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1 Executive summary – outline, objectives, accomplishments

The approximation and prediction of output quantities of interest in large-scale simulation software
is an ongoing challenge in scientific computing. This difficulty is compounded when the simulation
software contains numerous tunable input parameters that specify modeling scenarios, geometry,
and uncertainty. The main goal of this project is robust and efficient prediction of the variability
of quantities of interest with respect to these input parameters. This is primarily accomplished
via non-intrusive sampling of models. Straightforward and naive sampling methods often (usually)
yield suboptimal performance and convergence guarantees. This project aims to develop novel,
modern sampling strategies that perform well and are provably convergent, ideally without
dependence on dimension. Nearing the end of this project, the efficacy of the developed
procedures will be tested on realistic parameterized scientific problems.

Let a function f(x), f : D → R represent the scalar quantity of interest, where D ⊂ Rd is a
d-dimensional parameter space. We seek approximations with N degrees of freedom of the form

f(x) ' fN (x) =

N∑

n=1

f̂nφn(x), (1)

where the φn are basis functions that encode the variability of f with respect to x. Given f(xj)

for xj ∈ Rd and j = 1, . . . ,M , we seek to compute the coefficients f̂n in as stable and accurate a
manner as possible. Accuracy is measured in a weighted norm on D ⊂ Rd, where the weight function
is w(x). Since M is a surrogate for the amount of work required to compute this approximation (we
must sample f(x) M times), the goal is to minimize M with respect to the number of degrees of
freedom in the approximation, N .

In this report we refer to the problem of designing samples to maximize stability and accuracy as
the problem of optimal approximation. The problem of optimal approximation is an open problem
for d > 1. This project considers both cases when the φn are specified a priori (e.g., polynomials)
and when they are learned from simulation data (e.g., reduced order modeling).

This project seeks to construct optimal approximations based on mathematically rigorous prop-
erties of sampling. This is accomplished via following overall project tasks:

• Construction of near-optimal randomized and deterministic sampling sequences for non-adaptive
approximation of the form (1). This requires developing collocation-based quadrature, inter-
polation, discrete least-squares, and compressive sampling schemes to recover the coefficients
f̂n in (1).

• Development of adaptive approximation strategies, where the functions φn in (1) are con-
structed on-the-fly. The main goals in the context of this project are such adaptive strategies
that utilize models of different fidelities and accuracies that synthesize a superior prediction
from the individual models.

• Application to parameterized problems in scientific computing. The terminal application of
this project seeks to understand the effects that tunable parameters have on output quantities
of interest.

The deliverables for this project are the following:
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• Publication or acceptance of 23 articles: [P19, P5, P9, P7, P22, P2, P12, P13, P24, P1, P18,
P11, P14, P23, P8, P3, P15, P21, P6, P20, P10, P4, P16].

• 6 References [S4, S1, S6, S2, S3, S5] are submitted the time of writing of this report. All but
one are in the revision stage and are expected to be accepted for publication.

The accomplishments for this project are the following:

• Development sampling strategies and convergence guarantees for novel kinds of sample-based
approximation techniques: quadrature [P14, P11], [S4], least squares [P19, P5, P7, P22, P18],
[S3] and compressive sampling [P7, P6, P1, P9].

• Dissemination of software that accomplishes near-optimal randomized sampling [P17].

• Design of novel sampling techniques for adaptive surrogate construction, applied to reduced
order modeling and multi-fidelity modeling [P8, P3, P21, P20].

• Convergence analysis for adaptive techniques [P3, P15].

Applications:

• Structure design in topology optimization [P14, P16], [S5].

• High-order PDE solvers on manifolds [P23].

• Parametric reduced order modeling with multifidelity techniques [P8, P20]

• Reduced order modeling for nonlocal/fractional diffusion equations [S1, S2].

• Time-dependent data assimilation [P24], [S6]

4



2 Project personnel and publications

2.1 Personnel

• Akil Narayan, PI, Assistant Professor, University of Utah

• Vahid Keshavarzzadeh, Postdoctoral scholar, University of Utah

• Mani Razi, Postdoctoral scholar, University of Utah
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submitted, (2019).
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3 Technical description of accomplishments

3.1 Sampling for parametric least-squares and compressive sampling

The accuracy of computed coefficients f̂n in (1) is usually measured in terms of best approximations.
For example, if φn form an orthonormal basis, one may seek the best L2 coefficients,

f̂∗n =

∫

D
f(x)φn(x)dµ(x), f∗N =

N∑

n=1

f̂∗nφn(x)

where µ is a known probability measure on D. When performing overdetermined (large-data) least-
squares approximations, the goal is establishment of the estimate

‖fN − f‖L2
µ
. C ‖f∗N − f‖L2

µ
,

where ideally the constant C is an absolute constant not dependent on dimension d. When perform-
ing underdetermined (small-data) approximations, one cannot hope to obtain all coefficients from
incomplete data, so the goal is often reframed in terms of best s-term estimates. Such estimates
take the form

‖fN − f∗N‖L2
µ
. C inf

‖c‖0≤s

∥∥∥f̂∗ − ĉ
∥∥∥

2
,

and the machinery of compressive sampling yields such estimates with m ∼ s data points.

