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“Improving the Understanding Heat and Carrier Transport in High-Performance 

Electronic Heterostructure Devices through Proper Treatment of Boundary Effects in 

Wide Bandgap Structures including AlN-based and GaN-based Structures” 

 

ABSTRACT 

The focus of this effort is on improving the fundamental understanding heat and carrier transport 

by better the modeling of phonons and phonon effects in electronic devices deals with the essential 

– but unimplemented – step of properly treating the full set of coupled phonon modes and boundary 

conditions at interfaces.  In addition, this effort has considered LO phonon production from hot 

electrons that are accelerated form the 2DEG and eventually decay anharmonically into acoustic 

phonons which produce heat.  Confinement effects have been taken into account in order to obtain 

correct LO phonon decay rates in dimensionally confined structures.  In order to model transport 

in wurtzite structures – including AlN, GaN, and AlxGa1-xN – the known set of seven coupled 

differential equations describing the coupled mechanical (with acoustic content) and electrical 

(with optical content) phonon modes is being generalized by incorporation of anisotropic effects 

inherent in wurtzites such as GaN.  The dielectric continuum model is being used to model 

interface phonon effects in these structures, including critical nanoscale confinement effects, and 

phonon scattering processes – including decay in dimensionally-confined structures – are being 

modeled based in consideration of anharmonic effects.  These generalized equations are being 

applied to model slowness curves, dispersion curves, and transport rates using the full set of 

wurtzite (GaN-like and AlN-like) phonon-mode solutions of the above-described generalized 

equations.  Experimental studies in this effort are aimed at verifying theoretical predictions.  III-

nitride superlattices have been characterized by Raman scattering. 
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(1) Introduction 

 

The effort focusses on improving the understanding heat and carrier transport by improved 

modeling of phonons and phonon effects in electronic/optoelectronic devices deals with the 

essential – but unimplemented – step of properly treating the full set of coupled phonon modes 

and boundary conditions at interfaces.  .  In addition, this effort has considered LO phonon 

production from hot electrons that are accelerated form the 2DEG and eventually decay 

anharmonically into acoustic phonons which produce heat.  Confinement effects have been taken 

into account in order to obtain correct LO phonon decay rates in dimensionally confined 

structures.  In order to model transport in wurtzite structures – including AlN, GaN, and AlxGa1-

xN – the known set of seven coupled differential equations describing the coupled mechanical 

(with acoustic content) and electrical (with optical content) phonon modes is being generalized 

by incorporation of anisotropic effects inherent in wurtzites such as GaN.  In addition, the 

dielectric continuum model is being used to model interface phonon effects in these structures, 

including critical nanoscale confinement effects, and phonon scattering processes – including 

decay in dimensionally-confined structures – are being modeled based in consideration of 

anharmonic effects.  These generalized equations are being applied to model slowness curves, 

dispersion curves, and transport rates using the full set of wurtzite (GaN-like and AlN-like) 

phonon-mode solutions of the above-described generalized equations.  These studies are 

incorporating nanoscale treatments of phonons and phonon effects near heterointerfaces.  These 

studies will be complemented with selected experimental measurements to verify model 

predictions.  III-nitride superlattices have been characterized by Raman scattering, 

(2) List of Appendixes --- N/A 

 

(3) Statement of Problem Studied 

 

 

In order to improve the treatment of heat and carrier transport in GaN-based and AlN-based 

high-performance devices this effort considers coupled equations for phonon modes, 

confinement effects and anharmonic effects.  To deal with the frequently-neglected – but 

important – (1) full set of boundary conditions, (2) coupling of mechanical (with acoustic 

content) and electrical (with optical content) modes, and (3) crystthsial anisotropy in a unified 

framework , we will to extend the very general treatment of Comas, Trallero-Giner and Cardona 

[1] by incorporating the anisotropy effects present in wurtzites – including AlN and GaN – using 

the uniaxial (where a c-axis is present) formulation of our past work on wurtzites [2-9].  With 

this anisotropic generalization of the treatment of Ref. 4, where the properly coupled acoustic 

and optical phonon modes are treated on a unified basis through coupled differential equations 

with accompanying boundary conditions, we are considering the thermal effects manifested by 

phonons at heterointerfaces.  The formulation of Ref. 4 has been applied previously to 
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heterogeneous  structures with two interfaces for the case where the bulk phonon description is 

no longer appropriate since the bulk phonon modes are replaced by confined phonons, interface 

phonons, and half-space phonons; see Ref. 3 for a description of these modes for zincblende and 

wurtzite crystals.  However, it is essential to realize that even in the case of a single interface, the 

bulk phonons form interface phonons and half-space phonons.  The interface and half-space 

phonons have been discussed extensively for the case of optical phonons (see Ref. 3 for 

references to many such papers, and Ref. 10 for a unifying treatment); however, there has been 

far less attention to such acoustic phonon modes.  That such acoustic modes are present and 

important has been known for many years through the existence of Love acoustic waves, 

Rayleigh acoustic waves, Lamb acoustic waves, Stoneley acoustic waves, and coupled surface 

acoustic waves at interfaces; see Ref. 11 for an extensive discussion of such acoustic modes.   

Accordingly, our treatment of thermal effects near interfaces is  based on the formulation of Ref. 

4 with our incorporation of anisotropy.  Importantly, the generality of this approach is enabling 

us to take into account the relevant interface and half-space modes near interfaces and to 

quantify their role in carrier and heat transport.  In this effort, parallel studies on phonon-

mediated carrier transport are based on the dielectric continuum model to study the effect of 

variations in phonon potentials on the nanoscale near interfaces.  In addition, the dielectric 

continuum model and the elastic continuum model are used to incorporate confinement effects in 

essential processes such as anharmonic effects including phonon decay effects; these effects are 

being considered in both wurtzite and zincblende structures.  These confinement and anharmonic 

effects are essential in the general application of the generalized seven coupled differential 

equations and their boundary conditions describing the coupled acoustic modes and the optical 

modes by including anisotropies so that these equations may be applied to anisotropic wurtzite 

crystals including GaN. 

The basic formulation of Ref. 4 and an earlier paper by several authors of Ref. 4 [12] is being used 

in this effort. From Ref. 12, the equation of motion for the vibrational amplitude, u, which contains 

spatial dispersion, and coupling to the electrostatic field is the well-known equation, 

𝜌(𝜔2 − 𝜔𝑇𝑂
2 )𝒖 − 𝛁(𝜌𝑣𝑎

2𝛁 ∙ 𝒖) − ∇ ∙ (𝜌𝑣𝑏
2𝛁𝒖) + (

(𝜖0 − 𝜖∞)

4𝜋
)

1/2

𝜔𝑇𝑂𝑬 = 0 

where 𝜌 is the mass per unit volume, 𝜖0 and 𝜖∞ are the static and high-frequency dielectric 

constants, and 𝜔𝑇𝑂 is the bulk transverse-optical frequency.  

Moreover, as from the forerunner of Ref. 4, Ref. 12, the mechanical forces have the form of the 

divergence of a tensor τ 

𝜏⃡ = 𝜌𝑣𝑎
2∇ ∙ 𝒖𝐼⃡ + 𝜌𝑣𝑏

2𝛁𝒖 

where 𝒗𝒂 and 𝒗𝒃 are related to the usual Lame constants λ and μ. 
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Based on this model, Ref. 12 examines how the mechanical and electrostatic fields can be obtained 

while taking their coupling fully into account.  This coupling may be established within the context 

of electrostatics in terms of the electrostatic potential, Φ, the electric field, E, the displacement 

field, D, and the electric polarization, P, through, 

𝑬 = −𝛻𝛷,    𝛻 ∙ 𝑫 = 0,  and   𝑫 = 𝑬 + 4𝜋𝑷,  

where, as is generally done, the external charge has been taken as zero as in Ref. 12. 

Using the well-known constitutive relation of Born and Huang [13],  

𝐏 = (
𝜌(𝜖0−𝜖∞)

4𝜋
)
1/2

𝜔𝑇𝑂𝒖 +
(𝜖∞−1)

4𝜋
𝑬, 

it follows that, from Ref. 12 that, 

∇2Φ = 4𝜋 𝜵 ∙ 𝑷. 

Upon combining using the above expressions with the Lyddane-Sachs-Teller relations yields 

∇2Φ = [4𝜋𝜌(𝜖∞
−1 − 𝜖0

−1)]1/2𝜔𝐿𝑂𝛻 ∙ 𝒖. 

