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A long-standing dream in computing has been to build machines that learn
like a child Turing (1950) — that grow into all the kinds and forms of knowledge
that human adults do, starting from much less. At a minimum, any such learning
system must be able to acquire many di↵erent kinds of expertise. Every child
becomes an expert in natural language, motor control, intuitive physics and
social interaction, and many will grow into adults with specialized expertise
in cooking, calculus, tennis, drawing pictures, or writing software. Despite
great advances, artificial intelligence (AI) is still far from acquiring human-like
expertise in any of these domains — let alone all of them, as a person can.

This gap points to a fundamental feature of human learning. When people
become experts in a domain, they learn not only specific tasks but also more
general learning and thinking abilities: how to solve new problems faster and
better than novices can, expressing their solutions in a far more compact, more
explanatory form with a conceptual vocabulary that novices do not have access
to and would hardly understand. Today’s machine learning systems, in contrast,
are built to solve specific tasks without this more abstract level of expertise.
AI systems learn to play challenging games at superhuman levels, but cannot
explain the strategies they come to, or transfer what they learn to related games
or variants, as a human expert can. Language models may generate convincing
English text within the styles they are trained on, but they do not learn to
analyze the abstract structures that generalize across di↵erent languages, as a
linguist does, nor learn to learn the meanings of new words more quickly, as a
child does when learning language (Smith et al., 2002; Kemp et al., 2007).

In this report, we summarize our projects in Bayesian concept learning from
both AI and cognitive science perspectives that were supported by the AFOSR
award FA9550-16-1-0012. In Sections 1-5, we summarize projects on program
induction which resulted in the following publications: (Ellis et al., 2018a),
(Ellis et al., 2019), (Ellis et al., 2018b), (Ellis et al., 2016), and (Nye
et al., 2019). In Section 6, we summarize a project on deep hierarchical
Bayesian modeling applied to one-shot learning of handwritten characters from
new alphabets: (Hewitt et al., 2018). In Sections 7-9, we summarize projects
on computational models of cognitive processes for learning concepts: (Rule
et al., 2015), (Rule et al., 2018), (Rule et al., 2019).
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1 DreamCoder (Ellis et al., 2018a)

We present a computational model called DreamCoder that takes a step towards
machines that can grow into genuine domain experts. Our work is inspired
by cognitive science suggesting that expertise takes two complementary forms.
First, experts learn explicit, declarative concepts that are abstract yet finely-
tuned to their domain. Artists learns concepts like arcs, spirals, symmetries,
and perspectives; physicists learn concepts like inner products, vector fields,
and conservation laws; and architects learn concepts like arches, supports, and
bridges. Second, experts acquire implicit, procedural skill in deploying those
concepts quickly to solve new problems. Compared to novices, experts more
faithfully classify problems based on the “deep structure” of their solutions Chi
et al. (1981); Chi and VanLehn (2012), seeing their underlying commonalities
and intuiting which compositions of concepts are likely to solve a task even be-
fore searching for a solution. These two forms of expertise bootstrap each other:
As learners build increasingly rich conceptual systems, more problems have easy
solutions, but the challenge of producing the best solution to a problem only
becomes harder, because the solution space expands with each new concept. We
aim to build AI that builds expertise as humans do, learning the right explicit
concepts together with the implicit skills to use those concepts e↵ectively as
knowledge grows. Figure 1 illustrates our proposed system and Figure 2 shows
shows samples from our system applied to the LOGO drawing domain.

2 Write, Execute, Assess: Program Synthesis
with a REPL (Ellis et al., 2019)

We present a neural program synthesis approach integrating components which
write, execute, and assess code to navigate the search space of possible pro-
grams. We equip the search process with an interpreter or a read-eval-print-
loop (REPL), which immediately executes partially written programs, exposing
their semantics. The REPL addresses a basic challenge of program synthesis:
tiny changes in syntax can lead to huge changes in semantics. We train a pair
of models, a policy that proposes the new piece of code to write, and a value
function that assesses the prospects of the code written so-far. At test time we
can combine these models with a Sequential Monte Carlo algorithm. We apply
our approach to two domains: synthesizing text editing programs and inferring
2D and 3D graphics programs. In Figure 3, we show examples of programs
synthesized by our system.

