
ER
D

C/
G

RL
 T

R-
20

-7

Geointelligence – Geospatial Data Analysis and Decision Support

Use of Convolutional Neural Networks
for Semantic Image Segmentation
Across Different Computing Systems

G
eo

sp
at

ia
l R

es
ea

rc
h

La
bo

ra
to

ry

 Andmorgan R. Fisher, Timothy A. Middleton, Jonathan
Cotugno, Elena Sava, Laura Clemente-Harding,
Joseph Berger, Allistar Smith, and Teresa C. Li

March 2020

Approved for public release; distribution is unlimited.

The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s
toughest engineering and environmental challenges. ERDC develops innovative solutions in
civil and military engineering, geospatial sciences, water resources, and environmental sciences
for the Army, the Department of Defense, civilian agencies, and our nation’s public good. Find
out more at www.erdc.usace.army.mil.
To search for other technical reports published by ERDC, visit the ERDC online library at
https://erdc-library.erdc.dren.mil.

http://www.erdc.usace.army.mil/
https://erdc-library.erdc.dren.mil/

Geointelligence – Geospatial Data Analysis
and Decision Support

ERDC/GRL TR-20-7
March 2020

Use of Convolutional Neural Networks
for Semantic Image Segmentation
Across Different Computing Systems
Andmorgan R. Fisher, Timothy A. Middleton, Jonathan Cotugno,
Elena Sava, Laura Clemente-Harding, Joseph Berger, Allistar Smith,
and Teresa C. Li

Geospatial Research Laboratory
U.S. Army Engineer Research and Development Center
7701 Telegraph Road
Alexandria, VA 22315-3864

Final Report

Approved for public release; distribution is unlimited.

Prepared for Headquarters, U.S. Army Corps of Engineers
Washington, DC 20314-1000

 Under PE 62784/ Project 855/Task 23 “Geo-Intelligence for Complex Urban
Environments (GeoICUE)/TREADSTONE”

ERDC/GRL TR-20-7 ii

Abstract

The advent of powerful computing platforms coupled with deep learning
architectures have resulted in novel approaches to tackle many traditional
computer vision problems in order to automate the interpretation of large
and complex geospatial data. Such tasks are particularly important as data
are widely available and UAS are increasingly being used.

This document presents a workflow that leverages the use of CNNs and
GPUs to automate pixel-wise segmentation of UAS imagery for faster
image processing. GPU-based computing and parallelization is explored
on multi-core GPUs to reduce development time, mitigate the need for
extensive model training, and facilitate exploitation of mission critical
information. VGG-16 model training times are compared among different
systems (single, virtual, multi-GPUs) to investigate each platform’s
capabilities.

CNN results show a precision accuracy of 88% when applied to ground
truth data. Coupling the VGG-16 model with GPU-accelerated processing
and parallelizing across multiple GPUs decreases model training time
while preserving accuracy. This signifies that GPU memory and cores
available within a system are critical components in terms of
preprocessing and processing speed. This workflow can be leveraged for
future segmentation efforts, serve as a baseline to benchmark future CNN,
and efficiently support critical image processing tasks for the Military.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTRUCTION NOTICE – Destroy by any method that will prevent disclosure of contents or
reconstruction of the document.

ERDC/GRL TR-20-7 iii

Contents
Abstract ... ii

Figures and Tables ... iv

Preface ... v

1 Introduction ... 1
1.1 Background .. 1
1.2 Related work .. 2

1.2.1 Artificial neural networks (ANNs) .. 2
1.2.2 Semantic segmentation ... 7

2 Data, Sites and Computing Platforms Description ... 9
2.1 Data characterization .. 9
2.2 Sites description .. 9

2.2.1 Fort AP Hill .. 9
2.2.2 Camp Cook ... 10
2.2.3 Fort Campbell ... 10

2.3 Computing platforms description ... 10
2.3.1 HP OMEN 17t ... 11
2.3.2 Army Geospatial Enterprise Node ... 11
2.3.3 DGX Station .. 11

3 Methods ... 15
3.1 Training data creation ... 15
3.2 Image splitting ... 16
3.3 Wavelet transformation .. 17
3.4 Parallelization .. 18

3.4.1 Single GPU versus Multi-GPU .. 19

4 Results and Discussion .. 21
4.1 Model training and image segmentation ... 21

4.1.1 Evaluation metrics ... 23

5 Conclusion ... 28

References .. 30

Unit Conversion Factors .. 33

Acronyms and Abbreviations .. 34

Report Documentation Page

ERDC/GRL TR-20-7 iv

Figures and Tables

Figures

Figure 1. Representation of a standard neural network with two hidden layers is
shown on the left. On the right, the same network is shown after dropout is applied.
The crossed neurons have been dropped. Figure taken from Srivastava et al. 2018. 3