The coupling between the u and Φ is now explicitly written into the field equations.  In this way 

Ref. 12 illustrates the coupling between the mechanical (acoustic phonon variables) and 

electrostatic (optical phonon variables) by combining this last result with the initial equation for 

the vibrational mode amplitude above to yield: 

𝜌(𝜔2 − 𝜔𝑇𝑂
2 )𝒖 − 𝛁(𝜌𝑣𝑎

2𝛁 ∙ 𝒖) − ∇ ∙ (𝜌𝑣𝑏
2𝛁𝒖) − (

(𝜖0 − 𝜖∞)

4𝜋
)

1/2

𝜔𝑇𝑂𝛻𝛷 = 0 

The results of Ref. 12 are further extended and consolidated in Ref. 4 in a coherent and self-

consistent manner based on a general Lagrangian approach.  In particular, using this approach 

the results of Ref. 12 are extended by Ref. 4 to show that, 

𝜌 (𝜔2 − 𝜔0𝑗
2) 𝑢𝑗 =

𝜕

𝜕𝑥𝑙
𝜎𝑗𝑙 −

𝑖𝜔

𝑐
𝛼𝑗𝑙𝐴𝑙 + 𝛼𝑗𝑙

𝜕𝜙

𝜕𝑥𝑙
, 

𝛻2𝐴𝑗 +
𝜔2

𝑐2 𝜖𝑗𝑙
∞𝐴𝑙 = −

𝑖𝜔

𝑐
[(𝜖𝑗𝑙

∞ − 𝛿𝑗𝑙)
𝜕𝜙

𝜕𝑥𝑙
− 4𝜋𝛼𝑗𝑙𝑢𝑙 ], 

and 
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𝜖𝑗𝑙
∞

𝜕2𝜙

𝜕𝑥𝑗𝜕𝑥𝑙
=

𝑖𝜔

𝑐
𝜖𝑗𝑙

∞
𝜕𝐴𝑗

𝜕𝑥𝑙
+ 4𝜋𝛼𝑗𝑙

𝜕𝑢𝑗

𝜕𝑥𝑙
 

which constitute the set of seven second order coupled partial differential equations.  In these 

equations, A is the vector potential, 𝛼𝑗𝑙, is a tensor coupling the displacement with the electric 

field, 𝜎𝑗𝑙 is the stress tensor, and all other quantities are as defined previously.  In solving these 

coupled equations, as demonstrated in Ref. 4, it is necessary to require the continuity of u, A, φ, 

the normal component if the stress tensor, the tangential component of E, and the normal 

component of D.   

It is the last set of three equations and the twelve accompanying boundary conditions that will be 

used in this research.  However, to generalize this system so that it is applicable to wurtzite crystals 

– including GaN – it is necessary to follow the procedures that the co-authors employed in [3, 5-

9] where the diagonal dielectric tensor is known to have one diagonal component corresponding 

to the c-axis dielectric and two equal diagonal components corresponding to the dielectric constant 

in the plane perpendicular to the c-axis.  This generalization is being pursued in this research. 

Experimental studies and theoretical modeling of the role interfaces on the carrier and thermal 

transport in structures including those in AlN-based and GaN-based devices as well as in wurtzite 

and zincblende structures generally are being undertaken in this research. 

In this research we are considering particular AlN-based and GaN-based structures – as well as 

other wurtzite structures and zincblende structures - and we are modeling the role of interfaces on 

the carrier and thermal transport in structures including those in AlN-based GaN-based devices.  

Parallel studies on phonon-mediated carrier transport are being conducted using the dielectric 

continuum model to study the effect of variations in phonon potentials on the nanoscale near 

interfaces.  Also as discussed previously, the dielectric continuum model and the elastic continuum 

model are being used to incorporate confinement effects in essential processes such as anharmonic 

effects including phonon decay effects; these effects will be considered in both wurtzite and 

zincblende structures.   

Raman scattering measurements using the established UV-visible Raman measurement 

capabilities in the co-PI’s NanoEngineering Research Laboratory are being used for: temperature 

profile measurements based the temperature dependence of the Raman modes as well as for 

essential measurements of phonon energies of the confined and interface phonons as well as the 

phonon linewidths for the determination of the essential phonon anharmonic decay rates as in our 

previously published papers.   

 

(4) Summary of Most Important Results  
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The most important results obtained during this period of this effort include: determination of 

anharmonic phonon decay rates for the decay of confined phonons; formulation of equations 

describing coupled acoustic-optical phonon modes in wurtzites; determination of momentum and 

energy relaxation rates of hot electrons that are emitting optical phonons which subsequently 

decay into acoustic phonons, which carry heat; TEM and Raman characterization of AlN-GaN 

superlattices that are being pursued for enhanced acoustic phonon speeds; and phonon 

engineering of AlN-GaN superlattices that are being pursued for enhanced acoustic phonon 

speeds.   

 

In this research, the role of phonon confinement on the anharmonic decay of an LO is analyzed.  

Anharmonic interactions describe the decay of phonon modes in via the Klemens channel [1]. The 

interaction Hamiltonian for three phonon process can be written as  

 

𝐻𝑘,𝑗;𝑘′,𝑗′;𝑘′′,𝑗′′ =
1

√𝑁
 𝑃(𝑘, 𝑗; 𝑘′, 𝑗′; 𝑘′′, 𝑗′′) 𝑢𝑘,𝑗𝑢𝑘′,𝑗′𝑢𝑘′′,𝑗′′  

 

where 𝑘, 𝑘′, 𝑘′′ are the three phonon wave vectors involved in the annihilation or creation process, 

𝑗, 𝑗′, 𝑗′′ are the polarization of the three phonons and N = number of unit cells present. P describes 

the cubic (anharmonic) coupling. The phonon displacement in normal coordinates is represented 

as: 

 

𝑢𝑘,𝑗 = (
ℎ̅

2𝑚𝜔𝑘,𝑗
)

1
2

𝑒𝑘,𝑗
′ (𝑎𝑘,𝑗𝑒

𝑖𝑘⃗ 𝑟 + 𝑎𝑘,𝑗
† 𝑒−𝑖𝑘⃗ 𝑟 )  

𝑢(𝑟 ) =
1

√𝑁
 ∑ ∑ (

ℎ̅

2𝑚𝜔𝑞,𝑗
)

1
2

(𝑎𝑞,𝑗𝑒
𝑖𝑞⃗ 𝑟 𝑒𝑞,𝑗̂ + 𝑎𝑞,𝑗

† 𝑒−𝑖𝑞⃗ 𝑟 𝑒𝑞,𝑗̂
∗)

𝑗=1,2,3𝑞

=
1

√𝑁
 ∑ ∑ 𝑢𝑞,𝑗⃗⃗ ⃗⃗ ⃗⃗  

𝑗=1,2,3𝑞

  

 

where 𝑎𝑘,𝑗 ,  𝑎𝑘,𝑗
†

 denoted the annihilation and creation operator, respectively, 𝑒𝑘,𝑗
′  is the 

polarization vector, m is the reduced mass of the lattice atoms and 𝜔𝑞,𝑗 is the frequency of the 

normal mode. The displacement vector can be represented as following, with the direction of 

confinement and direction perpendicular to it. 

 

𝑢(𝑟 ) = 𝑒±𝑖𝑞⃗ .𝑟 = 𝑢(𝑧)𝑒±𝑖𝑞𝐼𝐼⃗⃗⃗⃗⃗⃗ .𝑟𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗  = (cos(𝑞𝑧𝑧) ± 𝑖𝑠𝑖𝑛(𝑞𝑧𝑧))𝑒
±𝑖𝑞𝐼𝐼⃗⃗⃗⃗⃗⃗ .𝑟𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗    
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The decay lifetime for phonons can be calculated using Fermi golden rule, the matrix element in 

Fermi golden rule can be simplified as 1D problem for a quantum-confined structure confined in 

the z-direction.  

 

1

𝑉
∫|𝑀|2

𝑎𝑣𝑒𝑑𝑉 =
1

𝐿𝑧
∫𝑢2(𝑧)𝑑𝑧  

 

Taking into account the confinement of the LO phonon in the GaAs structure to can be describe 

by either the slab model (V = 0 at ±  𝐿𝑧/2) or the guided model (u = 0 at ±  𝐿𝑧/2) [1] yields the 

same value for the average matrix element squared, respectively: 

 

|𝑀|2
𝑎𝑣𝑒 =

1

𝜋
 ∫ sin2 𝑦

𝜋
2

−
𝜋
2

𝑑𝑦 =  
1

𝜋
 ∫ cos2 𝑦

𝜋
2

−
𝜋
2

𝑑𝑦 =
1

2
   

 

These results indicate that the decay rate for the lowest LO phonon mode in either the slab or the 

guided model is approximately half that of the bulk phonon. 

 
In this early period of the research we have also derived that describe the coupled acoustic-optical 
modes for wurtzites.  We find, 

  

     ρuï − γijuj +
∂

∂xj
{σij} = −αijEj  

Moreover, the polarization vector can be obtained as:  

Pj = αijui + βijEi  

The analytical expressions for 𝛽𝑖𝑗, 𝛾𝑖𝑗 and 𝛼𝑖𝑗 can also be obtained from the static and high 

frequency dielectric function of the medium.  Explicit expressions for the full set of stress-strain 
relations for wurtzite crystals follow: 
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σxx = c11(uxx + uyy) + c13uzz − (c11 −

c12)uyy  

σyy = c11(uxx + uyy) + c13uzz

− (c11 − c12)uxx 

σzz = c33uzz + c13(uxx+uyy) 

σxy = (c11 − c12)uxy 

σxz=2c44uxz 

σyz= 2c
44

uyz 

 

    

The carrier-phonon emission rates for momentum relaxation and energy relaxation were derived 

based on the Frohlich Hamiltonian  [14].  These rates are depicted in Fig. 1.  These rates  

 

 

 
Fig. 1. (a) Absolute value of the momentum  relaxation rates  and (b) the rate of energy change  

due to emission and absorption of LO-like and TO-like phonons are plotted as a function of 

electron initial energy . The temperature is set to T = 300 K and the incident electron angles with 

respect to the c-axis are set to θ
k
 = 0 (solid line), π/4 (dashed line), and π/2 (dotted line). 
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The size of the hot spot created when hot electrons emit optical phonons which in turn emit 

acoustic phonons that carry heat.  Our initial estimated for the sizes of these hot spots are 10s on 

nm.  In early efforts to engineer phonons to reduce the temperature of the hot, spot the high 

propagation velocity of interface (IF) optical has been estimated as compared with that of LO 

phonons in bulk.  Since the IF optical phonon has a velocity roughly equal to that of an acoustic 

phonon, the IF optical modes propagate approximately 10 nm over their decay time with the 

consequence that the hot spot size is doubled from its nominal size of roughly 10 nm; this effect 

will lower the temperature of the hot spot.  This focus will be explored further in the second year 

of this effort. 