3 Learning to Infer Graphics Programs from Hand-
Drawn Images (Ellis et al., 2018b)

We introduce a model that learns to convert simple hand drawings into graphics
programs written in a subset of LATEX. The model combines techniques from

2
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Figure 1: The Bayesian model underlying our model and its basic algorithmic cy-
cle. Middle: DreamCoder as a graphical model. Agent observes programming
tasks (e.g., input/outputs for list processing or images for graphics programs),
which it explains with latent programs, while jointly inferring a latent library
capturing cross-program regularities. A neural network, called the recognition
model (red arrows) is trained to quickly infer programs with high posterior
probability. Top: Wake phase infers programs while holding the library and
recognition model fixed. Left: Sleep (Abstraction) phase updates library while
holding the programs fixed by refactoring programs found during waking and
abstracting out common components (highlighted in orange). Right: Sleep
(Dreaming) phase trains recognition model to predict approximate posterior
over programs conditioned on task. Trained on ‘Fantasies’ (programs sampled
from library) & ‘Replays’ (programs found during waking).

deep learning and program synthesis. We learn a convolutional neural network
that proposes plausible drawing primitives that explain an image. These draw-
ing primitives are a specification (spec) of what the graphics program needs to
draw. We learn a model that uses program synthesis techniques to recover a
graphics program from that spec. These programs have constructs like variable
bindings, iterative loops, or simple kinds of conditionals. With a graphics pro-
gram in hand, we can correct errors made by the deep network and extrapolate
drawings. Figure 4 shows the kinds of extrapolations enabled by our system.
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Figure 2: (A): 30 (out of 160) LOGO graphics tasks. Agent writes a program
controlling a ‘pen’ that draws the target picture. (B-C): Example learned
library routines. Agent learns interpretable parametric routines for drawing
families of curves (B) as well as primitives that take entire programs as input
(C). Each row of images on the left is the same code executed with di↵erent
parameters. Each image on the right is the same code executed with di↵erent
parameters and with a di↵erent subprogram provided as input. (D-E): dreams,
or sampled programs, from library before (D) and after learning (E, most in-
teresting dreams selected from 5 di↵erent runs), showing how dreams become
more complex with acquired expertise. Blue: where the agent started drawing.
Pink: where the agent ended drawing.
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Figure 3: Examples of programs synthesized by our system. Top, graphics
program from voxel specification. Bottom, string editing program from input-
output specification.

Figure 4: Top, white: drawings. Bottom, black: extrapolations automatically
produced by our system.

4 Sampling for Bayesian Program Learning (El-
lis et al., 2016)

Towards learning programs from data, we introduce the problem of sampling
programs from posterior distributions conditioned on that data. Within this
setting, we propose an algorithm that uses a symbolic solver to e�ciently sam-
ple programs. The proposal combines constraint-based program synthesis with
sampling via random parity constraints. We give theoretical guarantees on how
well the samples approximate the true posterior, and have empirical results

5
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showing the algorithm is e�cient in practice, evaluating our approach on 22
program learning problems in the domains of text editing and computer-aided
programming.

5 Learning to Infer Program Sketches (Nye et al.,
2019)

Our goal is to build systems which write code automatically from the kinds of
specifications humans can most easily provide, such as examples and natural
language instruction. The key idea of this work is that a flexible combina-
tion of pattern recognition and explicit reasoning can be used to solve these
complex programming problems. We propose a method for dynamically inte-
grating these types of information. Our novel intermediate representation and
training algorithm allow a program synthesis system to learn, without direct
supervision, when to rely on pattern recognition and when to perform symbolic
search. Our model matches the memorization and generalization performance of
neural synthesis and symbolic search, respectively, and achieves state-of-the-art
performance on a dataset of simple English description-to-code programming
problems. Figure 5 shows an overview of our model.

Figure 5: Schematic overview of our model. A program spec (in the form
of examples) is fed into a sketch generator, which outputs a distribution over
sketches. In our experiments, the neural sketch generator is parametrized by
a seq-to-seq recurrent neural network with attention. The program sketch is
given to a program synthesizer, which searches for full programs which satisfy
the spec. Our enumerative synthesizer is guided by a learned recognizer, which
is conditioned on the spec and the sketch and predicts the likelihood of using
each program token to fill in the sketch.

