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Abstract: We analyze a new method for determining the out-of-plane coefficient of thermal
expansion for thin films of transparent materials. The method is based on the measurement of
interference peaks recorded in transmission spectra as a function of sample temperature. The
locations of interference peaks depend on the optical path. We show how a consideration of
Lorentz-Lorenz equation, in addition to the transmission peak equation, can separate the different
contributions of index and physical pathlength to the optical path. The analysis is generalized to
include the effects of uniaxial material properties (such as anisotropic linear thermal expansion
and birefringence). By applying this method of analysis to recent data, we demonstrate the
importance of including the effect of the thermo-optic coefficient in interpreting observed data.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Polyimides are of interest in optical, photonic, and electronic applications because they can be
lightweight, resilient, and have high optical transparency. They often have mechanical toughness,
flexibility, good dielectric properties and a high thermal stability. For optical and photonic
applications, the coefficients of thermal expansion (CTE) and the thermo-optic coefficients
(dn/dT) are of interest. These material properties have an important influence on the response of
an optical device to temperature changes.
Polyimide films, synthesized in the laboratory and prepared using the doctor-blade or spin-

coating techniques on a substrate, often possess some molecular order that can influence their
optical and mechanical properties. X-Ray and spectroscopic evidence show that although these
films are amorphous, the polyimide chains are preferentially aligned in the film plane, and the
more rigid aromatic moities are preferentially aligned parallel to the film surface. [1] The optical
and thermal expansion properties of such amorphous polyimide films are typically uniaxial, with
the unique axis perpendicular to the film surface.
Measurements of the in-plane coefficient of thermal expansion, CTEx = CTEy ≡ CTE‖ , is

straightforward with a commercial thermomechanical analyzer. This has been reported for a
large number of polyimides. In contrast, there are few measurements of the out-of-plane (or
thickness-direction) thermal expansion, CTEz ≡ CTE⊥. This is a difficult measurement because
the changes in thickness with temperature are quite small. For example, a relatively large CTE⊥,
on the order of 200 ppm/°C, gives a thickness change of only 2 nm/°C in a 10 micron thick film.

In a series of recent papers, measurements ofCTE⊥ are reported for a number of polyimide films,
approximately 10 microns thick, based on the temperature dependence of infrared interference
fringes measured in thin-film transmission spectra [2–4]. Having recently published an analysis
of the interference fringe spectra of poly(methyl-methacrylate) (PMMA) film, where we carefully
examined the sources of experimental uncertainty in such measurements [5, 6], we read these
recent papers with interest. Based on our experience with interference fringe spectroscopy,
combined with insights gleaned from the study of polyimides for optical applications [7], we
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offer an alternative analysis of the relationship between temperature-dependent fringe spectra and
CTE⊥. In particular, we consider the implications of the Lorentz-Lorenz equation [8, 9], which
expresses the thermo-optic coefficient in terms of the volume coefficient of thermal expansion.
Temperature-dependent fringe data provide information on the temperature dependence of the
optical path nd, the product of refractive index n and physical pathlength d, but not on the
individual contributions from dn/dT or the CTE . The Lorentz-Lorenz equation, however,
provides an independent relationship between dn/dT and the volume coefficient of thermal
expansion. That extra information can be used to separate the two contributions to d(nd)/dT .
We also generalize the analysis to include the treatment of uniaxial materials.

Interest in the anisotropic thermal expansion of polyimide films is not new [10,11]. Among the
techniques available for measuring CTE⊥ for thin films [12], the ones used for polyimides have
included capacitance methods [11,13], surface interferometric methods [10], and laser-induced
ultrasonic methods [14]. The method of using through-film interference fringes appears to have
been introduced by [2–4], though a closely related method appears in [13]. Given the recent
interest in this topic, we present a systematic analysis of the technique used in [2–4]. To the best
of our knowledge, this represents the first attempt to analyze temperature-dependent interference
fringe data based on the temperature-dependent Lorentz-Lorenz equation, in order to identify the
separate contributions from refractive index and physical pathlength to the observed optical path,
nd.

