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ABSTRACT

My thesis aims to model the dynamic behavior of a 2 DOF parallel mechanism which 

can be used as dual axis solar tracker. Specifically, the change in orientation of the solar 

tracker is stud-ied under different conditions of externally applied loads. The task of the 

parallel mechanism is to orientate the solar panel such that its surface is perpendicular to the 

sunlight. Kinematic constraints are determined to account for the dynamic interaction of the 

parallel mechanism at joints. Then undetermined close form reaction forces at joints are 

obtained from the kinematic constraints. Finally, a fully determined equation of motion, which 

is a system of algebraic-differential equations, is obtained by appending kinematic and 

dynamic equations. For both kinematic and dynamic equations, Cartesian coordinate and Euler 

parameter are used to de-scribe translation and rotation motions respectively. As a verification, 

the equation of motion for the mechanism is applied to the case of one body attached to the 

ground by a spherical joint of which the close form solution is known. The application results 
of Euler parameters differ by only 10−9 in comparison to those given by the close form 

solution. This is practically zero error and suggests that the equation of motion for the parallel 

mechanism is reliable. Having verified the solution with the case mentioned above, three cases 

of externally applied loads were selected to examine their effects on the orientations of the 

solar panel. Results showed that the solar panel changed its orientation as expected for each 

case study.
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ABBREVIATION AND SYMBOLS

DOF Degree of Freedom

γ Vector of right-hand side of acceleration equations

ξiηiζi Local (body-fixed) Cartesian coordinate system

ωi Angular velocity vector with respect to Global frame for body i

ω′i Angular velocity vector with respect to Body-fixed frame for body i

Φ Vector of constraint

Φq Jacobian matrix of constraints

b Number of bodies

d Vector with its end on two different bodies(Variable magnitude)

e0, e1, e2, e3 Euler parameter

ei Vector of three Euler parameterse1, e2, e3 for body i

fi Vector of force acting on body i with respect to Global frame for body i

f ′i Vector of force acting on body i with respect to Body-fixed frame for body i

g Vector of forces for a system

gc Vector of constraint reaction forces

m Mass of a particle

ni Vector of moment acting on body i with respect to Global frame

n′i Vector of moment acting on body i with respect to Body-fixed frame

pi Vector of four Euler parameters e0, e1, e2, e3 for body i

qi Vector of coordinates for body i

q Vector of coordinates for a system

ri Translational position vector with respect to Global frame for body i

si Vector with both ends on body i (constant magnitude) with respect to Global frame

s′i Vector with both ends on body i (constant magnitude) with respect to

Body-fixed frame

t time

u unit vector

xyz Global Cartesian coordinate system

Ai Rotational transformation matrix for body i

Gi 3 × 4 transformation matrix for body i

I Identity matrix

Ji Global inertia tensor for body i

ii
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J ′i Local (constant) inertia tensor for body i

Li 3 × 4 transformation matrix for body i

Mi 6 × 6 mass matrix for body i containing Ni and J ′i
M Mass matrix for a system

Ni 3 × 3 diagonal mass matrix for body i

r Vector of link OO3

rh Length of link OO3

ai The position vector of point Ai with respect to O − xyz

bi The position vector of point Bi with respect to O − x3y3z3

qhi The height of slider

rhi The length of linkBiCi

zi The position vector of link BiCi
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1. INTRODUCTION

1.1. Background

Solar trackers are defined as devices which have a role of improving the efficiency by

keeping the solar panel perpendicular to the sun rays. The first automated solar tracking system

was proposed by Mcfee [1]. There are two types of solar tracker: single-axis trackers and dual-

axis tacker [2]. Solar trackers with one axis have much better performance than fixed systems,

but two-axis systems allow to obtain an optimal tracking of the sun’s path, since they keep the

orientation of the collectors perpendicular to the solar radiation at any time in any season. The

main challenge of these kinds of devices is that they have to consume certain energy in order to

move the collectors following the sun trajectory [3].

1.2. Problem Statement

Dual axis solar tracker has been of interest research topic for many researchers, and a

number of techniques have been developed to obtain the better efficiency with the desired op-

timal power consumption of the system . For this reason, parallel mechanism is introduced. J.

Wu et al [4] developed and tested a two-axis decoupled solar tracking system based on parallel

mechanism and showed that the tracker requires less driving torque, thus less power consump-

tion than the conventional serial tracker does. Appealingly, complexity andweight of the system

are also reduced. When parallel mechanism is attached to the fixed platform, the dynamic effect

would not have much impact to the system. Nevertheless, dynamic effect should be considered

when parallel mechanism is attached to a moving platform. The moving platform can be a boat,

an aerial vehicle, a land vehicle etc. In our study, we use this tracking system on board and

account for dynamic modeling.

1.3. Goal and Objectives

The purpose of this work is to develop a dynamic model that can describe and simulate

the change in orientation of solar panel subjected to external forces applied. The solar panel is

attached to a 2DOF parallel mechanism upon which loads are externally applied to change the

panel orientation. The parallel mechanism was chosen because it has been proven to be energy

efficient. The equation of motion of the system will be derived by determining the constraint

reaction force exerted by each kinematic link so that the behavior of the configuration can be

investigated. Due to the effect of external forces acting on the linear actuator, we would observe

the movement of the solar panel. The result from this works lays the groundwork for controlling

1
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orientation of solar tracker to obtain optimal solar energy.

1.4. Scope

Dynamic modeling is taken into account by deriving the kinematics constraints of all

joints of the system. The solution of these equations is solved by using Matlab-built in function

(ode45). In addition, them vector Lagrange multipliers associate with constraint equations are

not considered. Instead, coordinate vector describing the system will be determined. While

the prototype of the system was not built, the data of center of mass and moment of inertia are

obtained from the model drawing in SolidWorks program. They are assumed to be constant

during the operation.

2
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2. LITERATURE REVIEW

There has been intense research for decades to develop solar technologies since it is free

and nonpolluting [5]. As stated in [6], there are three types of sun tracker such as passive tracker,

chronological tracker and active tracker. The passive tracker which uses nomotors, no gears and

no controls that can fail. This type of sun tracker produce bad quality of orientation precision.

The chronological tracker which is very simple and accurate solar tracker. The process control

is ensured by a motor that rotates at a very slow rate (about 15o = h). The active tracker makes

use of two motors and a gear trains to drive the tracker by a controller matched to the solar

radiation.

Many researches on energy gain from solar tracking systems compared to tilted fixed

panel had been done both theoretically and experimentally [7]. It is also been reported that

the tracking device woiuld consume 2-3% of the increased energy [7]. Helwa et al [8] have

determined themaximum collectable solar energy bymany kinds of solar tracking system. They

are fixed system facing south and tilted 40o, a vertical-axis tracker, a 6o tilted-axis tracker, and a

two-axis tracker. Their result showed that the higher energy gain is from two axis solar tracker.

Energy gain from a single axis solar tracker was reported to be 20% [9] while energy gain from

a dual axis solar tracker was 30-40% [10]. There are many researchers working on parallel

mechanism because of its outperformance over single axis solar tracker [11]. It is been stated

that a parallel kinematic solar tracker provides an orientation error lower that 0.4o during the

sun tracking [12]. Where the orientation error is the relative alignment between the sun and the

system.

3
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3. KINEMATICS

3.1. Relative constraints between two vectors

A constraint stands for any condition that reduce the number of degree of freedom in a

system. Prior to deriving the constraint equation formulation, the algebraic relations between

two vectors must be derived. To construct the kinematic constraints equation, there exists the

relation that the two vectors remain parallel or perpendicular. Two cases are considered such

that a vector may have fixed length or variable length.

Vector s⃗i which is fixed in body i has constant magnitude as shown in Figure 3.1. Its orientation

relative to the ξiηiζi axes does not change.

z

x

y

ri

rj

Bi

Bj

si

ξC ξB

ηiξi

ζi

Ci

d

sBj

ζj

ηjξj

(j)

(i)

Figure 3.1. Vector with constant and varying magnitude

Therefore, the global component of s⃗i is:

si = sBi − sCi

= Ais
′B
i −Ais

′C
i

= Ai (s′Bi − s′Ci )

(3.1)

Where s′i
B = [ξB, ηB, ζB]Ti and s′i

C = [ξC , ηC , ζC]Ti are known constant quantities.

Vector d⃗ has variable length and connects two points on bodies i and j as illustrated in Fig-

4
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ure 3.1. The global component of d⃗ is written as:

d = (rj + sBj ) − (ri + sBi )

= rj +Ajs
′B
j − ri −Ais

′B
i

(3.2)

Where s′Bj = [ξB, ηB, ζB]
T
j is constant.

In the following subsection, constraint equations are assigned a superscript with two

indices:

The first index denotes the type of constraint.

The second index denotes the number of independent equations.

Two types of constraints are introduced:

Type 1: Constraint between two vectors having constant magnitude.

Type 2: Constraint between two vectors, one having fixed magnitude and the other being vari-

able.

For example: Φ(n1,1) stands for the constraint equation which is considered in the con-

straint type one, and there is one independent equation.

3.2. Two perpendicular vectors

One constraint relation is placed to provide the perpendicularity between two vectors.

Vectors s⃗i and s⃗j remain perpendicular if their scalar product is zero.

Φ(n1,1) ≡ sTi sj

= s′Ti AT
i Ajs

′
j = 0

(3.3)

Similarly, if the vector d⃗ in remain perpendicular to s⃗i:

Φ(n2,1) ≡ sTi d

= s′Ti AT
i (rj +Ajs

′B
j − ri −Ais

′B
i ) = 0

(3.4)

3.3. Two parallel vectors

Two vectors are set to be parallel by letting the vector product to zero. Consequently,

two algebraic constraint equations are obtained:

5
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In the case of parallel type one: Φ(p1,2)

Φ(p1,2) ≡ s̃isj

= Ais̃
′
iA

T
i Ajs

′
j = 0

(3.5)

In the case of parallel type one: Φ(p2,2)

Φ(p2,2) ≡ s̃id

= Ais̃
′
iA

T
i (rj +Ajs

′B
j − ri −Ais

′B
i ) = 0

(3.6)

In the case of parallel type one: Φ(p1,2)

Φ(p1,2) ≡ s̃isj

= Ais̃
′
iA

T
i Ajs

′
j = 0

(3.7)

In the case of parallel type one: Φ(p2,2)

Φ(p2,2) ≡ s̃id

= Ais̃
′
iA

T
i (rj +Ajs

′B
j − ri −Ais

′B
i ) = 0

(3.8)

Note that Φ(p1,2) = 0 and Φ(p2,2) = 0 provide three equations each. However, two equations are

needed for deriving the constraint equations for the parallel vectors. Therefore, the following

way is used to define these two equations.

s̃isj = 0 (3.9)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −sz sy

sz 0 −sx
−sy sx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sx

sy

sz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦j

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−szisyj + szjsyi = 0

szisxj − sxiszj = 0

−syisxj + sxisyj = 0

(3.10)

Accordingly, a technique for the selection of a proper set of equations can be stated as follows.

Compare the absolute values of sxi,syi,szi and select the two equations(out of three) having

the largest term. Therefore, six conditions can be stated as follows:

6
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● If ∣sx∣i < ∣sy ∣i < ∣sz ∣i or ∣sy ∣i < ∣sx∣i < ∣sz ∣i
Eliminate the third equation.

● If ∣sx∣i < ∣sz ∣i < ∣sy ∣i or ∣sz ∣i < ∣sx∣i < ∣sy ∣i
Eliminate the second equation.

● If ∣sy ∣i < ∣sz ∣i < ∣sx∣i or ∣sz ∣i < ∣sy ∣i < ∣sx∣i
Eliminate the first equation.

3.4. Parallel mechanism joint

Two bodies(i, j) that are connected by spherical joint as shown in Figure 3.2., consist

of one center point which is called the center of spherical joint P . The coordinate of point P

with respect to the ξiηiζi and ξjηjζj coordinate system is constant. Therefore, the constraint

equation for this joint can be found from the vector equation r⃗i + s⃗ip − s⃗jp − r⃗j = 0⃗ as follow:

Φ(s,3) ≡ ri +Ais
′p
i − rj −Ajs

′p
j = 0 (3.11)

Since there are three algebraic equations for this joint, there are three relative degrees

of freedom.

P

sPi

ζi
ξi

ηi

ηj

ξj

ζj

rj
ri

sPj

z

y

x

Figure 3.2. Spherical Joint

Two bodies(i, j) that are connected by a Universal or Hook Joint as shown in Fig-

ure 3.3., consist of two relationship. The first relationship is that point P , the intersection of

7
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the axes of the bar, has constant coordinates with respect to both body-fixed coordinate system.

Thus, the above equation can be used. The second relationship is that the two vectors s⃗i and s⃗j
remain perpendicular. Therefore, there are four algebraic equations for universal joint and two

relative degrees of freedom for this joint.

Φ(s,3) = 0

Φ(n1,1) ≡ sTi sj = 0
(3.12)

ηi ξi

ζi

sPi

Qj

Qi

sj

rj

ri

ζj

ηj
ξj

y

x

z

Psi
sj

Figure 3.3. Universal Joint

There exists two condition for two bodies(i, j) that are connected by a revolute joint as

shown in Figure 3.4.. The fist one is that the coordinate of any point on the revolute joint is

constant. Accordingly the Eq. 3.11. can stilled be used. The second one is that vectorss⃗i and s⃗j
must remain parallel. Therefore, the kinematic constraint equations for this joint are constructed

in five algebraic equations as follow:

Φ(s,3) = 0

Φ(p1,2) = s̃isj = 0
(3.13)

8
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z

y
x

ξj

ζj

ηj

spj

spi

ζi

ηi

ξi

s
i

s
j

P

Qi

Qj

(i)

(j)

Figure 3.4. Revolute Joint

There are five algebraic constraint equations for two bodies(i, j) that are connected by

translational joint. It is derived such that the bodies i and j are able to move along one common

axis, the relative rotation about this axis is not allows. As shown in Figure 3.5. point Pi, Qi on

body i and Pj , Qj on body j are chosen arbitrarily on the joint axes. The relationship of trans-

lational joint can be made such that the vectors of constant magnitude, s⃗i and s⃗j , and variable

magnitude, d⃗ are remain collinear. Additionally, vector h⃗i and h⃗j , as shown in Figure 3.5 must

remain perpendicular. Therefore five algebraic equations of translational joint are obtained:

Φ(p1,2) ≡ s̃isj = 0

Φ(p2,2) ≡ s̃id = 0

Φ(n1,1) ≡ hT
i hj = 0

(3.14)

9
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Qi

Ri
hti

Pi

Pj Qj

Rj

htj
d

(i)

(j)

Figure 3.5. Translational Joint

3.5. Position, velocity and acceleration analysis

The kinematic constraint equations Φ derived in the preceding sections for spatial kine-

matic joints (Spherical, Universal, Rotational and Translational joints) are generally nonlinear

in terms of the coordinates qi = [x, y, z, e0, e1, e2, e3]Ti where i = 1 . . .7 denote the body number

ranging from 1 to 7. Generally, the constraint equations are consisted of m equations in the

form.

Φ ≡ Φ(q) = 0 (3.15)

For the parallel mechanism with 7 bodies, the number of constraints equations is defined in

terms of each joint. Spherical joint creates 3 constraints equations, and two spherical joints

create 6 constraint equations. Universal joint creates 4 constraints equations, and two universal

joints create 8 constraint equations. Rotational joint creates 5 constraint equations, and two ro-

tational joints create 10 constraint equations. Translational joint creates 5 constraint equations,

and two translational joints create 10 constraint equations. Thus, the total number of constraint

equations of the system is 34.

To describe the kinematic analysis, the first and second time derivatives of Eq. 3.15. are eval-

uated as follow: The first time derivative of constraint equation is given by:

Φq q̇ = 0 (3.16)

10
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The second time derivative of constraint equation is given by:

Φq q̈ + (Φq q̇)q q̇ = 0

Φq q̈ = γ
(3.17)

Where γ = − (Φq q̇)q q̇ is called the right side of the kinematic acceleration equation, and Φq is

the Jacobian matrix. Both γ and Φq of each joint are given in the Table 3.1.

