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Abstract: A novel snapshot hyperspectral imager is introduced for ocean color (OC) 
applications and its capabilities are demonstrated. The instrument provides hyperspectral 
radiance images with a wide field-of-view (FOV) and short exposure time, which is valuable 
for the direct characterization of the wind-roughened surface in various illumination 
conditions and wind speeds. Uncertainties in the total ( )tL , sky ( )sL  and derived water-

leaving ( )wL radiances at viewing angles of 20–60° are determined as a function of wind 

speed together with associated correlation coefficients and variances of the sea surface 
reflectance coefficient ρ. Estimated wL  uncertainties can partially explain the inaccuracy of 

satellite retrievals in the blue bands in the coastal waters. It is shown that in above-water 
measurements in no-glint conditions with viewing and azimuth angles of 40° and 90°, 
respectively, for both ( )tL λ  and ( )sL λ  the impact of FOV is minimal at least up to measured 

W = 5.7 m/s for full-angle FOV of 4° and larger. Implications of uncertainties for the 
derivation of water leaving radiance in above-water ship-borne and AERONET-OC 
measurements are discussed. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  

1. Introduction 

Multi-spectral remote sensing reflectance data from Ocean Color (OC) satellites are suitable 
for the retrieval of important water parameters such as concentration of chlorophyll-a, 
absorption and backscattering coefficients, but they often do not have appropriate spatial and 
spectral resolution in some applications, such as characterization of the bottom, detection of 
underwater objects and depth retrieval. Hyperspectral measurements with proper resolution 
can significantly improve the accuracy of retrievals in complex coastal and inland waters, and 
are particularly useful in shallow waters where bathymetric and bottom make-up information 
maps can be retrieved [1]. 

Development of hyperspectral imagers and applications of hyperspectral imagery to 
coastal and optically shallow waters has attracted increasing attention. Some example 
airborne sensors include [2]: AVIRIS, Ocean PHILLS and CASI instruments, and the 
satellite-borne Hyperion imager. Applications range from validation [3] to mapping and 
classification of corals [4], extraction of bathymetry and bottom types [5] as well as algorithm 
development [6,7]. Recent systems include the HICO instrument on the International Space 
Station [8] and a new generation NASA airborne imager PRISM [9] with multiple 
applications, which demonstrate the efficacy of hyperspectral imaging [10]. In NASA’s 
Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission [11] it is expected that the 
main sensor will be a hyperspectral imager, so different aspects of hyperspectral sensing and 
processing including atmospheric correction [12,13], surface characterization, skylight 
correction and advanced retrieval algorithms are especially important and require novel 
approaches. 
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Until recently, advances in hyperspectral imaging were generally constrained to 
improvements in signal-to-noise ratio, or increases of cross-track or spectral resolution 
through substitution of newer generations of focal plane arrays. However the basic design still 
required physically moving or scanning the instrument to achieve along-track information, the 
so-called “push-broom” mode of operation. The recent development of “snapshot” mode 
hyperspectral imagers eliminates this difficulty, and while such instruments have their own 
disadvantages, measurements can be made from non-moving platforms, ships, etc., providing 
an abundance of new data and capabilities [14]. 

In OC applications, the accuracy of retrievals of water parameters depends on the quality 
of the estimated remote sensing reflectance ( )rsR . One of the significant uncertainties in this 

estimation is associated with the characterization of the ocean surface, especially in windy 
conditions, and removal of the sky component reflected from this surface. For satellite 
applications, such reflectance is included in the atmospheric correction algorithm, specifically 
in the calculation of the Rayleigh and aerosol components [15–17]. For ship-borne 
measurements, the reflectance coefficient of skylight from the sea surface (ρ) is pre-
calculated for specific geometries, which are recommended for such observations [18,19]. In 
all these cases, the impact of the wind-roughened surface on the radiance is estimated based 
on statistics of Cox and Munk [20], who measured wave slopes as a function of the wind 
speed. This approach is included in multiple scalar [21] and vector [16,22–26] radiative 
transfer models and allows simulation of the mean radiance spectra for differing wind speeds 
and various atmospheric and water conditions. Such models, however, do not estimate the 
variability of the radiance spectra and corresponding uncertainties in measurements of the 
water leaving radiance (or rsR ) in windy conditions. Several factors drive these uncertainties. 