The major problem that this project seeks to overcome is that the constants C usually depend
heavily on d, D, and the basis φn when data is obtained using standard sampling techniques. We
focused on development of novel sampling techniques that overcome this restriction. Much work has
shown that sampling data from the probability measure defined by

dµN (x) =
1

N

N∑

n=1

φ2
n(x)dµ(x),

allows one to improve estimates significantly, almost eliminating the dependence of C on d, D, and
φn. For example, one of the novel results in [P19] states that if the number of samples M drawn
from the measure dµN satisfies M ≥ kN logN , then

‖fN − f‖L2
µ
≤
(

1 +
1

logM

)
‖f∗N − f‖L2

µ
+

1

Mk−1
,

for very general d, D, and φn. Thus, log-linear sampling of M with respect to N is enough to
establish very general convergence guarantees in any dimension.

This work has been exploited for constructing optimal least-squares constructions in various
settings [P19, P5], and for compressive sampling approximations [P1, P9].

In the following two sections we describe two particular techniques for compressed sampling: a
subsampling method from [P7] and a weighting technique from [P9]. Following this we describe novel
quadrature rule theory and computational constructions developed in this project in [P11, P14].
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3.1.1 CS with quadrature subsampling

Given n ∈ N, we can form the nd-point tensor-product grid, formed from n univariate Gauss quadra-
ture points in each dimension. We likewise form the product Gauss quadrature weights on this
tensor-product grid. (Note that we do not actually form this d-dimensional tensorial grid explic-
itly, which would be too expensive.) We randomly subsample M nodes x1, . . . , xN and weights
w2

1, . . . , w
2
M from this grid. The nodes xn are used to sample a function, and the weights wn precon-

dition the solver to make computations well-conditioned. This procedure is simple, straightforward,
and with M fixed has only linear dependence on dimension.

We investigated this procedure in [P7], and there the following convergence result was established:
let a sparsity level s be such that M & K(w)s. Then with high probability the compressive sampling
solution c satisfies

∥∥∥c− f̃
∥∥∥

2
≤ C1σs,1(f̃)√

s
+ C2ε, (2)

where C1 and C2 are universal constants, and f̃ is the unknown vector of exact expansion coefficients
of f(x). The quantity σs,1 is the best s-term error in the 1-norm:

σs,1(v) = min
‖w‖0≤s

‖v −w‖1 .

We show that in one dimension K(w), which determines the requisite sample size M , has the
following behavior

• (Beta distributions) w(x) = (1 − x)α(1 + x)β for α, β > −1 on x ∈ [−1, 1]. Then K(w) =
C(α, β) is a constant depending (linearly) on α and β.

• (Two-sided exponential distributions) w(x) = exp(−|x|α) for α > 1 on x ∈ R. Then

K(w) =

{
C(α)k2/3, α ≥ 3

2

C(α)k1/α, 1 < α < 3
2

where k is the maximum polynomial degree in the dictionary defined by the Vandermonde
matrix V .

• (One-sided exponential distributions) w(x) = exp(−xα) for α > 1
2 on x ∈ [0,∞). Then

K(w) =

{
C(α)k2/3, α ≥ 3

4

C(α)k1/2α, 1
2 < α < 3

4

where k is the maximum polynomial degree in the dictionary defined by the Vandermonde
matrix V .

The above behaviors of K(w) are sharp: no smaller restriction on the sample count can prove
convergence using the strategy of bounded orthonormal systems that we leverage. All of these
results generalize to the multidimensional case via tensor-products. Note that our results are very
general and cover nearly all types of continuous distributions one encounters in practice.

In terms of practicality of this procedure, we show summary results in Figure 1. Both plots show
the superiority of quadrature subsampling compared to standard method using other iid sampling
algorithms.
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Figure 3. Recovery probability with respect to sparsity s of Chebyshev polynomials with fixed
sample number M = 85. Left: d = 2, n = 21 (N = 231). Right: d = 10, n = 4 (N = 286).

show the convergence rate for sparse Hermite polynomials(with d = 2, n = 21,and N = 231) as a
function of number of sample points. In the right-hand plot of Figure 4, we show the convergence
rate for sparse Hermite polynomials(with d = 10, n = 4,and N = 286) as a function of number
of sample points. Although subsampling from a tensor-product grid works well in low dimensions,
in the high-dimensional d = 10 case, we see that sampling according to the orthogonality measure
produces better results. This is consistent with earlier observations [44].
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Figure 4. Recovery error with respect to number of sample points of Hermite polynomials. Left:

d = 2, n = 21,and N = 231. Right: d = 10, n = 4,and N = 286. For both plots, the error shown

is the average over 500 trials.

5.2. Recovery of analytical functions. In general, functions do not have a finite representation
in the orthogonal polynomials, but instead have “approximately” sparse representations. Here, we
consider a few functions of this form.

We report the numerical error with Legendre polynomials for the underlying high-degree mono-

mial function f(x) = x10
1 x10

2 and high-dimensional Generalized Rosenbrock f(x) =
10P

i=1

(1 � xi)
2 +

100(xi+1 � x2
i )

2. We attempt to recover a sparse representation of these functions in a Legendre
polynomial basis. The left-hand plot of Figure 5 shows recovery of the monomial function (high
degree, low dimension), and the right-hand plot shows recovery of the Rosenbrock function (low

16 Stochastic `1-minimization using randomized quadratures
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Figure 2. Recovery probability with respect to sparsity s of Legendre polynomials with fixed
sample number M = 85. Left: d = 2, n = 21 (N = 231). Right: d = 10, n = 4 (N = 286).