Table 3.1. Components in the Expansion of the Most Common Constraints

Φ Φ
(m)
ri Φ

(m)
Pi Φ

(m)
rj Φ

(m)
Pj γ(m)

Φn1,1 0T 2sjTGis̄′i 0T 2siTGj s̄′j siThj + sjThi − 2ṡTi ṡj
Φn2,1 −siT −2sjTGis̄′Bi + 2dTGis̄′i siT 2siTGjsj ′B −siT (hi

B − hj
B) + dThi − 2ṡTi ḋ

Φ(p1,2) 0 −2s̃jGis̄′i 0 2s̃iGj s̄′j s̃ihj − s̃jhi − 2˜̇siṡj
Φ(p2,2) −s̃i −2s̃iGis̄′Bi − 2d̃Gis′i s̃i 2s̃iGj s̄′Bj s̃i (hB

j − hB
i ) − d̃hi − 2˜̇siḋ

Φ(s,3) I 2Gis̄
′p
i −I −2Gj s̄

′p
j hp

i − h
p
j

Φ(s−s,1) −2dT −4dTGis̄
′p
i 2dT 4dTGj s̄

′p
j 2dT (hp

i − h
p
j) − 2ḋT ḋ

The components in Table 3.1. are modified jacobian matrixΦ(m)q and modified vector

γ(m). It can be derived from the corresponding kinematic constraint equations by taking its

second time derivative and using the equation in [13, p. 171].

Φ
(m)
pi p̈i = −(Φ(m)pi ṗi)piṗi

Äa = 2ĠL̇Ta + 2Gāp̈
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4. DYNAMICS

Two Newton’s Law equations will be used for deriving the equations of motion for

Multi-Rigid bodies of ParallelMechanism. There is one equation for describing the translational

motion of the system, and another one is the equation of rotational motion. All equations are

written in terms of Euler parameters.

4.1. Equations of motions for an unconstraint body

For an unconstrained body i with mass mi and moment of inertia J ′i with respect to its

center of mass exerted by external force fi and moment n′i measured in body-fixed frame , the

equation of translational motion for body i is written as:

Nir̈i = fi (4.1)

The rotational equation of motion (Euler’s equation of motion) for body i is given as:

J ′i ω̇
′
i + ω̃′iJ ′iω′i = n′i (4.2)

Equation (4.1) and (4.2) can be expressed in matrix form as:

⎡⎢⎢⎢⎢⎢⎣

N 0

0 J ′

⎤⎥⎥⎥⎥⎥⎦i

⎡⎢⎢⎢⎢⎢⎣

r̈

ω̇′

⎤⎥⎥⎥⎥⎥⎦i
+
⎡⎢⎢⎢⎢⎢⎣

0

ω̃′J ′ω′

⎤⎥⎥⎥⎥⎥⎦i
=
⎡⎢⎢⎢⎢⎢⎣

f

n′

⎤⎥⎥⎥⎥⎥⎦i
(4.3)

Where Ni = diag ([m m m])
i
and ω′i is the angular velocity defined in body-fixed frame.

To use Euler parameters, the equation of rotational motion Eq. 4.2. is transformed by

using the relationship of angular velocity and Euler parameter as follows:

ω′ = 2Lṗ

ω̇′ = 2Lp̈
(4.4)

Substituting Eq. 4.4. into Eq. 4.2. results in:

2J ′iLip̈i + 4L̃i ˙ ipJ
′
iLiṗi = n′i

2J ′iLip̈i + 4LiL̇
T
i J
′
iLiṗi = n′i

2J ′iLip̈i +LiHiṗi = n′i

(4.5)
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Where L̃i ˙ ip = LiL̇T
i ,Hi = 4L̇T

i J
′
iLi, p = [e0, eT ]T = [e0, e1, e2, e3]T stands for the Euler param-

eter

Since the four Euler parameters are not independent, there exists a relationship such that:

pTp − 1 = 0 (4.6)

The first time derivative of Eq. 4.6. results:

ṗTp + pT ṗ = 0

2pT ṗ = 0

pT ṗ = 0

The second time derivative of Eq. 4.6. results:

pT p̈ + ṗT ṗ = 0

For body i the above equation can be written as:

pTi p̈i + ṗTi ṗi = 0 (4.7)

The equation Eq. 4.5. and Eq. 4.7. can be written in matrix form as follow:

2J ′iLip̈i +LiHiṗi = n′i

pTi p̈i + ṗTi ṗi = 0

⎡⎢⎢⎢⎢⎢⎣

2J ′L

pT

⎤⎥⎥⎥⎥⎥⎦i
p̈i +
⎡⎢⎢⎢⎢⎢⎣

LH

ṗT

⎤⎥⎥⎥⎥⎥⎦i
ṗi =
⎡⎢⎢⎢⎢⎢⎣

n′

0

⎤⎥⎥⎥⎥⎥⎦i
(4.8)

4.2. Equations of motion for constraint body

For a constraint mechanical system, there are constraint reaction forces and moment

created by each joint in the system. Consequently, the reaction forces would have taken into

account with translation and rotational equations of motions.

13
Distribution A Distribution Approved for Public Release: Distribution Unlimited



Thus, the equation Eq. 4.1. and Eq. 4.5. become:

Nir̈i = fi + f (c)i

2J ′iLip̈i +LiHiṗi = n′i + n′i
(c)

(4.9)

In [13], the constraint reaction force and moment are given as:

f
⋆(c)
i = ΦT

riλ

n′i
⋆(c) = ΦT

piλ
(4.10)

Where λ = [λ1, . . . , λ2] is known as Lagrange Multipliers, and [Φri,Φpi] = Φqi is Jacobian Ma-

trix of the kinematic constraint Φ ≡ Φ (q) with respect to qi.

The constraint reaction moment n′(c)i is derived such that it can be used in the four rotational

equation of motion associated with Euler parameter. n′i
⋆(c) contains four components, and the

transformation between n′i and n′i
⋆(c) is expressed in the following method.

(n′(c)i , ω′i) and (n
′⋆(c)
i , ṗi) are given in the same coordinate system respectively. Therefore, the

scalar product of these two terms remains equal.

ṗTi n
′⋆(c)
i = ω′Ti n

′(c)
i

In [13, p. 175] the angular velocity measured in body-fixed frame is given to be:

ω′ = 2Lṗ

LiL
T
i = I

Thus, Eq. 4.11. becomes:

ṗTi n
′⋆(c)
i = 2ṗTi LT

i n
′(c)
i

n
′⋆(c)
i = 2LT

i n
′(c)
i

1

2
n
′⋆(c)
i = LT

i n
′(c)
i

1

2
Lin

′⋆(c)
i = LiL

T
i n
′(c)
i

n
′(c)
i = 1

2
Lin

′⋆(c)
i = 1

2
LiΦ

T
piλ

(4.11)
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The equation Eq. 4.9. now becomes:

Nir̈i −ΦT
riλ = fi

2J ′iLip̈i +LiHiṗi −
1

2
LiΦ

T
piλ = n′i

(4.12)

For the system with i bodies for parallel mechanism, the dynamic equations can be constructed

by using equations Eq. 4.12. and Eq. 4.7., as follow:

Nir̈i −ΦT
riλ = fi

2J ′iLip̈i +LiHiṗi −
1

2
LiΦ

T
piλ = n′i

pTi p̈i + ṗTi ṗi = 0

(4.13)

In matrix form: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni 0 ΦT
ri

0 2J ′Li
1
2LiΦT

Pi

0 pTi 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̈i

p̈i

−λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

LiHiṗi

ṗTi ṗi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fi

n′i

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.14)

For the system of 7 bodies, the dynamic equations can be obtained in compact form as:

⎡⎢⎢⎢⎢⎢⎣

M BT

P 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

q̈

−λ

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

b

c

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

g

0

⎤⎥⎥⎥⎥⎥⎦
(4.15)

To solve this equation for q and λ, the constraint equation of Spherical Joint, Revolute

Joint, Translational Joint and Universal Joint are used. Denote Φq is the kinematic constraint

equation. Therefore, the constraint equation can be expressed as follows.

Φ ≡ Φ(q) = 0 (4.16)

The first time derivative of constraint equation is given by:

Φq q̇ = 0

The second time derivative of constraint equation is given by:

Φq q̈ + (Φq q̇)q q̇ = 0

Φq q̈ = γ
(4.17)
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Where γ = − (Φq q̇)q q̇ is called the right side of the kinematic acceleration equation.

This equation is then appended with equation (4.13) to yield a system of algebraic-differential

equation as:

Nir̈i −ΦT
riλ = fi

2J ′iLiP̈i +LiHiṖi −
1

2
LiΦPi

Tλ = n′i

P T
i P̈i + Ṗ T

i Ṗi = 0

Φq q̈ = γ

(4.18)

In matrix form: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M BT

P 0

Φq 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

q̈

−λ

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b

c

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g

0

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.19)

WhereM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 0 . . . 0 0

0 2J ′1L1 . . . 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 . . . N7 0

0 0 . . . 0 2J ′7L7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B = [Φr1 ,
1
2Φp1L

T
1 , . . . ,Φr7 ,

1
2Φp7L

T
7 ],

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0T pT1 . . . 0T 0T

⋮ ⋮ ⋱ ⋮ ⋮

0T 0T . . . 0T pT7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

L1H1ṗ1

⋮

0

L7H7ṗ7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṗT1 ṗ1

⋮

ṗT7 ṗ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

n′1

⋮

f7

n′7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, q̈ = [r̈1T p̈1
T . . . r̈7

T p̈7
T ]

T

= [ẍ, ÿ, z̈, ë0, ë1, ë2, ë3]Ti (i = 1,2, ...7)

To solve the system algebraic differential Eq. 4.19., we need to write it in state equation.

Denote:

x1 = q = [x1, y1, z1, [e0, e1, e2, e3]1, . . . , x7, y7, z7, [e0, e7, e7, e7]7]

x2 = q̇ = [ẋ1, ẏ1, ż1, [ė0, ė1, ė2, ė3]1, . . . , ẋ7, ẏ7, ż7, [ė0, ė1, ė2, ė3]7]
(4.20)
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ẋ1 = x2 = q̇

ẋ2 = q̈ = [[I]49×49 [0]49×34]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M BT

P 0

Φq 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g − b

−c

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.21)

The initial condition and input for Mass, Initial matrix are shown inAppendix C andAppendix

D respectively.

Solar Panel

(1)

(2) (3)

(4) (5)(6)

(7)

Figure 4.1. Parallel Mechanism
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Table 4.1. Components in the Expansion of the Most Common Constraints

Φ Φ
(m)
ri

1
2Φ
(m)
Pi LT

i Φ
(m)
rj

1
2Φ
(m)
Pj LT

j γ#

Φn1,1 0T −sTj s̃iAi 0T −sTi s̃jAj −2ṡTi ṡj + ṡTi ω̃isj + ṡTj ω̃jsi

Φn2,1 −siT − (d + sBi )
T
s̃iAi siT −sTi s̃Bj Aj −2ḋT ṡi − dT ω̃ṡi + sTi (ω̃iṡBi − ω̃j ṡBj )

Φ(p1,2) 0 s̃j s̃iAi 0 −s̃is̃jAj −2˜̇siṡj + s̃jω̃iṡi − s̃iω̃j ṡj

Φ(p2,2) −s̃i (s̃is̃Bi + d̃s̃i)Ai s̃i −s̃is̃Bj Aj −2˜̇siḋ + s̃i (ω̃iṡBi − ω̃j ṡBj ) + d̃ω̃iṡi

Φ(s,3) I −s̃piAi −I s̃pjAj −ω̃iṡ
p
i + ω̃j ṡ

p
j

Φ(s−s,1) −2dT 2dT s̃piAi 2dT −2dT s̃pjAj −2dTd + 2dT (ω̃iṡ
p
i − ω̃j ṡ

p
j)

4.3. Example of system with one body

To validate the equation of motion for the simulation of the parallel mechanism solar

tracker, the system of two body connected by spherical joint as shown in Figure 4.2. has been

determined. The moment n′ζ applied along the ζ axis.

Body2

Body1(Ground)X

Y

Z

ξ η

ζ

Spherical Joint

Figure 4.2. Two bodies connected by spherical joint
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni 0 ΦT
ri

0 2J ′1Li
1
2LiΦT

Pi

0 pTi 0

Φri ΦPi 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̈i

p̈i

−λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

LiHiṗi

ṗTi ṗi

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fi

n′i

0

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.22)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 0 0 0 ΦT
r1

0 2J ′1L1 0 0 1
2L1ΦT

p1

0 0 N2 0 ΦT
r2

0 0 0 2J ′2L2
1
2L2ΦT

p2

0 pT1 0 0 0

0 0 0 pT2 0

Φr1 Φp1 Φr2 Φp2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̈1

p̈1

r̈2

p̈2

−λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

L1H1ṗ1

0

L2H2ṗ2

ṗT1 ṗ1

ṗT2 ṗ2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

n′1

f2

n′2

0

0

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.23)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̈1

p̈1

r̈2

p̈2

−λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 0 0 0 0

0 2J ′1L1 0 0 0

0 0 N2 0 ΦT
r2

0 0 0 2J ′2L2
1
2L2ΦT

p2

0 pT1 0 0 0

0 0 0 pT2 0

Φr1 Φp1 Φr2 Φp2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

n′1 −L1H1ṗ1

f2

n′2 −L2H2ṗ2

ṗT1 ṗ1

ṗT2 ṗ2

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.24)

Note: To assign a ground body, It is assumed that any kinematic constraint reaction forces to

the ground body equal to zeros. It is because the constraint reaction force of the joint applies to

the ground body has been eliminated by the ground itself. The example is shown in Eq. 4.27..

Denote:

x1 = q = [x1, y1, z1, [e0, e1, e2, e3]1, x2, y2, z2, [e0, e1, e2, e3]2]

x2 = q̇ = [ẋ1, ẏ1, ż1, [ė0, ė1, ė2, ė3]1, ẋ2, ẏ2, ż2, [ė0, ė1, ė2, ė3]2]
(4.25)
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ẋ1 = x2 = q̇

ẋ2 = q̈ = [[I]14×14 [0]14×3]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 0 0 0 0

0 2J ′1L1 0 0 0

0 0 N2 0 ΦT
r2

0 0 0 2J ′2L2
1
2L2ΦT

p2

0 pT1 0 0 0

0 0 0 pT2 0

Φr1 Φp1 Φr2 Φp2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

n′1 −L1H1ṗ1

f2

n′2 −L2H2ṗ2

ṗT1 ṗ1

ṗT2 ṗ2

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.26)

Input for matrix B

B = [Φr1 ,
1

2
Φp1L

T
1 ,Φr2 ,

1

2
Φp2L

T
2 ] = [03×3 03×3 −I3×3 s̃p2A2]

−s̃p1A1 = − (A1s̃1
′pAT

1 )A1 = −A1s̃1
′p

s̃p2A2 = (A2s̃2
′pAT

2 )A2 = A2s̃2
′p

BT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΦT
r1

1
2L1ΦT

P1

ΦT
r2

1
2L2ΦT

P2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×3

03×3

−I3×3
−s̃2′pAT

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.27)

Input for Jacobian Matrix Φq

Φq = [Φr1 ,Φp1 ,Φr2 ,Φp2] = [I3×3 2G1s̄
′p
1 −I3×3 −2G2s̄

′p
2
]

By applying moment about ζ-axis to the sample shown in Figure 4.2., the value of euler pa-

rameter can be calculated in two different methods.

First, it can be calculated by using the close form solution. [13, page 166]ζ ∥ z result in Euler

Parameter:

pcal = [cos ϕ
2 0 0 sin ϕ

2
]
T

calc
= [e0 e1 e2 e3]

T

calc

Jzzϕ̈ = n′ζ

ϕ̈ =
n′η
Jyy
= 0.0001

20756.82 × 10−9
= 4.8176

ϕ = 1

2
× 4.8176t2

(4.28)

Where t = 0 ∶ 0.001 ∶ 5

Second, it can be calculated inMatlabs by using ode45 (APPENDIXE and (APPENDIX F)) to
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obtain the result of euler parameter pode = [e0 e1 e2 e3]
T

ode
.The Figure illustrates the error

of euler parameter from these two calculation methods by comparing the value of e0 and e3.