Typically, for in situ Ocean Color measurements, Cox-Munk statistics (derived from an 
approximate wind speed measurement) are the only available indicator of the instantaneous 
sea state. The reflectance coefficient, ρ, depends strongly on knowledge of the sea state, but 
also significantly on wavelength, aerosol characteristics and polarization effects, which are 
not routinely measured [24,27–31]. Related uncertainties can affect the quality of the near 
surface measurements and atmospheric correction [32]. That includes data from AERONET-
OC stations [33], which are based on above water measurements from ocean platforms and 
are widely used for the validation of satellite sensors. 

The goal of this paper is to demonstrate the capabilities of a new snapshot hyperspectral 
imager for applications of interest to the ocean color community, including characterization 
of the ocean surface, estimation of the uncertainties associated with above water radiometric 
measurements and derived water leaving radiances. 

This paper is broken down as follows: Section 2 introduces the imager, Section 3 
describes our uncertainty model for water-leaving radiance, Section 4 describes the in situ 
data collected with the imager, Section 5 combines uncertainty model with the spatial and 
spectral information of the imager to analyze the sources of uncertainty in the derivation of 

rsR , Section 6 discusses the implications of the results to above-water, AERONET-OC and 

satellite retrievals, and Section 7 concludes the work. 

2. Instrumentation and calibration 

As was mentioned before, hyperspectral imagers which were thus far used in ocean studies 
were primarily based on a push-broom method of data acquisition, with hyperspectral and 
cross track data recorded in one CCD scan and with the along track dimension added through 
the movement of the system. Some instruments attempt to circumvent this requirement 
through addition of a rotatable mirror, however this is only a partial solution; the resultant 
system requires additional time to complete a scan, and becomes polarization sensitive. 

The Cubert company (Germany) recently developed a robust imaging spectrometer 
UHD285 (Fig. 1) with no moving parts which permits acquisition of the entire spectral cube 
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For above surface ocean observations, assuming that Sun glint is avoided and there are no 
whitecaps, ( , , )w v vL θ ϕ λ  is determined from 

 ( , , ) ( , , ) ( , , , , , ) ( , , ),t v v w v v v v s v vL L W AOT Lθ ϕ λ θ ϕ λ ρ θ ϕ λ π θ ϕ λ= + −  (2) 

where ( , , )t v vL θ ϕ λ  is the total upwelling radiance leaving the ocean surface, with a typical 

relative solar azimuth angle of 90vφ = °  or 135vφ = °  [18]. For a flat ocean surface, the ρ  

coefficient is the Fresnel coefficient defined by the viewing angle [37] and the indices of 
refraction of the air and water. In the presence of ocean waves it is a function of many 
parameters, including wind speed, illumination-viewing conditions, aerosol optical thickness 
(AOT), polarization, dispersion of seawater, and Sun glint [29–31,38,39] and is thus 
wavelength dependent. Generally ρ is the integral of reflections from individual wave facets, 

so it additionally depends on the FOV and the integration time of the sensor. For satellite 
observations at the top of atmosphere (TOA), surface effects are included in both the 
Rayleigh component (calculated independently of aerosol parameters) and in the radiances for 
aerosol models [16,40,41]. 

In this work, the RayXP vector radiative transfer code (VRT) [25] was used in RT closure 
with the measurements from the imager. This code was successfully benchmarked against 
other VRT codes [25,42], polarimetric measurements of the atmosphere-ocean system [43–
45] and surface effects for wind roughened surface [31]. The code allows the stratification of 
the atmosphere and ocean in horizontally homogeneous (plane parallel) layers, which are 
characterized by molecular absorption ( ABSτ ) and scattering ( MOLτ ) optical depths, 

depolarization ratio, and an aerosol or hydrosol (represented by a 4x4 single-scattering 
Mueller matrix, single scattering albedo, and optical depth, SOLτ ). 

