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Summary  
In this project, we focus on the understanding of the effects on order, dynamics and molecular 
organization of a host nematic caused by the introduction of nanoparticles through a 
modelling/computer simulation approach. 
We have modelled the nanoparticles  and the oleic acid covering as berry-like clusters of spherical 
Lennard-Jones sites (“united atoms”), each of which can be endowed with specific features like 
size, charge, dispersion, while the mesogen with a  rod–like Gay-Berne ellipsoid.  
The results of our Monte Carlo simulations assess the influence of nanoparticles ferroelectricity 
and surfactant coatings on the changes in order of the host nematic.  
 
Introduction 
The understanding of the effects of nanoparticles on the properties of a liquid crystal (LC) they 
are dispersed in, is a problem simple to state and important to solve for practical applications, but 
difficult to set up in detail and to tackle [1-7]. One of the main reasons resides in the difficulty to 
define the key features of the nanoparticle amongst the many existing ones: chemical nature, 
size, shape, polarity or ferroelectricity, ferromagnetism, polydispersity and the effect of surfactant 
coatings, like oleic acid, that are nearly always used to stabilize the suspension. 
The problem of the effects of nanoparticles on solvents in general is also of great current interest 
even for isotropic solvents where a “universal structuring” of the solvent surrounding the NP has 
been recently proposed [8] and should be more manifest in LC. Much of the current modelling 
has drastically ignored most of these items, considering lattice models or off-lattice models based 
on a one-site representation of the nanoparticle, often just spherical. 
Here we continue the work started in [8] adding some more realism to the system by reproducing 
the essential features and specific polarity of 5CB and BaTiO3 nanoparticles. 
 
 
This report is organized in five main parts: 
(MOD1)  Coarse-grained modelling of mesogenic (M) 5CB molecules and assessment of the 
specific Gay–Berne and electrostatic parametrization. 
(MOD2a)  Modelling of polar BaTiO3 nanoparticles (N) and assessment of the specific Gay–Berne 
and electrostatic parametrization. 
(MOD2b) Modelling of oleic acid covering and assessment of the specific Gay–Berne 
parametrization. 
(SIM1) Simulations of a pure mesogenic system.  
(SIM2) Preliminary simulations of a large system of a dispersion of BaTiO3 nanoparticles covered 
with oleic acid in 5CB. 
 
 
 
 
 
Methods, Assumptions, and Procedures 
(MOD1)  Coarse-grained modelling of 5CB molecules 
We have chosen to model the mesogens as elongated ellipsoidal particles decorated with two 
charges (see Figure 1).  
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Figure 1: Schematic drawing of the proposed model for the 5CB mesogen 
 
The dimensions σx,σy,σz are adjusted in order to simultaneously obtain: (a) the atomistic value for 
the density in the nematic (T=310 K) phase (i.e. N/V=2.427 10−3 Å-3 or equivalently Vmol=412 Å3); 
(b) the conditions σx=σy and σz=3.1 σx  [9].   
The specific GB well depths are adjusted in order to obtain a system of 1000 mesogenic 
molecules interacting through GB and charges interactions which gives a nematic-isotropic 
transition at the atomistic value of TNI (i.e. 307 K).  

 
Table 1: Dimensions and interaction parameters of the mesogenic interaction sites 
 
For the modeling of the electrostatic interaction, a Genetic Algorithm [10] is used to calculate the 
best set of effective point charges that mimick the electrostatic field around the molecule; in 
practice two charges are founded and mapped on the GB ellipsoid, that is, are shifted/scaled 
assuming the centre of mass of the GB ellipsoid located in the middle of the bond between the 
two phenyl groups.  The coordinates and the magnitude of the two charges are: 
 
 
 
 
 
Table 2: Positions and intensities of the reduced set of mesogenic charges obtained by a Genetic 
Algorithm minimization. 
 
(MOD2a)   Modelling of polar BaTiO3 nanoparticles  
The BaTiO3 nanoparticles are modelled as tightly-packed spherical clusters of 32 identical LJ 
spheres, rigidly connected with each other and slightly overlapping (see Figure 2, left plate). 
Concerning the nanoparticle size, we have chosen the minimal dimension compatible with the 
milling procedure [3], while the  value of each LJ sphere is adjusted in order to reproduce the 
Hamaker interaction between two BaTiO3  nanoparticles (i.e. AH =5 10-20 J= 7.2  kcal/mol) [11],  via 
the GB potential (Figure 2, right plate).  
For the modeling of the electrostatic interaction, we have assumed a reference polarization for 
BaTiO3  of  0.26  C m-2, which  for our  r 1.6 nm nanoparticle, can be rendered with 4 positives 
charges (q1 = q2 = q3 = q4 = 3e) charges, positioned in the centers of LJ sites at the nanoparticle 
top, and with 4 negative (q5 = q6 = q7 = q8 = -3e)  charges  positioned in the centers of LJ sites at 
the bottom (see Figure 2, left plate).  

 

  
 
 
 
 

x   (Å) y   (Å)  z  (Å) εx   (kcal/mol) εy   (kcal/mol) εz  (kcal/mol) c  (Å) 
5 5 15.5 0.475 0.475 0.095 5 

i x   (Å) y   (Å) z  (Å) q   (e) 
1 0 0 -7.52 -0.11562 
2 0 0 3.875  0.11562 
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Figure 2: (left) Schematic drawing of the proposed model for the BaTiO3 and corresponding 
parametrization; (right) Comparison between the pair potential profiles of Hamaker interaction 
between BaTiO3  nanoparticles as calculated in [11] and as obtained through our spherical cluster 
of LJ particles. 
 
