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Technical Report 

Grant #: FA9550-17-1-017 

Project title: 

Nonlinear quantum plasmonics: a quantum hydrodynamic approach 

Abstract 

In this project we have developed a new theoretical model for the nonlinear electrodynamic 
response at metal surfaces and obtained a numerical implementation of such model suitable 
for arbitrarily shaped geometries. Our approach is based on the quantum hydrodynamic 
theory (QHT), which allows to include spatially dependent electron density profiles in order 
to account for spill-out effects at the boundaries of a metallic system.  
The accuracy of the QHT however is based on the energy functionals used to describe the 
free-electron gas internal energy. We have developed a numerical implementation for multi-
shell structures and compared QHT results to time-dependent density functional theory (TD-
DFT) calculations for systems in which quantum tunneling or quantum size effects could not 
be neglected. 
The generality of the QHT approach allowed also to consider nonlinear dynamics of free-
electrons. We have expanded for the first time the QHT equations beyond the linear 
approximation and performed second-harmonic generation (SHG) calculations for metallic 
slabs (and cylinders) and compared the QHT results to experimentally measured efficiencies. 
Moreover, we have investigated the spectral dependence of the SHG process and found 
resonances induced by the spill-out of the electron density at the metal surface that could in 
principle increase the SHG efficiency by several order of magnitude. 

Keywords: plasmons; nonlocal effects; hydrodynamic model; smooth density profile; spatial 
dispersion; quantum hydrodynamic theory; second-harmonic generation; nonlinear 
dynamics; orbital-free. 
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INTRODUCTION 

Quantum interactions in deeply confined light modes – plasmonic gap modes – might enable 
novel and efficient nonlinear processes. The possibility of designing quantum nonlinear 
properties presents several conceptual and technical challenges: i) numerical engineering of 
the hyperpolarizability via quantum surface effect, and ii) design of the systems able to couple 
the far-field into nanoscale-structured volumes. 

In order to overcome these challenges, in this project we have developed a new 
theoretical model for the nonlinear electrodynamic response at metal surfaces and obtained 
a numerical implementation of such model suitable for arbitrarily shaped geometries. Our 
approach was based on the orbital-free quantum hydrodynamic theory (QHT). At the basis of 
the QHT is the following equation for the electron dynamics [1]:  
 

  (1) 

 
where the electron density n(r) and the electron current J(r) are related through the 
continuity equation , me and e, the electron mass and the electron charge (in 
absolute value) respectively, and γ the phenomenological damping rate; G[n] = TTF[n] + 
1/ηTvW[n,∇n] + EXC[n] is the electron gas total internal energy, which in general includes the 
Thomas-Fermi (TTF) and von Weizsäcker (TvW) kinetic terms and exchange-correlation energy 
term (EXC). σ is a viscoelastic-like tensor and takes into account the nonlocal damping [2]. The 
QHT equation is solved with Maxwell’s equations for the electromagnetic fields E and B. 

The accuracy of the QHT relies then on the specific energy functional G[n] that is used. 
The most important contribution in G[n] is given by the non-interacting kinetic energy. In its 
simplest approximation, G[n] depends only on the electron density n (Thomas-Fermi (TF) 
theory [3]). In general G[n] introduces an electron pressure term that prevents the induced 
electron density to collapse into a null volume and it rather spreads out from the surface into 
the bulk region [4], in contradistinction to the local response approximation, where induced 
charges are crushed into an infinitesimally thin layer at the surface of the metal. G[n] can be 
further improved by considering terms depending (in general nonlinearly) on ∇n, ∇2n, and so 
on. 

In order to study the accuracy of the QHT it is useful to compare QHT results against 
more traditional models, such as the local response approximations (LRA) and the Thomas-
Fermi Hydrodynamic theory (TF-HT), and against full quantum calculations obtained using 
time-depended density functional theory (TD-DFT). The main differences of these models are 
outlined in Fig. 1 [5].  
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Figure 1: Summary of the three different response models. In the LRA, the induced 
charge density is a Dirac delta function centered at the metal surface; in the TF-HT, 
electrons accumulate near the metal surface without being able to escape; in the 
QHT the equilibrium density is exponentially decaying across the metal surface and 
the induced charges are smeared both in and out the metal-air interface.  

 
RESULTS 

The main results obtained under the support of this grant are summarized in this section. We 
have divided our results into two sub-sections: published work, for the work that can be 
referred to publications written with support of this grant, and unpublished work, for the work 
that has not yet been published.  
 