The Stokes vectors corresponding to the radiance arriving at the sensor from the water 
body ( tL ) and the sky ( sL ) were computed from the simulations of the atmosphere-ocean 

system assuming a set of the following plane-parallel homogeneous layers. The first three 
layers are dedicated to the atmosphere (described top to bottom) with the first one 
representing 64.74% of the total Rayleigh optical thickness ( Rτ ) and 100% of the ozone 

optical thickness (
3Oτ ), a middle layer containing the remaining 35% of Rτ  and the full 

aerosol optical thickness, and the last layer with 0.26% of Rτ  between the sensor and the 

ocean surface. The aerosol single scattering albedo was assumed 0.99 for all simulations. 
Aerosols are usually absorbing in the coastal areas and that can be the reason for some 
discrepancies. Rayleigh optical thickness values were the same as the ones used for MODIS 
products (0.098 at 550 nm). The middle layer containing aerosols was defined as consisting of 
a mixture of 79.6% sea salt, 19.9% dust and 0.5% soot by volume with a relative humidity of 
60% [29]. The total aerosol optical thickness Aτ  and Angstrom coefficient γ  used for 

simulations were from Microtops II (Solar Light, PA) measurements. The oceanic layer, 
including hydrosols, was composed simply of one homogenous, optically thick water layer at 
which IOPs were measured (i.e. 0.5m underneath the water surface). The hydrosol single 
scattering albedo was calculated from the particulate absorption and attenuation. A Rayleigh 
depolarization factor of 0.039 was applied to account for the molecular anisotropy of water 
molecules [46]. Isotropic Cox-Munk slope distributions [20] were assumed for all simulations 
based on average anemometer wind speed (W) measurements. The variance 2

isoσ  of the 

isotropic slope distribution related to the wind speed W at 12.5 m above the surface level is 
determined as [20] 

 2 0.003 0.00512 0.004.iso Wσ = + ±  (3) 
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The VRT program does not simulate uncertainties of tL , wL  and ρ . Including 1-sigma 

uncertainties into the nomenclature, we now have 

 ,  ,  ,  ,s s t t w wL L L ρσ σ σ ρ σ± ± ± ±  (4) 

where the ( , , )v vθ ϕ λ  parameters have been omitted for clarity, and tσ , wσ , sσ  and ρσ  are 

the standard deviations of the total, water leaving and sky radiances, and reflectance 
coefficient, respectively. The full uncertainty equation for the total radiance (assuming lack of 
glint and foam in Eq. (2)) is given as [47] 
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∂  

 (5) 

where all covariance terms are included. The partial derivatives may be computed simply, 

resulting in 1t

w

L

L

∂
=

∂
, t

s

L

L
ρ∂

=
∂

 and t
s

L
L

ρ
∂

=
∂

. Substituting the computed derivatives into Eq. 

(5) and simplifying, yields 

 2 2 2 2 2 2
0 2 2 2 .t w s s s s ws s wL L Lρ ρ ρσ σ ρ σ σ ρ σ ρσ σ= + + + + +  (6) 

In the above equation, 2
wσ  has been replaced with 2

0wσ , for contrast with an alternate 

formulation below. This equation identifies components which contribute to the variance of 
the total signal emanating from the ocean surface, and includes 2

0wσ , which is due to the 

natural variability of the upwelling radiance under the surface and its propagation through the 
wind-roughened water-air interface. 

If we use Eq. (2) in the form of w t sL L Lρ= − , the variance of the water leaving signal 

would then be 

 2 2 2 2 2 2 2 2 2 .w t s s s s ts s tL L Lρ ρ ρσ σ ρ σ σ ρ σ ρσ σ= + + + − −  (7a) 

In this equation 2
wσ characterizes the variance of wL in the process of wL retrieval from 

above surface measurements, depends on all components in Eq. (7a) and as such can be very 
different from 2

0wσ  . Additional relationships regarding 2
0wσ  and 2

wσ  from Eqs. (6) and (7a) 

will be further given in Section 5.1. 
Let us assume that ρσ in Eq. (7a) is small and ρ  almost constant for a given 

measurement at a specific viewing angle. This is the typical practice for estimation of wL  in 

situ. In actuality, this is only a valid assumption under conditions of very low wind speed, 
homogenous sky, viewing angles near nadir, and solar angles near the horizon where the 
contribution of Sun glitter is small. Then 

 2 2 2 2 2 ,w t s tsσ σ ρ σ ρσ≈ + −  (7b) 

and through the subtraction of Eq. (7b) from (7a) and considering a weak correlation between 
ρ  and sL , we can estimate the effect of the assumption as 

 2 2 2  or 2 / ,s s t t t sL L r Lρ ρ ρ ρσ σ σ σ≈ ≈  (7c) 
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where tr ρ  is the correlation coefficient for tL  and ρ . Thus a preliminary relationship 

between tσ  and ρσ  in Eq. (7c) can be established. 