• Chebyshev (resp. Uniform) – sampling iid from the Chebyshev (resp. uniform) measure and
solving the unweighted optimization problem (17).

We recall our notation: ni is the number of Gaussian quadrature points in dimension i, with
ni � 1 being the maximum polynomial degree in dimension i from the index set ⇤. The size of ⇤
is N , coinciding with the number of columns in the matrix D that is input to the `1 optimization
problem (18). The number of samples we use is M , and is the number of points subsampled from
the tensor-product Gaussian quadrature grid, coinciding with the number of rows of the matrix D.

5.1.1. Uniform measure and Legendre polynomials. The first test is the recovery of sparse Legendre
polynomials, with the index set ⇤ corresponding to the two dimensional total degree space T2

n�1

and T10
n�1, respectively. We note that in this case our method coincides with the method in [35]. We

examine the frequency of successful recoveries when the number of sample points is fixed at M = 85.
This is accomplished by conducting 500 trials of the algorithms and counting the successful ones.
A recovery is considered successful when the resulting coe�cient vector c satisfies kc � ĉk  10�3.
In the left-hand plot of Figure 2, we show the recovery rate for sparse Legendre polynomials(with
d = 2, n1 = n2 = 11, and thus N = 66) as a function of sparsity level s. In the right-hand plot
of Figure 2, we show the recovery rate for sparse Legendre polynomials(with d = 10, n = 4,and
N = 286) as a function of sparsity level s. We have also tested preconditioned recovery results with
MC Chebyshev samples. In the cases we have tested, the Gaussian subsampling method works as
well or better than the other methods, both for low and high dimensions.

5.1.2. Chebyshev measure and Chebyshev polynomials. The second test is the recovery of sparse
Chebeshev polynomials, with the index set ⇤ corresponding to the two dimensional total degree
space T2

n�1 and T10
n�1, respectively. We examine the probability of successful recoveries when the

number of sample points is fixed at M = 85. In the left-hand plot of Figure 3, we show the recovery
rate for sparse Chebyshev polynomials(with d = 2, n = 11,and N = 66) as a function of sparsity
level s. In this low-dimensional case, the results are similar to recovery of Legendre polynomials
in Figure 2. In the right-hand plot of Figure 3, we show the recovery rate for sparse Chebyshev
polynomials(with d = 10, n = 4,and N = 286) as a function of sparsity level s. Again we see
that the subsampling Gaussian quadrature case performs better than other methods, although the
improvement in the high-dimensional cases is more minor.

5.1.3. Gaussian measure with Hermite polynomials. In Fig.4, we report the numerical results for the
Gaussian measure with Hermite polynomials approximation. We examine the maximum coe�cient
error, kc � ĉk1, as we increase the number of sample points. In the left-hand plot of Figure 4, we

Figure 1: Results from [P7]. Recovery using random quadrature subsampling (“Gaussian”). Left: Error
versus sample count for a smooth test function in d = 2 dimensions with w(x) corresponding to a normal
distribution. Right: Empirical probability of recovery of exactly sparse polynomials in d = 10 dimensions with
w the uniform weight on [−1, 1]10. In the left and right plots, comparison is shown against solving and `1
optimization problem using unweighted iid sampling according to w (“Random” and “Uniform”, respectively),
and in the right plot, a comparison against a popular preconditioned Chebyshev sampling is also shown.

3.1.2 CS with Christoffel Sparse Approximation (CSA)

A second approach for sparse approximation via compressive sampling has been developed in [P9].
This method for sparse approximation utilizes results from pluripotential theory. This procedure
solves a preconditioned `1 minimization problem by sampling xn iid from a weighted pluripotential
equilibrium measure µD,w. The preconditioning weights correspond to `2 row-norms of the design
matrix. These row-norms are evaluations of the Christoffel function, hence the “C” in CSA.

When using this procedure in one dimension and tensor-product situations, our convergence
results are the same as in (2), with K(w) behaving exactly as described in the previous section for
those weights. However, the CSA method can be applied to any case when w is continuous, not
just the tensor-product case. Thus, the method is more general than the quadrature subsampling
strategy.

To illustrate the effectiveness of the CSA procedure, Figure 2 shows transition plots when com-
pared again a standard Monte Carlo `1 recovery procedure in both low and high dimensions, on
bounded and unbounded domains. The CSA method is a simple, general procedure for recovering
sparse expansions.

In Figure 3 we solve a x-parameterized diffusion differential equation. When compared against
standard Monte Carlo as well as preconditioned Chebyshev sampling, the CSA procedure produces
superior results.