Tables

Table 1. System specifics categorically highlighting each computing platform used for
performing the image segmentation along with associated characteristics. 13
Table 2. Summary of libraries used for implementing the VGG-16 model on single and
multiple GPUs. ... 19
Table 3. Comparison of precision, recall and F-1 scores for the AGE Node vGPU and a
single GPU on the DGX Station. .. 24
Table 4. Comparison between single and multi-GPU computing platforms used for
CNN model training and accuracy. ... 25

ERDC/GRL TR-20-7 v

Preface

This study was conducted for the Geospatial Research Laboratory (GRL)
under PE 62784/ Proj 855/ Task 23, “GeoICUE/TREADSTONE.” The
technical monitor was Dr. Jean D. Nelson.

The work was performed under the Data and Signature Analysis Branch
(TRS) of the TIG Research Division (TR), U.S. Army Engineer Research
and Development Center, Geospatial Research Laboratory (ERDC-GRL).
At the time of publication, Ms. Jennifer L. Smith was Chief, Data Signature
and Analysis Branch; Ms. Martha Kiene was Chief, TIG Research Division;
and Mr. Ritchie Rodebaugh was Director of the Technical Directorate. The
Deputy Director of ERDC-GRL was Ms. Valerie L. Carney and the Director
was Mr. Gary Blohm.

COL Teresa A. Schlosser was Commander of ERDC, and Dr. David W.
Pittman was the Director.

ERDC/GRL TR-20-7 1

1 Introduction

1.1 Background

Machine learning applications have become increasingly popular due to
the wide availability of large volumes of high resolution remotely sensed
data and the decreasing cost for high performance computing (HPC)
infrastructure. Data driven approaches in the fields of image processing
and computer vision have advanced geospatial research and can be
leveraged to determine mission critical information. Yet, deriving
actionable information from large sets of complex imagery in an efficient
manner remains a central challenge of geospatial intelligence (GEOINT)
gathering. Rapid, accurate classification of aerial imagery provides
decision makers with functional information that enables operational
understanding and resource allocation according to identified constraints.
Imagery collection by military units using diverse sensors onboard
unmanned aerial systems (UAS) have increased significantly over the last
decade and is expected to continue to rise. This suggests that the number
of autonomous operations, collection of high definition geolocated images,
and HPC systems that can be deployed to the tactical edge will increase. As
such, there has been a commensurate need for faster automated image
processing both for low level tasks, such as de-noising or segmentation,
and high-level tasks, such as classification (Castelluccio et al. 2015).

Semantic segmentation of predefined classes in aerial imagery involves
assigning a class label to each pixel, thus, partitioning the image into
meaningful segments (or sets of pixels). Semantic segmentation is a core
problem in the field of computer vision and is a key task that enables
complete geospatial understanding of a scene. Automated segmentation
has many important real-world applications, including autonomous
driving (Cordts et al. 2016), augmented reality, land cover mapping
(Matikainen and Karila 2011), change detection (Tang and Zhang 2017),
environmental monitoring, and urban planning (Karantzalos 2015).

Machine learning techniques, such as convolutional neural networks
(CNNs), have shown enormous success when applied to image
segmentation problems for red, green, blue (RGB) imagery (Marnamis et
al. 2016). A central challenge hindering broad adoption of such algorithms
has been hardware limitations. The introduction of massively parallel

ERDC/GRL TR-20-7 2

computing architectures resulted in hardware that can now more
efficiently manage workloads related to computer vision algorithms
(Kyrkou et al. 2018).

This document highlights the use of CNNs and graphics processing unit
(GPU) acceleration to address the need for an automated pixel-wise image
segmentation approach for imagery collected by UAS. Pixel-wise image
segmentation is a challenging problem because each pixel is assigned a
label based on the local context surrounding the pixel, making it a
computationally intensive task. This report addresses the challenge by
implementing a pre-trained CNN and transfer learning to provide a series
of time-resolved images with dynamic attributes. Additionally, GPU-based
computing and parallelism is explored on multi-core GPUs to reduce
development time, mitigate the need for extensive model training, and
facilitate the exploitation of mission critical geospatial information.
Computation times to train the CNN model are compared among three
different systems (single GPU, virtual GPU, and multi-GPU). Thus, this
work delivers a useful and flexible tool applicable to a range of geo-
intelligence tasks commonly undertaken by the U.S. Army Corps of
Engineers (USACE) and the intelligence community (IC), in general. Such
tasks include: three-dimensional (3-D) modeling, survey and mapping,
inspection, and maneuver support. The CNN model is tested and validated
on imagery collected over three distinct sites and tested across different
computing platforms to assess model efficiency and accuracy.