Using data from the imager we can quantify components wσ , tσ , sσ , tsσ  as well as 

corresponding correlation coefficients in Eq. (7) to estimate realistic uncertainties in 
measurements of these parameters and contributions to the total signals. Due to the 
assumptions made, sometimes the value of tr ρ  exceeds 1. In these cases, tr ρ  was clamped to 

a value of 1. 
As noted above, assumption of the constant coefficient ρ  corresponds to typical cases of 

derivation of the water leaving radiance wL  using Eq. (2), as is done for above water 

measurements and in the satellite atmospheric correction models. 
Since ρσ  cannot be determined from Eq. (7), additional relationships based on Eq. (3) 

[20] were utilized to find a dependence of ρσ  on the wind speed and viewing geometry. 

starting with the isotropic mean-square wave slope as a function of wind speed, 2
isoσ , the 

Gaussian probability density function describing the slope distribution, 2( | )isof x σ , is given 

by 

 ( )
2

1/22 2
2

( | ) 2 exp ,
2iso iso

iso

x
f x σ πσ

σ
−  −=  

 
 (8) 

where x  is the slope. For calculation of the Fresnel coefficients, the slopes are converted to 
viewing angles ( nθ , the angle between zenith and the instantaneous “facet” normal direction) 

by 1tan ( )n xθ −= , and the incidence angle upon the facet ( facetθ ) which would produce a 

reflection observable at a viewing angle of vθ  is determined by facet v nθ θ θ= + . 

This simplified view ignores wave shadowing and multiple scattering by wave surfaces. 
These effects become significant at large VAs, where due to the simplification the possibility 
exists that 90facetθ > ° , which is of course unphysical. For this calculation, the sky radiance is 

assumed to be isotropic, since skylight influence upon ρ  is accounted for separately through 

the sσ  and sρσ  terms. In this work we limit the VA to 60vθ ≤ ° , which are anyhow the 

angles of interest for ocean color and largely mitigate the problem, but still may produce 
some small amounts of shadowing at the fringes of the slope distribution. Such angles are 
omitted from the calculation (since we are not accounting for multiple scattering by wave 
surfaces), but when this occurs ( )f x  is renormalized in order to maintain the requirement 

that ( ) 1f x dx
∞

−∞

≡ . 

Given the probability distribution, and the corresponding unpolarized Fresnel coefficients
( )F facetρ θ , we may then estimate the variance of the reflectance coefficient 2

ρσ  for a given 

angle and wind speed by 

 

2

2 2 2( , ) ( ) ( ) .v iso F Ff x dx f x dxρσ θ σ ρ ρ
∞ ∞

−∞ −∞

 
= −  

 
   (9) 

Figure 4 illustrates the variation of ρσ  as a function of VA, and the coefficient of 

variation ρσ ρ  for wind speeds of 2, 5, and 8 m/s. 
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The standard deviation of the sea surface reflectance, ρσ  is shown in Fig. 4(a). The value 

is small at vθ  = 20° and lower, but rises to about 0.01 for the typical case of 40° and 5m/s 

winds, which is a variability of about 35%, Fig. 4(b). If we consider that the CV represents 
the 1-sigma variation, the 3-sigma variation is over 100%, which clearly shows that ρσ  is the 

significant factor in the overall uncertainty budget, and becomes more so as the wind speed 
and viewing angle increases. 

It should be noted that the distribution of ρ  is not Gaussian [29], but the uncertainty 

propagation framework [47] described by Eq. (5) intrinsically assumes that all errors and 
uncertainties are Gaussian in nature. Without explicitly running Monte Carlo simulations to 
determine the exact distribution of all variables involved, all estimates of uncertainties given 
in this work are assumed to be Gaussian. 

With all other terms now known, the spectra of covariances tρσ  and corresponding 

correlation coefficients were determined from Eq. (7c). 

 

Fig. 4. Standard deviation ρσ  and a coefficient of variation ρσ ρ  as a function of viewing 

angle for 2, 5, and 8 m/s wind speeds. 