 
(MOD2b)    Modelling of oleic acid covering 
In current theoretical modelling, including our previous one [8], nanoparticles  dispersed in LC are 
normally assumed as “naked”, while in reality a stabilizing coating, typically of oleic acid, is added 
and has proved to be essential.  We have now tried to model this effect by covering our 
nanoparticles with a concentric shell of identical 48 LJ neutral spheres, rigidly connected with 
each other and slightly overlapping (see Figure 3): 
 

 
 
Figure 3: Schematic drawing of the proposed model for the oleic acid covering and 
corresponding parametrization. 
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The effect of the oleic acid covering on electrostatic/GB/total interactions is shown in Figure 4: 

 
Figure 4. Representative pair potential profiles relative to BaTiO3-BaTiO3 (NN),   BaTiO3-5CB (NM)  and   
5CB-5CB (MM) interactions with or without oleic acid covering.  
 
 

                         (a) 

                        (b) 

                         (c) 
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Results and Discussion 
 
(SIM1) Simulations of a pure mesogenic system 

(a) (b) 

  
 (c)  (d) 

 

 

(e) (f) 

    
Figure 5.  Plots against temperature of the average values of  (a) electrostatic and GB energy, (b) 
density and (c) orientational order parameter for a system of NM=1000 pure 5CB mesogenic 
molecules. (d) Snapshot of an equilibrium configuration in nematic phase; here the GB mesogens 
are colour coded according to their orientation with respect to the phase director (yellow for 
parallel, blue for orthogonal). (e)  Density correlation function along the director and (f) radial 
correlation function in nematic (T=305 K) and crystal phase (T=250 K). 
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Monte Carlo (MC) simulations have been first performed on a pure mesogenic system that has 
been the reference for the dispersions of embedded nanoparticles.  We have considered systems 
of NM = 1000 GB rods modelled as above, in the isobaric-isothermal (NPT) ensemble, using 3D 
periodic boundary conditions, in a range of temperatures wide enough to observe both isotropic–
nematic and nematic–crystal transitions of the pure mesogen. The MC experiments were run in 
a cooling sequence starting from isotropic configurations.  From the equilibrium configurations, 
we have computed the average values of both GB and electrostatic energy (Fig. 5a), density (Fig. 
5b),  orientational order parameter P2  = (3 cos2  -1)/2 (Fig. 5c), where  is the angle between 
mesogen long axis and director, which shows a steep increase at  T=308 K, corresponding to the 
first order isotropic–nematic transition, and a further jump  at T=255 K denoting the nematic–
crystal transition. 
 
(SIM2) Preliminary simulations of a large system of a dispersion of BaTiO3 nanoparticles covered 
with oleic acid in 5CB. 
 

(a) (b) 
  

  
(c) (d) 

  
Figure 6. Snapshots of 6% nanoparticles dispersion in 5CB, in isotropic  (a) and nematic (b) 
phase;  profiles of the g(r)MM (c) and g2(r)MM (d) correlation functions at the two reference 
temperatures. 
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We have performed a preliminary simulation of a dispersion of NM+NN=8000 particles, with NN=8, 
corresponding to a nanoparticle volume concentration of 6%. The simulation has been started 
from an isotropic configuration generated by replacing with the appropriate number of 
nanoparticles some mesogens of a pure LC sample, previously equilibrated at the same pressure 
and temperature, and slightly increasing the sample volume to accommodate more easily the 
nanoparticles.  
As in the pure 5CB system, decreasing the temperature causes an increasing of the mesogenic 
orientational order, as evident from the snapshots of typical configurations at T=310 K (Figure 6a) 
and 250 K (Figure 6b). 
We have found that the addition of oleic acid is essential in simulation to avoid aggregation, which 
would otherwise be inevitable for this strong polar nanoparticle. 
Additional insights into the local structure of the phases can be gained by examining the pair 
correlation functions for both MM (Figures 6c and 6d) and MN pairs (Figure 7). 
 

(a)                                                          (b) 

 
 

Figure 7:  Mesogenic-nanoparticle correlation functions  g(r)MN    and   P2(r·uM)MN  in nematic 
phase (a); close up of a nanoparticle environment in a typical instantaneous configuration (b). 

 
 
In particular, in order to evaluate the nanoparticle–mesogen reciprocal arrangement at the 
nanoparticle surface, we have examined the anisotropic radial distribution functions  g(r)MN   and 
P2(r·uM)MN  (see Figure 7a), where r is the vector connecting their centers of mass of NM pair and 
uM is the mesogen long axis. The correlations indicate a small number of NM pairs with parallel 
orientations (i.e. P2(r·u)MN -0.5) in the range 35-38 Å; at larger distances two pronounced peaks 
arise at r40 Å and  r55 Å, suggesting instead  a radial arrangement of mesogens around the 
nanoparticle as evident from the close up of the nanoparticle environment in Figure 7b.  
 
 
Conclusions  
We have reported the results of MC computer simulation studies on systems of mesogens doped 
with nanoparticles. The modelling and simulation work performed in this project has considerable 
advanced realism of the system by introducing: 

(1) LC polarity and reproduction of essential features of 5CB (order and TNI) 
(2) NP polarity modelled on  BaTiO3 
(3) Oleic acid coating 
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The results clearly show that even a simple model based on a multi-site Gay–Berne potential and 
polar interaction can help to figure out the features which favors the enhancement of the LC order. 
We reckon that the work could be fruitfully pursued by (i) applying an electric field and study the 
response, (ii) comparing with experiments. 
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