10



Figure 2: Results from [P9]. Compressive sampling transition plots for the CSA procedure. The horizontal
axis is the sample count size relative to the size of the dictionary, and the vertical axis is the sparsity of a
function relative to the sample count. Each pixel is colored with probability is successfully recovering the sparse
solution from `1 minimization. Top row: d = 2 dimensions with w an asymmetric Beta density. Bottom row:
d = 30 dimensions with w a normal random variable density. Left column: Unweighted `1 optimization solved
by sampling iid from the density w. Right column: the CSA method.
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Figure 3: Results from [P9]. Compressive sampling `2 error in expansion coefficients, solving a parameterized
diffusion equation with the CSA algorithm versus standard algorithms. Left: d = 2 with w an asymmetric
Beta density. Right: d = 20 with w a uniform density.
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3.1.3 Optimal quadrature rules: characterization and computation

Sampling is often used to approximate integrals,

∫

D
f(x)dµ(x) ≈

M∑

m=1

wmf(xm),

for nodes and weights xm and wm, respectively. Since function evaluations can be expensive in
complex scientific models, one wishes to take as few samples as possible. This is the mathematical
problem of developing optimal quadrature rules. Work in this project focused on computation of
near-optimal multidimensional quadrature rules.

One theoretical accomplishment is the following characterization for polynomial quadrature rules:
assume that Λ ⊂ Nd

0 is a multi-index set so that

span {φj}Nj=1 = span
{
xλ | λ ∈ Λ

}
:= PΛ.

Our theory from [P11] show that any quadrature that is exact on the polynomial space, i.e.,

∫

D
p(x)dµ(x) =

M∑

m=1

wmp(xm), p ∈ PΛ,

must have M no smaller than the size of the minimal half-set of Λ, i.e.,

M ≥ min
{
|Θ| | Θ ⊂ Nd

0, Θ + Θ ⊆ Λ
}
.

Equality is achieved for optimal quadrature rules, such as univariate Gaussian quadrature rules.
However, this property holds in the multivariate case, and has allowed us to construct algorithms
that find near-optimal quadrature rules [P5, P11, P14] in as many as 100 dimensions.

The methodology is general, applying to non-tensor-product domains with non-standard measures
µ. To illustrate this, Figure 4 shows performance of our reduced quadrature rules on a 20-dimensional
function that can be well-approximated by a 2-dimensional function with non-tensorial weight and
domain. Our reduced quadrature rule outperforms the accuracy of popular alternatives like sparse
grids or Monte Carlo methods, and requires many orders of magnitude fewer data points. Figure
5 shows that such reduced quadrature rules are very effective for real-world topology optimization
problems: We obtain an excellent approximation to the compliance PDF with approximately 20% of
the effort of a more standard sparse grid procedure.

Work also focused on designing hierarchical (nested) quadrature rules using the technique of
designed quadrature [P14]. Nested quadrature rules are useful since refinement is economical; we
illustrate this in Figure 6, where the error committed by nested quadrature rules is smaller for a fixed
computational budget compared to standard sparse grid constructions. Details of the approach and
more examples are included in [S4].

3.2 Application: sampling in multifidelity approximation

A persistent challenge in uncertainty quantification is estimating the effect of uncertain parameters on
quantities of interest. A common approach to understanding the effect of a parameter is to evaluate
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with ⇠i ⇠ U [�1, 1] and �0 is a positive constant. The eigenvalues and eigenmodes are obtained from decomposi-
tion of a Gaussian covariance kernel

C(x, x0) = exp
⇣
� ||x� x0||22

2l2c

⌘
, (33)

with lc =
p

2/2.

The spatial domain ⌦ and Dirichlet boundary condition are shown in Figure 16. We truncate the expansion at
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Figure 16: Finite element mesh with Dirichlet boundary condition (left) and a solution realization for the heat equation (right).

d = 10, capturing almost 90% of the energy in the random field,
P10

i=1

p
�i/

P500
i=1

p
�i = 0.8825. The value �0

is fixed at �0 = 3.

Similarly to previous example we use three univariate rules and consider [1,3,3,7]-point rules for accuracy
levels i = 1, . . . , 4. The sparse grid construction for d = 10 results in n = [1, 21, 201, 1201] and n =
[1, 21, 221, 1581] nodes for four accuracy levels corresponding to nested quadrature and Gauss quadrature re-
spectively.

Finally, we use a 5281-point rule for estimating the true mean and standard deviation and focus on a particular
node with coordinate [0.0037,�0.0024] in the spatial domain to study the convergence. Figure 17 shows the
relative errors in mean and standard deviation. It is again evident that relatively better accuracy is gained with
smaller number of nodes when using a nested quadrature rule.

5. Concluding Remarks

A numerical method for systematic generation of nested quadrature rules is presented. Our method uses a
flexible bi-level optimization that solves the moment-matching conditions for the main and nested rule. The con-
straints, namely the node bounds and weight positivity are enforced throughout the optimization via a penalty
method. We generalize the Gauss-Kronrod rule for various weight functions including those with finite/infinite
and symmetric/asymmetric supports. The extension of algorithm to generate Gauss-Kronod-Patterson rules i.e.
nested sequence of quadrature is also discussed. In particular results for the nested sequence of Chebyshev quadra-
ture are tabulated which have not been reported elsewhere. We used our nested univariate rules to construct sparse
grids for integration in multiple dimensions. We showed the improved efficiency and accuracy of the resulting
multidimensional quadrature on parameterized initial and boundary value problems when compared with Gauss
quadrature-based sparse grids.
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Figure 6: [S4]. A parametric elliptic partial differential equation is discretized in two dimensions on a finite
element mesh (left). The parameter (d = 10) dictates the diffusion coefficient through a Karhunen-Loeve-type
expansion. Treating the parameter as a random variable, the mean and standard deviation of the solution
at a particular mesh point can be computed. The error in this computation as a function of the number of
evaluations in a Gauss-type Smolyak sparse grid is compared against the error committed by the nested rules
(center, right).

an ensemble of simulations for various parameter values. This approach is reasonable when multiple
runs of a simulation model or experiment are easily obtained. Unfortunately, a simulation model
or discretization that is more true-to-life, or has higher fidelity, requires additional computational
resources due to, for example, increased number of discrete elements or more expensive modeling
of complex phenomena. For these reasons a high-fidelity model simulation can incur significant
computation cost, and repeating such a simulation for a sufficient number of times to understand
parameter effects can quickly become infeasible.