4. Field measurements 

Above water observations were carried out from three coastal platforms: a) a 150-m long 
platform (Steeplechase pier, 40.5702° N, 73.9834° W) located in Brooklyn, NY; b) an 
offshore platform (Long Island Sound Coastal Observatory, LISCO, 40.9545° N, 73.3418° 
W) located 2 miles offshore from Northport, NY, and c) a 500-m long pier (US Army Corps 
of Engineers Field Research Facility (FRF), 36.1833° N, 75.7464° W) located in Duck, NC. 
Platform heights above mean sea level were 7m, 4m and 8m and bottom depth were 5 m, 15 
m and 6 m, respectively. Total 14 measurements are considered in the processing with wind 
speed in the range of 3.0-5.7 m/s, Sun zenith angle SZA = 43-69°, AOT(440) = 0.198-0.452. 

The imager was installed on a tripod as shown in Fig. 1(b), with its optical axis oriented at 
40° from nadir for the observations of the water surface ( 40vθ = ° ) and at 40° from zenith for 

sky observations ( 140vθ = ° ). The relative solar azimuth angle was fixed at 90° or 270°, 

depending on measurement conditions. The imager’s 40° FOV covered the range of viewing 
angles from 20° to 60° with respect to nadir (water-viewing) and zenith (sky-viewing). In the 
each measurement cycle, water and sky observations were complemented by measurements 
of the downwelling irradiance using a Spectralon white plate, and measurements of the dark 
noise. At the same time spectral data from the water, sky and the plate were acquired by a 
GER-1500 spectroradiometer, AOT was measured by a Microtops Sun-photometer at 
wavelengths 380, 500, 675, 870 and 1020 nm. Inherent Optical Properties (IOPs) of water 
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Bay and Florida waters [53], Fig. 12. The w wLσ ratio also increases towards the NIR part of 

the spectrum and even normalized sky radiance is small, this ratio can be partially responsible 
for the increase of uncertainties in the NIR as shown in Fig. 10. 

 

Fig. 11. (a) Normalized sky radiance spectrum,(b) Rrs and (c) their ratio for the open ocean and 
coastal waters. 

5.2 Field of view considerations in above water measurements 

Instruments which are used for tL  and sL  measurements above water have different FOV, 

ranging from about 1° (SeaPRISM) to greater than 20° (fiber optic sensors), so it is important 
to determine the dependence of tL  and sL  on the FOV and how it affects the mean radiances 

and their fluctuations in variable surface and sky conditions. tL  and sL  were measured at 40° 

and 140° viewing angles respectively, with a full-angle FOV ( FOVθ ) up to 35° were 

calculated using the following expression: 

 '
,

1
( , ) ( ) ,

FOV

t s FOV i FOV
FOV

L L dλ λ
Ω

Ω = Ω
Ω   (12) 

where ,t sL  is the radiance for water and sky ( tL  and sL , respectively), FOVΩ  is the solid 

angle corresponding to the conical FOV and iL  is the radiance for each individual pixel 

within the FOV. Example of the spectra for different FOVs is shown for W = 4.5 m/s in Fig. 
12 with the corresponding images and analyzed areas. It can be clearly seen that in the wide 
range of 0.8 31.2FOVθ = ° − °  for the moderate wind speed there is very small dependence of 

radiance on the FOV for both tL  and sL  for the whole spectra. 
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and spectral ρ  calculated accordingly. The coefficient of variation for water-leaving radiance 

( w wLσ ) is expected to be about 3-8% with increase to 6-20% in the NIR at 40vθ = °  and W 

< 6 m/s. According to Eq. (11) and Fig. 11 it is expected that w wLσ  remains approximately 

the same in the open ocean with increasing rsR towards the blue end of the spectrum and 

increases in the coastal waters with decrease of rsR causing larger measurement uncertainties. 

This trend was verified in the preliminary manner by us with the imager sensitive in the blue 
wavelength range and by AERONET-OC data and should be further validated. Partially the 
errors can be made smaller by increasing the number of measurements; however, this can 
often be associated with additional effects of the ship movements and instantaneous changes 
in sky and water conditions. 

