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1 Introduction

Basic research in the science of image processing and estimation theory is necessary to lay the theoretical
foundations for future U.S. Department of Defense capabilities that rely on information extracted from im-
agery. One such capability of particular interest is the ability to robustly detect, characterize, and track
resident space objects (RSOs). Systems must be capable of achieving these objectives using passive sen-
sors (e.g., cameras) at a variety of ranges, lighting conditions, viewing geometries, and other operational
constraints. To this end, a great deal of research has been performed on extracting information from unre-
solved observations of RSOs using information such as light curve data and advanced modeling/estimation
techniques. Likewise, a host of algorithms (ranging from feature extraction to optical flow) are available for
inferring information from images containing a fully resolved RSO. What is missing, however, is a thorough
understanding of how the maximum amount of information may be extracted from images of partially re-
solved RSOs. As objects that are far away become closer, they will typically begin as an unresolved object,
then transition to a partially resolved object, and eventually become a fully resolved object. Such an evo-
lution of images is common during on-orbit proximity operations or rendezvous. An example of this type
of transition is shown graphically in Fig. 1. Obtaining the maximum amount of information as quickly as
possible allows for better decision-making earlier in an encounter.

At#close#range,#individual#features#
become#apparent.#These#features#
may#be#tracked#and#matched#to#a#

model#of#the#spacecra;.#

At#long#range,#the#spacecra;#only#
subtends#a#few#pixels.#Light#curve#
data#may#be#used#to#deduce#spin#
rate#and#some#shape#informa?on.#

Decreasing#Range#

At#intermediate#ranges,#some#shape#informa?on#becomes#apparent#
but#individual#features#are#not#yet#dis?nguishable.#Techniques#to#

extract#informa?on#in#this#regime#are#s?ll#immature.#

Close#Far#Away#

? "? "?"
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Figure 1: Objects move from unresolved (left image), to partially resolved (middle image), to fully resolved
(right image) during a typical on-orbit rendezvous.

Over the course of this Young Investigator Program (YIP) award, we have made progress in a number of
critical areas related to the understanding and use of partially resolved imagery. The key results generated
by our research team lie in three areas:

1. Partially resolved object shape modeling and description
2. Partially resolved object recognition
3. Relative navigation (RelNav) with partially resolved objects

The sections that follow summarize our key results in each of these three areas.
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2 Summary of Results in Partially Resolved Object Shape Mod-

eling and Description

2.1 3D Scale-Space and Keypoint Detection

2.1.1 3D Scale-Space

Of all the various topics we investigated as part of this YIP award, the analysis and description of an object’s
3D shape from a scale-space perspective consumed (by far) the most time and e↵ort. This e↵ort is motivated
by the simple fact that the progression of an object from unresolved to partially resolved to fully resolved
during an on-orbit rendezvous mirrors closely the construction of a classic image scale space. The di�culty,
of course, is that the observed object’s appearance changes during the rendezvous (due to attitude changes,
lighting changes, etc.). This ultimately led us to the idea of building a scale space directly on a 3D model
instead of the projection of that 3D model onto a particular image.

Scale-space construction methods on 3D surfaces may be separated into two categories: (1) the di↵usion
of vertex locations and (2) the di↵usion of a signal along the surface. The first type is analogous to the
di↵usion of not only the pixel intensities, but also the pixel locations of a 2D image. This may lead to mesh
shrinkage and non-physical deformations. Instead, di↵usion of a signal along the surface is analogous to
holding the pixel locations constant, and di↵using the signal. We, therefore, focused primarily on methods
where the vertex locations are held constant.

Scale-space is governed by the di↵usion equation and implemented with discrete approximations [1, 2].
The in-surface isotropic di↵usion equation

@u

@t
= ↵r2

Su (1)

constructs a scale-space on 3D surfaces, where u is a function defined on the surface, t is the di↵usion time
(related to the scale-parameter), ↵ is the constant of di↵usion, and r2

S is the continuous Laplace-Beltrami
operator (LBO) which is a generalization of the Laplace operator to surfaces. The characteristic solution
(i.e., the impulse response) to Eq. 1 is sometimes referred to as the heat kernel [3], which is the well-known
Gaussian used for 1D signal analysis [1, 4] and 2D image scale-space [5, 6]. For surfaces embedded in R3,
the solution to the di↵usion equation is less straightforward.

Discretization in space of Eq. 1 requires a discrete approximation to the LBO, the most common of
which are the umbrella [7], cotangent [8, 9], mesh [10]. Diversity in LBO construction occurs because no
discrete LBO can satisfy all natural properties of the continuous Laplacian [11, 12]. We built pipelines for
constructing a 3D scale space with each of these LBOs.