Time(s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×10−9

-3
-2
-1
0
1
2
3

Error of e0

Time(s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3
-2
-1
0
1
2

Error of e3

e0
ca
lc
−
e0

od
e

e3
ca
lc
−
e3

od
e

×10−9

Figure 4.3. Error of Euler parameters between close form solution and Matlab ode
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5. RESULTS AND DISCUSSION

The numerical results from the dynamic equations of motions Eq. 4.19. described the

position and orientation of the system. Matlab program was used to solve this equation (See

Appendix G and Appendix H) There are three cases of force to be considered. In the graph

below, the orientation of body 7(Solar Panel) is represented by three different cases.

Case1: The force applied to the actuator(body 2 and 3) is:

f2 = [0 ,0 ,4 sin 4πt]T N

f3 = [0 ,0 ,4 sin 4πt]T N

Where f2 and f3 are the external force applied to body 2 and body 3 as illustrated in Figure 4.1

respectively.

These two forces are expected to move the solar panel to rotate back and forth.

Case2: The external force is applied to body 7(Solar Panel).

f7 = [0 , 0, −3]T N

Where f7 is the external force applied to body 7, see Figure 4.1.

This force is expected to move the solar panel to rotate and translate in the downward direction.

Case3: The external moment is applied to body 7 (Solar Panel) about η7 axis.

n′7 = [0 , 0.1, 0]T Nm

Where n′7 is the external moment applied to body 7, see Figure 4.1.

This moment is expected to move the solar panel to rotate about y-axis.

The simulation results to each cases are shown in Figure 5.1., Figure 5.2., and Figure 5.3.

respectively.
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Figure 5.1. The orientation of solar panel with respect to time t(s) for case 1, f2 =

[0 ,0 ,4 sin 4πt]T N &f3 = [0 ,0 ,4 sin 4πt]T N

See Figure 4.1. for body illustration.

23
Distribution A Distribution Approved for Public Release: Distribution Unlimited



Figure 5.2. The orientation of solar panel with respect to time t(s) for case 2, f7 =

[0 ,0 ,−3]T N

See Figure 4.1. for body illustration.
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Figure 5.3. The orientation of solar panel with respect to time t(s) for case 3, n′7 =

[0 ,0.1 ,0]T N

See Figure 4.1. for body illustration.

Overall, the result of the study showed that the movement of solar panel can be illustrated corre-

sponding to the dynamic equations. After applying the force in three cases as mentioned above,

the orientation of solar panel is moved as described in each cases. Therefore, we are definitely

able to handle with forces from any direction applied on the parallel mechanism system.
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6. CONCLUSIONS AND RECOMMENDATION

6.1. Conclusions

In summary, the modeling of the behavior in terms of algebraic-differential equations

for 2 DOF Parallel Mechanism is obtained in this thesis. The study result demonstrates that the

equation of motion Eq. 4.19. derived above can fully describe the motion of each body . This is

justified by the change of orientation of the solar panel with respect to the different conditions of

the external forces. The result also implies that we can observe the response of the mechanism

with respect to the external applied-forces from any directions.

6.2. Recommendation for Future Works

Generalized Coordinates System is introduced for my future research. There are more

benefits such that the number of coordinates to describe the system could be reduced. Accord-

ingly, the number of generalized coordinates is defined as the number of degree of freedom of

the system. Simultaneously, there are less number of differential equations. Moreover, there

is also less algebraic constraint equations obtained, which result in better computational effi-

ciency.

After obtaining the dynamic modeling, control using existing controller will be carried

out and discuss. Moreover, to validate the simulation result, the prototype will be built.
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APPENDIX A
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APPENDIX B

Table 6.1. Mass (m), Vector from origin to center of mass (r) Initial Euler parameter of each

body (p) from SolidWorks Model

Symbols Description Value Unit

m1 Mass of body number 1 475.09 × 10−3 Kg

m2 Mass of body number 2 189.7 × 10−3 Kg

m3 Mass of body number 3 189.7 × 10−3 Kg

m4 Mass of body number 4 104.45 × 10−3 Kg

m5 Mass of body number 5 53.25 × 10−3 Kg

m6 Mass of body number 6 54.4 × 10−3 Kg

m7 Mass of body number 7 890.5 × 10−3 Kg

r1 Vector r1 10−3[−63.93 63.93 30.41]T m

r2 Vector r2 10−3[−123.99 15 24.6]T m

r3 Vector r3 10−3[−15 123.99 24.6]T m

r4 Vector r4 10−3[−11.50 18.37 99.21]T m

r5 Vector r5 10−3[−12.99 98.33 68.84]T m

r6 Vector r6 10−3[−92.31 15 66.27]T m

r7 Vector r7 10−3[−34.28 42.89 136.56]T m

p1 Initial Euler parameter of body 1 [1 0 0 0]T

p2 Initial Euler parameter of body 2 [1 0 0 0]T

p3 Initial Euler parameter of body 3 [1 0 0 0]T

p4 Initial Euler parameter of body 4 [0.9987 0.0517 0 0]T

p5 Initial Euler parameter of body 5 [0.9955 0.0906 0.020001 − 0.00398]T

p6 Initial Euler parameter of body 6 [0.9880 0 0.1545 0]T

p7 Initial Euler parameter of body 7 [0.9768 − 0.1355 − 0.1482 0.0188]T
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APPENDIX C

Table 6.2. Inertia Matrix for each body from SolidWorks Model

Symbols Description Value Unit

J ′1 Inertia matrix of body number 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0020 0.0008 −0.0001

0.0008 0.0020 0.0001

−0.0001 0.0001 0.0026

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kgm2

J ′2 Inertia matrix of body number 2 10−4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2774 0 −0.0102

0 0.2015 0

−0.0102 0 0.1987

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kgm2

J ′3 Inertia matrix of body number 3 10−4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2015 0 0

0 0.2774 0.0102

0 0.0102 0.1987

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kgm2

J ′4 Inertia matrix of body number 4 10−3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1217 0.0000 0

0.0000 0.1248 0

0 0 0.0054

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kgm2

J ′5 Inertia matrix of body number 5 10−4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5827 0 −0.0824

0 0.5940 0

−0.0824 0 0.0172

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kgm2

J ′6 Inertia matrix of body number 6 10−4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6242 0 0

0 0.6231 −0.0000

0 −0.0000 0.0058

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kgm2

J ′7 Inertia matrix of body number 7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0012 0.0000 0.0001

0.0000 0.0012 0.0000

0.0001 0.0000 0.0024

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kgm2
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ABSTRACT

Our work proposes a promising methodology to extend the flight duration of a

Vertical Take-Off and Landing Unmanned Aerial Vehicle (VTOL UAV). This is done by

mounting a 2 degree of freedom (DOF) parallel mechanism-based solar tracker on the

UAV. The integration of the solar tracker was considered with the aim to maximize the

energy collection from the sun. The parallel mechanism was chosen because it has been

reported to consume lower energy to drive the mechanism during the sun tacking when

compared to other mechanisms in the literature.

In this thesis, we present kinematic, inverse kinematic, dynamic modeling and sim-

ulation for the system. Kinematic and inverse kinematic for the tracker is briefly described

using classical method. Dynamic modeling for the system is one of the most challenging

engineering problems. To deal with it, kinematic constraints of all joints are determined.

Undetermined close form reaction forces at joints are obtained from the kinematic con-

straints. Using Newton’s method, dynamic equation for each body exerted by external

forces and reaction forces is formulated. A fully determined equation, which is a sys-

tem of algebraic-differential equations, is obtained by appending kinematic and dynamic

equations. For both kinematic and dynamic equations, Cartesian coordinate and Euler

parameter are used to describe translation and rotation motions respectively.

To verify the dynamic equation, we examine a simple system with two bodies con-

nected by a spherical joint. Then we study the dynamic behaviour of a hexacopter-solar

tracker system. Three case studies were considered in the simulation study of this system.

In case 1, we investigated the system behaviour during its hover without forces applied on

the actuators. In case 2, we applied forces on the solar tacker actuators of case 1. In case 3,

in addition to the forces applied on the solar tacker actuators, we applied the upward thrust

to lift the system vertically from its initial position. We have observed that after about 0.45

to 0.5 s, the simulation induced large error causing simulation to stop. It happened due to

high stiff differential equation of zigzag motion of the tracker.
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NOMENCLATURE

DOF Degree of Freedom

γ Vector of right-hand side of acceleration equations

ξiηiζi Local (body-fixed) Cartesian coordinate system

ωi Angular velocity of each rotors

ω′ Angular velocity vector of the system that defined in Body-fixed frame

Φ Vector of constraint

Φq Jacobian matrix of constraints

b1, b2
Vectors from the center of mass of the hexacopter to the axes of the

two linear actuators

ak Vector from the center of mass of the hexacopter to the axis of propeller k

d Vector with its end on two different bodies(Variable magnitude)

e0, e1, e2, e3 Euler parameter variable

ei Vector of three Euler parameterse1, e2, e3 for body i

f Total thrust force of the system

τp Total torque of the system

g Vector of forces for a system

up Vector input of angular velocity

m Mass of a particle

u7, u8 Vector force on the linear actuators

u Vector input of the force of the hold system

pi Vector of four Euler parameters e0, e1, e2, e3 for body i

qi Vector of coordinates for body i

q Vector of coordinates for a system

ri Translational position vector with respect to Global frame for body i

si
Vector with both ends on body i (constant magnitude) with respected

to Global frame

s′i Vector with both ends on body i (constant magnitude) with respect to

Body-fixed frame

t Time

n′ Unit vector in the body-fixed frame

n Unit vector in the global frame

xyz Global Cartesian coordinate system

ii
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Ai Rotational transformation matrix for body i in Euler parameter

RB
I

Rotational transformation matrix of body-fixed frame respected

to global frame

Gi 3× 4 transformation matrix for body i

I Identity matrix

λ Vector of Lagrange multiplier

J ′i Local (constant) inertia tensor for body i

Li 3× 4 transformation matrix for body i

Mi 6× 6 mass matrix for body i containing Ni and J ′i
M Mass matrix for a system

Ni 3× 3 diagonal mass matrix for body i

r Vector of link OO3

r Length of link OO3

l Length from the center of mass to the propeller arms

kf , kτ The rotor specific parameter

ai The position vector of point Ai with respect to O − xyz

bi The position vector of point Bi with respect to O − x3y3z3
qi The height of slider

ri The length of linkBiCi

zi The position vector of link BiCi

iii
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1. INTRODUCTION

1.1. Background

Unmanned Aerial Vehicles (UAVs) have been widely used to carry cameras, sen-

sors or products for applications such as mapping, frame monitoring, goods delivery, enter-

tainment and more. The most common UAVs are powered by battery only, which have lim-

itation of operation duration. However, current batteries of the system depending on vehi-

cle, payload, and wind conditions enable only flights up to 30 min for quadrotors(Mansouri,

Karvelis, Georgoulas, & Nikolakopoulos, 2017), which can limit the usage of these UAVs

for long time missions and experiments. On the other hand, solar energy systems have

emerged as a viable source of renewable energy over the past two or three decades, and

are now widely used in a variety of industrial and domestic applications. Such systems are

designed to collect the energy from the sunlight and convert it into electrical power (Polk,

2016). The parallel mechanisms is a good one for saving energy in the system. Parallel

mechanisms have a large payload to mass ratio and high stiffness. It is possible to reduce

the driving torque, scale down the dimension of the mounting and reduce the complexity

of the system (Wu, Chen, & Wang, 2016).

1.2. Problem Statement

The battery supply for UAV has limitation for flying. Battery powered electric

UAVs suffer from uncertainties in estimating the remaining charge and hence most flight

plans are highly conservative in nature. On the other hand, the battery decrease in capacity

with time and usage during operating (Saha et al., 2011). The output current plays a big

role in determining the losses inside a battery and is an important parameter to consider

when analyzing battery performance (Hartmann et al., 2008). For a long-time mission

like large farm observation or border monitoring, a UAV must rebound to its recharging

station, which limits its operation range. A technology of energy supply which makes a

UAV operate longer and be able to recharge anywhere during its mission will be of an

advantage for continuous operation.

1.3. Goal and Objective

The purpose of this work is to study the dynamics behaviour of the parallel mech-

anism mounted UAV. The attitude of hexacopter is simulated at the hover point and during

its mobility when the parallel mechanism has motion. First, we derive the inverse kine-

1
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matic equations for parallel-mechanism which are produced the stroke of the linear actua-

tors as a driver to movability of the parallel mechanism. To describe the behaviour of the

whole system, dynamic modeling has been derived. Simulation for a pararllel-mechanism-

mounted UAV is using to validate the dynamic motion.

1.4. Scope

Dynamic modeling and simulation has been modeled. The total thrust and torque

are generated at the hover point and during mobility but the whole system does not have

a feedback controller. On the other hand, reaction forces and the coordinates describing

motion of a system are obtained from solving the differential equations. The reaction

force has an advantage for mechanical structure design. However, the analysis of reaction

forces is out of scope of this work. We work on simulation but we do not have experiment

for parallel-mechanism-mounted hexacopter. The attitude of the whole system has been

explained with position of the hexacopter and the body attached with the solar panel.

2
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2. LITERATURE REVIEW

2.1. Unmanned Aerial Vehicle

The Unman Aerial Vehicle (UAV) robot has gained demand on the worldwide mar-

kets. There are two types of UAV: fixed wing and rotary wings. One of the most popular is

rotary wings UAV because it can take off and land in vertical condition. In addition, it has

good mobility and ability on load capacity. The main challenges of rotary UAV for flying

through corridors are the limited width and the required agility, especially in outdoor con-

ditions where wind and gusts cause the UAV to drift (Mustapa, Saat, Husin, & Abas, 2014).

The development of autonomous UAV has been growing fast as it is more reliable in the

application. The automatic take-off system required to enable the UAV begin to fly from

the ground. The system should ensure the height of hexacopter in a consistent condition.

In these cases, all six motor propeller must produce a six forces against the gravitational

force and able to lift the hexacopter. Most of multicopter platform utilize fixed-pitch pro-

pellers that control the platform by changing of the rotational velocities (Verbeke, Hulens,

Ramon, Goedeme, & De Schutter, 2014). The rotor in pitch does not vary as the blades

rotate; control of vehicle motion is achieved by varying the relative speed of each rotor

change the thrust and torque produce by each rotors (Allaka, Anasuya, Yamini, Vaidehi, &

Ramana, 2011).

Effective and efficient energy supply by solar energy to power UAVs has been an

active research for more than four decades. The first solar-powered UAV, Sunrise I of

Astro Flight Inc., took its first flight in California in 1974 (Boucher, 1984). In 2003,

possible use of a solar-powered UAV for agricultural decision support was reported by

(Herwitz et al., 2003). In (Noth, 2008), continuous flight of solar-powered airplanes was

considered, and a methodology used for the complete design was presented. It showed

that the methodology was very useful and could be applied to a wide range of UAV sizes.