In another effort on engineering heat transport using phonon effects, the enhanced acoustic phonon 

velocity in superlattices is being examined.   This approach depends on the growth of high-quality 

superlattices with little interface roughness; it is not yet clear that such superlattice quality is 

possible. Nevertheless, for high quality superlattices, the phonon velocity may be enhanced by 

replacing GaN with GaN-AlN superlattices where the relative thicknesses, d’ and d, are those of 

the AlN layers and GaN layers in each superlattice period, respectively.  Using an effective elastic 

constant mode we find that the sound speed of acoustic modes in the superlattice can be enhanced 

by about 30% as shown in Fig. 2. 

 

 

 

Fig. 2.  Sound speed in an AlN-GaN superlattice as a function of the ratio, d’/d.   
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In this phonon engineering approach, the speed of the heat-carrying acoustic phonons is enhanced 

by about 30% as the Al-to-Ga content of the superlattice is enhanced.  When piezoelectric 

stiffening is taken into account the results are as shown in Fig. 3. 

 

 

Fig. 3.  Sound speed in an AlN-GaN superlattice as a function of the ratio, d’/d when piezoelectric 

stiffening is taken into account. 

AlN-GaN superlattices with alternation layers that are 3 monolayers thick have been characterized 

using TEM; a TEM image is shown in Fig. 4.   
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Fig. 4. TEM image of GaN-AlN superlattice having alternating layers that are 3 monolayers thick. 

The superlattice of Fig. 4 corresponds to d’/d = 1 in Figs. 2 and 3. 

Results from the first period of this effort  include: determination of anharmonic phonon decay 

rates for the decay of confined phonons; formulation of equations describing coupled acoustic-

optical phonon modes in wurtzites; determination of momentum and energy relaxation rates of 

hot electrons that are emitting optical phonons which subsequently decay into acoustic phonons, 

which carry heat; TEM and Raman characterization of AlN-GaN superlattices that are being 

pursued for enhanced acoustic phonon speeds; and phonon engineering of AlN-GaN 

superlattices that are being pursued for enhanced acoustic phonon speeds.   

 

 

During this research, we have: determined the role of dimensional confinement on the lifetime of 

selected phonon modes; demonstrated that quantum wells may be realized that preferentially 

promote the emission of LO phonons in high-velocity interface phonon channels as opposed to 

lower-velocity confined phonons; demonstrated Raman-based techniques for measuring in 

semiconductors; and have made significant progress in understanding the basic coupling of optical 
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and acoustic phonons in dimensionally-confined wurtzite heterostructures.  These advanced have 

been reported in: 

Ketaki Sarkar, Debopam Datta, David J Gosztola, Fengyuan Shi, Alan Nicholls, Michael A 

Stroscio and Mitra Dutta, “Raman analysis of phonon modes in a short period AlN/GaN 

superlattice”, Superlattices & Microstructures, 115, 116-122 (2018). 

 

Debopam Datta,  Mitra Dutta, and Michael A. Stroscio, 2017, July. Coupled acousto-optical 

phonons in wurtzites: Micro-to-nano-scale bridging. In Nanotechnology (IEEE-NANO), 2017 

IEEE 17th International Conference on (pp. 189-192). IEEE. DOI: 10.1109/NANO.2017.8117416 

 

Moreover, two additional key papers have been submitted as follows: 

 

Debopam Datta, Kirupavathi Krishnababu, Michaal Stroscio, and Mitra Dutta, Effect of quantum 

confinement on lifetime of anharmonic decay of optical phonons in semiconductor nanostructures, 

Article reference: JPCM-111418 (submitted to Journal of Physics: Condensed Matter, June 2018)  

 

Kihoon Park, Ahmed Mohamad, Can Bayram, Mitra Dutta, and Michael A. Stroscio, Electron 

Scattering via Interface Phonons with High Group Velocity in a Wurtzite GaN-based Quantum 

Well Structure, (submittted to Physical Review B, June 2018). 

 

Additional portions of these results were reported in the peer-reviewed presentation: 

 

Debopam Datta, Mitra Dutta, and Michael A. Stroscio, Coupled-Optical Phonons in Wurtzites: 

Micro-to-Nano-Scale Bridging, IEEE NANO 2017, Pittsburgh (July 2017).    

 

    More specifically, during this period, we have performed a detailed theoretical analysis and 

comparison of the interaction between electrons and optical phonons of interface and confined 

modes in a wurtzite AlN/GaN/AlN quantum well heterostructure based on the uniaxial dielectric 

continuum model. The formalism describing the interface and confined mode optical phonon 

dispersion relation, the electron–phonon scattering rates, and the average group velocity of emitted 

optical phonons were developed and numerically calculated. We have shown that the dispersion 

relation of the interface mode phonons shows a convergence of the symmetric and asymmetric 

modes to the resonant phonon frequencies 577.8 and 832.3 cm-1 with a steep slope around the zone 

center indicating a large group velocity of the interface phonons. The maximum group velocity of 

the interface mode phonons is 138 km/s which is almost 20 times larger than that of the confined 

mode phonons. At the onset of interface phonon emission, the average group velocity is small due 

to the large contribution of confined and interface mode phonons with close-to-zero group 

velocity, but eventually increases up to larger values than the bulk GaN longitudinal acoustic mode 
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phonon propagation velocity along the wurtzite crystal c-axis [0001] (8 nm/ps). We have shown 

that by adjusting the thickness of the GaN in the double heterostructure, the average group velocity 

can be engineered to become larger than the propagation of acoustic phonons at a specific electron 

energy. This suggests that the high group velocity interface mode optical phonons can be exploited 

to remove heat more effectively and reduce junction temperatures in GaN-based heterostructures. 

      Our novel phonon engineering technique provides an innovative way of spreading region over 

which optical phonons emitted by hot electrons before they emit heat carrying acoustic phonons. 

It is thus clear for the first time that fundamental phenomena underlying phonon engineering of 

confined and interface phonons can provide a means of modifying temperature distributions and 

reduce peak temperatures in III-nitride heterostructures having large Frohlich interactions. 

      In the double heterostructure of interest in this work, which is a GaN quantum well sandwiched 

by two AlN layers (AlN/GaN/AlN), there exists four distinct classes of optical phonon modes: the 

interface, confined, half-space, and propagating modes as discovered by Dutta, Stroscio and 

coworkers (see Stroscio and Dutta, Phonons in Nanostructures, Cambridge University Press, 

2001). Among these four optical phonon modes, the electrons that are confined in the GaN 

quantum well mostly interact with the interface and confined phonons; the effect of the half-space 

and propagating modes on the electrons is negligible in this system. Here, therefore, we consider 

the electron scattering with interface and confined mode optical phonons.  

     In a heterostructure configuration, the available optical phonon modes and the phonon 

frequencies for each mode are determined by the relation between the dielectric constant functions. 

The frequency-dependent dielectric functions parallel εz and perpendicular εt to the z-axis are given 

as:  
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where ω is the phonon frequency, ωLz, ωz, ωLt, and ωt are the characteristic frequencies of A1(LO: 

longitudinal-optical), A1(TO: transverse-optical), E1(LO), and E1(TO) optical phonon modes, 

respectively. For the AlN/GaN/AlN quantum well, two sets of material parameters are required 

such that we obtain four dielectric functions, namely ε1z, ε1t, ε2z, and ε2t, where the subscripts 1 and 

2 indicate the GaN and AlN, respectively. With ω = 0, the Lyddane-Sachs-Teller relation is 

recovered and the static dielectric constants are obtained. Throughout this paper, we take the z-

axis along the c-axis of the wurtzite crystal [0001] and perpendicular to the heterointerfaces.  

The conditions imposed on the available interface mode optical phonon frequency are  

 1 1t 2 2t 1 2z0, 0, and 0z z z        .  (3) 

For confined modes, the conditions are  

 1 1t 2 2t0 and 0z z     .  (4)  

The characteristic frequencies of the dielectric functions which define the phonon frequency 

ranges are indicated by vertical dashed lines. The interface phonons are allowed in two phonon 

frequency intervals, 1t 2z( , )   and 1Lt 2Lz( , )  . Since the former (latter) interval corresponds to 

the TO (LO) phonon frequencies of GaN and AlN, we label the phonon modes that lie in this 
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frequency range as TO (LO) interface phonons. These intervals are indicated in the figure as red 

and blue shaded regions, respectively. Similarly, the confined phonons are allowed in two phonon 

frequency intervals, 1z 1t( , )   and 1Lz 1Lt( , )  . The characteristic phonon frequencies associated 

with these intervals are from the TO and LO phonon frequencies of GaN, and hence we label them 

as TO confined and LO confined phonons. The TO and LO confined phonon frequency ranges are 

shown in the figure as green and magenta shaded regions, respectively.  

