers of hidden units, performed better than other

models when it came to classifying EEG data.

The hyperparameters tested were the number of hidden layers in each of the two

LSTM layers. These hyperparameters were:

• Number of hidden units in the first LSTM layer: 10, 50, 100, 200

• Number of hidden units in the second LSTM layer: 10, 50, 100, 200
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Similar to the ANN hyperparameter sweep, a threshold sweep was also performed.

The LSTM model consisted of an initial CuDNNLSTM layer containing the optimal

number of hidden units, an input shape of (500, 64), and return sequences was set to

True. This layer was followed by a Batch Normalization layer. Next was the second

LSTM layer which contained the optimal number of hidden units and an input shape

of (500, 64). The final layer was a Dense layer with one unit and a sigmoid activation

function. The architecture for the LSTM model can be seen in Figure 29.
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Figure 29. The LSTM model architecture.

A model for each participant was tuned using the parameters above. The results

of the tuning can be seen in Table 11.
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Table 11. The LSTM optimal hyperparameters for each participant.

Participant
LSTM 1

Hidden Units

LSTM 2

Hidden Units
Threshold

Val

Accuracy

Val

Balanced Accuracy

0271 100.0 50.0 0.5 0.618421 0.627555

1437 200.0 10.0 0.5 0.671053 0.659972

2070 100.0 200.0 0.4 0.565789 0.630008

2765 10.0 10.0 0.4 0.397260 0.568627

4030 200.0 200.0 0.5 0.631579 0.622827

4431 10.0 100.0 0.5 0.644737 0.646916

4613 50.0 100.0 0.3 0.631579 0.621429

5617 100.0 50.0 0.5 0.786667 0.666667

5669 200.0 50.0 0.5 0.710526 0.570196

5791 50.0 50.0 0.5 0.644737 0.626926

5952 200.0 200.0 0.5 0.685185 0.680556

6973 100.0 10.0 0.5 0.671053 0.639231

6969 100.0 50.0 0.5 0.657895 0.656965

7669 100.0 200.0 0.5 0.565789 0.571739

9138 100.0 10.0 0.5 0.723684 0.617749

9150 200.0 100.0 0.2 0.723684 0.669312

3.5.3.5 Temporal Convolutional Network

Unlike the other models which were fit using the frequency features of the EEG

data, the time-series EEG data was used to fit a TCN. The TCN model used was

inspired by Bai et al.’s model and was created through hyperparameter testing of

kernel size, dilations, filters, and stacks [91]. The hyperparameters tested were:

• Number of filters - 5, 10, 15 and 20

• Kernel widths - 18, 32, 64

• Dilations - [2, 4, 8, 16], [4, 8, 16, 32], and [8, 16, 32, 64]

• Stacks - 4, 5, 6, and 7

These hyperparameters were chosen to ensure an adequate receptive field for the

model. The equation for calculating the receptive field for a given convolutional layer,
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l, and dilation rate, d is given in Equation (1).

receptiveF ield(l) = receptiveF ield(l − 1) + [kernelSize− 1] ∗ d (1)

With the smallest kernel size of 18 and the smallest dilations of [2, 4, 8, 16], the

network is designed to have at least a receptive field of 511 samples, or roughly 2

seconds, which allows it a sufficient receptive field to cover the entire input sample.

Please see Table 12 for a complete list of all possible receptive field sizes.

Table 12. Receptive field sizes for all possible combinations of kernel widths and
dilations.

Kernel

Width
Dilations

Receptive

Field

18

2, 4, 8, 16 511

4, 8, 16, 32 1021

8, 16, 32, 64 2041

32

2, 4, 8, 16 931

4, 8, 16, 32 1861

8, 16, 32, 64 3721

64

2, 4, 8, 16 1891

4, 8, 16, 32 3781

8, 16, 32, 64 7561

The kernel width denotes the width of the convolutional kernel size. The greater

the width, the more data over which the kernel convolves. An increased kernel size

could generate a better prediction due to this greater amount of data [101]. Likewise,

the layers of dilations causes the effective receptive field of units to grow exponentially

with layer depth even though the number of parameters grows only linearly [102].

Although some of the combinations of kernel widths and dilations overlap in their

receptive field size, there is a chance that a different kernel width paired with the

same dilations could capture data that another kernel width failed to capture.

The first layer in the TCN was a one-dimensional convolutional layer with 64

87



filters, a kernel size of 10, a dilation rate of 1, and a padding of ‘causal.’ This layer

was added so that the architecture can take a sequence of any length and map it to

an output sequence of the same length [91]. The TCN layers followed this first layer.

The last layer of the model was a Dense layer with one output and an activation

function of sigmoid. The TCN model architecture can be seen in Figure 30.

Figure 30. The TCN model architecture.
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All models utilized a loss function of binary cross-entropy and used Adam as the

optimizer. To regularize, batch normalization and a dropout of 25% were used. To

select the best model, a validation-accuracy based early stopping with a patience of

5 epochs and a delta of 0.001 was used. All networks were trained with a batch size

of 32.

Similar to the LSTM hyperparameter sweep, a threshold sweep was also performed.

A model for each participant was tuned using the parameters above. The results

of the tuning can be seen in Table 13.

Table 13. The TCN optimal hyperparameters for each participant

Participant Filters
Kernel

Size
Dilations Stacks Threshold

Val

Accuracy

Val Balanced

Accuracy

0271 15 64 [2, 4, 8, 16] 4 0.7 0.697368 0.707893

1437 15 64 [8, 16, 32, 64] 6 0.5 0.710526 0.711648

2070 15 32 [8, 16, 32, 64] 6 0.8 0.750000 0.702862

2765 5 64 [2, 4, 8, 16] 4 1.0 0.739726 0.707680

4030 5 64 [4, 8, 16, 32] 5 0.6 0.671053 0.673943

4431 15 32 [2, 4, 8, 16] 5 0.7 0.697368 0.698611

4613 15 64 [2, 4, 8, 16] 5 0.8 0.750000 0.756734

5617 10 32 [2, 4, 8, 16] 5 0.6 0.706667 0.708929

5669 15 18 [4, 8, 16, 32] 5 0.1 0.750000 0.662458

5791 5 18 [4, 8, 16, 32] 5 1.0 0.671053 0.670290

5952 10 18 [2, 4, 8, 16] 4 0.1 0.740741 0.742069

6973 10 18 [2, 4, 8, 16] 4 1.0 0.750000 0.735119

6969 5 18 [4, 8, 16, 32] 5 0.4 0.723684 0.707971

7669 5 32 [2, 4, 8, 16] 6 0.1 0.684211 0.691667

9138 15 64 [2, 4, 8, 16] 4 0.3 0.776316 0.734848

9150 5 32 [2, 4, 8, 16] 6 0.6 0.736842 0.693603

3.5.4 Cross-Participant Models

Within-participant models generally perform well as a single participant’s data

is less variable than multiple participants’ data. However, a cross-participant model

is robust in that it is more genaralizable and can be applied to more than a single
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participant. To create a cross-participant model, the highest-performing models from

the within-participant models will be considered.

To train a cross-participant model, the data was split into train, validation, and

test datasets. 13 participants were used as the train set, 2 were used as the validation

set, and one’s participant’s data was used to test the model. The participants rotated

which set they belonged to so that the model tested each participant’s individual

data. For the cross-participant models, the same hyper-parameters were tuned as in

the within-participant models.

The results from the hyperparameter tuning for the RFC can be seen in Table 14.

The hyperparameters from the model with the highest tuned MCC were chosen to

be the final hyperparameters.

Table 14. The results of the cross-participant hyperparameter tuning for the RFC
model.

Participant

Left Out

Initial

MCC

Tuned

MCC

Number of

Best Trees

Number of

Best Features

Best

Depth

0271 0.104060 0.209738 20 11 3

1437 0.103668 0.183697 130 20 9

2070 0.063555 0.188369 160 2 6

2765 0.111462 0.174800 100 1 5

4030 0.040205 0.186051 100 20 3

4431 0.100398 0.178894 70 2 4

4613 0.136622 0.208469 330 20 8

5617 0.098671 0.198390 100 10 4

5669 0.072923 0.230696 30 20 10

5791 0.099991 0.182309 210 23 2

5952 -0.000076 0.204645 180 25 1

6973 0.025042 0.191780 10 9 2

6969 0.070725 0.201183 430 1 4

7669 0.102238 0.198265 170 1 6

9138 0.141289 0.189731 300 1 5

9150 0.101242 0.206003 430 2 5

The results from the hyperparameter tuning for the ANN can be seen in Table 15.
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The hyperparameters from the model with the highest balanced accuracy were chosen

to be the final hyperparameters.