With a mechanism simulating the motion of aircraft, virtual flight system was designed

for evaluation of a solar-powered UAV by (J.-S. Lee, Park, Jung, & Kee-Ho, 2013). The

system also involved power measurement circuit which is designed for monitoring the flow

of energy. For improving efficiency of solar energy collection, a UAV with onboard solar

tracking system was designed and constructed by (Tegeder, 2007).
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2.2. Solar Tracking Mechanism

Solar trackers can be divided into single-axis trackers and dual-axis trackers by

taking into account the mechanical characteristics. The single axis sun tracker only tracks

the sun in one direction, from east to west, which is azimuth direction which shows in

Fig. 2.1 (K.-Y. Lee et al., 2017). Lubitz presented that a single-axis sun tracker and a

dual-axis sun tracker increase annual solar irradiation incident by an average of 29% and

34% relative to the fixed tilt angle, respectively (Lubitz, 2011). The linear actuator is

used for drive the system of single-axis movability with the direction of the sunlight. The

Linear actuator 

Figure 2.1. Single-axis of solar tracker

dual-axis tracker has two rotational motions which are precise with the trajectory of the

sun. Depending on the relative position of the revolute axes, there are two basic types of

dual-axis tracking system: azimuthal and polar that shows in Fig. 2.2. For the azimuthal

trackers, the daily motion is made by rotating the panel around the vertical axis. The

polar tracking has two independent motions. The motion is made by the rotating the panel

around the polar axis.
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Figure 2.2. Types of dual-axis tracking systems (azimuthal-a, polar-b)

On the other hand, the solar tracker using a U-2PUS parallel robot which has two

rigid bodies: one movable platform (MP) and fixed platform (BP) which are linked through

two actuators revolute joints. A unique passive universal joint, referred to as gimbal, ex-

hibits the same function of the two revolute joints of the serial mechanism (Cammarata,

2015) in Fig. 2.3. The system is connected by a number of kinematic chains (legs). The

gimbal can be positioned near the center of hydrodynamic pressure to reduce the torque

generated by the thrust of the wind on the surface of the panel. This solution implies

smaller actuators as these should only sustain the weight of the structure (Cammarata,

2015)-(Di Gregorio & Sinatra, 2002).

Figure 2.3. The U-2PUS parallel pointing system

(Cammarata, 2015)
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2.3. Principles of Solar tracker

The position tracking also applies the photosensor balance technique. Two DOF

are used for the north/south motion, and another two are used for the east/west motion.

At the end of the day, the panel is stationary at the position, moving back the panel to

the north direction of the morning by the photosensors receiving light (Hoffmann, Molz,

Kothe, Nara, & Tedesco, 2018)-(Al-Mohamad, 2004). Since two-axis systems can achieve

an optimal tracking of the sun, they are more popular in all the types of concentrated solar

technologies (Al-Mohamad, 2004). Literally, single and dual axis solar trackers are the

systems that improve energy efficiency by optimizing collection of sun light irradiating on

solar panel. In (Tegeder, 2007), a single-axis solar tracker was designed and tested. The

tracking system autonomously rotated an onboard solar panel to find the angle of maximum

solar irradiance while the UAV was found to have the maximum and minimum of net

energy gain over a conventional solar-powered UAV of 34.5 % and 0.8 % respectively.

2.4. Energy Output Improvement

Dual axis solar tracker has been an interesting research topic for many researchers,

because it can outperform single axis solar tracker (Mousazadeh et al., 2009)-(Wu et

al., 2016). Many researches on energy gain from solar tracking systems compared to

tilted fixed systems have conducted theoretically and experimentally (Mousazadeh et al.,

2009). Energy gain from a single axis solar tracker was reported to be 20% (Stern et al.,

1998) while energy gain from a dual axis solar tracker was 30-40% (Vorobiev, González-

Hernández, & Vorobiev, 2004). J. Wu et al proposed a two-axis decoupled solar tracking

system based on parallel mechanism and showed that the tracker requires less driving

torque, thus less power dissipation than the conventional serial tracker does (Wu et al.,

2016). Furthermore, the tracking system does not need reducer with large reduction ratio.

Therefore, complexity and weight of the system are also reduced.
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3. KINEMATIC MODELING FOR MULTI RIGID-BODY UAV

3.1. Classical Kinematic Equation for Parallel-Mechanism-Mounted UAV

Kinematics is the study of the motion of the rigid bodies. Classical Kinematic

equation of parallel mechanism is analysed in the geometric of the system, which deter-

mined the stroke of the linear actuators. Moreover, the motion of the parallel mechanism

has been controlled by the stroke of actuators which is moving along z-axis.

Figure 3.1 describes the coordinate system of parallel mechanism which is used

as dual axis solar tracker. A moving coordinate system O − x′3y′3z′3 is established at point

O3 and the z3-axis is along the direction normal to the moving platform. The two rotation

axes of the universal joint are parallel to x′3 and y′3 axes, respectively. The orientations

of rotation of O3 − x′3y′3z′3 with respect to O3 − x3y3z3 can be described by angle (φ, θ)

in Fig. 3.3 associated with the rotations about the two axes of the universal joint of the

RU joint. Figure 3.1 also shows the parallel mechanism has 7 rigid bodies connected

with joints. Each body has body-fixed coordinate as illustrated in the figure. Body 7 is

connected with body 5 and 6 via 2 spherical joints (S) and with body 4 via a universal

joint (U). Body 6 is connected to body 2 via a revolute joint (R). Body 5 is connected

to body 3 via a universal joint. Body 2 and 3 are connected with body 1 via another

translational joints (T ). The actuators exert forces on body 2 and 3 along vertical axes.

7

4

56

32

x x′

x′2
x2

y2 y
′
2

z′2
z2

B2R

T T

B1

x1
x′1
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U

x′3

y′3
y3

x3

z′3z3

U
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C1
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y′
yz′z

O
R

1

Figure 3.1. Parallel-mechanism system
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Figure 3.2. Parallel-mechanism-mounted UAV

Figure 3.2 shows the parallel mechanism mounted on hexacopter. Body numbers

are labeled as illustrated in the figure. Body fixed frame for the hexacopter (body 1) is

attached at the center of mass of the body. Parallel mechanism is a system of solar tracking

which is used as dual axis solar trackers, it has been defined the degree of freedom that

configuration the motion of the system. DOF for spatial mechanism can be defined by

(Nikravesh, 1988):

DOF = 6 (b− 1)−
∑
k∈Tj

(nkck) (Eq. 3.1)

where b is the number of the body; nk is the number of each type of joints; ck is the number

of constraints for each type of joints; and TJ is the set of types of joints. For the parallel

mechanism shown in Fig. 3.2, denote S, U , R and T as spherical joint, universal joint,

revolute joint, and translational joint, respectively. Then, we have b = 7, TJ = [S, U,R, T ],

nk ∈ TJ = [2; 2; 2; 2], and ck ∈ TJ = [3; 4; 5; 5]. Therefore DOF can be calculated as:

DOF = 6(7− 1)− 2× 3− 2× 4− 2× 5− 2× 5 = 2
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Figure 3.3. Variable length and angle of Parallel-mechanism system

The constraint equation for chain can be written in two ways as:

−−→
OO3 =

−−→
OA1 +

−−−→
A1B1 +

−−−→
B1C1 +

−−−→
C1O3

−−→
OO3 =

−−→
OA2 +

−−−→
A2B2 +

−−−→
B2C2 +

−−−→
C2O3,

where the length of all vectors are described in Fig. 3.1. The constraint equation can be

expressed as follows

r = rz (Eq. 3.2)

r = ai + qin3 + riz′i − bi i = 1, 2, (Eq. 3.3)

where r and z′ are the length and unit vector of linkOO3 on body number 4, qi is the height

of slider on body 2 and 3, ri and z′i are the length and the position unit vector of link BiCi

on body 5 and 6, ai is the position vector of point Ai on body 1 with respect to O−xyz, bi

is the position vector of point Ci on body 7 with respect to O3− x3y3z3, and n3 = [0 0 1]T

is a unit vector
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r− ai + bi = qin3 + riz′i

Let: ti = r− ai + bi
We have

ti = qin3 + riz′i (Eq. 3.4)

z′i =
ti − qin3

ri

Multiplying both side of equation Eq. 3.4 by nT3 = [0 0 1] result:

nT3 ti = qinT3 n3 + rinT3 z′i

nT3 ti = qi + rinT3 z′i

qi = nT3 ti − rinT3 z′i (Eq. 3.5)

From equation Eq. 3.5, we need to find rinT3 z′i on the geometric in Fig. 3.3. We have

∆A1C1T and ∆B1C1T are the triangles which has the right triangles in T .

e21 = r21 − (r1nT3 z′1)
2 (Eq. 3.6)

And

e21 = t21 − (nT3 t1)2 (Eq. 3.7)

From equation Eq. 3.6 and Eq. 3.7, we get:

r21 − (r1nT3 z′1)
2 = t21 − (nT3 t1)2

(r1nT3 z′1)
2 = r21 + (nT3 t1)2 − t21

(r1nT3 z′1) =
√
r21 + (nT3 t1)2 − t21 (Eq. 3.8)

Substituting equation Eq. 3.8 into equation Eq. 3.5, yields:

qi = nT3 ti −
√
r2i + (nT3 ti)2 − t2i , (Eq. 3.9)

where i = 1, 2 is a number of position in chain. This Eq. 3.9 describes the stroke of
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the linear actuators when we know the rotation matrix to transform vector into the same

reference. The degree of freedom of the system produces the two angle of rotation which

is defined the matrix rotation of universal joint between body number 4 and body number

7 as shows in Fig. 3.3.

3.2. Inverse Kinematic Equation for Parallel-Mechanism-Mounted UAV

Parallel mechanism has two degree of freedom which is rotated in two different

axis. Inverse kinematic is used to determine the angles rotated of the system which pro-

duces the rotation matrix. Moreover, rotation matrix has transformed the motion of the

system from body-fixe frame to the global frame by multiply on the right hard side of the

equation.

Rotational matrix of the system has been rotated about two axis: x-axis (angle φ)

and y-axis (angle θ) that are parallel to axis of the universal joint. Basic rotation matrix

around axis is described in Appendices. The rotation matrix RUAV
7 transforms from

body-fixed frame (7) to the global frame (UAV) defined by

RUAV
7 = R (φ, θ) = Rx (φ)Ry (θ)

=


1 0 0

0 cosφ − sinφ

0 sinφ cosφ




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



RUAV
7 =


cos θ 0 sin θ

sinφ sin θ cosφ − sinφ cos θ

− cosφ sin θ sinφ cosφ cos θ

 (Eq. 3.10)

Scenario 1: Sunlight direction sensor is mounted on the UAV

The transformational vector related from body-fixed frame to the global frame as

shows in following (Nikravesh, 1988):

n = RUAV
7 n′, (Eq. 3.11)

where n is the unit vector of sunlight measured by a sensor attached on the UAV with the

coordinate n = [nx ny nz]
T . n′ is the unit vector perpendicular to Solar panel with the

coordinate n′ = [0 0 1]T , and RUAV
7 is a matrix rotation from body-fixed frame to the

global frame. The relation in Eq. 3.11 can be expressed in the expanded form as following
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in Eq. 3.12


nx

ny

nz

 =


cos θ 0 sin θ

sinφ sin θ cosφ − sinφ cos θ

− cosφ sin θ sinφ cosφ cos θ




0

0

1

 (Eq. 3.12)

From calculation in equation Eq. 3.12, the resulting as describe in the equation below:

nx = sin θ

ny = − sinφ cos θ

nz = cosφ cos θ

(Eq. 3.13)

From equation Eq. 3.13, the result of finding pitch angle is:

θ = arcsin(nx)

From equation Eq. 3.13, the result of finding roll angle is:

sinφ =
−ny
cos θ

φ = arcsin

(
−ny
cos θ

)
= arcsin

(
−ny

cos arcsin(nx)

)
Note: The value of nx ny and nz are known from sensor attached on UAV. After getting the

value of φ and θ, the rotation matrix is fully defined. Thus, we would be able to determine

the other components containing in the actuator displacement vector q.

bi = RUAV
7 b′i (Eq. 3.14)

r = rz (Eq. 3.15)

z = RUAV
4 z′ (Eq. 3.16)
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The Rotation Matrix RUAV
4 of revolute joint about x-axis transforms the body-fixed frame

of body 4 into the global frame (UAV) of body 1, and is described as:

RUAV
4 = Rx (γ) =


1 0 0

0 cos (γ) − sin (γ)

0 sin (γ) cos (γ)


Substitution Eq. 3.16 with z′ = [0 0 1]T is expressed in following

z =


1 0 0

0 cos (γ) − sin (γ)

0 sin (γ) cos (γ)




0

0

1

 =


0

−sin(γ)

cos(γ)

 (Eq. 3.17)

Where γ is an angle rotation along x− axis of revolute joint between body number 4 and

body number 1 (UAV) as Fig. 3.3, and measured from y-axis of body 1 to z′-axis of body

4. To find the value of γ, we used the geometric of parallel mechanism that we have two

plan OA1B1C1, OA2B2C2 perpendicular at point O.

OA2B2C2 forms a plan where t2 = A2C2 and we have

t2 ∈ OA2B2C2

OA2B2C2 ⊥ a1,

so, the relation of plan perpendicular, we obtained relationship yields

t2 ⊥ a1

aT1 t2 = 0,

we have: ti = r− ai + bi, i = 1, 2 , for the left hand side loop of Fig. 3.3 with i = 2

t2 = r− a2 + b2

t2 − r + a2 − b2 =0

t2 − rz + a2 − b2 =0,
(Eq. 3.18)
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multiplying the vector aT1 in Eq: 3.18, we obtained the equation in following

aT1 t2 − aT1 rz + aT1 a2 − aT1 b2 =0

raT1 z + aT1 b2 =0

r
[
a1x a1y a1z

]
0

−sin(γ)

cos(γ)

+
[
a1x a1y a1z

]
b2x

b2y

b2z

 =0

r
[
a1x a1y a1z

]
0

−sin(γ)

cos(γ)

+
[
a1x a1y a1z

]
RUAV

7


b′2x

b′2y

b′2z

 =0,

(Eq. 3.19)

where b2 = RUAV
7 b′2 and a1 = [0 a1y 0]T is a vector along y − axis.

−ra1ysin(γ) + aT1R
T
7 b
′
2y = 0

sin(γ) =

(
1

ra1y

)
aT1R

UAV
7 b′2

γ =arcsin

(
1

ra1y
aT1R

UAV
7 b′2

) (Eq. 3.20)

Therefore the vector is defined.

ti = r− ai + bi

ti = rRUAV
4 z′ − ai +RUAV

7 b′i,

And finally qi = nT3 ti −
√
r2i + (nT3 ti)

2 − t2i is fully stated.

Scenario 2: The direction of sunlight is obtained from trajectory of the sun with
respect to the location of the UAV

The second scenario is proposed such that vector ~n (sunlight direction) attained

in different method from the first scenario. In this case, GPS is used as sensor and mounted

on the UAV. The UAV position is received; therefore, the orientation of sunlight can be

calculated by using the trajectory equation of the sun. The following equations are taken

into account (Nikravesh, 1988):

(RI
UAV )Tn = RUAV

7 n′, (Eq. 3.21)

14
Distribution A Distribution Approved for Public Release: Distribution Unlimited



where:RI
UAV is a matrix rotation of body frame (UAV) respected to global frame (Earth).

From equation Eq. 3.21, we can solved the value of n as:

n = RI
UAV (RUAV

7 n′)

To find the value n, it has been assumed that matrix rotation RI
UAV is known. Vector n

is observed in the global frame. Moreover, this vector shows the location of the UAV to

calculate the orientation of the sunlight from the trajectory equation of the sun.
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4. DYNAMIC MODELING FOR MULTI RIGID-BODY UAV

4.1. Dynamic Modeling for UAV

Dynamic modeling for the system is the best solution for solving problems. To deal

with it, kinematic constraints of all joints are determined. Undetermined close form reac-

tion forces at joints are obtained from the kinematic constraints. Using Newton’s method,

dynamic equation for each body exerted by external forces and reaction forces is formu-

lated. A fully determined equation, which is a system of algebraic-differential equations,

is obtained by by appending kinematic and dynamic equations.