In addition to studying various discrete LBOs for solving Eq. 1 on explicit surfaces, we also spent consid-
erable e↵ort investigating di↵usion on implicit surfaces. Specifically, we considered implicitly representing
the surface as level sets [13], signed distance fields (SDF) [14], or closest point representations (CPR) [15].
These methods are agnostic to inhomogeneous mesh representations because they embed the explicit sur-
face on a grid in a one-dimensional higher space on which the classic Cartesian definitions of gradient and
divergence with well-studied numeric techniques apply. Most of our e↵ort in this area focused on CPR, since
this approach can handle open or closed, non-orientable, and higher dimensional surfaces. We implemented
the implicit closest point method (ICPM) from [16] to construct a scale-space on surfaces. After a detailed
study, we ultimately found implicit methods to require too much memory and computational expense for
reasonable deployment in spaceflight applications. Hence, most of the remaining discussions focus exclusively
on solutions with explicit surfaces.

2.1.2 3D Keypoint Detection

Once a 3D scale-space has been built, we must search this scale-space for stable and salient keypoints. These
keypoints exist at all scales from fine (corresponding to fully resolved) to coarse (corresponding to partially
resolved). Clearly, we have most interest in the coarse keypoints here — although the fine keypoints are just
as useful if this concept is extrapolated to fully resolved imagery.

Amongst the group of classic keypoint detectors, finding extrema in the scale-normalized Laplace of Gaus-
sian (LoG), tr2G, generally provides the most stable keypoints [17]. The LoG is computationally expensive,

28 May 2019 2DISTRIBUTION A: Distribution approved for public release.



but may be closely approximated with the Di↵erence of Gaussians (DoG). Begin with the discretization of
Eq. 1 in time with a Gaussian as

Gn+1 � Gn

tn+1 � tn
⇡ ↵r2

SG (2)

Assuming we step through the scale space according to tn+1 = k2tn, for the scale-normalized LoG leads to

DoG = Gn+1 � Gn ⇡ (tn+1 � tn) ↵r2
SG = (k2 � 1)↵tnr2

SG

where (k2 �1)↵ is a constant over all scales, thus not a↵ecting extrema detection. With a scale-space signal,
the DoG is calculated as

D (u) = un+1 � un (3)

where D is short for the DoG and also utilized by SIFT [6], MeshDoG [18], GSS [19], and others.
Vertices whose DoG value achieves an extrema relative to their neighbors in the current level, and the

levels immediately below and above, are selected as keypoints. The keypoints’ scales are automatically
selected from the level of the scale-space stack at which the extrema exists.

Example keypoints generated by the di↵erent LBOs are shown in Fig. 2. Keypoints are shown as red
spheres, with the sphere diameter representing the scale. We generally find that the mesh LBOs exhibit
better repeatability than the umbrella or cotangent LBOs. This can be seen in Fig. 3, where the primary
metric of concern is relative repeatability.
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bunny armadillo buddha dragon itokawa

m
es

h
g
eo

d
es

ic
m

es
h

co
ta

n
g
en

t
u
m

b
re

ll
a

(a)
mv = 34834
mf = 69451
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Fig. 7 Models from the Standford scanning repository and the asteroid Itokawa with keypoints using each of the LBOs.

and its closest match in (vj , �j) � K�, the pairwise scale
repeatability is

rij =
V (Sp (�i)) � V (Sp (�j))

V (Sp (�i)) � V (Sp (�j))
(41)

where Sp(�) is a sphere of radius � and V (Sp) is the
volume of the sphere. The overall scale repeatability for
a single scene-to-model pair is

r� =

�

���
�

vj�K
vi�KR

rij

�

��� / |KR|. (42)

These three repeatability measures interact to de-
termine the overall performance of the LBOs. Simply
having a high value for a single repeatability measure
does not indicate that the LBO is successful. The ob-
jective is to find if any LBO performs comparably to
or better than the other LBOs in all three repeatability
measures. In our experiments, we test two values for `d

in Eq. 38. We noticed that with its variation, there is a

noticeable and opposing trade-o↵ between relative and
scale repeatability.