2. Temperature dependence of interference fringes in uniaxial films

The theory behind the formation of interference fringes in thin film transmission spectra is well
known. A particularly good treatment is presented in Yeh’s book [15]. It is also treated in Born
and Wolf’s classic book on optics [16], well known textbooks [17], and many other monographs.
For comparison to an experimental spectrum, the full transmission spectrum through a thin film
can be calculated from any of these references. A paper which presents an excellent outline of
the calculation of these spectra for birefringent layers (and multilayers) is Ref. [18].
The transmission spectrum of a transparent film contains a series of periodic peaks resulting

from constructive interference. The peak locations correspond to wavelengths that are exact
multiples of the round-trip path between the film’s surfaces. Assuming normal incidence, each
interference peak occurs at a wavelength that fits exactly M times within this round trip, thus
obeying the relationship:

M =
2 n(λ) d

λ
(1)

where d is the film thickness, λ is the wavelength of light and n(λ) is the refractive index at
λ. Since the physical path length traversed by the light is 2d and the wavelength in the film is
λ/n(λ), Eqn. (1) reiterates the condition that the physical path length corresponds to exactly M
wavelengths inside the film.

Figure 1 illustrates the spectral behavior of a thin film, calculated using the methods of Ref. [18].
For this simulation, peak locations were chosen to match the peak locations published in Fig. 1
of [2]. Matching the peaks of the low-temperature, solid-line data was achieved with an index of
1.7929 and a film thickness of 5.524 µm. Note that any thickness and index combination which
results in an optical path product nd of 9.904 µm generates equivalent peak positions. The peaks
of the high-temperature data exhibit an optical path product of 10.084 µm.
We note that Eqn. (1) makes the implicit assumption that the film material is isotropic,

meaning that a single value of n applies to all possible directions of light propagation and is
independent of polarization. More generally, however, n depends upon the propagation direction
and polarization of light. Materials that exhibit direction-dependent refractive indices are referred
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Fig. 1. Simulated transmission fringes for a thin film, with properties as described in the
text. The horizontal axis is given in inverse wavelength. The solid curve corresponds to the
film at low temperature. At elevated temperatures, fringes from the same film shift to the
right (longer wavelengths). Also shown are the peak wavelengths corresponding to Eqn. (8),
if the analysis were performed for the M = 10 fringe peak.

to as birefringent. For thin-film polymer samples, a common observation is that light polarized
along either axis (x, y) in the plane of the film has one index of refraction, while light polarized
perpendicular to the film plane (along z) has another, making them uniaxially birefringent. This is
illustrated in Fig. 2. For this geometry, one common optics nomenclature denotes nx = ny ≡ nTE ,
and nz ≡ nTM . Since the polarization vector is perpendicular to the propagation direction, and
Eqn. (1) is written for light that propagates straight into the film surface, the appropriate refractive
index for Eqn. (1), in this case, is nTE .

Fig. 2. Illustration of uniaxial birefringence. The refractive index along x or y is denoted nTE ,
while the refractive index along z is denoted nTM . For light, the refractive index is determined
by the direction of its electric field, E . As illustrated on the right, E points perpendicular to
the propagation direction. As diagrammed, this light would see the nTM index. Any light
propagating normal to the film, along z, will see index nTE , regardless of its polarization. (Il-
lustration on right modified from https://socratic.org/questions/58f0fd7e7c0149308e221579)

We now consider the effect of temperature changes on the relationship in Eqn. (1). As
indicated in Fig. 1, the fringe peak locations shift with temperature. Typically, the peak locations
drift towards longer wavelengths with increasing temperature. The two material parameters
appearing in Eqn. (1) that are affected by temperature are thickness and the refractive index.
The first-order change in film thickness with temperature is governed by the linear coefficient of
thermal expansion (CTE) corresponding to the direction normal to the film plane (i.e., along the
propagation direction of light), namely CTE⊥, according to:
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d(T) = d(To) [1 + ∆T β⊥] (2)

where d(T) is the thickness at temperature T , β⊥ is a notationally more efficient variable for
CTE⊥, To is the initial temperature, and ∆T ≡ (T −To). Note that, for a uniaxial film, the in-plane
CTE (β‖) can have a different value, meaning that β⊥ , β‖ in general. These relationships are
illustrated in Fig. 3.