To describe the dynamics of the multicopter, we used an inertial frame I and a

body-fixed frame B as in Figure 4.1, such that origin is at the center of gravity. We

consider hexacopter with n′p rotor which lie all in the same plane and total thrust force

always points in the same as the direction of the body-fixed z-axis(zB).

z

x
y

ξ
η

ζ

Figure 4.1. Hexacopter

To derive the dynamic model of the hexacopter (position and attitude), we used the

Newton-Euler formulation method. There are two equations of the motion, rotational in

Eq. 4.2 and translational in Eq. 4.1. Parameter N is a diagonal matrix of mass (m) and

moment inertia J ′ with respect to its center of mass in body-fixed frame exerted by external

force f defined in global frame, and toque τ ′ denoted on the body-fixed frame which has

dynamic equation of motion form:

Nr̈ = f (Eq. 4.1)

J ′ω̇′ + ω̃′J ′ω′ = τ ′, (Eq. 4.2)

Note that, translational equation of motion is written on the global frame. This equation can
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used to determine the acceleration and the position of the system on the earth by solving

differential equations. On the other hard, the rotational equation of motion is written in

the body-fixed frame. The angular velocity of the system is defined on the body-fixed

frame.The motion of the three angular of roll, pitch and yaw of the system is also defined

in the body-fixed frame. The dynamic equation of motion from Eq. 4.1 and Eq. 4.2 can be

expressed in matrix form asN 0

0 J ′

 r̈
ω̇′

+

 0

ω̃′J ′ω′

 =

f
τ ′

 , (Eq. 4.3)

where N = diag[m,m,m], matrix of mass hexacopter. ω′ is the angular velocity of the

UAV that is defined in body-fixed frame.

The thrust force of each rotors has equation as below

Fp = RB
I [0 0

6∑
i=1

Fi]
T = RB

I [0 0
6∑
i=1

kfω
2
i ]
T , (Eq. 4.4)

where Fi ≥ 0 is the thrust magnitude, ωi is the angular velocity of each rotors, RB
I is the

rotation matrix from the body-fixed frame to the inertial frame, and kf is the thrust constant

which related with density of air.

Gravity force Fg resulting from from the weigh of hexacopter (m) and gravity g

can be written as:

Fg = [0 0 −mg]T (Eq. 4.5)

The propulsion moment τ ′, we consider the configuration as in Fig. 4.2 and the

direction rotation axis of each propeller is parallel to z-axis of the body-fixed frame (zB),

that the propulsion moments and forces within the rotor plane as shows (Moussid, Sayouti,

& Medromi, 2015)

Fi,z = kfω
2
i

Mi,z = −sign(ωi)kτω
2
i

(Eq. 4.6)

The thrust force and moment produced by i-th rotor and rotation axis can be modeled such

that it is proportional to the square of the angular velocity ωi. Here, kf and kτ are rotor

specific parameters. From equation Eq. 4.6, substitute in the propulsion moment are
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Figure 4.2. A model of hexacopter

τ ′ =
6∑
i=1

(rGPi × Fi +Mi) =
6∑
i=i




l cos(αi)

l sin(αi)

0

×


0

0

Fi,z

+


0

0

Mi,z


 ,

(Eq. 4.7)

where rGPi ∈ R3 is the position vector of the i-th propellers with respect to the center of

gravity of hexacopter, l ∈ R is the length of the propeller arms, and αi is the angle between

xB and the rotor arm. In compact form of the propulsion moment

τ ′ = BMup

Where

BM =


−
kf l

2
−kf l −

kf l

2

kf l

2
kf l

kf l

2

−

√
3

2
kf l 0

√
3

2
kf l

√
3

2
kf l 0 −

√
3

2
kf l

−kτ kτ −kτ kτ −kτ kτ


up = [u1, u2, u3, u4, u5, u6]

T

= [ω2
1, ω

2
2, ω

2
3, ω

2
4, ω

2
5, ω

2
6]T

Note that for matrix BM ∈ R3×6 has a full row rank. If we know the propulsion moment,

vector up can be found by using Moore-Penrose pseudoinverse of matrix BM as shows

up = Bt
Mτ
′, (Eq. 4.8)
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where Bt
M = BT

M(BMB
T
M)−1 is the form of Moore-Penrose pseudo inverse (Šolc &

Baránek, 2012).

For a specific multicopter, direct relationship between thrusts of propellers and

torque vector can be computed in a simple way. The relationship of total thrust and torque

vector are produced from the variables of six rotors. In Fig. 4.2, the geometric of the

hexacopter can be computed total thrusts and total torques by individual propeller which

is easily derived in basic relation from mechanics.


f

τ ′x

τ ′y

τ ′z

 =



kf kf kf kf kf kf

−
kf l

2
−kf l −

kf l

2

kf l

2
kf l

kf l

2

−
kf l
√

3

2
0

kf l
√

3

2

kf l
√

3

2
0 −

kf l
√

3

2
−kτ kτ −kτ kτ −kτ kτ





ω2
1

ω2
2

ω2
3

ω2
4

ω2
5

ω2
6


, (Eq. 4.9)

where l is a length from the center of hexacopter to the arms, f is the total thrust. τ ′x is

the roll torque along x-axis, τ ′y is the pitch torque along y-axis, τ ′z is the yaw torque along

z-axis. If we want to find the angular velocity of each rotors, we needed an inverse for-

mulation of Eq. 4.9 by using Moore-Penrose pseudo inverse. The matrix for computation

with Moore-Penrose pseudo inverse is given in (?, ?) as follows



ω2
1

ω2
2

ω2
3

ω2
4

ω2
5

ω2
6


=

1

6kf l



l 2 0 −kf l
kτ

l 1 −
√

3
kf l

kτ

l −1 −
√

3 −kf l
kτ

l −2 0
kf l

kτ

l −1
√

3 −kf l
kτ

l 1
√

3 −kf l
kτ




f

τ ′x

τ ′y

τ ′z

 (Eq. 4.10)

On the other hand, dynamic equation of motion will be transformed to Euler param-

eter to satisfy with all mathematical relationship of equation Euler parameter by (Nikravesh,
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1988) is

ω′ = 2Lṗ

ω̈′ = 2Lp̈

A = GLT

Ȧ = 2ĠLT = 2GL̇T

ω̃′ = ATA = 2LL̇T

(Eq. 4.11)

Substituting the relationship of Euler parameter in Equation Eq. 4.2 is rewritten in form

2J ′Lp̈+ 4L̃ṗJ ′Lṗ = τ ′

2J ′Lp̈+ 4LL̇TJ ′Lṗ = τ ′

2J ′Lp̈+ LHṗ = τ ′

(Eq. 4.12)

Relationship of constraint equation in Euler parameter of rotation motion is given

pTp− 1 = 0 (Eq. 4.13)

And the second time derivative of the equation is

pT p̈+ ṗT ṗ = 0 (Eq. 4.14)

Eq. 4.12 and Eq. 4.14 can be expressed in matrix form of rotational motion:2J ′L

pT

 p̈+

LH
ṗT

 ṗ =

τ ′
0

 , (Eq. 4.15)

where H = 4L̇TJ ′L, L̃ṗ = LL̇T , p = [e0, e
T ]T = [e0, e1, e2, e3]

T , stands for the Euler

parameter formulation

From Eq. 4.1 to Eq. 4.15, dynamic equation of motion for unconstraint body of

hexacopter can be rewritten in compact form as follows:


N 0

0 2J ′L

0 pT


r̈
p̈

+


0

LH

ṗT

 ṗ =


f

τ ′

0

 (Eq. 4.16)
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4.2. Matlab simulink for UAV

Simulink is used a numerical method for solving the non linear differential equa-

tion, Runge-Kutta. Figure 4.3 is the flow simulation of the system hexacopter. The first

function name MATLAB Function is a head function which is derived the whole dy-

namic unconstraint body equation of the system hexacopter. The method of calculation

in simulink is converted to state space form and using Runge-Kutta for solving non lin-

ear differential equation. Next function is the coordinate variable of the hexacopter as a

position.

Figure 4.3. Flow simulation of hexacopter

4.3. Dynamic Modeling for Multi Rigid-Body UAV

A system of bodies connected by kinematic joint and/or force elements which cre-

ated the constraint of motion in the system. The constraint for two or more of the bodies

are interconnected by kinematic joints. In the system, coordinate vector for b bodies is de-

noted by q. Then the kinematic joints in the system can be represented as m independent

constraints, normally nonlinear equations in terms of q as:

Φ ≡ Φ(q) = 0 (Eq. 4.17)

A constrained body i is additionally exerted by reaction forces and moments [f (c), τ ′(c)]Ti

from joints. These forces and moments can be transformed to coordinate system consistent

with q denoted by [f ∗(c), τ ∗(c)]Ti and defined by f ∗(c)

τ ∗(c)


i

=

 ΦT
r

ΦT
p


i

λ, (Eq. 4.18)
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where λ = [λ1, . . . , λ34] is called Lagrange multiplier, and [Φr,Φp]i = Φqi is Jacobian

matrix of the kinematic constraint, Φ ≡ Φ(q) with respected to qi = [rT , pT ]Ti . To be used

with the formulation Eq. 4.16, the moment in Eq. 4.18 is transformed to be

f (c) = f ∗(c)

= Φrλ

τ ′(c) =
1

2
Liτ

′∗(c)

=
1

2
LiΦ

T
pi
λ,

then, the equation of translational and rotational of motion in Eq. 4.1 , Eq. 4.12 are rewrit-

ten as:

Nir̈i − ΦT
riλ = fi

2J ′iLip̈i + LiHiṗi −
1

2
LiΦ

T
piλ = τ ′i

(Eq. 4.19)

In matrix form of the equation Eq. 4.14 and Eq. 4.19 can be written as


Ni 0 ΦT

ri

0 2J ′Li
1
2
LiΦ

T
Pi

0 pTi 0



r̈i

p̈i

−λ

+


0

LiHiṗi

ṗTi ṗi

 =


fi

τ ′i

0

 (Eq. 4.20)

For the system with 7 bodies, Eq. 4.20 of dynamic equation can be obtained as M BT

P 0

 q̈

−λ

+

 c1

c2

 =

 g

0

 , (Eq. 4.21)

To solve this equation for q and λ, the constraint equation is needed. The second time

derivative of the constraint equation Eq. 4.17 is given by

Φq q̈ = γ (Eq. 4.22)
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where γ = −(Φq q̇)q q̇ is called the right-hand-side of acceleration equation. This equation

is appended with Eq. 4.21 to yield a system of algebraic-differential equation as


M BT

P 0

Φq 0


 q̈

−λ

+


c1

c2

0

 =


g

0

γ

 , (Eq. 4.23)

where

M =



N1 0 . . . 0 0

0 2J ′1L1 . . . 0 0
...

... . . . ...
...

0 0 . . . N7 0

0 0 . . . 0 2J ′7L7


,

B = [Φr1 ,
1

2
Φp1L

T
1 , . . . ,Φr7 ,

1

2
Φp7L

T
7 ],

Φq = [Φr1 ,Φp1 , . . . ,Φr7 ,Φp7 ],

P =


0T pT1 . . . 0T 0T

...
... . . . ...

...

0T 0T . . . 0T pT7

 , c1 =



0

L1H1ṗ1
...

0

L7H7ṗ7


, c2 =


ṗT1 ṗ1

...

ṗT7 ṗ

 ,

g =



f1

τ ′1
...

f7

τ ′7


, hk = −2ĠkL̇

T
i s
′
k, h

B
k = −2ĠkL̇

T
i s

′B
k , and hPk = −2ĠkL̇

T
i s

P
k , k = i, j,

where the variable of Φq and γ, Jacobian matrix of each joint are summarized in Table 4.1

and Table 4.2.
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Table 4.1. Components in the Expansion of the Most Common Constraints

, (Nikravesh, 1988)
Φ Φ

(m)
ri Φ

(m)
Pi Φ

(m)
rj Φ

(m)
Pj γ(m)

Φn1,1 0T 2sj
TGis̄

′
i 0T 2si

TGj s̄
′
j si

Thj + sj
Thi − 2ṡTi ṡj

Φn2,1 −siT −2sj
TGis̄

′B
i + 2dTGis̄

′
i si

T 2si
TGjsj

′B −si′
(
hi
B − hjB

)
+ dThi − 2ṡTi ḋ

Φ(p1,2) 0 −2s̃JGis̃
′
i 0 2s̃iGj s̄

′
j s̃ihj − s̃jhi − 2˜̇siṡj

Φ(p2,2) −s̃i −2s̃iGis̄
′B
i − 2d̃Gis

′
i s̃i 2s̃iGj s̄

′B
j s̃i

(
hBj − hBi

)
− d̃hi − 2˜̇siḋ

Φ(s,3) I 2Gis̄
′p
i −I −2Gj s̄

′p
j hpi − h

p
j

Φ(s−s,1) −2dT −4dTGis̄
′p
i 2dT 4dTGj s̄

′p
j 2dT

(
hpi − h

p
j

)
− 2ḋT ḋ

Table 4.2. Components in the Expansion of the Most Common Constraints

, (Nikravesh, 1988)
Φ Φ

(m)
ri

1
2
Φ

(m)
Pi L

T
i Φ

(m)
rj

1
2
Φ

(m)
Pj L

T
j γ#

Φn1,1 0T −sTj s̃iAi 0T −sTi s̃jAj −2ṡTi ṡj + ṡTi ω̃isj + ṡTj ω̃jsi

Φn2,1 −siT −
(
d+ sBi

)T
s̃iAi si

T −sTi s̃Bj Aj −2ḋT ṡi − dT ω̃ṡi + sTi
(
ω̃iṡ

B
i − ω̃j ṡBj

)
Φ(p1,2) 0 s̃j s̃iAi 0 −s̃is̃jAj −2˜̇siṡj + s̃jω̃iṡi − s̃iω̃j ṡj

Φ(p2,2) −s̃i
(
s̃is̃

B
i + d̃s̃i

)
Ai s̃i −s̃is̃Bj Aj −2˜̇siḋ+ s̃i

(
ω̃iṡ

B
i − ω̃j ṡBj

)
+ d̃ω̃iṡi

Φ(s,3) I −s̃piAi −I s̃pjAj −ω̃iṡpi + ω̃j ṡ
p
j

Φ(s−s,1) −2dT 2dT s̃piAi 2dT −2dT s̃pjAj −2dTd+ 2dT
(
ω̃iṡ

p
i − ω̃j ṡ

p
j

)
Fig. 3.2 and Fig. 5.1 show the whole system of an hexacopter and the parallel

mechanism. Body numbers are labeled as illustrated in the figure. Body-fixed frame of

the parallel mechanism (body 1) is attached at the center of mass of the hexacopter body.

On the condition of the combining system, the effect of actuator force have been included

in the system during tracking. Then the total force fp and moment τp generated by all

propellers are

fp =
∑
k

fk = Apfup + Fg

τp =
∑
k

(ãkfk + τk) = Apτup,
(Eq. 4.24)
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where Apf = 1z[kf , . . . , kf ]

Apτ = [kf ã11z − kτ sign(ω1)1z, . . . , kf ã61z − kτ sign(ω6)1z]

Which 1z = [0, 0, 1]T , and ak is vector from the epicenter of mass of the hexacopter to axis

of propeller k. The value of vector ak illustrated in Table 5.2

Two linear actuators are mounted on the hexacopter and exert forces on the body

2 and 3 through the translational joints. The forces are also control input for the system

Eq. 4.23 and denoted by f1−2,ζ

f1−3,ζ

 =

 u7

u8

 and

 f2−1,ζ

f3−1,ζ

 = −

 u7

u8

 , (Eq. 4.25)

where u7 and u8 are scalars values of force from the actuators in the bodies 2 and 3. Let

u = [up, u7, u8]
T , as a control input vector for the whole system. Then, the non-zero

external forces and moments which exert on respective body 1, 2 and 3 with gravity force

are given by

g1 =

 R1(fp − 1zu7 − 1zu8)− 1zm1g

τp − b̃11zu7 − b̃21zu8

 =

 A1f

A1τ

u+

 g1

0


g2 =

 R21zu7 − 1zm2g

0

 =

 A2f

0

u+

 g2

0


g3 =

 R31zu8 − 1zm3g

0

 =

 A3f

0

u+

 g3

0


(Eq. 4.26)

where

A1f = R11z[kf , . . . , kf ,−1,−1],

A1τ = [Apτ ,−b̃11z,−b̃21z],

A2f = R21z[0, . . . , 0, 1, 0],

A3f = R31z[0, . . . , 0, 0, 1],

g1 = −1zm1g, . . . , g7 = −1zm7g

and b1 and b2 are vectors from the center of mass of the hexacopter to the axes of the two

linear actuators which shows in Table 5.2. Ri is a rotational matrix for each bodies in the
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system. Therefore the dynamic equation of motion Eq. 4.23 can be rewritten as


M BT

P 0

Φq 0


 q̈

−λ

+


c1

c2

0

 =


ga

0

γ

+


A

0

0

u, (Eq. 4.27)

where

A = [AT1f , A
T
1τ , A

T
2f , 0

T , AT3f , 0
T , . . . , 0T ]T

ga = [gT1 , 0
T , gT2 , 0

T , . . . , gT7 , 0
T ]T

To support a simulation of parallel-mechanism-mounted UAV using formulation in

Eq. 4.23, the simple system with two bodies connected by spherical joint in Section 5.3.

in REPORT PART I has been verified.