Published work 

The key element of the project is obtaining an energy functional G[n] that accurately describes 
the free-electron dynamics. Although many functional have been developed in the context of 
orbital-free methods [6, 7], few of these functionals have been applied for the linear response 
of plasmonic structures, and virtually none has been applied in the sub-nanometer gap 
regime, where nonlocal and quantum effects are most important. 

It is very important then to study the behavior of these functionals in these extreme 
systems, in order to assess their suitability for predicting nonlinear optical effects. For this 
reason, we have tested state-of-the art functionals in sub-nanometer gap nested shells (nano-
matryoshka) plasmonic systems. This system is shown in Fig. 2. Its spherical symmetry makes 
it possible to perform calculation with TD-DFT, which is notoriously computational very 
demanding. 
 

 
 

Figure 2: Geometry of the nano-matryoshka (NM) structure 
made up of a solid metallic core encapsulated by a concentric 
metallic shell. In this document we will consider NMs with sizes 
(R1, R2, R3) = SF × (8.5, 9.5, 15.9) Å, SF being a scaling factor.  
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Figure 3: (a,b) Ground-state density, (c,d) absorption efficiency, and (e,f) induced 
polarization density obtained as nind = ∇ · P/e for SF=4 (left panels) and SF=1 (right panels) 
for LRA,TF-HF, QHT and TD-DFT calculations.  

 
The QHT model in the linear response reduces to the following set of coupled equations: 
 

      (2) 

          (3) 

     (4) 
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Eq. (2) being the equation for the self-consistent equilibrium density n0, while the Eqs. (3) and 
(4) describe the electromagnetic linear response. The superscript (1) indicate the linear order 
dependence in . 

We have implemented the previous equations in Comsol Multiphysics [ 8 ], a 
commercially available software that allows for a flexible implementation of arbitrary 
equations. We exploit the symmetry of the geometry and use the 2.5D simulation technique 
[9], which significantly reduces the computational efforts in terms of memory and processing 
time. 2.5D method requires all fields to be written in terms of an azimuthal mode number m, 
such that for a vector field v can be expressed as: v(ρ, φ, z) = Σm v(m)(ρ, z) exp[−imφ], where m 
∈ Z. The advantage of this method is that an initially three-dimensional problem is reduced 
to a few (2mmax + 1) two-dimensional problems. For sub-wavelength structures mmax < 3 is 
usually enough to accurately describe the problem.  

We solve Eqs. (2)-(4) for nested shells (nano-matryoshka) to calculate their QHT linear 
response and compare our results against LRA, TF-HT and TD-DFT results. By varying the 
distance between two concentric shells it is possible to study different overlapping regimes 
of the electron density tails.  

We summarize our main results in Fig. 3, where we report (from top to bottom) the 
ground-state density n0, the linear absorption spectrum, the induced charge density n1 at the 
resonance peak, for SF = 4, 1 (see caption in Fig. 2).  
The QHT approach reproduces very accurately the main features of the TD-DFT results, 
including the oscillations at the external surface of the system as well as inside the gap.  
Interestingly, also QHT field enhancement results are in good agreement with TD–DFT, as 
shown in Fig. 4 as a function of the system (gap) size [10]. 
 
 

 
Figure 4: Average electric field enhancement inside the 
gap as a function of scaling factor (SF) for Na NMs at 
HEM computed using LRA, TF–HT, QHT and TD-DFT 
methods.  

 
Furthermore, we have used the QHT to investigate the impact of nonlocality and electron 
spill-out on the plasmonic behavior of spherical Na and Au nanoshells. We adopted a self-
consistent way to compute the equilibrium charge density. The results predicted by QHT were 
compared with those obtained with LRA and TF-HT. We found that nonlocal effects have a 
strong impact on both the near- and far-field optical properties of nanoshells, in particular, 
for the antibonding resonant mode, as shown in Fig. 4. We also investigated the optical 

n1 = ∇ ⋅P e
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response of these systems for different thicknesses of the shell, both for Na and Au metals 
[11]. 
 
 

 
 
Figure 5:	(a) Absorption efficiency of Na nanoshell with R1 = 2 nm and R2 = 2.5 nm calculated using local 
response approximation (LRA), Thomas–Fermi hydrodynamic theory (TFHT), and quantum hydrodynamic 
theory (QHT). (b) Electric field distribution plotted at corresponding resonance frequencies, both at lower 
(upper panel) and higher energy modes (lower panel), computed using different methods.  
 