6 The Variational Homoencoder (Hewitt et al.,
2018)

Hierarchical Bayesian methods can unify many related tasks (e.g. k-shot clas-
sification, conditional and unconditional generation) as inference within a sin-
gle generative model. However, when this generative model is expressed as a
powerful neural network such as a PixelCNN, we show that existing learning
techniques typically fail to e↵ectively use latent variables. To address this, we
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develop a modification of the Variational Autoencoder in which encoded obser-
vations are decoded to new elements from the same class. This technique, which
we call a Variational Homoencoder (VHE), produces a hierarchical latent vari-
able model which better utilises latent variables. We use the VHE framework
to learn a hierarchical PixelCNN on the Omniglot dataset, which outperforms
all existing models on test set likelihood and achieves strong performance on
one-shot generation and classification tasks. We additionally validate the VHE
on natural images from the YouTube Faces database. Finally, we develop exten-
sions of the model that apply to richer dataset structures such as factorial and
hierarchical categories. Figure 6 shows examples of one-shot learning enabled
by our model.

Figure 6: One-shot same-class samples generated by our model. Cue images
were sampled from previously unseen classes.

7 Representing and Learning a Large System of
Number Concepts with Latent Predicate Net-
works (Rule et al., 2015)

Conventional models of exemplar or rule-based concept learning tend to focus
on the acquisition of one concept at a time. They often underemphasize the
fact that we learn many concepts as part of large systems rather than as iso-
lated individuals. In such cases, the challenge of learning is not so much in

7
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providing stand-alone definitions, but in describing the richly structured rela-
tions between concepts. The natural numbers are one of the first such abstract
conceptual systems children learn, serving as a serious case study in concept
representation and acquisition (Carey, 2009; Fuson, 1988; Gallistel & Gelman,
2005). Even so, models of natural number learning focused on single-concept
acquisition have largely ignored two challenges related to natural number’s sta-
tus as a system of concepts: 1) there is an unbounded set of exact number
concepts, each with distinct semantic content; and 2) people can reason flex-
ibly about any of these concepts (even fictitious ones like eighteen-gazillion).
To succeed, models must instead learn the structure of the entire infinite set
of number concepts, focusing on how relationships between numbers support
reference and generalization. Here, we suggest that the latent predicate net-
work (LPN) – a probabilistic context-sensitive grammar formalism – facilitates
tractable learning and reasoning for natural number concepts (Dechter, Rule &
Tenenbaum, 2015). We show how to express several key numerical relationships
in our framework, and how a Bayesian learning algorithm for LPNs can model
key phenomena observed in children learning to count. These results suggest
that LPNs might serve as a computational mechanism by which children learn
abstract numerical knowledge from utterances about number. Figure 7 shows a
comparison between data from real child learning and our model.

Figure 7: Our model compared with children’s counting data a) Data from
Fuson et al. (1982). The x-axis shows the highest number correctly reached
when children were asked to count starting at “one.” Boxes correspond to the
standard deviation, central bands to the means, and whiskers to the range. b)
Model performance, averaged over ten runs at four stages of increasing data
quantity.

8 Learning list concepts through program in-
duction (Rule et al., 2018)

Humans master complex systems of interrelated concepts like mathematics and
natural language. Previous work suggests learning these systems relies on it-
eratively and directly revising a language-like conceptual representation. We
introduce and assess a novel concept learning paradigm called Martha’s Magical
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Machines that captures complex relationships between concepts. We model hu-
man concept learning in this paradigm as a search in the space of term rewriting
systems, previously developed as an abstract model of computation. Our model
accurately predicts that participants learn some transformations more easily
than others and that they learn harder concepts more easily using a bootstrap-
ping curriculum focused on their compositional parts. Our results suggest that
term rewriting systems may be a useful model of human conceptual representa-
tions.

9 Learning a novel rule-based conceptual sys-
tem (Rule et al., 2019)

Humans have developed complex rule-based systems to explain and exploit the
world around them. When a learner has already mastered a system’s core
dynamics—identifying its primitives and their interrelations—further learning
can be e↵ectively modeled as discovering useful compositions of these primitives.
It nevertheless remains unclear how the dynamics themselves might initially be
acquired. Composing primitives is no longer a viable strategy, as the primitives
themselves are what must be explained. To explore this problem, we intro-
duce and assess a novel concept learning paradigm in which participants use a
two-alternative forced-choice task to learn an unfamiliar rule-based conceptual
system: the MUI system (Hofstadter, 1980). We show that participants reliably
learn this system given a few dozen examples of the system’s rules, leaving open
the mechanism by which novel conceptual systems are acquired but providing
a useful paradigm for further study.
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