8.2 Keypoint Repeatability Adding Signal Noise

The first experiment determines repeatability when
adding noise to the mean curvature signal while the
vertex locations remain fixed. Various noise levels are
considered as scalar multiples of the true10 mean cur-
vature’s standard deviation. Gaussian white noise is
added to the true mean curvature signal as

�̄ � �̄ + � � � N
�
0, (���̄)2

�
(43)

where � � [0.1, 0.2, 0.3, 0.4, 0.5]. The results shown in
Fig. 8 are grouped by model. Each line shows the re-
peatability of that LBO as the noise level increases.
Since the LBOs are calculated based on the underlying

10 Truth being the original mean curvature without added
noise.

Figure 2: Visualization of keypoints (denoted by red spheres) on five di↵erent reference models using di↵erent
methods of di↵usion. Models (a)-(d) are from the Stanford 3D Scanning Repository, http://graphics.
stanford.edu/data/3Dscanrep/. Model (e) is from [20].
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Scale-Space Construction and Keypoint Detection on 3D Meshes using Discrete Laplacians 15
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Fig. 8 Keypoint repeatability results when adding Gaussian white noise to the signal. Median values for the Monte Carlo
simulation are presented for the five levels of noise. Colors correspond to LBOs as the mesh LBO (geodesic metric) in solid
black, mesh LBO (Euclidean metric) in dashed green, umbrella LBO in dotted red, cotangent LBO in dash dotted blue. For
Eq. 38, the cases are �d = �i/2 (top row), or �d = 2ē (bottom row).
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ē

Fig. 9 Keypoint repeatability results when adding Gaussian white noise to the vertex locations and recomputing the mean
curvature signal. Median values for the Monte Carlo simulation are presented for the five levels of noise. Colors correspond
to LBOs as the mesh LBO (geodesic metric) in solid black, mesh LBO (Euclidean metric) in dashed green, umbrella LBO in
dotted red, cotangent LBO in dash dotted blue. For Eq. 38, the cases are �d = �i/2 (top row), or �d = 2ē (bottom row).

mesh LBO to be the most repeatable option for key-
point detection because it performs highest in absolute
and relative repeatability, and similarly to the other
LBOs on scale repeatability.

9 Conclusion

Using the discretized di↵usion equation to construct a
scale-space on 3D meshes requires a discrete approxima-
tion to the Laplace-Beltrami operator. We compare the

use of three di↵erent popular discrete LBOs: umbrella,
cotangent, and mesh. We proposed using the mesh LBO
for its repeatability performance as shown in Fig. 8 and
Fig. 9. The mesh LBO performs most reliably when
considering signal noise, and again with adding vertex
noise if `d = �i/2. The mesh LBO provided more consis-
tent performance across all mesh models of varying ver-
tex quantities and average edge lengths than the cotan-
gent and umbrella LBOs. While repeatability decreased
for all LBOs when considering vertex noise, the mesh
LBO had the highest absolute and relative repeatability

Figure 3: Keypoint repeatability results when adding Gaussian noise to the vertex locations and recomputing
the mean curvature signal. Plots show median repeatability values from Monte Carlo simulation at five
di↵erent levels of vertex noise (increasing noise left to right). Results are presented for two di↵erent methods
fo selecting the distance threshold `d used to determine keypoint repeatability.

2.2 Shape from Silhouette (SfS)

In situations where the relative attitude is known, it is possible to build a 3D model using an observed
object’s silhouette in an ensemble of images collected from varying vantage points. This procedure is often
called shape from silhouette (SfS). We implemented a straightforward sphere carving technique that performs
well so long as the object’s size is single-valued along each radial direction (injective to the sphere). Example
results given synthetic images of a satellite are shown in Fig. 4.

During the course of this project, we also explored the use of exact polyhedral visual hulls (EPVH) [21].
We had some limited success with this approach, but substantially more e↵ort is required to fully develop
this pipeline. In early 2019, we also briefly explored silhouette-based shape representation in curvature scale
space [22], and hope to continue this line of investigation in future work.

0 1 3 14

Figure 4: Shape from silhouette modeling with partially resolved images of the Maven spacecraft. Maven 3D
model is from https://nasa3d.arc.nasa.gov/models. Synthetic images rendered using the open-source
Blender software package, https://www.blender.org.
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3 Summary of Results in Partially Resolved Object Recognition

We explored the feasibility of recognizing a space object given a set of partially resolved images. To do
this, we require a representation of the object that serves as the bridge between the images and the catalog
of known objects (Fig. 5). There are at least two ways to address this problem. The first is the explicit,
hand-crafted construction of metrics and checks within a recognition pipeline. The second is a machine
learning approach. We attempted both, and results are as follows.

Representation of 
observed object

Catalog of known satellites

???

Figure 5: Space object recognition requires a common method of object representation to connect partially
resolved images to a catalog of known objects.