Recent work has introduced an effective solution to this problem by using multiple fidelities of
simulation models where less-expensive, lower-fidelity versions of the high-fidelity model are used to
learn the parametric structure of a simulation. This structure is utilized to choose a small parameter
ensemble at which high-fidelity runs are assembled, providing insight into the finer details and effects
of the simulation parameters [1, 2]. One important decision in this allocation process is which
parameter values should be used in the less costly low- and medium-fidelity simulations, and which
values are worth the more costly high-fidelity simulation. This decision becomes extremely important
for situations where it is physically impossible to run the high-fidelity simulation more than a small
number of times, say O(10) times.

Due to the high computational cost, the number of high fidelity simulations is limited to m, with
m = O(10) being a common bound. In contrast, the low-fidelity model is much more computationally
affordable with n� m low-fidelity simulations available.

Let γ = {z1, . . . , zn} be a set of sample points in D, which define matrices

aLj = uL (zj) , AL =
[
aL1 aL2 . . . aLn

]
∈ RdL×n,

aHj = uH (zj) , AH =
[
aH1 aH2 . . . aHn

]
∈ RdH×n.
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Let S ⊂ [n] denote a generic set of column indices, and for A ∈ Rd×n having columns aj we define

S =
{
j1, . . . , j|S|

}
, AS =

[
aj1 aj2 . . . aj|S|

]
.

Earlier work by the PI [1] showed that the structure of AL can be used to identify a small number
of column indices S ⊂ [n], |S| = m, so that AL

S can be used to form a rank-m approximation
to AL, and AH

S can be used to form a rank-m approximation to AH . Precisely, they form the
approximations

AL ≈ AL
S

(
AL
S

)†
AL, AH ≈ AH

S

(
AL
S

)†
AL. (3)

An important observation in the above approximations is that the representation for AH requires
only AH

S , i.e., it only requires m = |S| evaluations of the high-fidelity model. The construction
of S is performed in a greedy fashion, precisely as the first m ordered pivots in a pivoted Cholesky

decomposition of
(
AL
)T

AL. While AH only represents uH on a discrete set γ, the procedure above
forms the approximation

uH(z) ≈
m∑

i=1

ciu
H(zji), (4)

where the coefficients ci are the expansion coefficients of uL(z) in a least-squares approximation with
the basis

{
uL(zji)

}m
i=1

. Thus, the high-fidelity simulation may actually be evaluated at any location

z ∈ D if uL(z) is known. This procedure has the following advantages:

• Once m high-fidelity simulations have been computed and stored, an approximation (4) to the
high-fidelity model is constructed having the computational complexity of only the low-fidelity
model, cf. (4).

• The subset S is identified via analysis of the inexpensive low-fidelity model, so that a very large
set γ may be used to properly capture the parametric variation over D.

• It is not necessary for the spatiotemporal features of the low-fidelity to mimic those of the high-
fidelity model. Section 6.2 in [1] reveals that uL and uH may actually be entirely disparate
models, yet the approximation (4) can be accurate.

While the applicability of this technique is now well-understood, strong error estimates were
previously unwieldy and difficult to use. Work during this project focused on making this technique
more practical, providing useful computational tools for practitioners to ascertain the error committed
by this approach [P8]. This resulted in development of a new, computable error bound that uses
already-available information and is useful for practitioners. The bound can successfully predict error
committed by a multifidelity technique, see Figure 7.

3.2.1 Convergence acceleration of multifidelity models

One major application was the realization that the multifidelity scheme in Section 3.2 can be used
to accelerate convergence of the high-fidelity model, thereby attaining an error that is superior even
to the high-fidelity model. Such a technique requires smoothness of the underlying modeling so that
sequence transformation techniques (such as Richardson extrapolation) can be effective.
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Figure 12: Realizations of vertical displacement for two randomly selected input parameters µ. Shown are the low-fidelity,
high-fidelity, and rank r = 1 bi-fidelity estimates.
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(c) 64 × 64 Low-Fidelity Mesh
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Figure 3: Histograms of low-fidelity and rank r = 10 bi-fidelity errors normalized by ∥H∥ for various low-fidelity models.
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3.2. Test Case 2: Composite Beam

For the second test case, we consider the deformation of a plane-stress, cantilever beam with composite
cross section and hollow web, as shown in Figure 9. The Young’s moduli of the three components of the cross
section as well as the intensity of the applied distributed force on the beam are assumed to be uncertain,
and are modeled by independent uniform random variables. Table 1 provides a summary of the parameters
of this model along with the description of the uncertain inputs. Here, the QoI is the vertical displacement
of the top cord and, in particular, its maximum occurring at the free end. To construct the bi-fidelity
approximation, we use realizations of the vertical displacement over the entire top cord given by the low-
and high-fidelity models.