 
The results of this section have been published and presented in the following articles and 
conferences: 
- M. Khalid and C. Ciracì, “Numerical Analysis of Nonlocal Optical Response of Metallic 

Nanoshells”, Photonics 6, 39 (2019); 
- M. Khalid, F. Della Sala, and C. Ciracì, “Optical properties of plasmonic core-shell 

nanomatryoshkas: a quantum hydrodynamic analysis”, Opt. Express 26, 17322 (2018); 
- M. Khalid and C. Ciracì, (2019) “Impact of nonlocality, electron spill-out and tunneling on 

optical properties of metallic nanoshell and core-shell structures”. Oral presentation at " 
Quantum Nanophotonics", March 17-23, Benasque, SPAIN; 

- C. Ciracì and M. Khalid, F. Della Sala, (2018) “Optical properties of core-shell systems with 
sub nanometer plasmonic gaps: a quantum hydrodynamic theory approach”. Oral 
presentation at "Metamaterials' 2018", August 27-30, Espoo, FINLAND; 

- M. Khalid and C. Ciracì, (2018) “Analysis of Spherical Core-Shell Structures with Sub-
nanometer Plasmonic Gaps”. Oral presentation at " Plasmonica 2018", July 4-6, Florence, 
ITALY; 

- M. Khalid and C. Ciracì, (2018) “Numerical study of spherical nanomatryoshkas by using 
quantum hydrodynamic theory”. Oral presentation at "SPIE NanoScience + Engineering", 
August 19-23, San Diego CA, USA; 

- C. Ciracì, (2017) “Quantum Hydrodynamic Theory for nonlinear optical applications”. Invited 
presentation at "META 2017", July 25-28, Seoul, SOUTH KOREA; 
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Unpublished results  

The evaluation of the goodness in the linear regime of the functional used was a crucial step 
in order to obtain a QHT that is valid for the nonlinear dynamics. Here we go beyond the linear 
approximation and consider terms up to the second order. This allows to study second-
harmonic generation (SHG) from metal surfaces. In order to simplify our calculations, we 
assume that the fundamental field is not perturbed by the conversion process (undepleted 
pump approximation). Assuming that the field can be written as a sum of harmonic 
contributions at ω1 and ω2 = 2ω1, i.e.  , from Eq. (1) we 
obtain the following system of equations for the polarization vector P = J/iω: 
 

    (5) 

 
Where the nonlinear source term is: 
 

   (6) 

 
Explicit expressions for each of the terms in the second row of Eq. (6) are quite complex and 
are reported in the Appendix at the end of the document. It is important to know that the 
von Weizsäcker term in G[n] is usually weighted by a factor 1/η, where 1 ≤ η ≤ 9. In what 
follow we will use distinct parameter for the linear (ηL) and nonlinear (ηNL) contributions. 

Eqs. (5) and (6) together with Maxwell’s equations can be used to calculate SHG from 
a metal surface as a function of the incidence angle as sketched in the left panel of Fig. 6.  In 
particular we apply the nonlinear QHT to investigate the SHG from an Ag film. It is important 
to remark that optical behavior of a plasmonic system is a sensitive function of ground-state 
electron density profile. Hydrodynamic model in the TF approximation does not give reliable 
results for the realistic ground-state density profiles [12]. The QHT method, on the other 
hand, is able to deal with the realistic profiles in a remarkably efficient way, as it has been 
reported in the first part of this report. We compute the ground-state charge density for Ag 
slab self-consistently by using Eq. (2) for different values of core-permittivity	𝜀& as shown in 
the right panel of Fig. 6.  𝜀& = 1	is the case when the contribution due to core charges is 
neglected. ‘E’ in the legends refers to the situation when 1 Å distance between the edge of 
the positive background and the first plane of the nuclei is considered. We input this density 
to our system of nonlinear QHT Eqs. (5) and (6) to study the SHG from a thick Ag slab as a 
function of the incident angle for a TM polarized pump tuned at λ = 1064 nm.  
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Figure 6: (Left) SHG numerical setup. (Right) Equilibrium charge density for different values of core-
permittivity	(𝜀&) computed self-consistently. Inset shows a zoom in on the quantum oscillation near the 
metal interface and the shaded grey region represents the metal.    