   The dispersion relations for the symmetric 
IF

Sq  and asymmetric 
IF

Aq  interface phonon modes are 

described by 

 IF 1 2
S
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where 
1t 1z

1
( ) ( )

2
     , 1 1z 1t( ) ( )     , 2 2z 2t( ) ( )     , and d is the quantum 

well thickness. The GaN quantum well thickness d is set to a default value of 5 nm in the following 

calculations unless otherwise specified. The phonon wave vectors 
IF

Sq  and 
IF

Aq  must be real and 

positive which implies that symmetric and asymmetric modes are distinguished based on the 

polarity of ξ1 – ξ2.  

The resonant interface phonon frequency is obtained from ξ1 = ξ2. The ωTO,res and ωLO,res are the 

TO and LO resonant interface frequencies where ξ1 and ξ2 are equal in the TO and LO phonon 

frequency range, respectively. These frequencies are calculated as ωTO,res = 577.8 cm-1 and ωLO,res 

= 832.3 cm-1. From the definition of the symmetric and asymmetric phonon wave vectors, the 

symmetric mode is only defined in the frequency range where ξ1 > ξ2 and the asymmetric mode is 

only defined in the range where ξ1 < ξ2. Combined with the constraints of the dielectric constants, 

the symmetric TO interface modes can only be defined in the phonon frequency range (ω1t, ωTO,res) 

and the symmetric LO modes in the range (ωLO,res, ω2Lz). Similarly, the asymmetric TO interface 

phonons are only defined in (ωTO,res, ω2z) and the asymmetric LO modes in (ω1Lt, ωLO,res). 

To investigate the scattering rate between electrons and interface phonons, we adapt the expression 

from our previous work:    
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with 
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0 for ( , , ) 0

1 otherwise
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  (9) 

where 
*

0m m m , the dimensionless effective mass is * 0.22m  , m0 is the electron rest mass, e0 is 

the elementary charge, and 
B

1
( )

e 1
k T

N


 


 is the phonon occupation number. The upper (lower) 

signs are taken when considering electron absorption (emission) scattering process. The 

summation over n is included to consider scattering with all possible symmetric and asymmetric 

confined mode phonons. In our numerical calculation of the scattering rates, we find that a practical 

number for the upper limit is n = 5; contributions from confined modes with n larger than 5 are 

negligible. For each n (except for the n = 0 case), the symmetric and asymmetric confined modes 

must be considered separately as the dispersion relations are different from each other. For the 

case of interface modes, the summation is omitted.  

    In our original formula, where the integral is assessed over the angle θ between the phonon wave 

vector q and the optical axis c, the lower and upper limits of the integral are set to θ = 0 and 2π. In 

order to separately calculate the matrix elements of the Fermi golden rule for each phonon mode 

of uniaxial wurtzite crystals, the formula with the integral over θ is transformed into an integral 

over ω. Considering the energy and momentum conservation of the electron–phonon scattering 

process, the limits of the integral over ω may also be transformed according to the relations: 

 

for absorption
2

cos

for emission
2

m q

kq k
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Herein, we calculate the scattering rates between the electrons and optical phonons. Fig. 5 shows 

the (a) interface and (b) confined mode phonon scattering rates as a function of electron energy 

Ek. For both (a) interface and (b) confined modes, the black solid line shows the total scattering 

rate which combines all contributions from each process indicated as dashed and dotted color lines. 

The general behavior of the scattering rate curves for both modes are similar. The LO emission 

scattering rates [(a) red and (b) orange dashed lines] start to dominate once the electron energy 

exceeds the threshold energy. The TO absorption processes are negligible compared to the others 

(not plotted in the figures). Due to mode mixing in wurtzites, the TO emission scattering rate is 

comparable to the LO absorption scattering rate. This causes the total scattering rate to show a 

two-step-like shape. The total scattering rate of both modes show roughly similar values that 

converge to ~1013 s-1 with Ek = 0.3 eV in the current system where the GaN thickness is set to d = 

5 nm.  
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Fig. 5. (a) Interface and (b) confined mode phonon scattering rates are calculated and plotted as a 

function of electron energy. For both modes, the total interface phonon scattering rate combining 

all phonon modes (including the TO absorption scattering rate) is shown as the black solid line. 

The droplines with symbols are shown to indicate the threshold energies of TO emission and LO 

emission scattering. For interface mode scattering, these energies correspond to the TO and LO 

interface phonon resonant frequency energies ħωTO,res = 71.7 meV and ħωLO,res = 103.2 meV, 

respectively. For confined mode scattering, the threshold energies are at the vicinity (but not a 

complete match) of the TO and LO phonon energies of GaN, ħω1z = 65.8 meV and ħω1Lt = 91.9 

meV, respectively.  

Fig. 6. shows the interface and confined mode phonon emission scattering rates of an 

AlN/GaN/AlN double heterostructure with GaN thickness of d = 1 nm. Compared to the previous 

d = 5 nm case shown in Fig. 5, indeed, the interface mode scattering rate (red solid line) becomes 

approximately 8 times larger than the confined mode scattering rate (blue dashed line) for electron 

energy larger than 0.12 eV. Also notice that the interface mode scattering curve shows more than 

two of the step-like features. This is due to the emission threshold energy split between the 

symmetric and asymmetric interface modes. With d = 5, the wave vector q is only large enough to 

satisfy the emission condition at phonon frequencies of ω = ωTO(LO),res. However, with smaller d, 

this is no longer the case and the condition is satisfied with phonon frequencies slightly away from 

the resonant frequencies. As the symmetric and asymmetric interface modes are defined in separate 

phonon frequencies, except at the limit of ω → ωTO(LO),res, the threshold energies are split and 

causes the scattering rate curve to show more step-like increases.  
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Fig. 6. Interface and confined mode phonon emission scattering rates of a AlN/GaN/AlN double 

heterostructure with GaN thickness of d = 1 nm is plotted. Compared to the d = 5 nm case, the 

interface mode scattering rate (red solid line) show a factor of 3 increase, whereas the confined 

mode scattering rate (blue dashed line) show a factor of 2.5 decrease. Overall, the interface phonon 

scattering rate is approximately 8 times larger than the confined mode scattering rate with GaN 

thickness of d = 1 nm. 

These results show that III-nitrides can be engineered so that the hot-electron produced LO 

phonons are produced dominantly in the interface phonon channel; these phonons have high group 

velocities and the result is that the region where the decaying LO phonons. 

     During this period we have studied the effect of quantum confinement on the lifetime of 

anharmonic decay of optical phonons in semiconductor nanostructures.  This fundamental 

phenomenon has not been studied previously for confined structures and it is essential to 

understand this effect since the production of heat carrying acoustic phonons depends on the 

lifetime of the parent optical phonons.  As is well known, the decay of optical phonons into 

acoustic phonons is a key step in the production of heat from hot electrons since these hot electrons 

emit optical phonons.  The decay lifetime of LO phonons in bulk GaAs has been evaluated 

extensively theoretically and experimentally [15-18] unlike the case for nanostructured GaAs. In 

principle, the cubic anharmonicity of the harmonic oscillator energy the phonon modes lead to 

phonon decay and interaction with other phonons. Employing regular perturbation theory, 

Klemens demonstrated decay of zone center longitudinal optical phonons in bulk GaAs where it 

decays into two longitudinal acoustic phonons with the same energies but opposite momentum 

[15]. Like Klemens channel, optical phonons in bulk GaAs can also decay in a transverse acoustic 

phonon and Brillouin zone edge optical phonon according to the experimental work of Valley and 

Bogani (VB) [18]. However, both processes being N-processes, the crystal momentum and phonon 

energy remain conserved. Though decay process of the optical phonons has been evaluated 

theoretically and experimentally to understand various material properties, very few efforts have 

been directed towards understanding the modification of these processes due to spatial 

confinement of test device structure.   
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For last two decades, the effect of dimensional confinement on electron and phonon transport 

have been comprehensively estimated [19-23]. During this period, the focus of the phonon research 

community was on anharmonic decay of phonons in bulk structures specifically, only Li et al. [24] 

evaluated the lifetime of LO phonon in GaAs quantum dots and by Dyson et al. in GaN 

heterostructures [25].  Only recently researchers have started to investigate the lifetime and 

dynamics of anharmonic decay of acoustic phonons in other acoustic phonons in confined 

structures [26,27] to evaluate the heat transport in materials like Si and Ge, important for 

thermoelectric applications. To the best of our knowledge none of the prior efforts has been 

directed towards the investigation of the effect of phonon confinement on anharmonic decay of 

optical phonons in GaAs, which has been considered in this work. The continuum phonon 

formulation used in this article for GaAs can be extended to isotropic materials with cubic crystal 

symmetry.   

 

In this article, we have considered the effect of both optical phonon and acoustic phonon 

confinement on the anharmonic decay rate of the confined optical phonons through Klemens 

channel and Valle-Bogani channel using the three-phonon interaction Hamiltonian and employed 

the Fermi golden rule to evaluate the transition probability (TP). The effect of confinement on the 

TP value has been evaluated in comparison to the bulk case through the calculation of interaction 

matrix (IM) squared. The first section of the article summarizes the transition probability 

expression for the bulk case. Thereafter, this paper presents an evaluation of the expression for the 

relative displacement for a confined optical phonon and the TP has been evaluated for AlAs- and 

GaAs- based double interface heterostructure quantum well (DHSQW) where acoustic phonons 

are not confined. The penultimate section, sheds some light on specialized cases where acoustic 

phonons are also confined in a GaAs free-standing quantum well (FSQW) structure. The average 

IM squared values in the article are marked as following:  

 

Table 1. Different notation for IM related to different decay process in DHSQW and 

FSQW 

decay process mentioned volume average IM notation 

Decay of LO phonon in bulk system 

(K= Klemen’s channel; VB= Vallee-Bogani Channel) 

MB,K, MB,VB 

Klemens type decay in DHSQW  MC
D 

DISTRIBUTION A: Distribution approved for public release.