Table 15. The cross-participant hyperparameter tuning results for the ANN model.

Participant

Left Out

Hidden

Layers
Width

Learning

Rate
Threshold

Validation

Accuracy

Validation

Balanced Accuracy

0271 8.0 256.0 0.001 0.7 0.577723 0.581051

1437 8.0 128.0 0.010 0.8 0.570379 0.576326

2070 2.0 64.0 0.010 0.5 0.597307 0.594459

2765 3.0 128.0 0.010 0.5 0.560588 0.573937

4030 3.0 128.0 0.001 0.5 0.578947 0.512744

4431 5.0 64.0 0.010 0.5 0.596083 0.591312

4613 2.0 256.0 0.001 0.5 0.620563 0.590035

5617 7.0 256.0 0.010 0.6 0.594859 0.582298

5669 6.0 128.0 0.001 0.5 0.591187 0.588737

5791 2.0 128.0 0.001 0.5 0.565483 0.561324

5952 7.0 256.0 0.001 0.5 0.575472 0.574480

6973 6.0 128.0 0.001 0.4 0.567086 0.563052

6969 3.0 256.0 0.001 0.5 0.567227 0.571324

7669 7.0 128.0 0.010 0.5 0.585084 0.588915

9138 6.0 256.0 0.001 0.4 0.563025 0.569215

9150 6.0 64.0 0.001 0.5 0.585084 0.587152

3.5.5 Performance Analysis

The ML models’ performance will be analyzed using balanced accuracy. Because

the number of inefficient and efficient searches are imbalanced, a useful metric is

the balanced accuracy. Balanced accuracy accounts for this class imbalance and

determines the average recall on each class. This metric is a better indicator of

model performance when the classes are imbalanced because it better illustrates how

the model performed when predicting both classes. To better illustrate classification

errors, a confusion matrix will be used (Figure 31). Confusion matrices show the true

positive rate (TPR), true negative rate (TNR), false positive rate (FPR), and false

negative rate (FNR) and provide a closer examination into what kind of classification
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mistakes the model is making.

Figure 31. A confusion matrix.

Both a model’s accuracy and its confusion matrix depend on tuning the thresholds

that are used to classify a model’s probability output. Therefore, the Area Under

the Receiver Operating Characteristic Curve (AUROC) will be used to determine

the overall best model. A Receiver Operating Characteristic (ROC) curve is made

by plotting a model’s TPR versus its FPR at various classification thresholds. An

example of a ROC curve can be seen in Figure 32. An AUROC of 1.0 indicates

a perfect model, one that correctly classifies all observations, while a score of 0.0

indicates a model that failed to properly classify any observations. Using an AUROC

can indicate how well the data is being modeled.
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Figure 32. A ROC curve.

An important aspect of determining the performance of a model is determining

where it does not perform well. The error analysis for the frequency dataset will

focus on analyzing how classification errors are associated with each type of search.

If efficient and inefficient searches are consistently producing classification errors, then

the models may not be generalizing well across searches during the experiment. For

the time series dataset, the error analysis will focus on the data segmentation. For

this research, the data segmentation was chosen to be the two seconds before the

participant selected an answer. However, there are many different ways to create

epochs and to segment the data. Future work will be necessary to determine which

is the best way to segment epochs from the time series data.
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3.6 Summary

In summary, this chapter reviewed the previous work undertaken in identifying a

confirmation bias during a visual search. It outlined a visual search experiment that

was used to determine how effective various mitigation techniques are in mitigating an

inefficient search pattern. The experiment consisted of participants participating in

a visual search experiment in which they determine the color associated with a given

letter. Next, information about the setup, equipment, and analysis of the experiment

was reviewed. Finally, a machine learning pipeline was devised which discussed pre-

processing the EEG data, the creation of various models to determine the relationship

between efficient searches and EEG data, and the analysis of the data.
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IV. Analysis and Results

4.1 Chapter Overview

This chapter provides an in-depth analysis of the results obtained from the experiment

outlined in Chapter 3. The results include behavioral measures of efficient searches

performed during the Efficient Search Experiment (ESE). Section 4.2 describes the

subjective results of the ESE, which includes the participants’ initial Visual Search

Pattern (VSP) and the effect of the mitigations on these patterns. Section 4.3

describes non-subjective measures and covers results associated with the electrophysiological

data that was collected during the ESE; the results in this section detail the machine

learning performance metrics on classifying Electroencephalography (EEG) as well

as the EEG time series analysis. The results in this chapter provide justification for

answering all research questions in Section 3.3.

4.2 Behavioral Analysis and Results

Behavioral analysis contains all data recorded during the ESE that is not a

physiological component. This includes:

• Accuracy Results

• Timing Results

• Initial visual search patterns

• Effects of mitigation on visual search patterns

Accuracy is an important metric to consider because it dictates how important is

it that the participant uses an efficient search. If participants are using an efficient

VSP but they are less accurate than when using an inefficient VSP, then it is not

worthwhile to encourage the participants to use an efficient VSP.
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Similarly, timing is a key metric to examine. If a participant’s search times

increased dramatically when using an efficient search pattern, then it may not be

plausible to use an efficient search on a time-sensitive task.

The initial VSPs of participants are important to determine because it is necessary

to decide whether a change has occurred after applying the mitigation techniques. A

hypothesis proposed by previous work is that humans naturally will use a confirmatory

search pattern because it is simple [74]. However, no research has yet been conducted

that determines that humans resort to a confirmatory VSP instead of a circular VSP,

a methodical scanning VSP, or any other type of VSP. Analysis of the participants’

initial, unmitigated VSPs will help determine to which VSP humans naturally resort.

The main goal of this research is to determine whether mitigation techniques

during a visual search can successfully change a participant’s initial inefficient VSP

to a more efficient VSP. Each mitigation technique (the nudge, the explanation, and

the instructions) will be analyzed to determine its effect on the VSP of the participant.

4.2.1 Accuracy Results

Overall, participants had a high accuracy with an overall mean of 95.03% with

a standard deviation of 2.15%. Each participant’s accuracy score can be seen in

Figure 33.
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Figure 33. Participants’ search accuracy.

Each participant’s accuracy during efficient and inefficient searches is plotted in

Figure 34 (with 95% confidence intervals) and can be seen in Table 16.
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Figure 34. Participants’ average accuracy.
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Table 16. Search accuracy per search type

Participant
Efficient

Correct

Inefficient

Correct

271 96.30% 95.36%

1437 98.34% 94.98%

2070 92.91% 91.74%

2765 97.93% 97.91%

4030 95.77% 95.13%

4431 91.71% 88.59%

4613 100.00% 98.09%

5617 98.06% 95.26%

5669 94.44% 92.56%

5791 97.19% 93.38%

5952 94.93% 92.16%

6969 96.54% 92.73%

6973 96.45% 89.90%

7669 97.86% 94.72%

9138 97.97% 94.88%

9150 94.93% 95.32%

To determine whether there was a difference in the accuracies between efficient

and inefficient searching, a two-sample paired t-test was performed. The hypotheses

for this test were:

• Null hypothesis: The accuracy of efficient and inefficient searches are the same

• Alternate hypothesis: The accuracy of efficient and inefficient searches are

different

The test had an α of 0.05 and the degrees of freedom were the number of participants

minus one, or 15. A paired t-test has the assumptions that the data has no outliers and

that the data is normally distributed. The boxplot in Figure 35 indicates that there

are no outliers while the Q-Q plot in Figure 36 indicates that the data is normally

distributed. Additionally, a Shapiro-Wilk test was performed to ensure the data was

normally distributed. The test resulted in a p-value of 0.45 which fails to reject the
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null hypothesis that the data is normally distributed. Thus, the assumptions of the

t-test hold.

Figure 35. There does not appear to be any outliers in either the efficient accuracies
or the inefficient accuracies.
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Figure 36. The assumption of normal distribution holds.