4.4. Matlab simulink for Multi Rigid-Body UAV

The flow simulation in Fig. 4.4 are described the step calculation of dynamic equa-

tion of the whole system. The block name MATLAB Function is a head of function that

included all dynamic equation and solving the differential equation. For calculation in

Matlab simulink, we are converted to state space form. Addition, the block name Body

number 1, 2, 3, and 7 are function of the variable position of bodies 1 (hexacopter), 2 and

3 (linear actuators) and 7 (platform attached solar panel).
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Figure 4.4. Flow simulation for a parallel-mechanism-mounted UAV

27
Distribution A Distribution Approved for Public Release: Distribution Unlimited



4.5. Summery

Start 

Kinematic and Inverse Kinematic for a multi regid-body UAV
(Finding strocke of linear actuators for parallel mechanism using Eq. 3.9)

Dynamic modeling for multi rigid-body UAV
(Studying the position at the epicenter of mass of the whole system 

by using Eq. 4.27)

Matlab Simulink for multi rigid-body UAV
(Validation the behavior of position at the epicenter of mass of the whole system)

Figure 4.5. Flow of work

Figure 4.5 shows the step of work that we started from kinematic and inverse

kinematic equation to obtain the stock of linear actuators for a parallel mechanism. And

then, we developed the dynamic modeling for a multi rigid-body UAV and investigated the

attitude of the whole system. Matlab simulink is needed to validate the dynamic attitude

of the whole system.
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5. SIMULATION RESULT AND DISCUSSION

The simulation result of the system needs the initial input value that we are mea-

sured from SolidWorks program. Table 5.1, Table 5.2 and Table 5.3 are shown the value

of all variable related with the system. The material using is Carbon fiber (Hexcel AS4C

3000 Filaments), density 1780 kg/m3 on the system that selected in SolidWorks.

ξ
η

ζ

Z

Y
X

7

46 5

2 3

1

Figure 5.1. Parallel-mechanism-mounted UAV

Simulation result from Matlab Simulink is an approximation value because it uses

a Numerical method solve non linear differential equation. Thus, the solution is approxi-

mate. Moreover, some error in the system is make from input parameter and the scaled of

parallel-mechanism-mounted UAV is not proportional.

5.1. Simulation result of Hexacopter

The simulation of the hexacopter shows the attitude of tracking which obtained

position on the step time. The total mass of hexacopter is m = 5.407 kg and moment of

inertia on the body hexacopter is

J ′ =


57.2 0.492 −0.201

0.492 58.8 0.0056

−0.201 0.0056 866

× 10−3, kg m2,
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as a matrix 3×3. The result of the hexacopter is generated from dynamic equation Eq. 4.16

of motion with unconstraint body. On the translation motion (Newton’s second Law) is

solving differential equation with numerical method in Matlab Simulink. The graphic

shows in Fig. 5.2, which is a position of the hexacopter with constant thrust force and

torque. There are three curves that shows the position on x-axis, y-axis and z-axis in

parabolic. Because of, the thrust force input is larger than the gravity force of the system.

The hexacopter is move up on the another direction. Moreover, the torque input in the

system has effected on the system by tracking in the three angle (roll, pitch, and yaw) of

rotation matrix that we observed in the global coordinated system.
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Figure 5.2. Position of the center of mass of hexacopter with respect to the global frame

5.2. Result of simulation parallel-mechanism-mounded UAV

The motion of the whole system has been derived in Eq. 4.27, for the position ori-

entation of the system. For determine the equation of differential in 7 bodies for dynamic

motion, we used Matlab Simulink by converted this equation to state space forme. In sim-

ulation, it has simulated in dynamic only, which does not have controller. The result was

discussed in three cases.

Case 1. we investigated the system behaviour during its hover without forces applied on

the actuators.
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Case 2. we applied forces on the solar tacker actuators of case 1.

u7 = 3sin(4πt)

u8 = 3sin(4πt),

where u7 and u8 are the external force in body-fixed frame on the bodies 2 and 3, respec-

tively.

Case 3. in addition to the forces applied on the solar tracker actuators, we applied the

upward thrust to lift the system vertically from its initial position.

The Table 5.1 shows the value of mass (mi) each bodies in the whole system. l is

a length from the center of hexacopter to the arms and kf ,kτ are rotor specific parameters.

Table 5.1. Values of parameters for simulation

Parameter Description Value Units

m1 Mass of body 1 5882.95 ×10−3 kg

m2 Mass of body 2 189.7 ×10−3 kg

m3 Mass of body 3 189.7 ×10−3 kg

m4 Mass of body 4 104.45 ×10−3 kg

m5 Mass of body 5 53.25 ×10−3 kg

m6 Mass of body 6 54.4 ×10−3 kg

m7 Mass of body 7 890.85 ×10−3 kg

l Length 400 ×10−3 m

kf Specific parameter 6.546 ×10−6 Ns2/rad2

kt Specific parameter 1.2864 ×10−7 Ns2/rad2

The Table 5.2 shows the value of vectors bi and ak which is vector from the epi-

center of mass of the hexacopter to axis of propeller k and vector from the center of mass

of the hexacopter to the axes of the two linear actuators, respectively.

Table 5.2. Values of vector length for simulation

Parameter Description Value Units

b1 Vector length [−77.58, −37.11, 60.60]T × 10−3 m

b2 Vector length [39.18, 79.38, 65.70]T × 10−3 m

a1 Vector length [339.19, −90.66, 54.06]T × 10−3 m
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a2 Vector length [91.71, −338.14, 53.87]T × 10−3 m

a3 Vector length [−246.37, −247.56, 53.62]T × 10−3 m

a4 Vector length [−336.95, 90.52, 53.35]T × 10−3 m

a5 Vector length [−89.47, 338.01, 53.74]T × 10−3 m

a6 Vector length [248.61, 247.42, 53.99]T × 10−3 m

The Table 5.3 shows the value of the moment inertia J ′i of each bodies that measured in

the body-fixed frame.

Table 5.3. Values of moment inertia for simulation

Parameter Description Value Units

J ′1 Moment inertia body 1 10−9


62459754.68 418.01 520754.55

418.01 62804459.83 215030.33

520754.55 215030.33 89298102.47

 kg m2

J ′2 Moment inertia body 2 10−9


27742.82 0 −1015.42

0 20147.82 0

−1015.42 0 19872.58

 kg m2

J ′3 Moment inertia body 3 10−9


27742.83 0 0

0 27743.24 1015.42

0 1015.42 19872.58

 kg m2

J ′4 Moment inertia body 4 10−9


121732 0.1 0

0.1 124762.7 0

0 0 5357.6

 kg m2

J ′5 Moment inertia body 5 10−9


59447.35 0 0

0 59396.7 0

0 0 546.95

 kg m2

J ′6 Moment inertia body 6 10−9


62418.2 0 0

0 62311.7 −0.05

0 −0.05 580.75

 kg m2

J ′7 Moment inertia body 7 10−9


1233055.05 40906.55 −2729

40906.55 1219762.8 −435.5

−2729 −435.5 2432416.35

 kg m2
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Figure 5.3. Case 1: Position of the epicenter of hexacopter (body 1), actuators (body 2

and 3), and platform attached solar panel (body 7)at the hover point with respect to the

global frame

The result as shown in Figure 5.3, in case 1, there are focus on the position of the

bodies 1, 2, 3, and 7. For the position of body 1, which is remain on the hover point at

a bit time when we stated operating. After that, the hexacopter has changed the position,

because the reaction of gravity force for parallel mechanism is not equivalent to the thrust

force of the system. The parallel mechanism has two degree of freedom that it can be

effected on the movement of system. When UAV is not equivalent to the initial condition,

its means that the rotation matrix has changed, so the sum of vector forces on the UAV

are not equal zeros. The sum of vector force can make a new vector force on the another

direction.
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Figure 5.4. Case 2: Position of the epicenter of hexacopter (body 1), actuators (body 2

and 3), and platform attached solar panel (body 7)at the hover point with respect to the

global frame

Case 2., we applies forces on the both actuators that makes the system stable at a

few second when we observed body 1 (UAV) at the hover point. After that, the system has

destabilization which has been rotated along z-axis. It is unbalance that drop out of the

whole system. At the time, hexacopter is drop out that is effected from the body number 7

(attached solar panel).
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Figure 5.5. Case 3: Position of the epicenter of hexacopter (body 1), actuators (body 2

and 3), and platform attached solar panel (body 7) with respect to the global frame

In Figure 5.5 are shows in case 3, we observe the position of body number 1 for

z-axis move up and tracked in the a parabolic curve because it is the second derivative

of Newton second Law. During the system move up, the system is destabilization which

make the system drop out.

In summery, the result of the whole system is unstable in all cases. There are two

types of unstable: one from the disturbance from the external force can not be cancel out,

so the hovering can not stable. Other one numerical unstable when we computed up to

time 0.5 s, the simulation has stopped, because the numerical method just approximation.
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6. CONCLUSION AND RECOMMENDATION

In this thesis, we present kinematic, inverse kinematic, dynamic modeling and sim-

ulation for the system. Kinematic and inverse kinematic for the tracker is briefly described

using classical method. Dynamic modeling for the system is one of the most challenging

engineering problems. To deal with it, kinematic constraints of all joints are determined.

Undetermined close form reaction forces at joints are obtained from the kinematic con-

straints. Using Newton’s method, dynamic equation for each body exerted by external

forces and reaction forces is formulated. A fully determined equation, which is a system

of algebraic-differential equations, is obtained by appending kinematic and dynamic equa-

tions. Simulation for a parallel-mechanism-mounted UAV can describe the position of all

bodies in the whole system. From the result, there are three cases to discuss. We observed

a trajectory at the hover points and displacement of hexacopter and body number 7 (solar

panel attached). In case 1, we investigated the system behaviour during its hover without

forces applied on the actuators. In case 2, we applied forces on the solar tacker actuators of

case 1. In case 3, in addition to the forces applied on the solar tacker actuators, we applied

the upward thrust to lift the system vertically from its initial position.We have observed

that after about 0.45 to 0.5 s, the simulation induced large error causing simulation to stop.

It happened due to high stiff differential equation of zigzag motion of the tracker.

On the dynamic equation using Newton-Euler parameter, it solved in simulation

that using Numerical method for approximation result. In addition, we should find a cor-

rection factors to minimize error. This suggests that dynamic modelling alone is insuf-

ficient to have a stable flight. Therefore, it is absolutely necessary to consider adding a

controller to the future work in order achieve flight stability and allow the tracker to opti-

mally collect the solar energy.
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APPENDICES

Background of rotation matrix using Euler Angle

A basic rotation (also called elemental rotation) is a rotation about one of the axes

of a coordinate system. The following three basic rotation matrices rotate vectors by an

angle, roll φ about the x axis, pitch θ about the y axis, and yaw ψ about the z axis, in three

dimensional coordinate. As shown in Figure 6.1. the roll angle is defined as the rotation

about the x axis by φ angle.

x x′

y

y′

zz′

φ

φ

Figure 6.1. Rotation about x axis

The rotation matrix about x axis is written as:

R(φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ


The pitch angle is defined as the rotation θ about the y axis as shown in Figure 6.2.

Therefore,
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x x′

y y′

zz′

θ

θ

Figure 6.2. Pitch angle about y axis

R(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


The yaw angle is defined as the rotation ψ about the z axis. The resulting coordinate sys-

tem can be seen in Figure 6.3..

x x′

y

y′

z z′

ψ

ψ

Figure 6.3. Yaw angle around z axis

The matrix rotation is shown:

R(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1


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Background of rotation matrix using Euler Parameter

In the following section, rotation matrix which associate with Euler parameter will

be used instead of Euler Angle. Euler’s theorem states in that a coordinate transformation

can be accomplished by a single rotation about a suitable axis. Accordingly, it is an es-

sential way to establish one representation of the coordinate transformation that can rotate

the vector from body-fixed frame to global frame. It can be derived by Figure 6.4. shown

below, the initial position ~s of the vector
−→
OP and the final position ~s′ is denoted by

−−→
OP ′.

The unit vector along the orientation axis of rotation is denoted by ~u. Vector ~s can be

expressed as the sum of three vectors:

~s =
−−→
ON +

−−→
NQ+

−→
QP (Eq. 6.1)

The direct distance between points O and N is ~u · ~s′, so vector
−−→
ON can be written as

following:
−−→
ON = ~u(~u · ~s′) (Eq. 6.2)

Vector
−−→
NP ′ can also be described as follows:

−−→
NP ′ = ~s′ −

−−→
ON = ~s′ − ~u(~u · ~s′)

Hence,
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N

X

Y

Z

~u

~u× ~s′

Q

P ′ P

~s

~s′

φ

~u(~u.~s′)

Figure 6.4. Vector diagram for derivation of rotation formula

−−→
NQ = [~s′ − ~u(~u · ~s′)]cosφ (Eq. 6.3)

The magnitude of vector
−−→
NP ′ is the same as that of vectors

−−→
NP and ~u× ~s′. Therefore,

vector
−→
QP may be expressed as

−→
QP = (~u× ~s′)sinφ (Eq. 6.4)

Substitution of Eq. 6.2., Eq. 6.3. and Eq. 6.4. into Eq. 6.1., together with a slight rear-

rangement of terms, leads to the rotation formula:

~s = ~s′ cosφ+ ~u(~u · ~s′)(1− cosφ) + ~u× ~s′ sinφ (Eq. 6.5)
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By means of the standard trigonometric relationships

cosφ = 2cos2
φ

2
− 1

sinφ = 2sin
φ

2
cos

φ

2

1− cosφ = 2sin2φ

2

and the new quantities

e0 = cos
φ

2

~e = ~u sin
φ

2

(Eq. 6.6)

the rotation formula of Eq. 6.5. can be put in a more useful form:

~s = (2e20 − 1)~s′ + 2e(eT ~s′) + 2e0~e× ~s′ (Eq. 6.7)

Algebraic representation of Eq. 6.7., using the component form e = [el, e2, e3]
T , yields

s = (2e20)s
′ + 2e(eT s′) + 2e0(ẽs

′)

or

s = [(2e20 − 1)I + 2eeT + 2e0ẽ]s
′ (Eq. 6.8)

where I is the 3× 3 identity matrix and, by the definition in reference (Nikravesh, 1988),

ẽ =


0 −e3 e2

e3 0 −e1
−e2 e1 0


From relationship s = As′ and Eq. 6.8. where, A is Rotation Matrix from Body-fixed

frame to Initial frame, we get

A = 2[(e20 − 1)I + eeT + e0ẽ] (Eq. 6.9)
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More explicitly,

A = 2


e22 + e21 − 1

2
e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e20 + e22 − 1
2

e2e3 − e0e1
e1e3 − e0e2 e2e3 + e0e1 e20 + e23 − 1

2

 (Eq. 6.10)

Taking the transpose of both sides of Eq. 6.9. yields

AT = (2e20 − 1)I + 2(eeT − e0ẽ) (Eq. 6.11)

The four quantities e0, e1, e2, and e3 are called Euler parameters. Eq. 6.6. indicates that

the Euler parameters are not independent. Since cos2(φ
2
) +uTu sin2(φ

2
) = 1, or cos2(φ

2
) +

(u sinφ
2
)T (u sinφ

2
) = 1 then

e20 + eT e = 1 (Eq. 6.12)

For example

e20 + e21 + e22 + e23 = 1

If the four Euler parameters are put in a 4-vector as follows:

P = [e0, e
T ]T = [e0, e1, e2, e3]

T (Eq. 6.13)

then Eq. 6.12. is written as

P TP = 1

P TP − 1 = 0
(Eq. 6.14)

If the matrix rotation A (rotate from body frame to initial frame) is defined, Euler parameter

elements also can find as the following

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


To set the initial condition for the euler parameters, the relationship between euler pa-

rameters and rotation matrix is needed. The rotation matrix A can be obtained from the

configuration of each corresponding body. The detailed of how the rotation matrix is de-
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termined is shown in (?, ?, p. 164). Then, the euler parameters are calculated as follow:

e1 =
a32 − a23

4e0

e2 =
a13 − a31

4e0

e3 =
a21 − a12

4e0

e20 =
tr(A) + 1

4
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ABSTRACT

Quadrotor commonly has the symmetric shape which consists of four individual rotors

attached to a rigid cross airframe. Its center of mass is not really fixed in the epicenter of

its shape if it lifts any load that is not located in the epicenter of the quadrotor. Moreover, if

the load’s location is changed, the center of mass of the quadrotor system is also changed. In

order to estimate the changing or unknown center of mass of the quadrotor while it is flying,

this thesis has used Unscented Kalman Filter. The dynamic modeling is presented to form a

general model of dynamic rotational motion equation of the quadrotor that the center of mass is

assumed to be able to change at each time, while the Euler angle is used to model the kinematic

attitude equation of the quadrotor. Furthermore, the Unscented Kalman Filter is applied to

estimate the center of mass of the quadrotor. To prove that the method can satisfy the objective,

this thesis has simulated the data of modeling equations in MATLAB in eight different cases.

