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Sticky Reasoning within Learning Representations.

Final report. 

2019-09-13

Yann LeCun
New York University

In this project, we addressed two questions: (1) how to learn abstract 
representations of data such as text and video; (2) how design 
trainable architectures that have persistent memory and can perform 
long chains of reasoning.

1. Learning abstract representations of text and images

One goal of learning representations of data is to produce 
representations in which the explanatory factors of variations are 
disentangled. We first proposed an architecture and learning 
procedure that automatically learns representations of images in 
which the content is separated from the pose. The method is 
completely unsupervised, not requiring that the pose or the identity of
the object in the image be provided [Mathieu NIPS 2016]. 

While this work used generative adversarial networks (GAN), we 
found the concept wanting and proposed a new formulation of GANs 
called Energy-Based GAN. Our method was the first to allow the 
generation of realistic images at 128x128 resolution. Generative 
models, such as GANs are a key component of unsupervised 
procedures that can generate complex patterns from latent variables 
drawn from a simple distribution [Zhao ICLR 2017] (over 550 citations
to date). 

Next, we developed an unsupervised representation learning method 
based on the concept of regularized auto-encoder. An auto-encoder is 
a deep learning architecture that is trained to reproduce its input on 
its output, while funneling the representation through an information 
bottleneck. In previous methods, the information bottleneck is 
implemented by making the dimension of the representation small 
(e.g. PCA, hourglass auto-encoders), by making the representation 
sparse (e.g. sparse auto-encoder with L1 regularization of the code), 
or by normalizing the code vector and adding noise to it (e.g. 
Variational Auto-Encoders). The method we proposed was to bound 
the information content (the entropy) of the code by forcing it to be 
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indistinguishable from a distribution with a known entropy. The 
method uses an adversarial method to compare the reference 
distribution with the code distribution. This system can generate text 
whose content can be manipulated by playing with the latent 
representation [Zhao ICML 2018] (collaboration with Sasha Rush, 
Harvard)

Lastly, we proposed an architecture for unsupervised learning of 
dependency graphs that can be transferred from one task to another 
in natural language processing [Zhao NIPS 2018] (collaboration with 
Russ Salakhutdinov, CMU).

2. Reasoning and Memory in Deep Learning Systems

A major challenge in modern machine learning is to get learning 
systems to perform long chains of reasoning. Recurrent neural nets 
have been the topic of extensive research along those lines. But 
traditional recurrent nets don’t seem to be able to remember a state 
for very long. In fact, the ability to memorize (to possess stable states)
was long thought to be incompatible with gradient-based learning 
procedures such as back-propagation through time (BPTT), as the 
gradients would vanish through time steps where the state is stable. 
However, one can escape this conundrum by using ideas from 
quantum mechanics: it is possible to store memories, not in stable 
states, but in stable orbits. One simply needs to constrain the 
dynamics of the network to be reversible to solve the vanishing 
gradient problem. It is possible to read out a stable memory from a 
continuously-evolving orbit through a non-linear pooling operation on 
the state vector. This is somewhat similar to a quantum-mechanical 
system whose dynamics is unitary (and therefore invertible with no 
stable state), and where a “measurement” removes the information 
relative to the rotating phase thereby producing a stable state. The 
method was shown to perform tasks that require long-term storage of 
information with higher accuracy than previous methods [Henaff 
ICML 2016]. 

Next, we proposed a deep learning architecture that is capable of 
maintaining a current state of the world in its memory, and to update 
it in the face of new information (like an event). For example, if a 
system reads a sentence like “john walks to the kitchen”, it should 
maintain a memory slot for “john” storing a vector that encodes John’s
attributes, such as “location=kitchen”. Similarly, the system should 
possess a memory slot for “kitchen” whose state vector represents the
fact that John is present in it. The architecture is composed of a 
number of recurrent sub-networks, each of which is meant to 
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represent the attributes of an entity (such as John or the kitchen). 
When the system is fed a sentence describing an event, it produces a 
key vector that is compared each of the entities’ key vectors and 
allows the entity’s state vector to be updated of the keys match. The 
system is trained by being fed a sequence of events and a question 
about the final state of the world. It is then given the answer to the 
question and, through backpropagation, to update its parameters to 
produce the given answer. This was the first method to solve all the 
20 of the so-called bAbI question-answering tasks [Henaff ICLR 2017].

This led us to pursue work on learning predictive world models. A 
world model is a trainable function (a neural net) that predicts the 
nect state of the world, given the previous state and an action taken 
by the agent. One of the main issues in learning such models is to deal
with the intrinsic unpredictability of the real world (or of simulated 
stochastic environments). Once a model of the world is trained, it can 
be used to plan a sequence of actions so as to optimize a particular 
objective. For example, if a learning agent is to land a spaceship on 
the moon or rendez-vous with another spacechip in orbit, it must 
possess a model of its own dynamics. Planning a trajectory under 
these conditions is called Model Predictive Control (MPC). But the 
problem is somewhat complicated when the actions are discrete. We 
propose a method to learn a predictive model and to learn a policy 
with discrete and continuous action spaces. Planning by minimizing 
an objective can be seem as a special case of a general form of 
reasoning. Many forms of reasoning and inference can be reduced to 
optimization problems [Henaff 2017a] [Henaff 2017b].
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