The accuracy during an efficient search was higher (96.33% +- 2.16%) compared to

the accuracy during an inefficient search (93.92% +- 2.57%); there was a statistically

significant increase in accuracy (t(15)=5.59, p= 0.00005) of 2.41%.

Thus, efficient searches are more accurate than inefficient searches.

4.2.2 Timing Results

Overall, participants’ average search time was 2.17 seconds with a standard deviation

of 1.17 seconds. The minimum search time was 0.60 seconds while the maximum

search time was 17.81 seconds. High search times could be due to issues with

the gaze tracking software. To minimize these issues, experiment administrators

monitored participant performance. If it seemed that the gaze tracker was suffering
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from accuracy issues, e.g. the participant was clearly attempting to fixate upon a

specific stimuli and the gaze tracker was not registering the fixation attempt, then the

test administrators performed a recalibration with the participant. Each participant’s

average search time can be seen plotted in Figure 37 and in Table 17.

Figure 37. Participants’ average search time.
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Table 17. Average search times

Participant
Average

Search Time (sec)

271 1.722709

1437 1.821991

2070 2.430740

2765 3.354313

4030 2.513310

4431 1.960416

4613 2.310181

5617 2.598590

5669 2.289290

5791 2.126426

5952 2.046704

6969 1.903119

6973 1.309763

7669 2.074877

9138 2.074976

9150 2.241542

Each participant’s average search time during efficient and inefficient searches is

plotted in Figure 38 and can be seen in Table 18.
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Figure 38. Participants’ average search times per type of search.
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Table 18. Average search times per type of search

Participant
Efficient Average

Search Time

Inefficient Average

Search Time

271 1.641653 1.805817

1437 1.713109 1.931784

2070 2.142853 2.550480

2765 2.841759 3.698993

4030 2.229442 2.739765

4431 1.871430 2.033837

4613 2.077665 2.381773

5617 2.612755 2.587940

5669 2.073935 2.381585

5791 1.948505 2.231294

5952 1.919134 2.219299

6969 1.799368 2.025734

6973 1.271175 1.364721

7669 2.059425 2.089576

9138 1.734453 2.226776

9150 1.982148 2.346209

To determine whether there was a difference in the search times between efficient

and inefficient searching, a two-sample paired t-test was performed. The hypotheses

for this test were:

• Null hypothesis: The average search times of efficient and inefficient searches

are the same

• Alternate hypothesis: The average search times of efficient and inefficient searches

are different

The test had an α of 0.05 and the degrees of freedom were the number of participants

minus one, or 15. A paired t-test has the assumptions that the data has no outliers

and that the data is normally distributed. The boxplot in Figure 39 indicates that

there are outliers. However, the outliers are balanced for both positive and negative

and for both types of searches. Because the normality assumption holds, and the
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outliers are not too severe, we can ignore this violation. The Q-Q plot in Figure 40

indicates that the data is normally distributed. Additionally, a Shapiro-Wilk test was

performed to ensure the data was normally distributed. The test resulted in a p-value

of 0.27 which confirms that the data is normally distributed. Thus, the assumptions

of the t-test hold.

Figure 39. While there are outliers, the outliers are balanced on both searches and are
both high and low. Because normality is not violated, we can ignore the violation of
this assumption.
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Figure 40. The assumption of normal distribution holds.

The average search time during an efficient search was faster (1.99 +- 0.37 seconds)

compared to the average search time during an inefficient search (2.29 +- 0.50);

there was a statistically significant increase in average search times (t(15)=5.53, p=

0.00005) of 0.30 seconds.

Thus, efficient searches are faster than inefficient searches.

4.2.3 Initial Visual Search Patterns

The initial VSPs for each participant were identified by analyzing the VSPs that

the participant used during the first eight blocks. This includes all of the blocks in

the “clean” blocks as well as the first block in the “nudged” blocks because up to

this point the participant had not encountered any mitigation techniques. As such,
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it can be assumed that the VSP that the participant used in the first eight blocks is

the VSP to which the participant naturally resorts. The results of this section serve

to answer research question 1 in Section 3.3.1.

A stacked bar graph was generated where each participant that displays the

percentage of inefficient, efficient, and circular searches during the first eight blocks.

This graph can be seen in Figure 41. Additionally, a table detailing individual search

types can be seen in Table 19 and Table 20. In this experiment, a circular search is

also an inefficient search - i.e., these two categories are not mutually exclusive. For

details on how each search type was determined, please see Section 3.4.4.

Figure 41. The initial VSPs for all participants.
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Table 19. Visual Search Pattern types in the first eight blocks.

ID
Confirmatory

Searches

Non-Confirmatory

Searches

Efficient

Searches

Inefficient

Searches

Circular

Searches

271 28 132 51 109 2

1437 140 20 27 133 9

2070 63 97 10 150 12

2765 52 108 17 143 69

4030 49 111 12 148 22

4431 140 20 34 126 7

4613 63 97 10 150 18

5617 138 22 24 136 4

5669 104 56 18 142 4

5791 39 121 41 119 7

5952 45 115 75 85 1

6969 52 108 61 99 2

6973 42 118 70 90 2

7669 43 117 37 123 2

9138 146 14 28 132 7

9150 55 105 13 147 30

Total 1199 1361 528 2032 198
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Table 20. Visual Search Pattern types (percentages) in the first eight blocks

Participant
Percent

Inefficient

Percent

Efficient

Percent

Circular

271 67.28% 31.48% 1.23%

1437 78.70% 15.98% 5.33%

2070 87.21% 5.81% 6.98%

2765 62.45% 7.42% 30.13%

4030 81.32% 6.59% 12.09%

4431 75.45% 20.36% 4.19%

4613 84.27% 5.62% 10.11%

5617 82.93% 14.63% 2.44%

5669 86.59% 10.98% 2.44%

5791 71.26% 24.55% 4.19%

5952 52.80% 46.58% 0.62%

6969 61.11% 37.65% 1.23%

6973 55.56% 43.21% 1.23%

7669 75.93% 22.84% 1.23%

9138 79.04% 16.77% 4.19%

9150 77.37% 6.84% 15.79%

Total 73.68% 19.14% 7.18%

The results indicate that all 16 (100%) participants initially used a primarily

inefficient search pattern. Overall, 73.7% of the searches performed in the first eight

blocks were inefficient, 19.1% were efficient, and 7.2% were circular.

Thus, the majority of participants initially used an inefficient search pattern.

4.2.4 Mitigation Effects on Visual Search Patterns

Once the VSP for each participant has been identified, the next step is to determine

what effect each mitigation attempt had on the participant’s VSP. The main purpose

of this section is to answer research question 3 in Section 3.3.3. For details on all

mitigations applied during the ESE, please see Section 3.3.

The data was first explored by creating a line graph that plotted the number of

efficient searches against the block number. This graph was expected to show that as
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the block number increased, so would the number of efficient searches due to increased

mitigations. These graphs can be seen in Figure 42, and Figure 43 for all participants.

The mitigated blocks are indicated as red dots and generally coincide with a higher

efficient search number for that block. The locations at which the other mitigations

are applied are also indicated. A trend line was fitted to the number of efficient

searches and it is positive for all participants. This positive trend line indicates that all

participants increased the number of efficient searches as the block number increased.

However, this trend line alone can not detail why the number of efficient search

per block increased. Additionally, due to changes in the experimental procedure,

participants 4030, 2070, 2765, 271, 4613, 5791, 6969, and 1437 did not receive the

nudge in the last seven blocks. For details on this, please reference Section 3.4.4.

Figure 43. The number of efficient searches vs block number for all participants.

To find each mitigation technique’s effect on the number of efficient searches, SAS’s

statistical software JMP was used to perform a linear regression for each participant.

An example of a data table used for the linear regression can be seen in Figure 44. The
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Figure 42. The number of efficient searches vs block number. Mitigation attempts
and their locations are indicated on the graphs. The trend line of efficient searches is
plotted.
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number of efficient searches was the response variable, while the presence or absence

of a nudge, hint, explanation, or instruction were the independent variables. The

nudge was marked as present or absent for each participant depending on the actual

blocks that the participant received the nudge, while for all participants the hint was

marked as present for block 11 and subsequent blocks, the explanation was marked

as present for block 14 and subsequent blocks, and the instructions were marked as

present for block 18 and subsequent blocks. This was implemented because once the

participant had encountered the hint, explanation, or the instructions, it impacted

the participant for the remainder of the experiment.