Hence, the results show that the filters perform very accurately in the estimation of the center of

mass. Since the results are very accurately, Unscented Kalman filter is appealing for practical

purposes, such as designing a controller.
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ABBREVIATIONS AND SYMBOLS

Symbols Descriptions

KF Kalman Filter

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

xk State vector x at time k

xk+1|k State vector x at time k + 1 given k

x̂k+1|k Estimation of state vector x at time k + 1 given k

P Error covariance matrix

Q Process noise covariance matrix

R Measurement noise covariance matrix

K Kalman gain or blending factor

Xk|k Set of sigma points at time k given k

Xk+1|k Set of transformed sigma points at time k given k + 1

X
(r)
k+1|k Set of resampled sigma points at time k + 1 given k

{A} Global coordinate with axes {X, Y, Z}

{B} Body fixed coordinate with axes {x, y, z}

R Rotation matrix

cφ Denotes cosine of φ angle

sφ Denotes sine of φ angle

Fi Thrust generated from ith rotor of the quadrotor

Mi Reaction torque generated from ith rotor of the quadrotor

c drag factor

Ω Angular velocity of {B} respect to {A} expressed in {B}

Ω× or Ω̃ Skew-symmetric matrix of Ω

φ Roll angle

θ Pitch angle

ψ Yaw angle

J Constant inertia matrix of the quadrotor expressed in {B}

I Identity matrix

τext External combination torques applied to the quadrotor airframe ex-

pressed in {B}

di Distance from epicenter of the quadrotor to ith rotor axes
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C Cofactor matrix

δrx x-axis coordinate of the center of mass of the quadrotor of {B}

δry y-axis coordinate of the center of mass of the quadrotor of {B}
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1. INTRODUCTION

1.1. Background

Aerial robotics is a rapidly-growing field of robotics and multirotor aircraft. Likewise, a

quadrotor is one of common multirotor aerial platform which consists of four individual rotors

attached to a rigid cross airframe. Small quadrotors have been demonstrated to explore and

map the 3-D environments; transport, manipulate, and assembly objects; and to acrobatic tricks

such as juggling, balancing, and flipping, [1]. Generally, control of quadrotor is accomplished

by differential control of the thrust generated by each rotor. Furthermore, the control strategies

are relied on simplified models which have both a minimum number of states and minimum

number of inputs. Additionally, the controls of quadrotor, which already existed, have been

modeled by fixing the center of mass, [1] and [2]. In actual application, the center of mass of

quadrotor is not really fixed. It can be changed at each time depending on the actual situation

and its application during performing. However, knowing exact center of mass provides more

advantages in modeling and control as well.

1.2. Statement of Problem

The quadrotor generally has the symmetric shape and its center of mass seems to be in

the epicenter of its shape. However, when it lifts any load which is not placed on the epicenter

of its shape, the center of mass of the whole system is not in the epicenter anymore. Since

during its flight, the center of mass can change each time, it is difficult to model and control

the quadrotor as well. Consequently, the center of mass of the system can not be determined

easily. By using the existed control methods, which have fixed center of mass, may not result

in good performance because the center of mass of the quadrotor system can vary anytime.

1.3. Objective

The objective of this thesis is to estimate the center of mass of the quadrotor by using the

Unscented Kalman Filter. This estimation focuses on both fixed center of mass and changing

center of mass over time of the quadrotor.

1.4. Scope

Generally, the moment of inertia about center of mass of the quadrotor depends on

where the center of mass locates. If the center of mass changes, the moment of inertia is also

changed. However, in this thesis, we assume the inertia matrix to be constant during the flight.

Furthermore, when the quadrotor is translated and rotated, it induces the aerodynamic friction

1
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forces and the aerodynamic friction torques respectively. These two parameters are neglected

in the thesis research. Additionally, in this thesis, we do not have a prototype to do experiment.

However, we do it by simulation instead.

2
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2. METHODOLOGY

We have many steps to achieve the estimating center of mass of a quadrotor by using

the Unscented Kalman Filter. Firstly, we derive the dynamic modeling equations of the ro-

tating motion of a quadrotor by assuming the center of mass not to be in the epicenter of the

quadrotor’s shape, as shown in, Figure 2.2.1. Secondly, we transform them to the continuous

nonlinear state space forms because the equations that we derived are in the continuous nonlin-

ear difference equation forms. Then, these forms are transformed to the discrete-time nonlinear

state space forms which has two different types (deterministic or pure model which is not in-

cluded noises to the model and stochastic or true model which is added noises to the model)

by using the Euler Approximation. Thirdly, we model these derived equation by the Unscented

Kalman Filter (UKF). Finally, we will simulate the true model and estimate its parameters (The

Center of Mass coordinates) by UKF.

2.1. Basis of Dynamic Modeling of Quadrotor

F1 

 

F2 

 

F3 

 

F4 

 

{B} 

 

 

M1 

 

M2 

 

M3 

 

M4 

 

d1 

 

o 

 

x 

 

y 

 

z 

 

Figure 2.1.1. Notation for quadrotor equations of motion, [1]

The quadrotor is a common aerial vehicle which consists of four individual rotors at-

tached to a rigid cross airframe. Each rotor plays important role in generating thrust for con-

trolling the quadrotor. In the magazine [1], they assume the rotor i rotates positively about the

z axis (counterclockwise) if i is even, and rotates clockwise if i is odd, shown in Figure 2.1.1.
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To model the rigid body equation of motion of the airframe, let {A} = {X, Y, Z} be an inertial

frame or global coordinate with unit vectors along the axes denoted by {a1, a2, a3} expressed in

{A}. Let {B} = {x, y, z} be a body fixed frame for the airframe with unit vectors {b1, b2, b3}

with respect to {A}. Then, the models of the rigid body equation of motion of the airframe

from [1] are shown below

ξ̇ = v, (2.1.1)

mv̇ = mg~z + RFext (2.1.2)

Ṙ = RΩ×, (2.1.3)

JΩ̇ = −Ω× JΩ + τext (2.1.4)

where vector ξ = [ξ1, ξ2, ξ3]
T ∈ {A} denotes the position of the center of mass of the quadrotor.

The vector v = [ξ̇1, ξ̇2, ξ̇3]
T ∈ {A} is the linear velocity of {B} with respect to {A} expressed

in {A}. m and g are the mass of the rigid body and the gravitational acceleration respectively.

The vector Fext, τext ∈ {B} are the combination external forces and torques applied to the

quadrotor airframe by the aerodynamics of the rotors expressed in {B}. In [4], Fext and τext ∈

{B} are determined by

Fext = F − Faero

Text = T − Taero
(2.1.5)

where Faero = Ktv and Taero = KrΩ are the aerodynamic friction forces and the aerodynamic

friction torques respectively. Kt and Kr are two diagonal aerodynamic friction matrices. The

forces F and torque T are produced by the rotors of the quadrotor and they are obtained by

F =


0

0∑4
i=1 Fi

 (2.1.6)

T =


d(F2 − F4)

d(F3 − F1)

c
∑4

i=1(−1)i+1Fi

 (2.1.7)

4
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where d is the distance from the epicenter of a quadrotor to the rotor axes and c > 0 is the drag

factor.

Vector Ω = [Ωx,Ωy,Ωz]
T ∈ {B} is the angular velocity of {B} with respect to {A}

expressed in {B}. J ∈ R3×3 is the constant inertia matrix expressed in {B}. The Ω× is denoted

as the skew-symmetric matrix that is shown in (Eq. 2.1.8) or it is denoted as the cross product

of Ω with any vector in R3 as shown in equation (Eq. 2.1.9) below

Ω× = Ω× = Ω̃ =


0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

 (2.1.8)

⇒ Ω̃v =


Ωy ξ̇3 − Ωz ξ̇2

Ωz ξ̇1 − Ωxξ̇3

Ωxξ̇2 − Ωy ξ̇1



Ω×v = Ω× v =


Ωx

Ωy

Ωz

×

ξ̇1

ξ̇2

ξ̇3



=


Ωy ξ̇3 − Ωz ξ̇2

Ωz ξ̇1 − Ωxξ̇3

Ωxξ̇2 − Ωy ξ̇1


(2.1.9)

The matrix R = [b1, b2, b3] ∈ SO3 in the special orthogonal group, while a1 = Rb1, a2 = Rb2
and a3 = Rb3. In the magazine [1], we have the rotation matrix below

R = RZRXRY =


cψ −sψ 0

sψ cψ 0

0 0 1




1 0 0

0 cφ −sφ

0 sφ cφ



cθ 0 sθ

0 1 0

−sθ 0 cθ



R =


cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ

cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ

−cφsθ sφ cφcθ

 (2.1.10)

where c and s are shorthand forms for cosine and sine, respectively. RX , RY and RZ are the

rotation matrix about axis X , Y and Z axes, respectively.
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2.2. Dynamic Modeling of the Quadrotor

In order to model the dynamic of the quadrotor, we firstly assume its center of mass

not to be in the epicenter of the quadrotor’s shape as shown in, Figure 2.2.1. By assuming the

inertia matrix J ∈ R3×3 to be constant and invertible, we obtained the equation of rotational

motion of quadrotor as the following

Ṙ = RΩ̃, (2.2.1)

JΩ̇ = −Ω× JΩ + τext (2.2.2)

where, rotation matrix R is obtained from the equation (Eq. 2.1.10),

R =


cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ

cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ

−cφsθ sφ cφcθ

 (2.2.3)

F1 

 

F2 

 

F3 

 

F4 

 

 

M1 

 

M2 
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M4 
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δry 
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δr(δrx, δry,0) 

 

 

x 

 

y 
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Figure 2.2.1. Free-body diagrams of the quadrotor which its the center of mass is not in the

epicenter
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Then from the equation (Eq. 2.2.1), we obtained as the following

R = RZRXRY

⇒ Ṙ = ṘZRXRY +RZṘXRY +RZRXṘY

substituted by (2.2.1),

⇒ RΩ̃ = (RZω̃z)RXRY +RZ(RX ω̃x)RY +RZRX(RY ω̃y)

⇔ (RΩ̃)T = [(RZω̃z)RXRY +RZ(RX ω̃x)RY +RZRX(RY ω̃y)]
T

where,

ωx =


φ̇

0

0

 , ωy =


0

θ̇

0

 , ωz =


0

0

ψ̇

 ,
Since,

Ω̃T = −Ω̃ = −Ω×,

RT = RT
YR

T
XR

T
Z

Then,

⇒ −Ω× RT = −RT
YR

T
X(ωz ×RT

Z)−RT
Y (ωx ×RT

X)RT
Z − (ωy ×RT

Y )RT
XR

T
Z

⇔ Ω× RT = RT
YR

T
Xωz ×RT

YR
T
XR

T
Z +RT

Y ωx ×RT
YR

T
XR

T
Z + ωy ×RT

YR
T
XR

T
Z

⇔ Ω× RT = RT
YR

T
Xωz ×RT +RT

Y ωx ×RT + ωy ×RT

⇔ Ω× RT = (RT
YR

T
Xωz +RT

Y ωx + ωy)×RT

⇒ Ω = RT
YR

T
Xωz +RT

Y ωx + ωy (2.2.4)

Since,

RZ =


cψ −sψ 0

sψ cψ 0

0 0 1

 , RX =


1 0 0

0 cφ −sφ

0 sφ cφ

 , RY =


cθ 0 sθ

0 1 0

−sθ 0 cθ


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⇒ RT
YR

T
X =


cθ 0 sθ

0 1 0

−sθ 0 cθ


T 

1 0 0

0 cφ −sφ

0 sφ cφ


T

=


cθ 0 −sθ

0 1 0

sθ 0 cθ




1 0 0

0 cφ sφ

0 −sφ cφ



=


cθ sθsφ −sθcφ

0 cφ sφ

sθ −cθsφ cθcφ


then,

⇒ RT
YR

T
Xωz =


cθ sθsφ −sθcφ

0 cφ sφ

sθ −cθsφ cθcφ




0

0

ψ̇

 =


−sθcφψ̇

sφψ̇

cθcφψ̇


and,

RT
Y ωx =


cθ 0 sθ

0 1 0

−sθ 0 cθ


T 

φ̇

0

0



=


cθ 0 −sθ

0 1 0

sθ 0 cθ



φ̇

0

0

 =


cθφ̇

0

sθφ̇


Then, substituting to the equation (Eq. 2.2.4), we get

Ω =


−sθcφψ̇

sφψ̇

cθcφψ̇

 +


cθφ̇

0

sθφ̇

 +


0

θ̇

0



=


cθφ̇+ 0θ̇ − sθcφψ̇

0φ̇+ θ̇ + sφψ̇

sθφ̇+ 0θ̇ + cθcφψ̇



=


cθ 0 −sθcφ

0 1 sφ

sθ 0 cθcφ



φ̇

θ̇

ψ̇


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⇒ Ω =


cθ 0 −sθcφ

0 1 sφ

sθ 0 cθcφ



φ̇

θ̇

ψ̇


or,

Ω = H


φ̇

θ̇

ψ̇



⇒


φ̇

θ̇

ψ̇

 = H−1


Ωx

Ωy

Ωz

 (2.2.5)

Where,

H =


cθ 0 −sθcφ

0 1 sφ

sθ 0 cθcφ



H−1 =


cθ 0 −sθcφ

0 1 sφ

sθ 0 cθcφ


−1

=
1

det(H)
CT

where,

det(H) = c2θcφ+ s2θcφ = cφ(c2θ + s2θ) = cφ

and cofactor matrix C,

C =


cθcφ sθsφ −sθ

0 cφ 0

sθcφ −cθsφ cθ



⇒ CT =


cθcφ 0 sθcφ

sθsφ cφ −cθsφ

−sθ 0 cθ


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Then,

H−1 =
1

cφ


cθcφ 0 sθcφ

sθsφ cφ −cθsφ

−sθ 0 cθ

 (2.2.6)

where, φ 6= π
2

+ nπ , and n is integer number from −∞ to +∞.

In (Eq. 2.2.2), we ignore the aerodynamic friction torque and the aerodynamic friction

force. Thus, the total external torques τext applied to the rigid airframe remain only the torques

generated from each rotors, Fi, and the reaction torques, Mi, to each rotor of the quadrotor.