Fig. 3. Schematic of the anisotropic thermal expansion of a uniaxial film, where a film at low
temperature expands to a new outline given by the dashed lines. The direction-dependent rate
of expansion is given by the linear coefficients of thermal expansion (CTE). The variables
used, for convenience, to represent CTE in the equations are β⊥ and β‖ . The volume
coefficient of thermal expansion (VCTE) is defined by 2β‖ + β⊥.

Similarly, the first-order effect of temperature change on the refractive index in the direction
relevant to the interference peaks described by Eqn. (1), namely nTE , is given by

nTE (λ,T) = nTE (λ,To) + ∆T ÛnTE (λ) (3)

where we define, for convenience, ÛnTE (λ) ≡ dnTE (λ)/dT . Again, for a uniaxial film, dnTE/dT ,
dnTM/dT in general.
To determine the wavelength shift of a particular interference peak, corresponding to a specific

value of M , we start by rewriting Eqn. (1) explicitly for a uniaxial film at a particular temperature,
To, as

M =
2 nTE (λo,To) d(To)

λo
(4)

Because of the temperature dependence of the parameters d(T) and nTE (λ,T) in Eqns. (2) and
(3), the wavelength position of peak M is expected to be temperature-dependent. The relationship
for peak M upon a temperature change from To to T is given by

M =
2 [nTE (λT ,To) + ∆T ÛnTE (λT )] d(To) [1 + ∆T β⊥]

λT
(5)

after substitution of Eqns. (2) and (3) into Eqn. (4), and where the new peak wavelength is
denoted λT . Grouping together terms of ∆T allows us to rewrite this as

M =
(
2 nTE (λT ,To) d(To)

λT

) {
1 +

[
β⊥ +

ÛnTE (λT )
nTE (λT ,To)

]
∆T +

[
β⊥ ÛnTE (λT )
nTE (λT ,To)

]
∆T2

}
(6)

In practice, the role of dispersion in Eqns. (4) and (6) is typically negligible, meaning that the
difference between nTE (λo,To) and nTE (λT ,To), and between their temperature derivatives, can
be neglected as long as
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����( λT
nTE (λT )

) (
d
dλ

nTE (λT )
)���� << 1 (7)

Note that the relationship in Eqn. (7) holds true even in very dispersive spectral regions of
materials. For example, consider the well-known polymer polycarbonate. [19] It is very dispersive
near a wavelength of 400 nm. Even in this extreme case, the quantity in Eqn. (7) is only 11%.
By 550 nm it is <5%, and it drops further to 1% by 1050 nm. In [4], the authors examined
polyimide films in the 1500-2200 nm range, wavelengths at which they are expected to be even
less dispersive than polycarbonate is near 1050 nm.

Using the approximation in Eqn. (7), we obtain the ratio of the peak wavelengths corresponding
to the two temperatures, T and To, by equating the right-hand sides of Eqns. (4) and (6) as

λT
λo
= 1 +

[
β⊥ +

ÛnTE (λo)
nTE (λo,To)

]
∆T +

[
β⊥ ÛnTE (λo)
nTE (λo,To)

∆T2
]

(8)

Thus, we see in Eqn. (8) that the temperature-induced change in wavelength position of
an interference peak depends on both the relevant thermal expansion coefficient, β⊥, and the
thermo-optic coefficient, ÛnTE . This is physically reasonable since the wavelength fundamentally
depends on both the thickness and index of the sample, as shown in Eqn. (1).

As long as
[
β⊥ ÛnTE (λo )
nTE (λo,To )

]
∆T <<

[
β⊥ +

ÛnTE (λo )
nTE (λo,To )

]
, which is often satisfied in practice, a good

approximation for Eqn. (8) is

λT
λo
≈ 1 +

[
β⊥ +

ÛnTE (λo)
nTE (λo,To)

]
∆T (9)

It is interesting to note that, in most polymers, β⊥ and ÛnTE often have opposite signs. This
tendency of the contributions from β⊥ and ÛnTE to cancel each other can lead to very small
temperature-induced shifts in the wavelength positions of interference peaks even in situations
where both β⊥ and ÛnTE are large. Thus, it is important not to misinterpret small, observed
wavelength shifts as implying that the material properties are (nearly) independent of temperature.