Each question on the pre- and post-experiment questionnaires was assigned a

numerical value. A linear regression was performed on each of these variables with

the response variable being the number of efficient searches. No significant effect was

found.

113



Figure 44. The data table used to perform a linear regression participant 5952. A “1”
in a column indicates the presence of the mitigation technique while a “0” indicates its
absence.

The method used for linear regression was standard least squares. Using this

method, the effects of each individual mitigation method were determined. Additionally,

the interactions between the mitigation methods were also determined. Due to

confounding of variables, only three interactions were able to be determined: Nudge * Hint,

Nudge * Explanation, and Nudge * Instructions. Thus, the full linear model used
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was:

(2)y = β0 + β1 ∗ nudge+ β2 ∗ hint+ β3 ∗ explanation+ β4 ∗ instructions+ β5

∗ nudge ∗ hint+ β6 ∗ nudge ∗ explanation+ β7 ∗ nudge ∗ instructions

The overall effects of each mitigation technique can be seen in Figure 45 while the

coefficients can be seen in Table 21. The log worth is the JMP software’s version of the

p-value of a split, and is calculated by taking the −log10 of the p-value. Typically,

values above two are considered significant. The higher the log worth, the more

impact that the variable has on the response. The effects for each participant for

each mitigation technique can be seen in Figure 46. Additionally, learning effect, or

the likelihood that participants were learning how to search more efficiently simply

as the experiment continued without any effect from the mitigation techniques, was

investigated. The learning effect was investigated by performing the above linear

regression with the block number as an additional independent variable. The results

of this test determined that the block number was a significant effect on only one

participant, 6969. For participant 6969, the log worth of the block number was 3.000.

On all other participants, there was no evidence of learning effect.
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Figure 45. The log worth for all participants. The larger the blue bar, the more of an
effect the mitigation technique had.

Table 21. Each mitigation technique’s coefficient for the linear regression model

Mitigation

Technique
Coefficient

Nudge 3.70

Hint 4.60

Explanation 0.05

Instructions 0.56

Nudge *

Hint
-0.59

Nudge *

Explanation
0.91

Nudge *

Instructions
-1.41
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Figure 46. The log worth per effect per participant. The larger the blue bar, the more
of an effect the mitigation technique had.

For all but three participants, the nudge had the highest effect on the number of

efficient searches. For each of those three participants, the hint had the highest effect

with the nudge coming in second.

Overall, the mitigation techniques of the nudge and the hint had the most effect

on the number of efficient searches. The nudge had the most effect with a log worth

of 10.664 and the hint had the second highest with a log worth of 8.493.

The final VSPs used during the last seven blocks are presented in Figure 47, and

can also be seen in Table 22 and Table 23.
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Figure 47. The VSPs per participant during the final seven blocks.
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Table 22. The final VSPs for each participant

Participant
Confirmatory

Searches

Non-Confirmatory

Searches

Efficient

Searches

Inefficient

Searches

Circular

Searches

271 30 110 76 64 1

1437 38 102 104 36 0

2070 30 110 45 95 2

2765 33 107 69 71 1

4030 34 106 85 55 0

4431 42 98 84 56 1

4613 29 111 32 108 7

5617 30 110 86 54 0

5669 49 91 60 80 5

5791 44 96 46 94 2

5952 32 108 85 55 0

6969 39 101 81 59 0

6973 33 107 92 48 1

7669 33 107 83 57 2

9138 56 84 70 70 2

9150 33 107 66 74 0

Total 585 1655 1164 1076 24
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Table 23. The final VSPs (percentages for each participant)

Participant Percent Inefficient Percent Efficient Percent Circular

271 45.39% 53.90% 0.71%

1437 25.71% 74.29% 0.00%

2070 66.90% 31.69% 1.41%

2765 50.35% 48.94% 0.71%

4030 39.29% 60.71% 0.00%

4431 39.72% 59.57% 0.71%

4613 73.47% 21.77% 4.76%

5617 38.57% 61.43% 0.00%

5669 55.17% 41.38% 3.45%

5791 66.20% 32.39% 1.41%

5952 39.29% 60.71% 0.00%

6969 42.14% 57.86% 0.00%

6973 34.04% 65.25% 0.71%

7669 40.14% 58.45% 1.41%

9138 49.30% 49.30% 1.41%

9150 52.86% 47.14% 0.00%

Total 47.53% 51.41% 1.06%

Overall, 51.4% of searches performed in the last seven blocks were efficient, 47.5%

were inefficient, and just 1.1% were circular. 9
16

, or 56.3%, while 616, or 37.5%, of

participants used a primarily efficient search. One participant, 9138, used an equal

number of efficient and inefficient VSPs. These numbers constitute an increase of

32.3% of efficient searches, a decrease of 26.2% of inefficient searches, and a 6.1%

decrease in circular searches.

4.3 Electroencephalography Analysis and Results

4.3.1 Machine Learning

The early stages of data exploration revealed a pattern that was not ideal for

high performance using machine learning methods. This pattern was that the dataset

generally had more inefficient searches than it did efficient searches. The most drastic
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imbalance was 76.4% for participant 4613 and the least was 39.1% for participant

5952. Overall, the total balance was 42.0% inefficient and 58.0% efficient searches.

The balance per participant can be seen graphically in Figure 48, and the total search

imbalance can be seen in Figure 49. More data about the search imbalance can be

seen in Table 24. Because of this imbalance, the machine learning results for this

dataset are expected to be highly dependent on the individual participant and their

specific data.
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Figure 48. The class balance per participant.
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Figure 49. The class balance for the entire dataset.
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Table 24. Dataset class distribution

Participant
Inefficient

Searches

Efficient

Searches

Percent

Inefficient Searches

Percent

Efficient Searches

0271 233 242 49.05% 50.95%

1437 239 241 49.79% 50.21%

2070 337 141 70.50% 29.50%

2765 269 189 58.73% 41.27%

4030 266 213 55.53% 44.47%

4431 262 215 54.93% 45.07%

4613 367 113 76.46% 23.54%

5617 268 205 56.66% 43.34%

5669 336 144 70.00% 30.00%

5791 299 175 63.08% 36.92%

5952 132 205 39.17% 60.83%

6973 196 282 41.00% 59.00%

6969 220 260 45.83% 54.17%

7669 245 233 51.26% 48.74%

9138 332 148 69.17% 30.83%

9150 342 138 71.25% 28.75%

Total 3144 4343 41.99% 58.01%

4.3.1.1 Frequency Features per Search Dataset

The mean frequency power features is the same dataset referred to in Section 3.5.2.

This dataset’s 320 features are the mean power of the five frequency bands at each

electrode in the 64 electrode EEG cap. The extraction method for these features is

described in Section 3.5.1.2 and was completed on epoched data that consisted of the

participants’ EEG data from 2 seconds before they indicated which color the target

letter’s circle was.

Due to issues with the Cognionics recording software, certain trials were dropped

from various participants. Therefore, while the total number of observations for

each participant should have been 480, some participants did not have the full 480

observations. The total number of recorded trials per participant is shown in Table 25.
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Table 25. Number of trials recorded per participant

Participant
Total Number

of Trials Recorded

0271 475

1437 480

2070 478

2765 458

4030 479

4431 477

4613 480

5617 473

5669 480

5791 474

5952 337

6973 478

6969 480

7669 478

9138 480

9150 480

In hyperparameter training, the Artificial Neural Network (ANN) was tuned with

100 epochs. The final training used both the training and validation sets and thus

increased the amount of data by 20%. Thus, an increase in epochs of 20% to 120

epochs is also appropriate. The ANN trained for a maximum of 120 epochs with an

early stopping callback stopping the training of the model as soon as the training

accuracy hit 100%.

The overall accuracy and balanced accuracy of the Linear Discriminant Analysis

(LDA), random forest classifier (RFC), and ANN models are shown in Figure 50 and

Figure 51 respectively. The data is shown in Table 26. The average and standard

deviations for each model’s accuracy and balanced accuracy is shown in Table 27.