Vallee - Bogani type decay in FSQW 

 (cases 1 and 2 = asymmetric and symmetric CAP*) 

MC
F,VB,1, MC

F,VB,2
 

Klemens type decay in FSQW 

(cases 1, 2, and 3= 2 dilatational type CAP, 2 flexural type 

CAP, and 1dilatational and 1 flexural type CAP) 

MC
F,K,1, MC

F,K,2, MC
F,K,3

 

*CAP: Confined Acoustic phonon 

 

 

The interaction Hamiltonian within the continuum approximation for three phonon processes can 

be written as [17]  

H3 =
1

3!√N
 P(k, j; k′, j′; k′′, j′′) uk,juk′,j′uk′′,j′′ (11) 

where 𝑘, 𝑘′, 𝑘′′ are the three phonon wave vectors involved in the annihilation or creation 

process, 𝑗, 𝑗′, 𝑗′′ are the polarizations of the three phonons and N is the number of unit cells present. 

P describes the cubic (anharmonic) coupling and 𝑢𝑘,𝑗 signifies the displacement field associated 

with the annihilated or emitted phonons. The phonon displacement in normal coordinates can be 

represented as: 

uk,j = (
h̅

2mωk,j
)

1
2

ek,j
′ (ak,je

ik⃗⃗ r⃗ + ak,j
† e−ik⃗⃗ r⃗ ) (12a) 

𝑢(r ) =
1

√N
 ∑ ∑ (

h̅

2mωq,j
)

1
2

(ak,je
ik⃗⃗ r⃗ ek,ĵ + ak,j

† e−ik⃗⃗ r⃗ ek,ĵ
∗)

j=1,2,3k

=
1

√N
 ∑ ∑ uk,j⃗⃗⃗⃗⃗⃗ 

j=1,2,3k

 (12b) 

where 𝑎𝑘,𝑗,  𝑎𝑘,𝑗
†

 denotes the annihilation and creation operator, respectively, 𝑒𝑘,𝑗
′  is the polarization 

vector, m is the reduced mass of the lattice atoms and 𝜔𝑘,𝑗 is the frequency of the normal mode 

[25]. Substituting the normalized displacement expression in (1) the three-phonon anharmonic 

interaction term for type 2 phonon interaction where one phonon decays into two phonons can be 

written as:  
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H3

=
1

V
∫d3r 

1

√N
(

h̅

2m
)

3
2

(
1

ωk,jωk′,j′ωk′′,j′′
)

1
2

P (ak,jak′,j′
† a

k′′,j′′
† ) (ek,ĵ. ek′,j′̂

∗. ek′′,j′′̂ ∗) exp(i(k

− k′ − k′′). r) 

(13) 

where 𝑉 is the volume of the structure under consideration. Assumption of linear dispersion of the 

acoustic phonons enforces the polarization vectors to vanish if the longitudinal optical phonon 

decays into two longitudinal acoustic phonons are considered. The TP for any quantum processes 

can be calculated using Fermi golden rule and given by:  

Γ =
2π

h̅
 |⟨nk − 1, nk′ , nk′′|H3|nk, nk′ + 1, nk′′ + 1⟩|2 δ(h̅(ωk − ωk′ − ωk′′)) (14) 

The average value of IM, |⟨𝑖|𝑉3|𝑓⟩| for above mentioned type 2 decay (LO->LA+LA) in the (4) 

can be expressed as:  

|MB|
2 =  |⟨i|H3|f⟩|

2 =
1

N
(

h̅

2m
)

3

(
1

ωkωk′ωk′′
)P2 nk(nk′ + 1)(nk′′ + 1)δk−k′−k′′,G (15) 

where 𝑛𝑘 = (exp (
ℎ̅𝜔𝑘

𝑘𝐵𝑇
) − 1)

−1

 is the Bose-Einstein occupation number, 𝐺 is the reciprocal lattice 

vector and P is the anharmonic coupling constant given by 𝑃 = −
𝑖

√3

𝑀

𝑣
𝛾𝜔𝑘𝜔𝑘′𝜔𝑘′′  where M = 

atomic mass, 𝑣 sound velocity (longitudinal) and 𝛾 is the Gruneisen constant  [15]. The average 

value of IM squared |𝑀|2  for the phonon interaction mentioned in (5) contains the delta function 

due to the integration of the Hamiltonian in the whole volume as:  
1

V
∫d3r exp(i. (k − k′ − k′′). r) = δk−k′−k′′ (16) 

Eq. 15 can be further simplified under the assumption that ωk = k ∗ ck, i.e. linear dispersion of 

acoustic waves elaborately discussed in Ref. 28. The average value arises from integration of the 

exponential term within the whole volume which produces the δ function with a subscript denoting 

whether the process is an N-process or U-process, determined by G value. Using this isotropic 

formulation, Klemens et al. [15], Bhatt et al. [17], Srivastava et al. [16] have theoretically 

calculated the anharmonic lifetime of LO phonons in bulk GaAs slabs to be of 3.5 ps [15-17] at 

room temperature which has been experimentally verified with 2.2 ± 0.2 ps value [29] using 

Raman spectroscopy. 

 

The effect of phonon confinement on anharmonic phonon decay is evaluated in two different 

nanostructure assemblies. The AlAs/GaAs/AlAs DHSQW is the first test structure considered 

where optical phonon modes in GaAs are confined due to difference in dielectric property between 

the two materials but acoustic phonons behave as continuum elastic modes as the two materials 

have almost similar elastic properties. Whereas in second test structure of GaAs FSQW, the 

acoustic modes are confined because acoustic modes only lie within the QW structure and the 

stress field is zero at the boundary/interface. The anharmonic coupling constant depends on three 

main scattering processes [28], a lattice wave can undergo scattering from a point imperfection, 

single dislocation and grain boundaries. Due to dimensional confinement surface effects become 

prominent, external boundary scattering of phonons increases but as for anharmonic decay of 

confined phonons we have assumed that the anharmonic coupling coefficient does not change 

compared to bulk case. A similar assumption has also been employed in Ref. 33 for the case of a 

quantum dot.  
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The confinement of optical phonon arises in both DHSQW and FSQW as the constituent 

materials have dissimilar dielectric function which in turn depends on the zone center optical 

phonon frequency. Consideration of previously-mentioned heterostructure with dissimilar 

dielectric properties produces two main types of phonon modes, namely: a) confined modes 

(bounded within the well structure) hence the phonon potential should go to zero at the two 

interfaces, b) Interface mode (localized along the interface) i.e. the potential follows a decaying 

profile inside the well. Under the dielectric continuum (DC) model assumption, both modes are 

necessary to represent the optical modes within the structure. Following the DC model, the 

potential term for optical-phonon modes in a confined polar material structure can be written as: 

φ(qII, z) = √
2

Adz
{
cos(kzz)

sin(kzz)
} exp (±ikIIρ) (17) 

where 𝑘𝑧 = 𝑛𝜋/𝑑𝑧 ; 𝑑𝑧 is the thickness of the quantum well, A = Area of the quantum well and 

𝑞II is the wavevector parallel to the interfacial plane. The cos(𝑞𝑧𝑧) term is obtained when n = odd 

and for n= even, the displacement function assumes the  sin(𝑞𝑧𝑧) form in order to force the 

potential to zero at the interface. As the material is assumed to be isotropic, the displacement 

pattern of the mode can also be written using Born-Huang theory [16] as:  

𝐮 = √
V

4πμN

√ε0 − ε∞

√ωTO
2 − ω2

ωTO𝐄   and  𝐄 = −𝛁φ     (18) 

Using Eqs. 17 and 18 the displacement field for confined mode with normal coordinate is given 

as:  

uk,j = (
h̅

2mωk,j
)

1
2

(ak,j {
cos(kzz)

sin(kzz)
} exp (ikIIρ)eq,ĵ + ak,j

† {
cos(kzz)

sin(kzz)
} exp (−ikIIρ)eq,ĵ

∗) (19) 

The value of the constant for displacement is calculated using proper quantization condition given 

by ∫u(kII, z) ∗ u∗(kII, z)d
3r =

h̅

2mω
  , where m is based on the mass of the ions in the primitive 

cell. 

Hard confinement of the acoustic modes inside a slab occurs in presence of acoustically 

mismatched interfaces only. A huge difference is elastic constant causes extreme confinement of 

acoustic modes, whereas materials with almost similar elastic constant like GaAs and AlAs the 

interfaces behave as a continuous media hence confinement of acoustic modes is not obtained in 

this specific structure. Hence, the DHSQW structure behaves as a continuous media for acoustic 

modes and the mode displacements retain the bulk-type expression form given in Eq. (12).   