3. Analysis of thermal dependence based on the Lorentz-Lorenz equation

Equation (8) provides a method for determining β⊥, the linear coefficient of thermal expansion
normal to the film plane, from the shift in the interference fringes with temperature. This method
requires an independent measurement of the corresponding thermo-optic coefficient, ÛnTE , as
well as of the room-temperature refractive index, nTE . However, other strategies for obtaining
β⊥ are possible by recognizing that β⊥ and ÛnTE are not independent parameters.
The relationship between β⊥ and ÛnTE can be found by starting with the Lorentz-Lorenz

equation [8,9], also known as the Clausius-Mossotti relation, which relates the refractive index n,
polarizability α and density ρ of an isotropic material via

n2 − 1
n2 + 2

=
1

3 εo
Nα =

ρ α

3 εo

(
NA

MW

)
(10)

where N is the number of molecules per volume, NA is Avogadro’s number and MW is the
molecular weight. The equivalence of the second term on the right side, which is proportional to
the mass density, follows directly from consideration of the molecular weight of the material. By
taking the derivative with respect to temperature of both sides of Eqn. (10), we find

dn
dT
=
(n2 − 1)(n2 + 2)

6n

(
1
ρ

dρ
dT
+

1
α

dα
dT

)
(11)
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In Ref. [20], Mueller argued that the temperature-induced change in polarizability can be
considered proportional to the change in density but has the opposite sign. Physically, this is
motivated by the idea that a decrease in density allows for an increase in the free space between
atoms, thus allowing for freer motion of electrons in response to an electric field. In this picture,
a decrease in density results in an increase in polarizability, and vice versa. To incorporate this
concept into Eqn. (12), he introduced the proportionality constant L, later referred to by other
authors [21] as the strain polarizability constant:

dn
dT
=
(n2 − 1)(n2 + 2)

6n
(1 − L)

(
1
ρ

dρ
dT

)
=
(n2 − 1)(n2 + 2)

6n
(1 − L)

(
− 1

V
dV
dT

)
(12)

where the final term on the right is -1 times the volume coefficient of thermal expansion, which
is (β⊥ + 2β‖) for a uniaxial film. While Mueller developed this idea for glasses, existing
work [21,22] supports this approximation for polymers as well. Furthermore, the data suggest
that L for polymers is generally small, typically ∼0.15.

Equation (12) is written for an isotropic material. To extend this analysis to a uniaxial film, we
follow Vuks [23], who relates the refractive indices ni to the polarizabilities αi along the different
directions i ∈ {x, y, z} via

n2
i − 1

〈n〉2 + 2
=

1
3 εo

Nαi =
ρ αi
3 εo

(
NA

MW

)
(13)

where 〈n〉 is the average index, defined as the square root of the average dielectric constant,
namely

〈n〉 =
√
〈ε〉 =

√
(2 εTE + εTM )/3 =

√
(2 n2

TE + n2
TM )/3 (14)

and 〈α〉 is the average polarizability defined as

〈α〉 =
(
α⊥ + 2 α‖

)
/3 (15)

Inspection of Eqn. (13) shows that a sum over all i recovers Eqn. (10) with n replaced by
〈n〉 and α replaced by 〈α〉, which also means the same substitutions can be made in Eqn. (11).
Therefore, we expect an appropriate generalization of Eqn. (12) to be

d〈n〉
dT
=

(
〈n〉2 − 1

) (
〈n〉2 + 2

)
6 〈n〉 (1 − L)

(
− 1

V
dV
dT

)
(16)

where the meaning of L is now adjusted to reflect the proportionality of changes in the average
polarizability 〈α〉 to changes in the density.

To separate the temperature dependence of the TE and TM indices in Eqn. (16) we recall Eqn.
(14), define nTE ≡ nTM +∆n, assume d(∆n)/dT << dnTE/dT , and manipulate Eqn. (16) to find

dnTE

dT
=

(
〈n〉2 − 1

) (
〈n〉2 + 2

)
6 (nTE − ∆n/3)

(1 − L)
[
−

(
β⊥ + 2β‖

) ]
(17)

The assumption that d(∆n)/dT << ÛnTE is not meant to imply d(∆n)/dT = 0. Rather, this
assumption is used to simplify Eqn. (17) based on the physically reasonable assertion that its
magnitude contributes very little to numerical calculations of the quantities in (17) for most
materials.
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4. Discussion

Section 2 related the temperature-dependent wavelength shift of transmission fringes to physical
properties of a film. If one already knows ÛnTE and nTE , for example, one can use Eqn. (8) to
determine β⊥ from measured fringe shifts. Note that this suggests how a series of purely optical
measurements of temperature-dependent index values and transmission spectra can result in a
determination of the physical property β⊥.