Figure 9: Schematic of the cantilever beam (left) and its composite cross section (right).

Figure 10: Finite element mesh used for high-fidelity simulation of the vertical displacement.

Unlike in the previous test case where the low-fidelity model simulated the same physical problem but
on a coarser mesh, here the low-fidelity model solves a simpler physical model. Specifically, the high-fidelity
model is based on a finite element (FE) discretization of the beam using a triangular mesh with linear
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Figure 7: [P8] Left: Illustration of the effectiveness of the multifidelity approach. Center: Histogram of errors
committed by the low- and multi-fidelity surrogates sampled over an ensemble of parameter values. Right:
behavior of the actual error of the multifidelity surrogate relative to the high-fidelity model compared against
the computable error bound.

Work during the project resulted in a rigorous theoretical error estimate demonstrating that a
procedure that exploits sequence transformation is possible [P15]. Numerical results that demonstrate
the possibility of such an approach were also generated and successfully achieve superior order of
accuracy compared to the high-fidelity model, see Figure 8.

3.3 Application: Sampling for reduced order modeling

A lesson learned from early years of the project show that, for a given set of interpolation points
{x1, . . . , xN}, generating new sampling points via the method

xN+1 := argmax
x∈D

N∑

n=1

|`n(x)| , `m(xj) = δm,j , m, j = 1, . . . , N,

where {`n}Nn=1 are cardinal Lagrange interpolants. This above procedure is a greedy rule that chooses
new points based on the Lebesgue function from interpolation theory. While Lagrange interpolants
and Lebesgue functions are typically considered in the context of polynomial approximation, one can
equally well consider this approach for non-polynomial approximations.

Later in the project, we focused on applying this technique for reduced-basis-based model order
reduction of parametric PDE’s. One major challenge with reduced basis methods is selection of
parametric points that can be used to define a reduced basis space via solution snapshots of a
parametric PDE. Work during the last period demonstrated that Lebesgue-function-based greedy
sampling can be used to select a sequence of parametric points. We emphasize that this procedure
utilizes non-polynomial approximations that are implicitly defined by the reduced order model, and
in particular works well for discontinuous parameter dependence [P3]. Numerical results showing this
are given in Figure 9. This technique is an entirely novel approach to selecting snapshots for model
reduction, and we expect it to be very useful for practitioners since it is easy to implement.
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Fig. 1. Schematic representation for convergence acceleration of time-dependent multifi-
delity models.

t, T Time variable t taking values in r0, T s
k, K Parameter value k taking values in K Ä d

M Dimension of vector-valued solutions to an ODE

upt, kq M -valued solution to a k-parameterized ODE at time t. The trajectory satisfies
up¨, kq P H

H Hilbert space H containing solution trajectories, up¨, kq P H

h, N Coarse timestep h, with T “ Nh

rNs The set t0, 1, . . . , Nu serving as indices for discrete times.

r, hj , Nj Integer r • 2 defining time step hj “ h{rj´1 for “level” j approximation, using

Nj “ Nrj´1 equidistant time steps to reach T

Hj Hilbert space containing hj-discretized solution trajectories

ujpi, kq M -valued discrete solution at time t “ ihj computed using an integration method
with timestep hj , with ujpkq “ ujp¨, kq P Hj

p, P Time integration global truncation error order p and pP ` 1q-point Newton-Cotes
quadrature rule

Kn Collection of n points in K
G, Gj n ˆ n Gramian matrices formed from solution trajectories for k P Kn

V, Vj Manifold of solutions for all k P K. Subsets of H and Hj , respectively.

Table 1
Notation used throughout this article.

integer p • 2,

max
kPK

max
1§m§M

sup
tPr0,T s

ˇ̌
ˇ̌ Bs

Bts
upmqpt, kq

ˇ̌
ˇ̌ “: U psq † 8, 0 § s § p(2.1)

The above is relatively restrictive, requiring smoothness (up to order p) of the solution
trajectories, with derivative bounds independent of k. The value of p required is the
convergence order of a time integration scheme. The condition (2.1) allows us to
conclude that the solution up¨, kq : r0, T s Ñ M to (1.1) is at least continuously
di↵erentiable on the compact interval r0, T s. Therefore, we have

up¨, kq P H H :“ L2
`r0, T s; M

˘ “  
v : r0, T s Ñ M

ˇ̌ }u}H † 8(
,
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ical estimate, as described at the end of Section 5.1.3.
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6. Concluding Remarks. A numerical method for leveraging time-dependent
multifidelity models under parametric uncertainty is presented. We built interpolation
operators on the inexpensive low-fidelity solution in parameter space, and estimated
higher fidelity solutions corresponding at arbitrary parameter locations using the same
interpolation rule associated with the low-fidelity solution. We chain this multifidelity
procedure together with classical sequence transformation, in particular Richardson
extrapolation: Having knowledge of solutions at di↵erent fidelity levels allows us to
estimate the convergence order and build a sequence transformation operator that
attains superior accuracy compared to the standard multifidelity surrogate.

This manuscript is for review purposes only.