AERONET-OC measurements are carried out by SeaPRISM instruments at 40° and 140° 
viewing angles for the water and sky radiance respectively with an integration time of about 
80 ms and a FOV of 1.2° [33]. An azimuth angle of ± 90° is always maintained to minimize 
Sun glint. Additional data filtering by eliminating cases with standard deviations tσ  greater 

than certain threshold is applied to reduce further Sun glint effects [51]. Instruments are 
positioned on the stable platforms in the ocean, which are not sensitive to the wave 
perturbations, so the increased number of measurements is expected to bring tL  closer to the 

mean value _t meanL . wL  is then determined based on Eq. (2) with the ρ  coefficient from 

[18], which was calculated without taking into account impacts of polarization and AOT. 
Estimations of w wLσ  from Fig. 10 and t tLσ  from Fig. 8 at 40vθ = °  are generally 

consistent with the AERONET-OC results based on data from several platforms [52]. While 
for 40vθ = °  0.35ρσ ρ ≈  (see Fig. 4) (if 0.028ρ = is assumed), which is substantially 

higher than other estimations of ρσ ρ  calculated based on different reasons of ρ  variability 

[52], these effects are probably mitigated by the covariance terms in Eq. (7). 
In the current processing, tL  is taken to be the average of the lowest 2 out of 11 

measurements, denoted as _t RELL , which typically has a value between _t meanL  and 
'
t t tL L σ= − . Data from the imager show that '

tL  can be smaller than _t meanL  for 40vθ = °  

depending on the wind speed and SZA. Further dedicated studies are probably necessary to 
determine possible improvements of wL  retrieval. This includes application of a proper ρ  

coefficient, which is preferably determined by VRT with aerosol parameters measured by the 
same AERONET-OC station. It is expected that in the new version of AERONET-OC 
processing ρ  will be calculated taking into account aerosol and polarization effects [Zibordi, 

private communications]. 
It can be expected that standard deviations similar to ( )tσ λ  spectra determined in this 

work can characterize the uncertainties of the radiance at the TOA ( )TOAL λ , which are due to 

the effects of the ocean surface. In accordance with Eq. (11) and Fig. 11, w wLσ is larger in 

the blue bands in the coastal waters than in the open ocean, which will contribute to the 
uncertainties of wL  and rsR , derived from satellite observations. The uncertainties can be even 

further amplified by the dependence of ρ  on AOT discussed in [31] with AOT very variable 

in coastal waters and not determined accurately enough in the atmospheric correction process. 
Snapshot hyperspectral imagers like the one presented in this paper, which preferably 

covers the whole wavelength range of OC interest in at least 380-900 nm should be a suitable 
choice for the validation of the discussed effects in various water an atmospheric conditions. 
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7. Conclusions 

A novel hyperspectral imager is introduced for OC applications in coastal waters and its 
advantages over non-imaging spectroradiometers and push broom imagers are discussed. The 
instrument provides hyperspectral radiance distribution with a wide FOV and short exposure 
time, which is valuable for the direct characterization of the wind-roughened surface in 
various illumination conditions and wind speeds. Spectra of standard deviations for the 
radiance from the water and the sky at the viewing angles 20-60° are accurately determined 
and their ratios to the corresponding mean radiances are evaluated, showing that the 
coefficients of variation ( ) ( )t tLσ λ λ  for water and ( ) ( )s sLσ λ λ  for the sky measurements 

can be in the range of 3-20% depending on the viewing angle, wind speed and wavelength. 
The minimal values of ( ) ( )t tLσ λ λ  are typically around viewing angle of 40°or smaller 

VA. The coefficients of variation ( ) ( )w wLσ λ λ  is in the range of 3-8% for most cases and 

can reach 10-25% for VA = 60° at 470 nm. It is expected that ( ) ( )w wLσ λ λ  is higher in the 

blue bands in coastal waters, which at least partially explains typically inaccurate satellite 
retrieval of wL  in blue bands in such areas, where values of wL  are few times smaller than in 

the open ocean. Significant part of uncertainties comes from the variability of ρ  coefficient 

from the windy surface (or its equivalent value from VRT calculations for TOA). It was 
found that ρσ ρ  can be about 35% at 40° and W = 5 m/s and about 100% at higher wind 

speed and VA = 60°. The uncertainties can be amplified by the dependence of ρ  on AOT 

[31]. Thus accurate determination of the ρ  coefficient, which takes into account polarization 

effects and impact of AOT is critical to the calculation of the water leaving radiance ( )wL λ , 

however, most of uncertainties come from the changes of wave slopes in windy conditions 
and can be unavoidable. 

Further measurements with the imager in open ocean water conditions with different 
ocean states are suggested to analyze differences in surface effects between the near shore and 
open ocean areas, which can be directly relevant to satellite data processing in terms of 
atmospheric correction and retrieval algorithms. 
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