 
SHG efficiency plotted as a function of angle for different input ground-state densities 

is given in Fig. 7 and the results are compared with the experimental data [13]. Here we 
present results for 𝜂,- = 1 (left) and 𝜂,- = 9 (right) whereas 𝜂- = 1 for both cases. It can 
be seen from the results that for 	𝜂,- = 1 , 𝜀& = 1  approximates quantitatively the 
experimental data, although the angle dependence is not well reproduced. However, if we 
consider 𝜂,- = 9 it underestimates the SHG efficiency, nevertheless the angle dependence 
agrees very well qualitatively with the experimental data especially when contribution due to 
background charges is considered. 
 

               

             
     

Figure 7: SHG efficiency as a function of angle of incidence for different cases of the background core 
permittivity	𝜀&. ‘E’ in the legends refers to the case when 1 Å distance between the edge of the positive 
background and the first plane of the nuclei is considered. Left panel presents the results for 𝜂,- = 1 and 
right panel for	𝜂,- = 9. Lower panel shows the spectra normalized with respect to the maximum value of 
the SHG efficiency. 
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We now analyze the nonlinear response of the Ag film as a function of the pump 
frequency. SHG efficiency spectra for a fixed incident angle θ are plotted in Fig. 8 for different 
values of	𝜂- = 𝜂,- = 	𝜂.   
 

         

         
  
Figure 8: SHG efficiency as function of fundamental energy for a TM polarized plane wave impinging at an 
angle 𝜃 = 75° with respect to the surface normal. 
 

We observe that the SHG efficiency shows some structures in the spectra for each	𝜂, 
although quite broader. In the following, we neglect the viscoelastic tensor which takes into 
account the broadening of the plasmon resonances and for simplicity we also ignore the 
contribution of background permittivity. We find that QHT predicts a neat and large 
resonance in the QHT spectrum as shown in Fig. 9. The results for different values of	𝜂 are 
compared with the conventional TF-HT which does not display any structure since no electron 
spill-out effects are taken into account.  We also report the SHG results for Ag infinitely long 
cylinder with circular cross-section and the spectra for different values of 𝜂 = 𝜂- = 𝜂,- show 
the same behavior as found in the case of film.  

These resonances can be understood by looking at the linear reflectance shown in Fig. 
10 computed within the QHT method for different value of	𝜂 and compared against the TF-
HT with hard-wall boundary conditions (no electron spill-out). The QHT method predicts a dip 
in the linear reflectance for each value of	𝜂. SH enhancement in the QHT nonlinear spectra 
presented in Fig. 9 can be associated to the dip in the linear spectra of the reflectance (Fig. 
10) and which is a consequence of electron spill-out from the film surface into free-space. We 
do not see any resonance feature in the TFHT spectra due to the fact that it neglects the 
electron spill-out. 

Energy (eV)
1 2 3 4 5 6

SH
 E

ffi
ci

en
cy

0

2

4

6

8

10
h = 1

Energy (eV)
1 2 3 4 5 6

SH
 E

ffi
ci

en
cy

0.0

0.1

0.2

0.3

0.4

0.5

0.6
h = 6

Energy (eV)
1 2 3 4 5 6

SH
 E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2 h = 4

Energy (eV)
1 2 3 4 5 6

SH
 E

ffi
ci

en
cy

0.0

0.1

0.2

0.3

0.4 h = 9

Distribution A Distribution Approved for Public Release: Distribution Unlimited 



 10 

             
 

Figure 9: SHG efficiency as a function of fundamental energy. (Left) for the Ag slab shown in Fig. 6 with 
angle of incidence	𝜃 = 75°; (Right) Ag infinite cylinder of 2 nm radius with circular cross-section.  

 
 

 
 

Figure 10: Linear reflectance from the Ag slab for different values 
of	𝜂	calculated within the QHT method. The results are compared 
with the conventional TF-HT which overlooks the electron spill-out.  

 
While conventional TF-HT is unable to deal with the realistic equilibrium charge 

density profiles as it yields spurious modes originating from the exponentially decaying tail of 
the electron density profile [14, 15], our QHT method works efficiently for the realistic 
ground-state densities giving rise to accurate predictions on the existence of surface 
resonances that can be exploited to generated more efficiently SH signals. 
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APPENDIX 
 
The second-order contributions from the different energy components are: 
 

 

 
and  
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Where the first-order coefficients expressed as a function of the Wigner-Seitz radius  

are: 
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