 

Unlike DHSQW structure discussed in the previous section, FSQW contains confined 

acoustic phonons rather than continuum acoustic phonons due to acoustic property difference at 

the interface. Due to ‘hard’ confinement effect, the dispersion curves for the acoustic phonons also 

changes from that of bulk modes. The localized acoustic modes in the slab for an isotropic material 

using elastic continuum theory and appropriate boundary condition are of three main types: Shear 

Mode, Dilatational Mode (Symmetric) and Flexural Mode (Anti-Symmetric) [32] which has also 

been efficiently summarized by Stroscio and Dutta [31]. The mode shape for dilatational, flexural 

modes and shear modes inside the slab is described in the Table II. The decaying mode shape or 

interface modes in the embedding material is not described because we are only considering the 

decay dynamics inside the quantum well region.  
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Table 2. Displacement function of three types of confined acoustic modes 

Mode Type Displacement envelope inside the slab  

Shear (S) uS,y(z) =
cos(kz,nz) ,      n = 0,2,4, . .

      sin(kz,nz)  ,         n = 1,3,5, …      
 

(20) 

Dilatational/ 

Symmetric 

(D) 

uD,x(z) = ikII [(kII
2 − kt

2) sin (
ktdz

2
)  cos(klz)

+ 2klkt cos(ktz) sin (
ktdz

2
)] 

uD,z(z) = kl [−(kII
2 − kt

2)sin (
ktdz

2
) sin (klz)

+ 2kII
2 sin(ktz) sin (

ktdz

2
)] 

Flexural/Anti-

Symmetric(F) 

uF,x(z) = ikII [(kII
2 − kt

2) cos (
ktdz

2
)  sin(klz)

+ 2klkt sin(ktz) cos (
ktdz

2
)] 

uF,z(z) = kl [(kII
2 − kt

2) cos (
ktdz

2
)  cos(klz)

− 2kII
2 cos(ktz) cos (

ktdz

2
)] 

where kl,n = (k∥
2 −

ωn
2

cl
2 )1/2 and kt,n = (k∥

2 −
ωn

2

ct
2 )1/2 with cl and ct are the longitudinal and 

transverse sound velocity in the isotropic slab medium. The confined acoustic mode displacements 

are eigenfunctions solution to a eigen-value equation, hence the modes are needed to be 

orthogonalized for an eigen frequency. The orthogonalized mode displacements for Shear, 

Dilatational and Flexural modes are given by, wn,S = FSuS,y, wn,D = FD(uD,xx̂ + uD,zẑ), and 

wn,F = FS(uF,xx̂ + uF,zẑ) respectively. The normalized mode displacements follow the condition 

given by ∫wn,i
∗ wm,i = δmn. Using the normalized modes, the quantized shear, dilatational and 

flexural modes can be represented as √
h̅

2mωn
(ak + ak

†) ∗ FS ∗ (uS,y𝐲̂)exp (ikIIρ) , √
h̅

2mωn
(ak +

ak
†) ∗ FD ∗ (uD,x𝐱̂ + uD,z𝐳̂)exp (ikIIρ) and √

h̅

2mωn
(ak + ak

†) ∗ Ff ∗ (uF,x𝐱̂ + uF,z𝐳̂)exp (ikIIρ) 

respectively, three orthonormal modes [33] obtained using Gram Schmidt orthogonalization and 

second quantization. The normalization constants FS, FD and Ff are given in the appendix section 

and these constants are only dependent on in-plane, wavevector, frequency of the phonon mode, 

longitudinal or transverse sound velocity and thickness of the well. The x-component of Flexural 

mode and Dilatational mode was found to be symmetric and asymmetric respectively; similarly, 

for z component the modes are found to be asymmetric and symmetric respectively. Due to 

quantum confinement in the z direction the acoustic wavevector along z-direction will be quantized 

i.e. for all value of  kII there will be only few kl,n and kt,n possible which are given by the 

dispersion curves. The kl,n is imaginary and kt,n is real for fundamental dilatational mode and both 

are imaginary for fundamental flexural mode for low k∥ value [31]. For a FSQW structure, the 

confined mode pattern will also depend on the boundary condition (BC) as free boundary condition 
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will force the stress at the interfaces to be zero. Whereas the clamped boundary condition (GaAs 

is embedded in a very dissimilar material) will enforce that the displacement at interface goes to 

zero.  

 

In DHSQW structures, the confinement is only in the z-direction and in the x-y direction 

wave properties behave as bulk or unconfined. Hence, assuming type-2 phonon interaction the 

Hamiltonian for three phonon interactions can be written as:  

H3
′ =

1

A
∫

dρ

√N
(

h̅

2m
)

3
2

(
1

ωk,jωk′,j′ωk′′,j′′
)

1
2

P (ak,jak′,j′
† a

k′′,j′′
† ) (ek,ĵ. ek′,j′̂

∗. ek′′,j′′̂ ∗) 

 

{
cos(kzz)

sin(kzz)
} exp (−i(kz

′ + kz
′′)z) exp(i(kII − kII

′ − kII
′′). ρ)  

 

(21) 

where 𝐤𝐚 = kz
a𝐳̂ + kII

a 𝛒̂. Using similar arguments as mentioned for the bulk case, the interaction 

Hamiltonian is obtained after integrating the last term in the expression as:  

 

H3
′ =

1

√N
(

h̅

2m
)

3
2

(
1

ωk,jωk′,j′ωk′′,j′′
)

1
2

P (ak,jak′,j′
† a

k′′,j′′
† ) (ek,ĵ. ek′,j′̂

∗. ek′′,j′′̂ ∗) 

{
cos(kzz)

sin(kzz)
} exp (−i(kz

′ + kz
′′)z)δkII−kII

′ −kII
′′,GII

 

 

(22) 

The previously mentioned three phonon interaction suggests that the in-plane vector should be 

conserved to produce δ00 and for all other combination the interaction Hamiltonian is zero. The 

IM squared value for calculating TP for the confined optical phonons can be obtained using Fermi 

golden rule similar to the bulk case and the average value of that IM squared due to confinement 

over dz along z-direction is given by:  

|MC
D|

2
=  |⟨nk − 1, nk′ , nk′′|H3|nk, nk′ + 1, nk′′ + 1⟩|2 

=
1

dz
∫

dz
1

N  
(

h̅

2m
)

3

(
1

ωkωk′ωk′′
) P2 {

cos2(kzz)

sin2(kzz)
} nk(nk′ + 1)(nk′′ + 1) 

exp (−i(kz
′ + kz

′′)z)δkII−kII
′ −kII

′′,GII

dz/2

−dz/2

 

∴   |MC
D|

2
=

1

N 
(

h̅

2m
)

3

(
1

ωkωk′ωk′′
)P2nk(nk′ + 1)(nk′′ + 1)δkII−kII

′ −kII
′′,GII

 

∫ {
cos2(kzz)

sin2(kzz)
} exp (−2i(kz

′ + kz
′′)z)dz

dz/2

−dz/2

 

(23) 

Based on the Fuchs-Kliewer slab mode boundary condition, the z-component of the displacement 

can only take the form of  sin(kzz). Evaluation of the integral produces (for   
kz

′ = −kz
′′ ): 

 

 

1

𝑑𝑧
∫ 𝑠𝑖𝑛2 (

𝜋

𝑑𝑧
𝑧) 𝑑𝑧

𝑑𝑧/2

−𝑑𝑧/2

=
1

2
 

and for  

(24a) 
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𝑘𝑧
′ ≠ −𝑘𝑧

′′ 

 

1

𝑑𝑧
∫ 𝑠𝑖𝑛2(𝑘𝑧𝑧) 𝑒𝑥𝑝(−2𝑖(𝑘𝑧

′ + 𝑘𝑧
′′)𝑧) 𝑑𝑧

𝑑𝑧
2

−𝑑𝑧
2

=
(2(𝑘𝑧

′ + 𝑘𝑧
′′)2𝑑𝑧

2 − 𝜋2) 𝑠𝑖𝑛((𝑘𝑧
′ + 𝑘𝑧

′′)𝑑𝑧)

𝑑𝑧(2(𝑘𝑧
′ + 𝑘𝑧

′′)3𝑑𝑧
2 − 2𝜋2(𝑘𝑧

′ + 𝑘𝑧
′′))

 

(24b) 

In GaAs, the zone center LO phonon decays into two LA phonons of same phonon polarization 

with opposite momentum through the Klemens channel. According to momentum conservation, 

the in-plane wavevector of two daughter acoustic waves are related through kII
′ = −kII

′′ if the 

parent optical phonon is zone center; whereas 𝑘𝑧
′  and 𝑘𝑧

′′ will be equal and opposite if the two 

acoustic modes are in Γ − L direction. Otherwise if daughter phonons are along Γ − K symmetry 

direction kz
′ = kz

′′ = 0. Hence, for decay of zone center LO phonon in GaAs, the integral is 

reduced to (24a). But for any other decay processes, if the acoustic phonons are not on the same 

polarization branch then the kz
′  and kz

′′ can be evaluated from ((
ω

k′

cl,t
)
2

− kII
′ 2

)

1

2

and 

((
ω

k′′

cl,t
)
2

− kII
′′2)

1

2

where  ωk′ and ωk′′   are the acoustic phonon frequency and cl,t is the sound 

speed along the direction (for longitudinal phonon) or perpendicular to the acoustic phonon 

wavevector. Combining Eq. (23) with (14a) the IM squared can be written as:  

|MC
D|

2
=

1

N
(

h̅

2m
)

3

(
1

ωkωk′ωk′′
)P2nk(nk′ + 1)(nk′′ + 1)δkII−kII

′ −kII
′′,GII

.
1

2
 

∴ |MC
D|

2
= |MB,K|

2
.
1

2
 

(25) 

where |𝑀𝐵,𝐾|
2
 is the IM squared value bulk material for Klemens channel. Hence for the decay 

rate of Klemens channel in a confined structure with respect to a bulk case in GaAs can be written 

as:  

Γ(confined) =
1

τ(confined)
=

1

2
Γ(bulk) =

1

2τ(bulk)
 (26) 

 

Employing the mathematical description of optical phonon given in section II-A and 

description of acoustic phonon in II-D, the three-phonon interaction Hamiltonian can be obtained 

analogous to the DHSQW structure.  Following Eq. 22 the average IM squared can be written as:  

|MC
F|

2
=

1

N
(

h̅

2m
)

3

(
1

ωkωk′ωk′′
)P2nk(nk′ + 1)(nk′′ + 1)δkII−kII

′ −kII
′′,GII

1

dz
∫ v(z)dz

dz/2

−dz/2

 (27) 

where 𝑣(𝑧) can be determined by considering the expression for optical and acoustic phonon given 

in (9) and (17) and the decay process of interest. The frequency, wavevector and polarization of 

the three phonons involved in the process are determined by considering the energy conservation 

principle, crystal momentum conservation and symmetry plane of interaction. The two daughter 

acoustic phonons for Klemen’s channel decay can be two dilatational or two flexural or one 

dilatational and one flexural modes and as shear modes represents purely transverse vibrations it 

will only be participating in Vallee-Bogani (VB) channel evaluation where a zone-edge LO and a 
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TA phonon are created. For different decay processes the v(z) differs due to the complicated mode 

pattern of the confined acoustic modes.  