Section 3, however, showed that the properties in Eqn. (8) are not independent of one another.
Under the approximation of the Lorentz-Lorenz equation (10) and the proportionality of the
temperature dependence of 〈α〉 to the temperature dependence of ρ, ÛnTE is related to β⊥ via Eqn.
(17). Provided room-temperature values for nTE and ∆n are known, along with data on β‖ , one
can use Eqn. (17) to substitute for ÛnTE in Eqn. (8), and thus to determine β⊥ without measuring
the temperature dependence of the refractive index values. This combines optical measurements
of temperature-dependent transmission fringe spectra with room-temperature measurements of
the refractive index and physical property β‖ in order to find β⊥.
Note also that the fringe spectra can provide an important check on the validity of Eqn. (16).

Independent measurements of all the quantities involved in Eqns. (8) and (17) can determine
whether the approximation of a constant L is valid, and allow for a measurement of its value,
rather than simply assuming it to be ∼0.15.

5. Analysis of reported polymer data

As mentioned in the Introduction, we developed our analysis in response to the work published
in Refs. [2–4]. To the best of our knowledge, these papers first introduce the idea of using
transmission fringe spectroscopy to measure the transverse coefficient of thermal expansion
in uniaxial films. We think this represents an important contribution to the study of thin film
thermal expansion. In this section, we demonstrate that our analysis provides new information
from their data, ÛnTE , which was not reported in the previous work.

However, in all of [2–4] the authors assume the observed fringe shifts result only from changes
in sample thickness, thus ignoring any contribution from the temperature dependence of the
refractive index. This is a common assumption, and there are situations where the impact of
dn/dT is a small perturbation. In this experiment, however, the assumption ÛnTE = 0 implies that
the authors related their reported values of the coefficient of thermal expansion β⊥,rep to fringe
shifts via

λT
λo
= 1 + β⊥,rep∆T (18)

which is obtained from our Eqn. (8) by setting ÛnTE = 0. To their credit, the authors also
report corresponding values of n, ∆n, and β‖ for many of the polymers. Therefore, we can use
the analysis presented here to infer physically consistent values of β⊥,in f and ÛnTE,in f , inferred
coefficients of thermal expansion and TE-polarized thermo-optic coefficient, respectively. This
calculation is valid to within the approximations made in the derivation of Eqn. (17), as outlined
in Section 3.

We now demonstrate the effect of our analysis for the data previously published in [4]. To be
clear, we accept all the observed data reported in [4] as accurate. The only difference between [4]
and this work is that we account for a non-zero ÛnTE when describing the (same) fringe shifts. In
that paper, the authors make it clear that they relate fringe shifts to thermal expansion via Eqn.
(18). We describe the same data using Eqn. (8). Equating the right-hand sides of each of those
equations results in an expression including the unknown parameters β⊥,in f and ÛnTE,in f , along
with ∆T and parameters reported in [4]. To reduce the expression to one that involves just β⊥,in f ,
we substitute Eqn. (17) for ÛnTE,in f . Once this (quadratic) equation is solved to find β⊥,in f , the
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solution can be used in Eqn. (17) to compute ÛnTE,in f . The results of the analysis are shown in
Table 1, assuming values of L = 0.15 and ∆T = 150 °C.

Table 1. Values in the first 5 columns are reported in [4]. Values in the last two columns are
inferred from the same data, but based on the analysis presented in this paper.