The total external torques τext can be defined according to Figure 2.2.1 and obtained as the

following

τext =
4∑
i=1

(di − δr)× Fi +
4∑
i=1

(−1)i+1Mi (2.2.7)

where,

4∑
i=1

(di − δr)× Fi = (d1 − δr)× F1 + (d2 − δr)× F2

+ (d3 − δr)× F3 + (d4 − δr)× F4

(2.2.8)

and,

• (d1 − δr)× F1 =


d1 − δrx
−δry

0

×


0

0

F1



=


−δryF1

−(d1 − δrx)F1

0


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• (d2 − δr)× F2 =


−δrx

d2 − δry
0

×


0

0

F2



=


(d2 − δry)F2

δrxF2

0



• (d3 − δr)× F3 =


−d3 − δrx
−δry

0

×


0

0

F3



=


−δryF3

(d3 + δrx)F3

0



• (d4 − δr)× F4 =


−δrx

−d4 − δry
0

×


0

0

F4



=


−(d4 + δry)F4

δrxF4

0



•
4∑
i=1

(−1)i+1Mi =


0

0

M1 −M2 +M3 −M4


Then, the total external torques τext can be fully determined by

τext =


−δry(F1 + F2 + F3 + F4) + l(F2 − F4)

δrx(F1 + F2 + F3 + F4) + l(F3 − F1)

M1 −M2 +M3 −M4

 (2.2.9)

Likely, (Eq. 2.2.2) can be derived as

Ω̇ = −J−1Ω× JΩ + J−1τext

11
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Then, this equation is substituted by (Eq. 2.2.9), we get (Eq. 2.2.10)


Ω̇x

Ω̇y

Ω̇z

 = −J−1


Ωx

Ωy

Ωz

× J


Ωx

Ωy

Ωz

 + J−1


−δry(F1 + F2 + F3 + F4) + l(F2 − F4)

δrx(F1 + F2 + F3 + F4) + l(F3 − F1)

M1 −M2 +M3 −M4


(2.2.10)

where, for the ith rotor, di is the distance from the epicenter of the quadrotor to the axes of ith

rotor and d = [d1, d2, d3, d4]
T and l = d1 = d2 = d3 = d4. δr = [δrx, δry, δrz]

T ∈ {B} denotes

the actual center of mass of the quadrotor expressed in {B}. However, δrz is assumed to be

zero. F1, F2, F3 and F4 are the forces generated from the rotor 1, 2, 3 and 4 respectively, while

M1, M2, M3 and M4 are the reaction torques due to the rotor 1, 2, 3 and 4 drag respectively

acting on the airframe. Ω = [Ωx,Ωy,Ωz]
T is the angular velocity of {B} with respect to {A}

expressed in {B}.

2.3. State Space Transformation of Dynamic Equation

In the previous sections, we have obtained the continuous difference equations of the

rotation motion for the quadrotor shown below in (Eq. 2.2.5) and (Eq. 2.2.10). In this sec-

tion, these equations are transformed to the discrete state space form. The procedures of the

transformation are demonstrated as the following

We have (Eq. 2.2.5) and (Eq. 2.2.10) can be transformed into state space form. Let’s

us denote

q1 = φ, q2 = θ, q3 = ψ

q4 = Ωx, q5 = Ωy, q6 = Ωz

q7 = δrx, q8 = δry

then, we can write

q =
[
q1 q2 . . . q8

]T
∈ R8

⇒


q̇1

q̇2

q̇3

 =


cq2 0 −sq2cq1
0 1 sq1

sq2 0 cq2cq1



q4

q5

q6

 ,
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
q̇4

q̇5

q̇6

 = −J−1


q4

q5

q6

× J

q4

q5

q6

 + J−1


−q8(F1 + F2 + F3 + F4) + l(F2 − F4)

q7(F1 + F2 + F3 + F4) + l(F3 − F1)

M1 −M2 +M3 −M4

 ,
and, q̇7

q̇8

 =

0

0


Hence, we achieved the continuous state space form as below

q̇ =



q̇1

q̇2

q̇3

q̇4

q̇5

q̇6

q̇7

q̇8



=




cq2 0 −sq2cq1
0 1 sq1

sq2 0 cq2cq1



q4

q5

q6



−J−1


q4

q5

q6

× J

q4

q5

q6

 + J−1


−q8(F1 + F2 + F3 + F4) + l(F2 − F4)

q7(F1 + F2 + F3 + F4) + l(F3 − F1)

M1 −M2 +M3 −M4


0

0




or,

q̇ = G(q) (2.3.1)

where,

G(q) ≡




cq2 0 −sq2cq1
0 1 sq1

sq2 0 cq2cq1



q4

q5

q6



−J−1


q4

q5

q6

× J

q4

q5

q6

 + J−1


−q8(F1 + F2 + F3 + F4) + l(F2 − F4)

q7(F1 + F2 + F3 + F4) + l(F3 − F1)

M1 −M2 +M3 −M4


0

0




From (Eq. 2.3.1), we now transform it to the discrete-time state space form by using
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the Euler Approximation

q̇ ≈ qk+1 − qk
∆t

where, ∆t is the step time and its value should be small enough and scalar. Then, the (Eq.

2.3.1) can be substituted as the following

qk+1 − qk
∆t

= Gk(q)

⇒qk+1 = ∆tGk(q) + qk

or, it can be written as the discrete-time nonlinear deterministic difference equation as

below

qk+1 =




cq2 0 −sq2cq1
0 1 sq1

sq2 0 cq2cq1



q4

q5

q6



−J−1


q4

q5

q6

× J

q4

q5

q6

 + J−1


−q8(F1 + F2 + F3 + F4) + l(F2 − F4)

q7(F1 + F2 + F3 + F4) + l(F3 − F1)

M1 −M2 +M3 −M4


0

0




k

∆t+ qk

(2.3.2)

or, it can be written as the discrete-time nonlinear stochastic difference equation by

adding noise wk ∈ R8 shown below
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qk+1 =




cq2 0 −sq2cq1
0 1 sq1

sq2 0 cq2cq1



q4

q5

q6



−J−1


q4

q5

q6

× J

q4

q5

q6

 + J−1


−q8(F1 + F2 + F3 + F4) + l(F2 − F4)

q7(F1 + F2 + F3 + F4) + l(F3 − F1)

M1 −M2 +M3 −M4


0

0




k

∆t+ qk + wk

(2.3.3)

qk+1 = fd(qk, 0) + wk

where,

fd(qk, 0) = ∆tGk(q) + qk

2.4. Implementation of Unscented Kalman Filter

The previous section, we have derived the discrete-time nonlinear stochastic difference

equation as shown in (Eq. 2.3.3). However, to implement the UKF, we have to know some

measurements also. Actually, the angular velocity Ω = [Ωx,Ωy,Ωz]
T can be measured by

sensors as well. In this section, however, the measurement state equation can be assumed by

extracting the Ω = [Ωx,Ωy,Ωz]
T from the true equation (Eq. 2.3.3). Then, the measurement

state equation can be determined by

zk+1 = Cqk+1 + vk+1,

or, zk+1 = hd(qk+1, 0) + vk+1

(2.4.1)

where,

C =


0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

 ,
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and,

hd(qk+1, 0) = Cqk+1,

and vk ∈ R8 is the measurement noises at time k.

After getting the discrete-time nonlinear stochastic difference equation of the quadrotor

and its measurement as in (Eq. 2.3.3) and (Eq. 2.4.1) respectively, we then simulate the true

process for collecting the true data of the measurement to implement in UKF. The simulation is

performed in the program ”MATLAB 2014a” script. Additionally, to simulate the true process,

we need to initialize the value of some parameters as shown in Table 2.4.1. After obtaining the

data, the UKF algorithm can be derived briefly as the following

• Firstly, we initial the state estimate q̂0|0 ∈ R8 and its positive definite error covari-

ance matrix P0|0 ∈ R8×8. Secondly, we initial the process covariance noise Q ∈ R8×8 and the

measurement covariance noise R ∈ R3×3. Finally, we initial the parameters α, β, k, and λ.

? Note: All initial parameters can be tuned to get the better result. However, in the tuning

parameters, sometimes there is a problem with the positive definiteness of the error covariance

matrix P . So when we are tuning these parameters, we start initializing them from the small

value. As a result, we have obtained the initial parameters as shown in Table 2.4.2.

• After the some above parameters are initialized, the steps time update and measure-

ment update are then implemented by using the UKF algorithm.
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Table 2.4.1. Initial Parameters for True Process

Parameters Initial Value of the Parameters

l 0.5

M1 = M2 = M3 = M4 4

∆t 0.001

q0|0

[
0 0 0 0.1 0.2 0.3 0.05 0.1

]T
C


0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0



J 10−9 ×


57253259 492519.58 −201867.25

492519.58 58818844.45 5649.67

−201867.25 5649.67 86609602.22


Q 10−6 × diag

[
0.01 0.02 0.01 0.01 0.02 0.04 0.01 0.01

]
R 10−3 × diag

[
0.1 0.2 0.1

]

Table 2.4.2. Initial Parameters for Estimation Process

Parameters Initial Value of the Parameters

∆t 0.001

q̂0|0

[
1 5 0.2 4 5 6 0.5 −0.5

]T
α 0.1

β 2

k 0.1

P0|0 10−5 × diag
[
0.05 0.07 0.02 0.09 0.05 0.02 0.076 0.07

]
Q 10−7 × diag

[
0.7 0.5 0.1 0.2 0.6 0.4 0.2 0.2

]
R 10−2 × diag

[
0.03 0.05 0.07

]
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3. RESULTS AND DISCUSSION

3.1. Results

In the simulation of the UKF in estimating the center of mass of the quadrotor, we have

simulated eight different cases. Four cases correspond to the assumption that the center of mass

of the quadrotor is fixed, see in Table 3.1.1. The remaining four cases assume that center of

mass of the quadrotor changes over time, see in Table 3.1.2). The initial estimated x-axis and

y-axis of the center of mass were chosen to be δ̂rx = 0.5m and δ̂ry = −0.5m, respectively, in

all cases. Then, we have obtained the results as the following

Table 3.1.1. Test matrix assuming the center of mass of the quadrotor, δrx = 0.05m and

δry = 0.1m, are fixed

Case Studies Descriptions

Case 1 The thrusts of each rotor are chosen to be constant and equal

to each other, where F1 = F2 = F3 = F4 = 10N . In

this case, the results have been shown in Figure 3.1.3 and

Figure 3.1.4.

Case 2 The thrusts of each rotor are assumed to be constant and

be different from each other, where F1 = 7N , F2 = 9N ,

F3 = 11N , F4 = 13N . In this case, the results have been

shown in Figure 3.1.5 and Figure 3.1.6.

Case 3 The thrusts of each rotor are chosen to be trigonometric

functions and be equal to each other, where their values are

show in Figure 3.1.1 . In this case, the results have been

shown in Figure 3.1.7 and Figure 3.1.8.

Case 4 The thrusts of each rotor are chosen to be trigonometric

function and be not equal to each other, where their val-

ues have been expressed in Figure 3.1.2. In this case, the

results have been shown in Figure 3.1.9 and Figure 3.1.10.
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Table 3.1.2. Test studies with assuming the center of mass of the quadrotor changes over

time

Case Studies Descriptions

Case 5 The thrusts of each rotor are chosen to be constant and be

equal to each other, where F1 = F2 = F3 = F4 = 10N . In

this case, the results have been shown in Figure 3.1.11 and

Figure 3.1.12.

Case 6 The thrusts of each rotor are assumed to be constant and

be different from each other, where F1 = 7N , F2 = 9N ,

F3 = 11N , F4 = 13N . In this case, the results have been

shown in Figure 3.1.13 and Figure 3.1.14.

Case 7 The thrusts of each rotor are chosen to be trigonometric

functions and be equal to each other, where their values are

show in Figure 3.1.1 . In this case, the results have been

shown in Figure 3.1.15 and Figure 3.1.16.

Case 8 The thrusts of each rotor are chosen to be trigonometric

function and be not equal to each other, where their values

have been expressed in Figure 3.1.2. In this case, the results

have been shown in Figure 3.1.17 and Figure 3.1.18.
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Figure 3.1.1. The value of thrusts F1, F2, F3 and F4 for case studies 3 and 7
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Figure 3.1.2. The value of thrusts F1, F2, F3 and F4 for case studies 4 and 8
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Figure 3.1.3. Estimation of x axis of the center of mass of the quadrotor for case 1
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Figure 3.1.4. Estimation of y axis of the center of mass of the quadrotor for case 1
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Figure 3.1.5. Estimation of x axis of the center of mass of the quadrotor for case 2
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Figure 3.1.6. Estimation of y axis of the center of mass of the quadrotor for case 2
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Figure 3.1.7. Estimation of x axis of the center of mass of the quadrotor for case 3
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Figure 3.1.8. Estimation of y axis of the center of mass of the quadrotor for case 3
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Figure 3.1.9. Estimation of x axis of the center of mass of the quadrotor for case 4
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Figure 3.1.10. Estimation of y axis of the center of mass of the quadrotor for case 4
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Figure 3.1.11. Estimation of x axis of the center of mass of the quadrotor for case 5
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Figure 3.1.12. Estimation of y axis of the center of mass of the quadrotor for case 5
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Figure 3.1.13. Estimation of x axis of the center of mass of the quadrotor for case 6
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Figure 3.1.14. Estimation of y axis of the center of mass of the quadrotor for case 6
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Figure 3.1.15. Estimation of x axis of the center of mass of the quadrotor for case 7
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Figure 3.1.16. Estimation of y axis of the center of mass of the quadrotor for case 7
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Figure 3.1.17. Estimation of x axis of the center of mass of the quadrotor for case 8
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Figure 3.1.18. Estimation of y axis of the center of mass of the quadrotor for case 8
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3.2. Discussion

Since the quadrotor’s attitude can change during the fight, we have simulated eight

various cases to estimate the center of mass of the quadrotor, shown in Table 3.1.1 and Table

3.1.2. These cases are studied to prove that the UKF can estimate not only the center of mass

of the quadrotor in simple attitude but also in complex attitude. However, these eight cases are

separated into two important parts that are the fixed center of mass of the quadrotor and the

changing center of mass of the quadrotor. In the fixed center of mass of the quadrotor part as

shown in Table 3.1.1, we expect the quadrotor is lifting the loads fixed to the quadrotor while

it is flying. In the changing center of mass of the quadrotor part as shown in Table 3.1.2, we

expect the quadrotor is lifting the loads that can move on the quadrotor during the flight. In

these two parts, we expect the quadrotor is flying upward in case 1, tilting in case 2, flying

upward and downward back and forth in case 3, and rotating back and forth about x-axis and y-

axis in case 4. After we have done the simulation of all eight cases above, we observed that the

estimated curves of δ̂rx and δ̂ry at each case rapidly converge to the actual curve as well even

though the initial value of the estimated states are very far from the actual value. It takes about

0.5s for UKF to make the estimated curves reaching to the actual. After 0.5s, the estimated

curves almost completely overlap the actual curves even though the actual values are rapidly

changed over time. This means that UKF performs very accurately in estimation of the center

of mass of the quadrotor. So, the results are acceptable in practice such as designing controller.
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4. CONCLUSIONS AND RECOMMENDATION

4.1. Conclusions

This thesis research aims to predict the center of mass of the quadrotor in both fixed

center of mass and changing center of mass of the quadrotor. To accomplish the goals, we

have used dynamic modeling, Euler angle and Unscented Kalman Filter and have simulated

for the results in eight different cases. we have used dynamic modeling to model the rotational

equation of motion of the quadrotor which its center of mass is not only fixed in the epicenter

of its shape but also changing during the flight. The Euler angles have been used to model

the kinematic attitude of the quadrotor. The Unscented Kalman filter algorithm is applied to

the modeled equations for estimating the center of mass of the quadrotor. The simulation in

eight different cases proved that the UKF can estimate the center of mass of the quadrotor

very rapidly, not only in the simple attitude but also in the complex attitude. According to the

results of the thesis research, the estimation of the center of mass of the quadrotor by using

Unscented Kalman Filter algorithm is very reliable that can be accepted to manipulate in actual

application.

4.2. Recommendation for Future works

Although the estimation of center of mass of the quadrotor have been done by this

research, there are many works could be researched in the future. The following topics are

suggested for future works

• Estimation of the moment of inertia and drag forces of the quadrotor

• Design an adaptive controller for dealing with the changing of center of mass and

moment of inertia.
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