3.1 Graph-based Keypoint Matching

We first explored the explicit construction of a recognition pipeline using the scale-space and keypoint
localization results from Section 2.1. The relative location and scale of an object’s keypoints represent a
unique “fingerprint” for that object that may be used for matching. Specifically, we may reinterpret the set
of keypoints as a graph. Each vertex pair in this graph has an edge whose value is chosen to be the Euclidean
distance between the two vertices. Each vertex is assigned a value equal to its scale. This description of the
keypoints is the same regardless of the frame in which it is represented (e.g., object frame, sensor frame)
— this facilitates straightforward matching. We adapted a graph matching approach first developed by our
research group for LIDAR reflector identification [23] to this problem and find it to work quite well. An
example is shown in Fig. 6.

Figure 6: Graph-based matching of keypoints on two di↵erent meshes of the the Armadillo model. The
catalog of keypoints included graphs for many objects (not just the Armadillo). The algorithm correctly
identified the measured mesh (right) as the Armadillo and matched the corresponding keypoints.
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3.2 Neural Networks

We also developed a machine learning pipeline for the recognition of partially resolved space objects using
a convolutional neural network. Our neural network consisted of convolutional layers, max pool layers, and
fully connected layers, organized in the manner shown in Fig. 7. This proof-of-concept network was trained
on a catalog 14 objects (7 satellites and 7 asteroids) at phase angles from 0–138 deg. Images were grouped
in to five di↵erent phase angle bins (since phase angle is strongly a↵ects appearance and is almost always
known in practice), with examples shown in Fig. 8. The success rate of correct object identification is found
to be above 90% for both crisp and blurry images of objects known to the network.8 Christopher A. Ertl, John A. Christian

Conv1 Conv2

Max Pool

Conv3

Conv4

Max Pool

Conv5

Fully Connected–
Hidden Layers

Output

Bennu
Cassini
Fuse
Galileo

Vesta
Voyager

Fig. 5 Our convolutional network architecture includes five convolutional layers separated by
a max pool layer after every two convolutional layers and three fully-connected hidden layers
at the end of the network.

5 Network Training

Training of a neural network is divided into two pieces, learning and generalization.
Learning is the process of adaptively understanding the fundamental aspects of
the training data in order to correctly classify it. Generalization is being able to
correctly classify data outside of the training data [48]. To train a neural network,
a training set of images is used along with a loss function and an optimization
method to adjust the parameters in the network.

A network begins its learning process by splitting the training data into batches.
Our network uses cross-entropy loss as its loss function. The loss function, L, for
each batch of training images is calculated as,5

L = ln

�

�
exp

�
x(k)

class

�

�
i exp

�
x(k)

i

�

�

� = x(k)
class + ln

�
�

i

exp
�
x(k)

i

��
(3)

where the superscripts define the neuron layer, in this case it is the output layer
k, and the subscripts specifies the neuron in the layer. The activation, xclass, is
the activation of the classifier that correctly classifies the object in the image. The
calculated loss is then utilized by the optimizer.

Using the loss for a batch of images, the optimizer modifies the parameters
of the network through backward propagation. The network uses a Stochastic
Gradient Descent (SGD) optimizer with a momentum of 0 and a static learning
rate of 0.0001 which has produced the best results for this network. The SGD
optimizer is typically used for neural network training and is used to optimize the
weights and bias parameters for the network [17].

5 https://pytorch.org/docs/stable/nn.html

Figure 7: Illustration of our convolutional neural network (CNN) architecture for recognition of partially
resolved space objects.

Identification of Partially Resolved Objects in Space Imagery 5

Fig. 2 Overlapping ranges of phase angles used for the training of the neural networks.

Table 1 Phase angle ranges for both training and operating bins.

Bin Training Phase Angle Range (deg) Operational Phase Angle Range (deg)

1 0 – 34 0 – 30
2 26 – 60 30 – 56
3 52 – 86 56 – 82
4 78 – 112 82 – 108
5 104 – 138 108 – 134

Fig. 3 Images are rendered using a 3D model at varying attitudes, ranges, and phase angles.
These images are then sorted into 5 overlapping bins based on phase angle.Figure 8: Illustration of the 14-object catalog, which is separated into five bins based on phase angle.