Material n ∆n nTE β‖ β⊥,rep β⊥,in f ÛnTE,in f

ppm/°C ppm/°C ppm/°C ppm/°C

sBPDA/PPD-HO 1.7334 0.185 1.7929 7.2 119.6 240.6 -209.3

sBPDA/PPD-LO 1.7188 0.191 1.7801 6.0 139.7 272.8 -227.6

sBPDA/MPD 1.6675 0.015 1.6725 35.7 40.6 128.9 -144.8

aBPDA/PPD 1.6508 0.015 1.6558 49.2 45.7 155.4 -177.6

aBPDA/MPD 1.6456 0.007 1.6479 44.5 48.2 151.5 -166.5

PMDA/MPD 1.6439 0.033 1.6548 33.0 52.6 140.5 -142.5

Perhaps the most striking result of this re-analysis of the data is the 2-3X greater magnitudes of
β⊥ (i.e., the differences between β⊥,rep and β⊥,in f ) found when incorporating the contribution of
the thermo-optic coefficients. An increase is expected because the thermal dependence of density
and that of refractive index in polymers tend to cancel each other in shifting transmission fringe
peaks, as described at the end of Section 2. It is important to note that the impact on interference
fringes remains unchanged. Returning to the simulation parameters of Fig. 1, for example, one
computes exactly the same change in optical path using β⊥,rep and ÛnTE = 0 as when using the
inferred values in Table 1. Since the authors of [4] assumed ÛnTE = 0, their value of β⊥,rep is
unrealistically small. The values of β⊥,in f in Table 1 clearly demonstrate that the contribution of
physically consistent thermo-optic coefficients is not negligible in the determination of β⊥ from
interference fringe data.
The newly extracted values of dn/dT provide important information concerning possible

optical applications of these materials. We note that the lower dn/dT values in Table 1 are
comparable to the higher dn/dT values we measured previously in a set of different polyimide
films, where the goal was to synthesize materials with as little dn/dT and CTE as possible. [7]

5.1. Uncertainty analysis

The conclusion that the inferred values of β⊥ must be 2-3X higher than the reported values is
unchanged after an uncertainty analysis. Uncertainties in the inferred values β⊥,in f and ÛnTE,in f

can be estimated by a Monte Carlo analysis in which randomly perturbed values of the reported
values in Table 1 (plus L and ∆T) generate distributions of the inferred values. In the following,
"uncertainty" values will refer to standard deviations of parameters selected from a Gaussian
distribution.
Looking at variables in isolation, the uncertainty in L has a direct impact on the calculation.

As L shrinks, the magnitudes of β⊥,in f and ÛnTE,in f grow. Starting from its initial value of 0.15,
an uncertainty of 0.05 in L results in relative uncertainties of 7% and 10% in the magnitudes of
β⊥,in f and ÛnTE,in f , respectively. The analysis leading to Table 1 also depends on ∆T , though
the dependence on this value is weak. Even an uncertainty as high as 100°C results in relative
uncertainties <10% of the inferred values. Our group has a lot of experience [5] with the
instrument used in [4] to measure refractive index. Even a relatively large, for this instrument,
uncertainty of 0.001 in the index values in Table 1 results only in sub-1% relative uncertainties in
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the computed quantities. The values for β‖,in f given in [4] are quoted to 0.1 ppm/°C. With that
level of uncertainty, the computed quantities again have a sub-1% relative uncertainty. Because
the values of β⊥,rep are the results of contributions from multiple fringe-based measurements,
the uncertainty in these values is difficult to judge. If we start with a 10% uncertainty, then the
relative uncertainty of β⊥,in f and ÛnTE,in f values are no worse than the same 10%. Any other
relative uncertainty scales similarly. Lastly, there is the impact of violating the assumption made
in the derivation of Eqn. 17 that d(∆n)/dT << ÛnTE . Consider a situation where d(∆n)/dT is ∼
10% of ÛnTE,in f . Then the β⊥,in f values increase by ∼ 3% and the ÛnTE,in f magnitudes increase
by ∼ 5%. If the ratio changes sign, so that it becomes -10%, the magnitudes of the inferred
quantities decrease, rather than increase, by the same relative amounts as before.
For a more comprehensive uncertainty analysis, a Monte Carlo simulation was run with the

following uncertainties (standard deviations) in the independent variables: 0.05 for L, 0.001 for
all index values, 1.0 ppm/°C for β‖ , 100 °C for ∆T , and a 10% relative uncertainty for β⊥,rep.
10,000 trials were run for each material listed in Table 1. The resulting aggregate, relative
uncertainty for each value of β⊥,in f and ÛnTE,in f is less than 16%, in all cases. In other words, the
uncertainty analysis predicts an overall relative uncertainty for β⊥,in f of less than 16%, which is
substantially less than the 200-300% differences between β⊥,in f and the β⊥,rep values from [4].
For the actual values of β⊥ to be anything other than factors of 2-3X higher than those reported
in [4], both standard thin-film theory and the Lorentz-Lorenz model, leading to Eqn. 17, would
have to be invalid for polyimide films.