When examining the accuracy, LDA models performed the best, followed by ANN

models. RFC models performed the worst, on average. For balanced accuracy, LDA
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models performed the best, followed by RFC models, and last are the ANN models.

When examining the balanced accuracy, the LDA models performed the best on 10
16

models, or 62.5%, of models, while the RFC models performed the best on 5
16

models,

or 31.3%. An ANN model performed the best on 1
16

models, or 6.3%.

Figure 50. Overall model accuracy of the Frequency Features dataset.
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Figure 51. Overall model balanced accuracy of the Frequency Features dataset.
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Table 26. Per participant model results for the frequency features dataset

Participant
LDA

Accuracy

LDA

Balanced Accuracy

RFC

Accuracy

RFC

Balanced Accuracy

ANN

Accuracy

ANN

Balanced Accuracy

271 57.89% 57.85% 55.79% 55.78% 49.47% 50.00%

1437 56.25% 56.25% 61.46% 61.46% 50.00% 50.00%

2070 70.83% 50.00% 58.33% 56.93% 29.17% 50.00%

2765 58.70% 50.00% 60.87% 56.92% 57.61% 49.07%

4030 62.50% 61.87% 56.25% 57.74% 62.50% 61.21%

4431 65.62% 65.36% 64.58% 63.32% 58.33% 61.17%

4613 75.00% 49.32% 75.00% 53.78% 23.96% 50.00%

5617 64.21% 63.82% 55.79% 54.95% 56.84% 50.29%

5669 69.79% 58.80% 47.92% 40.20% 48.96% 42.90%

5791 61.05% 51.90% 66.32% 60.83% 54.74% 57.02%

5952 77.94% 74.75% 72.06% 66.71% 63.24% 64.45%

6973 62.50% 57.49% 52.08% 46.69% 40.62% 50.00%

6969 57.29% 56.91% 55.21% 54.63% 60.42% 58.39%

7669 58.33% 58.49% 56.25% 56.14% 51.04% 50.00%

9138 67.71% 57.42% 63.54% 56.21% 55.21% 51.06%

9150 73.96% 59.56% 66.67% 56.51% 57.29% 55.15%

Table 27. Accuracy and Balanced accuracy by model for the frequency feature dataset

Model
Accuracy

Average

Accuracy

Std Dev

Balanced

Accuracy

Average

Balanced

Accuracy

Std Dev

LDA 58.1% 6.3% 58.1% 6.3%

RFC 56.2% 6.0% 56.2% 6.0%

ANN 57.3% 9.8% 53.2% 5.6%

Of the LDA models, 81.3% achieved greater than a 50% balanced accuracy.

Participants 4431, 5617, and 5952 performed significantly greater than 50% by achieving

a score greater than two standard deviations more than 50%. 87.5% of the RFC

models achieved greater than a 50% balanced accuracy, while participants 4431 and

5952 performed significantly greater than 50%. Only 37.5% of ANN models achieved

greater than a 50% balanced accuracy, while participants 4030, 4431, and 5952

performed significantly greater than 50%. The greatest overall balanced accuracy
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was achieved on participant 5952, with balanced accuracy scores of 78.0%, 72.1%,

and 64.5% with the LDA, RFC, and ANN models respectively. The lowest overall

balanced accuracy was achieved on participant 5669, with balanced accuracy scores

of 69.8%, 78.0%, and 42.9% with the LDA, RFC, and ANN models respectively.

The average Area Under the Receiver Operating Characteristic Curve (AUROC)s

across all participants for LDA, RFC, and ANN models were 0.581 (std=0.063), 0.562

(std=.060), and 0.573 (std=0.098) respectively. The AUROC for each model is shown

in Figure 52 and Table 28.

Figure 52. Overall model AUROC of the frequency feature dataset.
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Table 28. Overall model AUROC of the frequency feature dataset

Participant
LDA

AUC

RFC

AUC

ANN

AUC

271 0.578457 0.557846 0.573582

1437 0.562500 0.614583 0.630208

2070 0.500000 0.569328 0.520746

2765 0.500000 0.569201 0.523635

4030 0.618692 0.577446 0.713471

4431 0.653576 0.633172 0.734971

4613 0.493151 0.537820 0.458904

5617 0.638211 0.549458 0.562782

5669 0.588008 0.401956 0.389604

5791 0.519048 0.608333 0.579048

5952 0.747516 0.667118 0.755194

6973 0.574899 0.466937 0.500000

6969 0.569056 0.546329 0.568619

7669 0.584889 0.561442 0.466348

9138 0.574242 0.562121 0.572222

9150 0.595588 0.565126 0.618172

Observing the confusion matrices (Figure 53) for the top performing and worst

performing models lends insight into a possible reasons as to why the models achieved

their performance. The class imbalance for participant 5669 was 70.0% inefficient

while the same imbalance for 5952 was 39.2%. Examining the confusion matrix

for 5669 indicates that the model learned the opposite relation - if the participant

performed an efficient search then the model tended to classify it as an inefficient

search. This could perhaps be due to the prevalence of the inefficient class represented

in the data. This is contrasted to participant 5952’s confusion matrix - because the

classes were relatively more balanced, the model had more chances to learn the true

relationship. Thus the model’s performance on participant 5952 was higher.
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Figure 53. The top performer vs the lowest performer on the frequency feature dataset.
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The observations from this dataset were obtained by observing the entire two

seconds prior to the participant’s decision as to what color the target letter’s circle

was. The critical assumption made was that there would be a consistent difference

between brain activity of a person conducting an inefficient vs an efficient visual search

during this two-second period. A possible explanation of inefficient searches, and thus

confirmative searches, stems from the neuroscientific perspective. The neuroscientific

perspective relates various cognitive biases as being characteristic of biological neural

networks. Thus, cognitive biases could be a result of the neural characteristics of

the brain [103]. Cognitive biases might occur in the same neural networks as motor

functions and thus there would be no distinguishable brain activity that relates to an

inefficient search. While high-performing results from this dataset indicate that this

perspective might not reflect the full truth, accepting this perspective would account

for the overall low performance of the machine learning models.

4.3.1.2 Time Series Features

The Time Series per Search dataset is the same dataset referred to in Section 3.5.2.

This dataset consists of 2-second time series signals consisting of 500 frames at 250

Hz. These signals are the 2 seconds prior to a participant pressing either the “c”

or “z” key indicating that they have decided which color the target letter’s circle is,

The 64 features present in this dataset correspond to the 64 EEG electrodes in the

10-20 International Standard electrode placement as seen in Figure 24. The labels

for this dataset are either “efficient” or “inefficient” and represent the VSP that the

participant used for the 2-second window. As previously noted, while there should be

480 observations for each participant, errors with the Cognionics recording software

caused some trials to be dropped. For information on the amount of observations per

participant, please see Table 25.
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The Long Short-Term Memory (LSTM) and Temporal Convolutional Network

(TCN) models were both trained with a maximum of 60 epochs each, however a

callback was implemented that halted the training should the training accuracy reach

100%. On both models, for all participants except 2765, the training accuracy was

able to reach 100%.

The overall accuracy and balanced accuracy of the LSTM and TCN models are

shown in Figure 54 and Figure 55 respectively. The data is shown in Table 29. The

average and standard deviations for each model’s accuracy and balanced accuracy is

shown in Table 30.

When examining both the accuracy and the balanced accuracy, LSTM models

performed the best compared to TCN models. When examining the balanced accuracy,

LSTM models performed the best on 10
16

models, or 62.5%.

Figure 54. Overall model accuracy of the Time Series dataset.
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Figure 55. Overall model balanced accuracy of the Time Series dataset.