 

The shear mode represents pure transverse modes and the mode pattern appears to be of 

the form cos(kz,nz) or sin(kz,nz). The two optical phonon mode patterns for the VB channel will 

follow the sin function in order to satisfy the boundary condition on phonon potential. Employing 

the optical phonon mode pattern given in Eq. 19 and sinusoidal shear acoustic wave mode pattern, 

the v(z) is given by: 

v(z) = F1(z) =  sin6 (
πz

dz
) (28a) 

v(z) = F2(z) = cos2 (
πz

dz
) sin4 (

πz

dz
) (28b) 

where F1(z) denoted the case where both LO and TA phonon are of sin(kz,nz) form and F2(z) 

represents the shear TA mode is in cos(kz,nz) form and LO mode is in sin(kz,nz) form. The 

corresponding IM squared for F1(z) and F2(z) are obtained as following:  

|MC
F,VB,1|

2
=

1

Ndz
(

h̅

2m
)

3

(
Fs

4

ωkωk′ωk′′
)P2nk(nk′ + 1)(nk′′

+ 1)δkII−kII
′ −kII

′′,GII
∫ F1(z)dz

dz
2

−dz
2

 

|MC
F,VB,1|

2
=

5

16

1

N
(

h̅

2m
)

3

(
Fs

4

ωkωk′ωk′′
)P2nk(nk′ + 1)(nk′′ + 1)δkII−kII

′ −kII
′′,GII

 

∴ |MC
F,VB,1|

2
=

5

16
 Fs

4|MB,VB|
2
 

(29a) 

|MC
F,VB,2|

2
=

1

Ndz
(

h̅

2m
)

3

(
Fs

4

ωkωk′ωk′′
)P2nk(nk′ + 1)(nk′′

+ 1)δkII−k′−k′′,GII
∫ F2(z)dz

dz/2

−dz/2

 

|MC
F,VB,2|

2
=

1

16

1

N
(

h̅

2m
)

3

(
Fs

4

ωkωk′ωk′′
)P2nk(nk′ + 1)(nk′′ + 1)δkII−kII

′ −kII
′′,GII

 

∴ |MC
F,VB,2|

2
=

1

16
 Fs

4|MB,VB|
2
 

(29b) 

𝑀𝐵,𝑉𝐵 is the IM squared value for Vallee-Bogani channel in bulk GaAs material. 

 

As for Klemens type of decay the two daughter LA phonons can be of a combination of 

dilatational and flexural mode pattern, as mentioned earlier. For all three cases the optical and 

acoustic vibrations lie in the x-z plane assuming z is perpendicular to the interfaces. As the two 

modes comprise of complimentary variations along both x and z axis, we considered only x-

direction displacement in order to simplify the problem. We have assumed the magnitude of x-

displacement in a simpler form given as:  

 

                                                             uD,x = A1 cos(klz) + B1 cos(ktz)   
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(Symmetric)                                                                                 

Flexural 

 

                                 

(Asymmetric) 

uF,x = A2 sin(klz) + B2 sin(ktz)                                                 (30) 

      

 

where A1= FDkII(kII
2 − kt

2) sin (
ktdz

2
), A2 = FfkII(kII

2 − kt
2) cos (

ktdz

2
), B1 =

FD2kIIklkt sin (
ktdz

2
) and B2 = Ff2kIIklkt cos (

ktdz

2
). Assuming the co-linearity of three phonons 

displacement, the 𝑣(𝑧) function for three cases are calculated using fundamental wavevector value 

and the IM squared for those cases. The 𝑘𝑙 and 𝑘𝑡 value are assumed to be real for all three cases 

to ensure the existence of the confined modes inside the quantum well, imaginary value of the 

wavevector forces the modes to be only surface bound.   

 

Table 3. The evaluation of the 𝑣(𝑧) function for three different acoustic modes 

Both D 

mode 

v(z) = F3(z) =  sin2 (
πz

dz
) (A1 cos (

π

dz
z) + B1 cos (

π

dz
z))

4

 

1

dz
∫ F3(z)dz

dz/2

−dz/2

=
1

16
(A1 + B1)

4 

Both F 

mode 

v(z) = F4(z) =  sin2 (
πz

dz
) (A2 sin (

π

dz
z) + B2 sin (

π

dz
z))

4

 

1

dz
∫ F4(z)dz

dz/2

−dz/2

=
5

16
(A2 + B2)

4 

(1D+1F) 

mode 

v(z) = F5(z) =  sin2 (
πz

dz
) (A1 cos (

π

dz
z) + B1 cos (

π

dz
z))

2

(A2 sin (
π

dz
z)

+ B2 sin (
π

dz
z))

2

  

1

dz
∫ F5(z)dz

dz/2

−dz/2

=
1

16
(A1 + B1)

2(A2 + B2)
2 

Replacing the three functions obtained in Table-III in (27) the IM squared for the three processes 

are given as:  

|MC
F,K,1|

2
=

1

16
(A1 + B1)

4
1

N
(

h̅

2m
)

3

(
1

ωkωk′ωk′′
)P2nk(nk′ + 1)(nk′′

+ 1)δkII−kII
′ −kII

′′,GII
 

∴ |MC
F,K,1|

2
=

1

16
(A1 + B1)

4|MB,K|
2
 

(31a) 

|MC
F,K,2|

2
=

5

16
(A2 + B2)

4
1

N
(

h̅

2m
)

3

(
1

ωkωk′ωk′′
)P2nk(nk′ + 1)(nk′′

+ 1)δkII−kII
′ −kII

′′,GII
 

(31b) 
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∴ |MC
F,K,2|

2
=

5

16
(A2 + B2)

4|MB,K|
2
 

|MC
F,K,3|

2
=

1

16
(A1 + B1)

2(A2 + B2)
2
1

N
(

h̅

2m
)

3

(
1

ωkωk′ωk′′
) P2nk(nk′ + 1)(nk′′

+ 1)δkII−kII
′ −kII

′′,GII
  

∴ |MC
F,K,3|

2
=

1

16
(A1 + B1)

2(A2 + B2)
2|MB,K|

2
 

(31c) 

where 𝑀𝐵,𝐾 is the IM squared value bulk material for Klemens channel. Using all the IM matrix 

squared value the transition probability or inverse of lifetime can be calculated. The bulk IM 

squared value for all above mentioned decay processes are decay process specific, hence 

calculation of the decay lifetime for confined structures requires knowledge of the decay for bulk 

case. Using Fermi golden rule, the transition probabilities are calculated as:  

ΓB,VB/K =
2π

h̅
 |MB,VB/K|

2
 δ(h̅(ωk − ωk′ − ωk′′)) 

(32) 
ΓC,K

D =
2π

h̅
 |MC

D|
2

 δ(h̅(ωk,n − ωk′ − ωk′′)) 

ΓC,VB
F,1 =

2π

h̅
|MC

F,VB,1|
2

 δ(h̅(ωk,n − ωk′,n − ωk′′,n)) 

ΓC,K
F,1 =

2π

h̅
|MC

F,K,1|
2

 δ(h̅(ωk,n − ωk′,n − ωk′′,n)) 

 where 𝛤𝑐,𝑏
𝑎,𝑑

 denotes the transition probability of the process under confinement and a can be 

{F=FSQW, D=DHSQW}, d can have values {1,2,3; depending on whether the CAPs are 

asymmetric or asymmetric}, c denoted {C= confined, B= Bulk} and b is the {VB, K; type of decay 

process}. The difference between 𝜔𝑖, 𝜔𝑖,𝑛 is that first term denotes frequency of the phonons in 

bulk and the later in confined structure.  

 

In the previous discussion, the quantization constant for shear, dilatational and flexural acoustic 

modes are given in the following section. The constants are obtained using the second quantization 

where acoustic mode energies are equal to single phonon energy. As we are only interested in 

confined modes in this problem we the constants are given for real values of  𝑘𝑙 , 𝑘𝑡.  