28 May 2019 6

DISTRIBUTION A: Distribution approved for public release



4 Summary of Results in Relative Navigation with Partially Re-

solved Objects

Vision-based spacecraft navigation is often reduced to producing a bearing to the object’s center in situations
where an object is not fully resolved. Algorithm simplicity often dictates that bearing be produced through a
simple center-of-intensity (COI) algorithm. This approach generally works quite well for unresolved objects,
but can produce a undesirably large bearing bias for partially resolved objects at a mid-to-large phase angles,
g. This can be seen in Fig. 9, where the COI (red dot) is biased in the direction of illumination from the
object’s geometric center (blue dot).

During the course of this YIP award, we developed analytic expressions for the phase angle dependent
bearing bias of a sphere with a constant illumination, a Lambertian reflectance model, and a Lommel-
Seeliger reflectance model. We note that bias corrections for the sphere are not new [24], although study of
the sphere allowed us to develop a framework that easily extends to other shapes. We generally explored
the e�cacy of analytic bearing bias correction with various geometric primitives, although the period of
performance expired before we could run many of these issues to ground. With the YIP now over, this line
of work is continuing under new sponsorship by NASA (where we are exploring specific geometric shapes
and configurations of relevance to them).
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Figure 9: At non-zero phase angles, an object’s center-of-intensity (COI) is generally biased away from its
geometric center. This bias may be analytically computed for many common 3D shapes.

5 Publications

5.1 Conference Papers

The following conference papers have been written:

1. Kobylka, K., Puritz, J., and Christian, J., “Analytic Center of Illumination Solutions to Aid Relative
Navigation with Partially Resolved Imagery,” accepted for presentation at the AAS/AIAA Astrody-
namics Specialist Conference, Portland, ME, 11-15 August 2019.

2. Ertl, C., Christian, J.A., “Identification of Partially Resolved Objects in Space Imagery with Neural
Networks,” Paper AAS 18-412, AAS/AIAA Astrodynamics Specialist Conference, Snowbird, UT, 19-23
August 2018.

3. Rhodes, A., Christian, J.A., “Constructing a 3D Scale Space from Implicit Surfaces for Vision-Based
Spacecraft Relative Navigation,” 41st Annual AAS Guidance, Navigation, and Control Conference,
Paper AAS 18-016, Breckenridge, CO, 2-7 February 2018.

4. Jagat, A., and Christian, J.A., “Scale Selection for Vision-Based Relative Navigation using Scale Space
Theory,” AIAA/AAS Astrodynamics Specialist Conference, Long Beach, CA, 13-16 September 2016.

5. Jagat, A., and Christian, J.A., “Vision-Based Relative Navigation using 3D Scale Space Theory,” Paper
AAS 16-428, AAS Space Flight Mechanics Meeting, Napa, CA, 14-18 February 2016.
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6. Flewelling, B., Murphy, T.S., Rhodes, A.P., Holzinger, M.J., and Christian, J.A., “Spatio-Temporal
Scale Space Analysis of Photometric Signals with Tracking Error,” Advanced Maui Optical and Space
Surveillance Technology (AMOS) Conference, Maui, HI, 15-18 September 2015.

5.2 Journal Papers

The following journal papers have been written:

1. Ertl, C., and Christian, J.A., “Identification of Partially Resolved Objects in Space Imagery with
Convolutional Neural Networks,” submitted to The Journal of the Astronautical Sciences.

2. Rhodes, A.P., and Christian, J.A., “Scale-Space Construction and Keypoint Detection on 3D Meshes
using Discrete Laplacians,” submitted to International Journal of Computer Vision (IJCV).

In addition to the above papers, we have produced many valuable results that have not yet found their
way into a journal paper. The results are not sizable enough to warrant a standalone journal article and
should (in Dr. Christian’s opinion) be paired with related developments. We expect results on the following
topics (whose development was supported under this YIP award) to appear in forthcoming journal papers
in the next few years:

1. Object recognition through 3D keypoint matching using algorithms adapted from star trackers and
LIDAR reflector identification. This will also appear in Andrew Rhodes’s Ph.D. thesis.

2. Silhouette-based shape modeling and object recognition.

5.3 Student Theses

The bulk of the work within Andrew Rhodes’s forthcoming Ph.D. dissertation was supported by this YIP
award. Stacie Williams (former AFOSR program manager for this award, now at DARPA) is on Andrew
Rhodes’s Ph.D. committee.

6 Collaboration with DoD and Industry

This YIP award helped facilitate a fruitful collaboration with Dr. Brien Flewelling at AFRL/RV at Kirtland
AFB in the 2015-2016 timeframe. Some of the results of this collaboration are captured in our joint AMOS
paper (conference paper #6 from Section 5.1). Informal collaboration continued after Dr. Flewelling left
AFRL in mid-2016, although these more recent collaborations have not resulted in any publications.
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