Table 29. Per participant model results for the time series dataset

Participant
LSTM

Accuracy

LSTM

Balanced Accuracy

TCN

Accuracy

TCN

Balanced Accuracy

271 45.26% 45.33% 46.32% 46.50%

1437 63.54% 65.12% 47.92% 47.06%

2070 72.63% 58.29% 53.68% 54.69%

2765 60.44% 57.86% 64.84% 50.05%

4030 55.79% 54.36% 55.79% 55.70%

4431 54.74% 53.81% 47.37% 46.70%

4613 65.62% 55.71% 58.33% 42.82%

5617 56.38% 56.62% 48.94% 47.46%

5669 63.54% 51.39% 67.71% 61.18%

5791 62.77% 32.27% 59.57% 50.77%

5952 61.19 55.59% 40.30% 33.76%

6973 42.56 49.68% 60.00% 60.68%

6969 52.08 52.61% 45.83% 45.83%

7669 42.11 42.44% 54.74% 54.79%

9138 70.83 60.52% 66.67% 43.24%

9150 66.67 62.50% 62.50% 53.92%
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Table 30. Accuracy and Balanced accuracy by model for the time series dataset

Model
Accuracy

Average

Average

Std Dev

Balanced

Accuracy

Average

Balanced

Accuracy

Std Dev

LSTM 58.7% 8.8% 55.3% 5.9%

TCN 55.0% 8.0% 49.7% 6.8%

Of the LDA models, 13
16

, or 81.3%, achieved a greater than 50% balanced accuracy

score. Three models, for participants 1437, 5791, and 9150, performed significantly

better than 50%. Of the TCN models, 7
16

, or 43.8%, achieved greater than 50%

balanced accuracy. No models performed significantly better than 50%. The greatest

balanced accuracy for the LSTM models was participant 1437 with a 65.1%, while the

lowest was 7669 with a 42.4%. The greatest balanced accuracy for the TCN models

was participant 5669 with a 61.2%, while the lowest was 7669 with a 42.8%.

The average AUROC across all participants for LSTM and TCN models was 0.541

(std=0.049) and 0.497 (std=0.068) respectively. The AUROC for each model is shown

in Figure 56 and Table 31.
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Figure 56. Overall model AUROC of the Time Series dataset.
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Table 31. Overall model AUROC of the time series dataset

Participant LSTM AUC TCN AUC

271 0.626909254 0.464951198

1437 0.619047619 0.470588235

2070 0.492957746 0.546908316

2765 0.515625 0.500546448

4030 0.519318182 0.55695922

4431 0.506666667 0.467045455

4613 0.5 0.42823109

5617 0.506372549 0.474632527

5669 0.5 0.611842105

5791 0.611111111 0.50769995

5952 0.5 0.337619048

6973 0.579545455 0.606818182

6969 0.616851441 0.458333333

7669 0.511303191 0.547914818

9138 0.5 0.432432432

9150 0.550549451 0.53915493

The confusion matrices for the best and worst performing participants for both

models can be seen in Figure 57. Contrary to the frequency models, the worst

performing participant in both the LSTM and TCN models was participant 7669,

which had a very balanced dataset with only 51.26% of searches being inefficient.
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Figure 57. The top row of images are confusion matrices from the LSTM model while
the bottom row are from the TCN model. The left column is the lowest performers
while the right column is the highest performers.

The poor AUROC and model performance across the participants indicates that

either the time series of the EEG data or the method of segmenting the data with a

label of an inefficient or an efficient search is not an appropriate method for detecting

efficient searches.
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4.3.1.3 Feature Importance

It’s necessary to track performance metrics for a machine learning model to

determine how well the model is learning relationships between the features and the

target variables, but determining feature importance can provide greater insight into

the relationships present that are being modeled. A useful tool for identifying feature

importance is a random forest (RF) classifier. RF classifiers excel at identifying

important features because they compute feature importance as part of their model

fitting process.

Table 32 shows the top ten features based on the number of times that the

frequency feature appears in a participant’s 50 most important features. These

features are represented visually in Figure 58.

Table 32. Salient Features across all Participants

Feature Location/

Frequency
Count

FC2/Beta 9

T7/Gamma 7

O1/Beta 5

TP8/Beta 5

Cz/Delta 5

Fp1/Theta 5

CPz/Theta 4

TP8/Gamma 4

P8/Beta 4

TP7/Beta 4
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Figure 58. EEG Electrode Locations and Salient Features

To identify the most important features in an efficient VSP, features that were

common among participants that had an RF area under the curve (AUC) greater

than 0.50 were analyzed. These high-performing features can be seen in Table 33 and

in Figure 59.
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Table 33. Salient Features in Top performing Participant Models

Feature Location/

Frequency
Count

FC2/Beta 7

T7/Gamma 5

O1/Beta 4

Cz/Delta 4

CPz/Theta 4

Fp1/Theta 4

TP7/Beta 4

P2/Delta 4

TP8/Gamma 3

TP8/Beta 3

Figure 59. EEG Electrode Locations and Salient Features with High Performance

The salient features were not consistent across participants. This could be because

the machine learning models were unable to associate brain activity with efficient

141



searching, or because there is no specific brain activity associated with efficient

searching.

4.3.2 Cross-Participant

The results that have been discussed so far are within-participant results. Because

the frequency features dataset, specifically the LDA and RFC, had the best performance

out of all of the models, cross-participant models were analyzed as described in

Section 3.5.4. The dataset had 7,487 observations which spanned across all 16

participants. Of these 7,487 observations, 3,144, or 42.0%, belong to the “inefficient”

class. A train, validation, and test approach was applied in which models were trained

on 13 participants, validated on 2 random participants, and then ultimately tested on

a single participant. This process was repeated so that every participant’s data was

tested by itself. The following results are performance metrics on the test dataset.

The balanced accuracy for the cross-participant test performance is displayed in

Figure 60 and in Table 34. The participant number along the bottom x-axis is the

participant that was used as the test set. A balanced accuracy score above 50% was

achieved on 14
16

participants by at least one model. The mean test balanced accuracy

for the LDA, RFC, and ANN models was 50.97%(±1.52%), 54.01%(±3.74%), and

50.05%(±0.14%). Although above 50% accuracy was achieved on 15 participants,

the mean test balanced accuracy of 51.68%(±2.88%) was not significantly greater

than 50%. The highest balanced accuracy was 59.46% and was obtained by the RFC

model on participant 5952.
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Figure 60. Cross-Participant Frequency Feature Balanced Accuracies
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Table 34. Cross-Participant Frequency Features Model AUROC

Participant LDA Balanced Accuracy RFC Balanced Accuracy ANN Balanced Accuracy

271 50.30% 52.51% 50.00%

1437 55.96% 57.41% 50.00%

2070 51.35% 53.70% 50.00%

2765 50.00% 58.90% 50.00%

4030 50.05% 59.05% 50.00%

4431 51.18% 48.02% 50.00%

4613 51.73% 52.40% 50.27%

5617 50.17% 49.12% 50.55%

5669 49.26% 47.92% 50.00%

5791 51.45% 54.94% 50.00%

5952 50.73% 59.46% 50.00%

6973 52.45% 50.18% 50.00%

6969 50.72% 57.71% 50.03%

7669 50.25% 53.03% 50.00%

9138 49.47% 55.10% 50.00%

9150 50.42% 54.67% 50.00%

The cross-participant’s model performance was compared with the within-participant

model performance by comparing their AUROCs. The mean cross-participant AUROC

was 0.510, 0.540, and 0.524 for the LDA, RFC, and ANN models respectively. The

cross-participant model AUROC was slightly smaller than the within-participant

AUROC which was 0.518, 0.562, and 0.573 for the LDA, RFC, and ANN models

respectively. The cross-participant AUROC is displayed in Figure 61 and in Table 35.
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Figure 61. Cross-Participant Frequency Feature AUROCs
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Table 35. Cross-Participant Frequency Features Model AUROC

Participant LDA AUC RFC AUC ANN AUC

271 0.503015 0.525130 0.483551

1437 0.559576 0.574090 0.614655

2070 0.513458 0.536966 0.558263

2765 0.500000 0.588954 0.525255

4030 0.500468 0.590473 0.409139

4431 0.511805 0.480224 0.542358

4613 0.517301 0.523981 0.532927

5617 0.501720 0.491172 0.612805

5669 0.492560 0.479167 0.459408

5791 0.514496 0.549441 0.552690

5952 0.507317 0.594568 0.489763

6973 0.524479 0.501809 0.508711

6969 0.507168 0.577098 0.518164

7669 0.502461 0.530349 0.434860

9138 0.494709 0.550961 0.575810

9150 0.504195 0.546720 0.562177

The highest AUROC achieved was 0.613 and was achieved by the ANN model on

participant 5617. This AUROC indicates that the models can perform well on the

dataset as a whole, but overall there is also a lack of consistent results. This lack of

consistent results could be due to many various factors. There was small amount of

data per participant, however, an additional factor is that some participants might

have very noisy data. As seen in Figure 52, participant 5669 has an average AUROC

of 0.477. When all of the participants’ data is combined to generate cross-participant
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models, noisy data such as this can reduce overall performance.