Figure 8: [P15] Multifidelity models for smooth responses can be used to effect convergence acceleration
(Left), resulting in accuracy superior even to the high-fidelity model. Work during this period provided theory
demonstrating that this was possible, and provided numerical results (Right) showing that, e.g., second-
order methods can be accelerated to achieve third-order convergence using standard sequence transformation
techniques.
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Top left us the comparison of histories of convergence for the three approaches. Top right demon-

strate that the residual-free error indicator matches with the true error well even when the para-

metric dependence is discontinuous. The bottom figure shows discontinuous Lagrange functions

that are necessary for the RB solution to approximate the truth solution well.
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Figure 6: The results for the second test problem.
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Figure 9: [P3] New, computable error estimates for general equations can help to both overcome finite-
precision error stagnation and lack of more mathematically rigorous error estimates for parametric model order
reduction. The new error estimates (labeled ∆̃10(µ)) yield parametric error curves that behave similarly to
more traditional error estimates, but are much easier to compute (left). The actual error committed by a
model order reduction strategy using the new estimates (labeled E3) are comparable to those using more
mathematically technical estimates (labeled E1 and E2), and can overcome finite-precision limitations that
arise from the computational strategy for the mathematical estimates (right).

17



1 100 200 309
M

102

103

104

105

t
M

so
lv
es

s ∈ D1

M · tUN

toffline +M · tU10

1 100 200 309
M

102

103

104

105

t
M

so
lv
es

s ∈ D2

M · tUN

toffline +M · tU10

Figure 3: The cumulative computation time for M queries of the full order model uN and the
RBM surrogate uN . On the left is for the case s 2 D1 with N = 7; on the right, s 2 D2 with
N = 3.
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Figure 4: RBM errors as a function of s for different values of N .
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Figure 2: Convergence of the RBM solution UN associated to problem (40), where µ = s is a
scalar.

s 2 D2 separately, and observe savings of well over 2 orders of magnitude at approximately
312 queries. The speedup for marginal computing time (i.e., only online time) is well over
four orders of magnitude when 10 reduced basis functions are used. We also see that the RB
offline time is negligible and it quickly becomes worthwhile to invest in the offline stage in the
many-query setting.

Finally, we plot in Figure 4 the RB errors as a function of parameter for N = 2 or N = 7
are used for D1, and when N = 1 or N = 3 basis elements are used for D2. We also mark the
selected parameter values µj . We see that the method is effective in producing an accurate
surrogates over the whole domain using a very limited number of basis elements.

We do observe in Figure 2 that the error between the RBM surrogate uN and the restriction
of VN to the cylinder base stagnates for s 2 D2. This is likely because we do not have
y-uniform convergence on [0,1) of our EIM approximation, and thus our simplified truth
approximation UN retains a small discrepancy from the sought solution VN . However, this
stagnation occurs at relatively small values of the error, so that the RBM surrogate is still
quite robust and efficient.

4.3 Parameterized fractional Laplace problem

For this test we take a two-dimensional parameter µ:

µ = (s, ⌫) 2 [0.03, 0.97] ⇥ [0, 1], (42a)

with

f(x; ⌫) = f1(x)⌫2 + f2(x)(1 � ⌫2), (42b)

where the functions f1 and f2 are defined as,

f1(x) = sin(2⇡x1) sin(2⇡x2), f2(x) = sin(3⇡x1) sin(3⇡x2)e
x1x2

For the discrete set over which the optimization (39) is performed, we choose a tensor-product
grid, where grid in the s variable is 257 equispaced points on each of D1 and D2, and the grid
in the ⌫ variable is 257 equispaced points on [0, 1]. This results in a total of 66, 049 training
points for the offline RBM procedure.

We again use the ensembles defined in (41) to ascertain error of the RBM surrogate uN ,
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Figure 10: [S1] Model order reduction for nonlocal partial differential equations can be efficiently accomplished
using the new sampling techniques of section 3.3. For the (spectral definition of the) fractional Laplace
equation, the cumulative time required for model order reduction construction + M queries of the reduced
order model is orders of magnitude smaller than M queries of the full model (left). The error committed by
the reduced order model is also very accurate (right).

3.3.1 Model reduction for nonlocal equations

The novel sampling techniques from Section 3.3 were used to construct reduced order models for
nonlocal differential equations. Specifically, the PDE

(−∆)s u = f,

with homogeneous Dirichlet boundary conditions on Ω ⊂ R
2 was considered. Here, the order

s ∈ (0, 1) of the Laplace operator is fractional. The fact that this equation is nonlocal makes
numerical discretizations expensive, and thus motivates the need for reduced order models. Using
reduced basis methods, a reduced order model for the above equation can be constructed with relative
ease [S1], see Figure 10.

The procedure for constructing reduced order models for nonlocal equations is one of the first
attempts at creating low-rank surrogates for solutions to nonlocal equations.

3.4 Application: Topology optimization

Many structural design engineering problems can be attacked via a topology optimization framework,
wherein the geometry is generated to optimize a structural metric (such as stiffness) subject to volume
and/or mass constraints. Such a problem is extremely challenging due to the high-dimensional space
of the design parameter. In this project we used topology optimization as a capstone application
for many of our methods, in particular the adaptive sampling strategies. We summarize below the
advances made in the publications [P16, P20, P14], [S5].
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Figure 11: [P20]. Structure topology optimization: Reconstruction error among subset methods. Left:
Realizations of the low-fidelity and high-fidelity topology optimization solver. Middle: the reconstruction error
of the rest of the low-fidelity simulation dataset when using the indicated subset chosen using various methods.
Right: the reconstruction error for the high-fidelity simulations with the subset chosen using the low-fidelity
samples. The GOMP procedure outperforms methods except the best rank-k approximation, which is not
computable in practical situations.