Shear Mode:  

 

𝐹𝑆 =      

1

√𝑑𝑧

, 𝑛 = 0

√
2

𝑑𝑧
, 𝑛 > 0

 

 

(33) 

Dilatational mode:  

𝐹𝑑
−2 =

1

8𝑘𝑙𝑘𝑡
[2𝑑𝑧𝑘𝑙

3𝑘𝑡
5 + 4𝑑𝑧𝑘𝑙

3𝑘𝑡
3𝑘𝑥

2 + 2𝑑𝑧𝑘𝑙𝑘𝑡
5𝑘𝑥

2 + 10𝑑𝑧𝑘𝑙
3𝑘𝑡𝑘𝑥

4 + 4𝑑𝑧𝑘𝑙𝑘𝑡
3𝑘𝑥

4 +

2𝑑𝑧𝑘𝑙𝑘𝑡𝑘𝑥
6 − 8𝑑𝑧𝑘𝑙

3𝑘𝑡𝑘𝑥
2(𝑘𝑥

2 + 𝑘𝑡
2) cos(𝑑𝑧𝑘𝑙) − 2𝑑𝑧𝑘𝑙𝑘𝑡(𝑘𝑡

2 − 𝑘𝑥
2)(𝑘𝑙

2 +
𝑘𝑥

2) cos(𝑑𝑧𝑘𝑡) + 2𝑘𝑡(𝑘𝑥
2 − 𝑘𝑡

2)(𝑘𝑙
2𝑘𝑡

2 + 7𝑘𝑙
2𝑘𝑥

2 − 𝑘𝑡
2𝑘𝑥

2 + 𝑘𝑥
4) sin(𝑑𝑧𝑘𝑙) +

8𝑘𝑙
3𝑘𝑥

2(𝑘𝑡
2 − 𝑘𝑥

2) sin(𝑑𝑧𝑘𝑙) + (𝑘𝑙
2𝑘𝑡

5 + 4𝑘𝑙
3𝑘𝑡

2𝑘𝑥
2 + 6𝑘𝑙

2𝑘𝑡
3𝑘𝑥

2 − 𝑘𝑡
5𝑘𝑥

2 − 4𝑘𝑙
3𝑘𝑥

4 −

7𝑘𝑙
2𝑘𝑡𝑘𝑥

4 + 2𝑘𝑡
3𝑘𝑥

4 − 𝑘𝑡𝑘𝑥
6) sin(𝑑𝑧(𝑘𝑙 − 𝑘𝑡)) + (𝑘𝑙

2𝑘𝑡
5 − 4𝑘𝑙

3𝑘𝑡
2𝑘𝑥

2 + 6𝑘𝑙
2𝑘𝑡

3𝑘𝑥
2 −

(34) 
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𝑘𝑙
5𝑘𝑥

2 − 4𝑘𝑙
3𝑘𝑥

4 − 7𝑘𝑙
2𝑘𝑡𝑘𝑥

4 + 2𝑘𝑡
3𝑘𝑥

4 − 𝑘𝑡𝑘𝑥
6) sin(𝑑𝑧(𝑘𝑙 + 𝑘𝑡))]  

Flexural mode:  

𝐹𝑓
−2 =

1

8𝑘𝑙𝑘𝑡
[2𝑑𝑧𝑘𝑙

3𝑘𝑡
5 + 4𝑑𝑧𝑘𝑙

3𝑘𝑡
3𝑘𝑥

2 + 2𝑑𝑧𝑘𝑙𝑘𝑡
5𝑘𝑥

2 + 10𝑑𝑧𝑘𝑙
3𝑘𝑡𝑘𝑥

4 − 4𝑑𝑧𝑘𝑙𝑘𝑡
3𝑘𝑥

4 +

2𝑑𝑧𝑘𝑙𝑘𝑡𝑘𝑥
6 + 8𝑑𝑧𝑘𝑙

3𝑘𝑡𝑘𝑥
2(𝑘𝑥

2 + 𝑘𝑡
2) cos(𝑑𝑧𝑘𝑙) + 2𝑑𝑧𝑘𝑙𝑘𝑡(𝑘𝑡

2 − 𝑘𝑥
2)(𝑘𝑙

2 +
𝑘𝑥

2) cos(𝑑𝑧𝑘𝑡) − 2𝑘𝑡(𝑘𝑥
2 − 𝑘𝑡

2)(𝑘𝑙
2𝑘𝑡

2 + 7𝑘𝑙
2𝑘𝑥

2 − 𝑘𝑡
2𝑘𝑥

2 + 𝑘𝑥
4) sin(𝑑𝑧𝑘𝑙) +

8𝑘𝑙
3𝑘𝑥

2(𝑘𝑥
2 − 𝑘𝑙

2) sin(𝑑𝑧𝑘𝑙) + (𝑘𝑙
2𝑘𝑡

5 + 4𝑘𝑙
3𝑘𝑡

2𝑘𝑥
2 + 6𝑘𝑙

2𝑘𝑡
3𝑘𝑥

2 − 𝑘𝑡
5𝑘𝑥

2 − 4𝑘𝑙
3𝑘𝑥

4 −

7𝑘𝑙
2𝑘𝑡𝑘𝑥

4 + 2𝑘𝑡
3𝑘𝑥

4 − 𝑘𝑡𝑘𝑥
6) sin(𝑑𝑧(𝑘𝑙 − 𝑘𝑡)) + (𝑘𝑙

2𝑘𝑡
5 − 4𝑘𝑙

3𝑘𝑡
2𝑘𝑥

2 + 6𝑘𝑙
2𝑘𝑡

3𝑘𝑥
2 −

𝑘𝑙
5𝑘𝑥

2 − 4𝑘𝑙
3𝑘𝑥

4 − 7𝑘𝑙
2𝑘𝑡𝑘𝑥

4 + 2𝑘𝑡
3𝑘𝑥

4 − 𝑘𝑡𝑘𝑥
6) sin(𝑑𝑧(𝑘𝑙 + 𝑘𝑡))]  

(35) 

where 𝑘𝑥 denotes the in-plane wavevector which is equivalently noted here as kII for both flexural 

and dilatational modes.  

lowest values for 𝑘𝑥, 𝑘𝑙 and 𝑘𝑡 are limited by the device dimensions in the in-plane direction and 

dimension in confined direction. The lowest values for  𝑘𝑡  and 𝑘𝑡 are 3.14 × 108 for a 10 𝑛𝑚 

thick quantum well. For a 10 nm thick quantum well:  

𝐹𝑆 = √
2

10−8
= 14142 𝑚−1/2 

𝐹𝑑
−2, 𝐹𝑓

−2~
𝑑𝑧𝑘𝑡

8

𝑘𝑡𝑘𝑙
≈ 1040 

∴  𝐹𝐷 , 𝐹𝑆~10−20 

The value for 𝐹𝐷 and 𝐹𝑓 are calculated approximately and obtained as very small values.  

 

In this research, the effect of dimensional confinement on the anharmonic decay of a 

longitudinal optical phonon in isotropic cubic crystal (GaAs) is analyzed. The main decay 

processes considered for GaAs are the Klemens channel (LO -> LA+LA) and the Valle-Bogani 

Channel (LO -> LO+TA). The confined optical phonons and acoustic phonons are treated using 

the dielectric continuum model and the elastic continuum model, thereafter the modes are second 

quantized. The transition probability of the decay process is calculated for a DHSQW, where 

acoustic phonon modes are continuous, whereas optical phonon modes are confined and FSQW 

structure where both acoustic and optical phonon modes are confined. The analysis is based on the 

three-phonon interaction Hamiltonian the interaction matrix squared for both Klemens and Vallee-

Bogani decay processes is calculated for DHSQW and FSQW. The calculations suggest that decay 

probability of Klemens channel reduces by half compared to bulk case for DHSQW and for FSQW 

the rate is significantly depends on daughter phonons wavevector through non-linear relationship. 

The decay rate for the processes also depends on the mode pattern, i.e., whether the daughter 

acoustic phonon modes are symmetric or not. This formulation can be extended to calculate 

anharmonic decay rate of phonons which have ubiquitous effect on carrier and thermal transport 

and electron relaxation dynamics in the future nanostructured devices.  

 

Recently, we have made significant progress on generalizing the techniques for determining 

the infrared active phonon modes in layers III-nitride materials.  These results allow us to 

determine the infrared active phonon frequencies and Frohlich interaction potentials which are 

essential for modeling carrier transport and phonon emission probabilities underlying the 

electronic properties of novel manmade III-nitride heterostructures.  The case of a 

GaN/In0.15Ga0.85N/GaN heterostructure has also been modeled in this research [34]. 
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Raman spectral analyses have been used to detect the presence of phonon signatures from AlN-

GaN superlattices as well as from the sapphire substrate present on many samples.  Such a 

spectrum is in Figure 7. 

 

 

 
 

 

Figure 7.  Raman spectra of AlN/GaN control wafer (Parameters: 20s exposure time, 1% Laser 

power.) 

 

In related Raman results, we have also studied the temperature shifts in phonon spectra as in 

Ref. 38. 

 

Summary 

 

    In this research, we have: determined the role of dimensional confinement on the lifetime of 

selected phonon modes; demonstrated that quantum wells may be realized that preferentially 

promote the emission of LO phonons in high-velocity interface phonon channels as opposed to 

lower-velocity confined phonons; demonstrated Raman-based techniques for measuring in 

semiconductors; formulated models for determining phonon dispersion curves and Frohlich 

potentials for multi-interface III-nitride heterostructures; and have made significant progress in 
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understanding the basic coupling of optical and acoustic phonons in dimensionally-confined 

wurtzite heterostructures.   
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