4.4 Error Analysis

One hypothesized source of error stems from how efficient and inefficient VSPs

are conducted within the brain. As seen from the class balance (Figure 48) and the

post-experiment questionnaires, some participants naturally used an efficient VSP

while some naturally resorted to an inefficient VSP. The fact that some participants

naturally used an efficient VSP and some used an inefficient VSP could lend credence

to the theory of neuroscientific perspective. This theory states that cognitive biases

might occur in the same neural networks as motor functions and thus there would be

no distinguishable brain activity that relates to an inefficient search.

Another source of error could stem from the epoching process - the decision to

conduct an inefficient versus an efficient search could be a split-second decision that

only occurs once, not an ongoing decision that lasts the duration of the two-seconds

before the participant selects an answer. Additionally, once a participant decides to

search inefficiently or efficiently, they could not consider the question of how to search

again. This theory could also explain why the time-series models performed worse

when compared to the frequency-feature models.

4.5 Summary

Behavioral results from the Efficient Search Experiment (ESE) determined participants’

initial Visual Search Pattern (VSP)s as well as the effects of the mitigation techniques

on these VSPs. It also answered questions as to whether efficient searches were more

accurate and faster when compared to inefficient searching.

First, participants had an overall accuracy of 95.03% when selecting which color

the target letter’s circle was. A two-sample paired t-test was performed to see if there
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was a difference in the accuracies of inefficient and efficient searches. When searching

efficiently, there was a statistically significant increase in accuracy (t(15)=5.59, p=

0.00005) of 2.41%.

Next, the average search time of participants was 2.17 seconds. A two-sample

paired t-test was performed to see if there was a difference in the average search times

of inefficient and efficient searches. When searching efficiently, there was a statistically

significant decrease in search times (t(15)=5.53, p=0.00005) of 0.30 seconds.

Initially, participants overwhelmingly performed inefficient searches. In the first

eight blocks, 73.68% of searches were inefficient, 19.14% were efficient, and 7.18%

were circular. At the end of the experiment, participants performed more efficient

searches than inefficient searches. In the last seven blocks, 47.53% of searches were

inefficient, 51.41% were efficient, and 1.06% were circular.

With a log worth of 10.664, the mitigation technique of the nudge was the most

effective in increasing the number of efficient searches. In effectiveness, the nudge was

closely followed by the hint with a log worth of 8.493.

The results from the behavioral analysis served to answer Research Question 1

and Research Question 3:

Research Question 1

What visual search patterns do participants naturally use during a visual search

task?

Results: 73.68% of participants initially used an inefficient VSP, while 19.14%

used an efficient search and 7.18% used a circular search.

Research Question 3

For a participant who is performing an inefficient search, can mitigation techniques

change the participant’s search patterns to an efficient search pattern that will

persist for the remainder of the search tasks?
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Results: In the last seven blocks, efficient searches were increased by 32.27% to

51.41%, inefficient searches were decreased by 26.15% to 47.53%, and circular

searches were decreased by 6.12% to 1.06%.

Results from the Electroencephalography (EEG) analysis determined whether a

difference could be identified between inefficient and efficient searching. Two datasets

were considered: the first used features extracted from the average frequency values of

the alpha, beta, delta, gamma, and theta frequency bands, while the second used the

raw time series values of the electrodes. The results of the machine learning models

can be seen in Table 36.

Table 36. Accuracy and Balanced accuracy by model for both the frequency-feature
and time-series datasets

Model
Accuracy

Average

Accuracy

Std Dev

Balanced

Accuracy

Average

Balanced

Accuracy

Std Dev

LDA 58.1% 6.3% 58.1% 6.3%

RFC 56.2% 6.0% 56.2% 6.0%

ANN 57.3% 9.8% 53.2% 5.6%

LSTM 58.7% 8.8% 55.3% 5.9%

TCN 55.0% 8.0% 49.7% 6.8%

The results from the EEG analysis served to answer Research Question 2:

Research Question 2

Can physiological signals such as EEG, Electrooculography (EOG), and Electrocardiography

(ECG) be associated with an efficient visual search?

Result: Four models were created that achieved an average balanced accuracy of

greater than 50%. A Linear Discriminant Analysis (LDA) (58.1%), a random

forest classifier (RFC) (56.2%, an Artificial Neural Network (ANN) (53.2%), and

a Long Short-Term Memory (LSTM) (55.3%) model.
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V. Conclusions and Recommendations

5.1 Conclusions of Research

This research was successful in its objective of detecting and mitigating an inefficient

search during a visual search task. The initial Visual Search Pattern (VSP)s of

participants were identified and the effect of various mitigation techniques on these

VSPs was determined. A relationship between physiological signals and an inefficient

VSP was also found. In order to achieve these goals, a human-participant experiment

was designed and executed during which electrophysiological and behavioral data was

recorded and analyzed.

The first research question (Section 3.3.1) investigated what VSP participants

initially used. It was hypothesized that the majority (> 50%) of participants would

initially use an inefficient VSP. This hypothesis proved correct: initially, participants

overwhelmingly performed inefficient searches. In the first eight blocks, 73.68% of

searches were inefficient, 19.14% were efficient, and 7.18% were circular.

Research question two (Section 3.3.2) investigated whether physiological signals

can be associated with an efficient visual search. To investigate this question, multiple

machine learning models were investigated. However, only Electroencephalography

(EEG) physiological signals were investigated to answer this research question. Machine

learning models were able to obtain an average within-participant cross-validation

balanced accuracy of 58.1%, 56.2%, 53.2%, 55.3%, and 49.7% with the Linear Discriminant

Analysis (LDA), random forest classifier (RFC), Artificial Neural Network (ANN),

Long Short-Term Memory (LSTM), and Temporal Convolutional Network (TCN)

models respectively. Cross-participant machine learning was also explored on the

frequency features dataset. The mean test balanced accuracy for the LDA, RFC, and

ANN models was 50.97%(±1.52%), 54.01%(±3.74%), and 50.05%(±0.14%). The
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LDA models achieved greater than 50% balanced accuracy on 13
16

participants, the

RFC models achieved greater than 50% balanced accuracy on 14
16

participants, and

the ANN models achieved a greater than 50% balanced accuracy on 6
16

participants.

The highest balanced accuracies were 74.75%, 66.71%, and 64.45% for the LDA,

RFC, and ANN models respectively. The LSTM models achieved greater than 50%

balanced accuracy on 13
16

participants and the TCN models achieved a greater than

50% balanced accuracy on 7
16

participants. The highest balanced accuracies were

65.12% and 61.18% for the LSTM and TCN models respectively.

The third research question (Section 3.3.3) sought to determine whether mitigation

techniques applied during a visual search could change a participant’s inefficient VSP

to an efficient VSP for the remainder of the experiment. With a log worth of 10.664,

the mitigation technique of the nudge was the most effective in increasing the number

of efficient searches. In effectiveness, the nudge was closely followed by the hint with

a log worth of 8.493. In the last seven blocks, efficient searches were increased by

32.27% to 51.41%, inefficient searches were decreased by 26.15% to 47.53%, and

circular searches were decreased by 6.12% to 1.06%.

Participants had an overall accuracy of 95.03% when selecting which color the

target letter’s circle was. A two-sample paired t-test was performed to see if there

was a difference in the accuracies of inefficient and efficient searches. When searching

efficiently, there was a statistically significant increase in accuracy (t(15)=5.59, p=

0.00005) of 2.41%.

Lastly, the average search time of participants was 2.17 seconds. A two-sample

paired t-test was performed to see if there was a difference in the average search times

of inefficient and efficient searches. When searching efficiently, there was a statistically

significant decrease in search times (t(15)=5.53, p=0.00005) of 0.30 seconds.
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5.2 Significance of Research

Current research into inefficient searches during a visual search task analyze search

patterns once the task is complete. These methods do not allow for a classification

of an inefficient search in real-time. Furthermore, the majority of visual research

has hypothesized that most humans will naturally use an inefficient search method.