6. Summary

We use standard thin-film optical interference theory and the well-known Lorentz-Lorenz
equation (Eqn. 10) to derive relationships between the temperature-dependent wavelength shifts
in observed spectral transmission peaks, the optical constants, and the coefficients of thermal
expansion in uniaxial thin films of transparent materials. As discussed in Section 4, this allows
the use of different combinations of optical measurements and thermo-physical measurements
for determining values of properties that aren’t measured directly. To the best of our knowledge,
this analysis does not appear elsewhere in the literature.
This contribution was motivated by recent work [2–4] which attempts to extract the out-of-

plane coefficient of thermal expansion, β⊥, from temperature-dependent interference fringe
data for thin films of different polyimide materials. We read those results with interest, as they
represent important data. Recognizing, however, that there did not appear to be a published
source containing a detailed treatment of the analysis, we prepared this contribution. Our
careful interpretation of these measurements allowed us to re-analyze the published data, thereby
obtaining new information, namely, values of dn/dT for their set of polyimide films, in addition
to new, physically consistent values of β⊥. Notably, there is a substantial difference between the
values of β⊥ we extract from the published data and those reported in [2–4].

7. Appendix

The authors, having some experience with high-precision measurements of thin-film interference
fringes [5, 6], felt it prudent to point out an often-overlooked source of systematic error in
attempting to analyze such spectra. Additional sources of error are also treated in [6].

7.1. Sample thickness fluctuations

Fringe-based measurements typically require stringent control of sample thickness uniformity
within the illuminated sample area, and of repositioning accuracy between separate measurements.
After a brief discussion of the degree of uniformity required, often at the nanometer level, we
outline a simple experimental approach to estimating whether it poses a problem for a given
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sample in a specific experiment. The observations can be reported along with measurements to
guide experimental design and bolster confidence in the results.
Thin-film transmission peaks are often used to extract either refractive index or sample

thickness with a high degree of precision. In [5] we attempted to extract index values with
uncertainties of ±10−4 for 50 µm thick films, and in [2–4] the authors attempted to extract CTE
values of ∼ 100 ppm/°C from films only 10 µm thick. In each case, the desired values are
extracted from observations of optical path (nd). For a constant-thickness 50 µm thick film,
a 10−4 relative change of the optical path causes a 10−4 relative difference in refractive index.
On the other hand, an uncertainty in thickness of only 5 nm has just as great an impact on the
optical path! Similarly, the optical path of the bottom four materials of Table 1 changes by only
∼50 nm for a 10 µm thick film even for a 100°C temperature difference. The spectral shift in
a fringe due to this temperature change would be indistinguishable from a room-temperature
measurement of a portion of the sample just 30 nm thicker. For a high-confidence measurement
of CTE⊥, the uncertainty in film thickness between measurements at the two temperatures would
have to be substantially less than 30 nm. Given that the expected radius of gyration of polyimide
polymers [24] is ∼ 20 nm, this level of thickness homogeneity could be challenging to achieve, in
practice.

It is straightforward, however, to assess sample quality for the purpose of a specific experiment.
One need merely observe the variation of fringe positions as the sample is translated under the
optical beam. If the fringe locations stay stable for all reasonable sample positions, then sample
uniformity does not play a role in the analysis of fringe data. More commonly, however, and
particularly for polymer samples, significant perturbations of the fringe spectra are observed
as the sample is translated across the spectrometer light path. It should be straightforward to
determine the amount of spectral shift per length of translation of the sample. Reporting a value
for this quantity (an average peak shift of 1 wavenumber per 100 microns of travel, for example)
provides a concrete measure of sample quality, and a clear indication of how precisely the same
spot needs to be located for different measurements to be compared to one another.

Using the 10−2 cm−1/µm value as an example, if a fringe needs to be measured to an accuracy
of 0.1 cm−1 at two separate times, then it is straightforward to recognize that the sample needs to
be held still to well under 10 µm between measurements. This would be particularly important
for measurements as a function of temperature, where large temperature swings are anticipated
to cause significant thermal expansion of mount hardware, leading to unavoidable translations of
mounted samples.
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