3.4.1 Machine learning samplers

In the context of the multi-fidelity procedure, certain machine learning optimization algorithms ap-
plied to the problem of adaptive sampling results in higher accuracy compared to many other sampling
strategies. We show in [P20] that a type of group orthogonal matching pursuit (GOMP) algorithm
for feature selection creates a more accurate multifidelity approximation – the GOMP procedure
even outperforms a convolutional neural network. In Figure 11 we show results from [P20] showing
performance of the GOMP algorithm on a nontrivial topology optimization problem.

3.4.2 Design under uncertainty

In [P16] we demonstrated that the ideas of adaptive sampling via multi-fidelity methods are extensible
to design under uncertainty paradigms. In these problems, we seek to solve

minµ(ρ) + λσ(ρ) subject to V (ρ) ≤ V0,

where µ and σ represent the mean and standard deviation of a structural performance metric, which is
random due to fluctuations in the design or construction process. The design parameters ρ represent
material mass or volume fractions over the ambient geometry, and V represents a volume or mass
of the design ρ. The constants λ and V0 are problem-dependent scalars that define the objective
and constraints. In Figure 12 we demonstrate that low-fidelity models can be used to construct an
adaptive set of samples in parameter space from which a multi-fidelity surrogate can be constructed
and used to create designs. In Figure 13 we demonstrate this procedure on a three-dimensional
design under uncertainty problem, showing both its speed and accuracy.
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but using these coarse meshes in our bi-resolution framework results in designs that are almost identical to high-resolution
optimization.

FIGURE 8 Topology optimization results for different meshes: Single resolution optimization with 4 ù 4, 10 ù 10, 20 ù 20,
50 ù 50 and 100 ù 100 meshes(top row); Bi-fidelity optimization with 4 ù 4, 10 ù 10, 20 ù 20, 50 ù 50 meshes (bottom row).
The top right figure is obtained with 148 high-resolution simulations (on 100ù 100 mesh) at each design iterations whereas the
bottom plots associated with 10 ù 10, 20 ù 20, 50 ù 50 are obtained with only 11 high-resolution simulations. The bottom left
plot associated with 4 ù 4 mesh is obtained with 6 high-resolution simulations.

We compute the difference between optimal designs obtained from the bi-resolution approach and high-resolution design
as e⇢ = ⇢B * ⇢H _

t
nHelem where nHelem = 104 in this case. Similarly we define the error in the objective function Q cf.

Equation (9) as eQ = QB *QH _QH . Table 1 shows the number of iterations, number of high resolution simulation which is
6 for the coarsest mesh and 11 for the rest of meshes at each iteration, as well as e⇢ and eQ. It is apparent that the bi-resolution
topology optimization with 10 ù 10 mesh yields almost the same design with much smaller cost.

TABLE 1 Loading uncertainty: Error vs cost for single and bi-resolution optimization.

Resolution No. Iter. No. Hi. Res. Sim. e⇢ eQ
Hi. Res. 100 ù 100 385 56980 - -
Bi-Res. 4 ù 4 587 3522 1.09e-01 2.32e-02
Bi-Res. 10 ù 10 385 4235 5.74e-05 2.01e-05
Bi-Res. 20 ù 20 385 4235 5.74e-05 2.01e-05
Bi-Res. 50 ù 50 385 4235 5.74e-05 2.01e-05

To investigate the effect of standard deviation weight on the optimal design, we consider three values for � = 0.001, 0.1, 1
cf. Equation (9). Figure 9 shows the optimization iteration for both single and bi-resolution which are almost identical for
different values of �. We show the corresponding designs in Figure 10 where again similar topologies are obtained.

Finally we compute the error bound in approximation of displacement, compliance and compliance sensitivity. To that end,
we consider the first iteration where the densities are considered uniformly ⇢ = 0.35. We also consider n = 11 with 10 ù 10
mesh as the full rank of the low fidelity model. As mentioned earlier to obtain � we directly compute the two norms in (22) for
the first few unimportant samples. The maximum ratio is computed to be � = 0.916 for the third sample after n = 11 samples.

Figure 12: [P16]. Topology Optimization and Design under uncertainty using adaptive sampling from this
project. Top: single-fidelity optimization with 4 × 4, 10 × 10, 20 × 20, 50 × 50 and 100 × 100 meshes(top
row). Bottom row: sampling-based bi-fidelity optimization with low-fidelity meshes of size 4 × 4, 10 × 10,
20 × 20, 50 × 50 meshes (bottom row). The top right simulation requires approximately 15 times the
computational cost compared to the lower left simulation.
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Figure 20. Optimized topology for 3D linear elastic beam using high-resolution approximations (top), bi-
resolution approximations (middle), and low-resolution approximations (bottom).
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Figure 13: [P16]. Topology Optimization and Design under uncertainty using adaptive sampling from this
project. Top: high-fidelity optimization. Middle: adaptive multi-fidelity optimization. Bottom row: low-fidelity
optimization. The top simulation requires approximately 1500 times more costly than the middle simulation,
despite the lack of appreciable difference between the two.
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