This research’s findings reinforce that hypothesis. Military operators use visual

searches every day in their job. This includes pilots scanning instrument gauges,

intel analysts scanning satellite imagery, and doctors scanning patient x-rays. All

of these military members can fall prey to an inefficient, and thus a biased, visual

search. Therefore, whether through proper training and instruction, or through a

mitigation system, a way to both detect and mitigate these inefficient searches would

significantly help these operators to properly do their jobs. The results of this work

add on to the knowledge repository for how humans perform a visual search and as

such can be used to develop efficient search methods. These results of how various

mitigation techniques affect a visual search are useful in determining the best method

of mitigating an inefficient or biased search. Additionally, the results presented in

this work advance the use of physiological signals to detect cognitive biases. While

certain participants’ models performed well, overall the models for each dataset only

marginally perform better than chance. However, these results do suggest that it is

possible to classify an efficient or inefficient search from EEG signals.

5.3 Recommendations for Future Research

5.3.1 Efficient Search Experiment (ESE) Changes

This work modified an existing visual search experiment to include a dynamic

mitigation system based on each participant’s own VSPs. As this was the first
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iteration of this experiment, there is room for improvement if a future experiment

were to be conducted. A piece of feedback given consistently by participants was that

they were not aware that there would only ever be one instance of the target letter

appearing in the stimuli per trial. The participants that informed the experiment

administrators said that once they realized there was only ever one instance of the

target letter that it then changed their search patterns. A recommendation for a

modification to the ESE is to inform the participants during the training day that

there is only ever one instance of the target letter present in any given trial.

Another feedback piece given by participants was that they felt as if they were

“cheating” when using an efficient search pattern. A recommendation for a modification

to the ESE is to inform the participants during the training day that they are welcome

to search the stimuli in whichever manner they feel is the most accurate and efficient.

Instead of using gaze tracking, a future addition to the ESE could be the detection

of inefficient searching through the use of EEG signals. During training, initial data

could be gathered on a participant and fed into a machine learning model. During the

execution of the actual experiment, the live signals from the EEG electrodes could

be given to the model in real-time. The model would then output the likelihood that

the participant is conducting an inefficient search and then apply the appropriate

measures.

5.3.2 Participant Selection for Future Trials

As noted in the limitations (Section 1.6) the participants that completed the ESE

were not diverse. For the results of this work to apply to the larger population, a

more diverse group of participants is needed. A wider range of ages, backgrounds,

education levels, diversity, and gender should be included. However, the ultimate

goal of this work is to limit the effects of an inefficient search in military operators.
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Thus, the demographics of the participants in this work more accurately reflect the

target population than the population as a whole.

5.3.3 Machine Learning

Research Question Two investigated if phsyiological signals could be used to

determine whether an inefficient search was occuring. However, this work investigated

only EEG. Future work could investigate Electrooculography (EOG), Electrocardiography

(ECG), and galvanic skin response (GSR). In addition to determining a link between

confirmation bias and EEG, Minas et al. also determined a link between GSR and

confirmation bias. Thus, investigating GSR could be beneficial.

Possible future work could include increasing the size of the datasets. Increasing

the size of the datasets used for machine learning allows for more data to be used in

the train, validation, and test datasets and allows the models more opportunities to

learn the relationship.

The data used in this experiment depended wholly on the epoching of the dataset.

In this experiment, the epochs were determined by the two seconds that occurred

before the participants pushed the key to indicate their answer. Future work should

include variations on epoching to determine the best epoch central point and time

window.

This research used the mean power spectral density and the raw time series signals

of the EEG signals as features. In a recent study on cognitive workload estimation

using EEG, results indicated that the variance of power spectral density was an

important feature [104]. Using the variance of power spectral density in addition to

the mean power spectral density could improve machine learning results.
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5.4 Summary

This work explored the detection and mitigation of inefficient searches, or a

confirmation bias, during a visual search task. Using behavioral and electrophysiological

signals, an inefficient search during a visual search was detected. This work determined

that the majority of participants naturally employed an inefficient search pattern.

Once an inefficient search was detected, mitigation techniques were employed to

encourage the participants to use an efficient search. Behavioral analysis indicates

that the most effective mitigation techniques were the use of a nudge to raise the cost

of the search and a hint to inform the participants how to search efficiently. These

two mitigations techniques increased the number of efficient searches such that the

majority of the searches performed in the final block of the experiment were efficient.

Additionally, by using machine learning, various models were created that were able

to classify whether an inefficient search was occurring. Balanced accuracy scores of

greater than 50% were achieved on 13
16

, 14
16

, 6
16

, 13
16

, and 7
16

participants by the LDA,

RFC, ANN, LSTM, and TCN models. These results indicate that detection of an

inefficient search is possible but more work is necessary to improve the performance

of the models. Improvements in the experiment and for future machine learning

tasks are suggested that could improve performance when classifying an inefficient

search. Overall, this work has shown that an inefficient search in a visual search can

be successfully detected and mitigated.
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Appendix A. Pre- and Post-Experiment Questionnaires

Figure 62. Pre-Experiment Questionnaire
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Figure 63. Post-Experiment Questionnaire part one
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Figure 64. Post-Experiment Questionnaire part two
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Appendix B. Cognionics EEG Trigger Values
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Table 37. Cognionics EEG Trigger Values Part One

Event Experiment Marker Byte Value Trigger Value
Spacebar Pressed After Instruction Start of 1st baseline 90 23040

End of 1st baseline 91 23296
Start of last baseline 92 23552
End of last baseline 93 23808

Before every trial

Block 1 1 256
Block 2 2 512
Block 3 3 768
Block 4 4 1024
Block 5 5 1280
Block 6 6 1536
Block 7 7 1792
Block 8 8 2048
Block 9 9 2304
Block 10 10 2560
Block 11 11 2816
Block 12 12 3072
Block 13 13 3328
Block 14 14 3584
Block 15 15 3840
Block 16 16 4096
Block 17 17 4352
Block 18 18 4608
Block 19 19 4864
Block 20 20 5120
Block 21 21 5376
Block 22 22 5632
Block 23 23 5888
Block 24 24 6144

Trial Started After Fixation Delay (spacebar pressed) Trial 1 31 7936
Trial 2 32 8192
Trial 3 33 8448
Trial 4 34 8704
Trial 5 35 8960
Trial 6 36 9216
Trail 7 37 9472
Trial 8 38 9728
Trail 9 39 9984
Trial 10 40 10240
Trial 11 41 10496
Trial 12 42 10752
Trial 13 43 11008
Trial 14 44 11264
Trial 15 45 11520
Trial 16 46 11776
Trial 17 47 12032
Trial 18 48 12288
Trial 19 49 12544
Trial 20 50 12800
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Table 38. Cognionics EEG Trigger Values Part Two

Event Experiment Marker Byte Value Trigger Value
End of Trial (response submitted, z or c key press) Mark Confirm 60 15360

Mark NOT Confirm 61 15616
Mark Efficient 62 15872

Mark NOT Efficient 63 16128
Mark Correct Response (user key press) 64 16384

Mark Incorrect Response (user key press) 65 16640
Mark Circular 66 16896

Mark NOT circular 67 17152
Mark Weird 68 17408

Mark NOT Weird 69 17664
Mark Miss 82 20992

Mark NOT Miss 83 21248
Mark Minority Only 84 21504

Mark NOT Minority Only 85 21760
Mark Single Majority Then Minority 86 22016

Mark NOT Single Majority Then Minority 87 22272

Before every trial Mark Nudge Present 70 17920
Mark No Nudge Present 71 18176

Mark Hint Seen 72 18432
Mark No Hint Seen 73 18688

Mark Hint First Appeared 74 18944
Mark Explanation Seen 75 19200

Mark No Explanation Seen 76 19456
Mark Explanation First Appeared 77 19712

After Block Concludes (i.e. trial 20 finishes)
Mark Block Confirmatory 80 20480

Mark Block Non-Confirmatory 81 20736
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Appendix C. Abbreviated Informed Consent Document
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Figure 65. Abbreviated Informed Consent Document
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Figure 66. IRB Approval Letter
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