1.2 Related work

1.2.1 Artificial neural networks (ANNs)

Artificial Neural Networks (ANNs) are widely used for image classification
tasks (Goodfellow et al. 2016; Kernell 2018). ANNs are inspired by
biological neural networks in the human brain that have been designed to
recognize patterns. A neural network consists of multiple layers of
neurons, where each layer can be thought of as a single processing unit
that can take multiple inputs, but has only one output (Wang and Xi
2012). A representation of a standard neural network structure is shown in
Figure 1(a).

ERDC/GRL TR-20-7 3

Figure 1. Representation of a standard neural network with two hidden layers is shown on the
left. On the right, the same network is shown after dropout is applied. The crossed neurons

have been dropped. Figure taken from Srivastava et al. 2018.

Large neural networks serve as powerful image classification and
segmentation tools (Kernell 2018). Activation functions are a critical
component of ANNs as they provide information on whether a neuron
must be activated and if the information received is relevant or should be
overlooked. Adding an activation function to a node introduces non-
linearity to the network. This enables the network to learn from complex
data and provide accurate predictions (Goodfellow et al. 2016).

Activation functions are categorized into two types - linear or nonlinear.
The Step function represents a simple activation function that is often
used with binary classifiers, and the outputs are either 1, indicating
activated, or 0, indicating not activated (Goodfellow et al. 2016). In the
past, common choices for neural network activation functions were the
Sigmoid and hyperbolic tangent (TANH) functions as they are easily
differentiable and non-linear. However, these functions result in dense
activations which are computationally expensive (Kernell 2018). Modern
neural networks commonly use the Rectified Linear Unit (ReLU) function
because it results in sparse and efficient activations making it less
computationally expensive (Parashar et al. 2017).

A graphical representation of each activation function is shown in
Figure 2. Note that the Step function (a) suppresses the input data into a
set range (0,1), while the Sigmoid (b) and TANH (c) functions allow the
model to generalize and adapt to the input data, forming an “S” shaped
curve. For example, graphs (b) and (c) show that the function is limited to
the upper and lower bounds. The ReLU (d) graph shows the function

ERDC/GRL TR-20-7 4

creating a positive linear slope only when values exceed zero. The
flexibility of the linear behavior (continuous values) associated within each
activation function allows CNN models to be optimized more easily than
activation functions that exhibit stricter behavior such as the Step function
(discrete values) (Kernell 2018). For instance, when ReLU function values
are less than zero, they get discarded, while values greater than zero vary
linearly with no upper limit bounds.

Figure 2. Graphical representation of slope for commonly used activation functions.
Recreated from Kernell (2018).

Model optimization entails finding the set of parameters, or weights, that
minimize the loss function (Garcia-Garcia et al. 2017). This loss function is
used to estimate how well the model is trained by calculating the
difference between the model’s predicted values and the observed input
data values as well as determine the optimal model weights. The model
weights (or parameters) are then adjusted using a gradient descent
optimization algorithm which identifies the average error of the loss
function in the training data. A comprehensive review of gradient descent

a b

c d

ERDC/GRL TR-20-7 5

optimization algorithms conducted by Sebastian Ruder (2017) found the
Adam optimizer to be the best overall choice of optimizing algorithms. The
Adam algorithm updates model weights iteratively based on the input data
and is selected for this work as it is (1) straightforward to implement; (2)
computationally efficient; (3) well-suited to big data problems; and (4)
requires little tuning of hyperparameters (Srivastava et al. 2014; Ruder
2017).

A common challenge when leveraging CNN’s for image segmentation on
large data is preventing the model from overfitting when training on the
input data. Overfitting prevents the model from identifying and learning
different relationships in the data, thus reducing its ability to make
predictions when applied to new data. For this reason, regularization is
used as a means to constrain and prevent the network from overfitting the
data (Garcia-Garcia et al. 2017). The following three types of regularization
are routinely used with deep learning algorithms: L1, L2, and dropout. L1
and L2 are two of the most commonly used types of model regularization.
L1 penalizes the absolute value of the weights, which allows the weights to
be reduced to zero and is useful when model compression is desired. L2
forces the weight values to decay approaching zero (Garcia-Garcia et al.
2017; Kernell 2018). Alternatively, dropout is a means of regularization
that temporarily and randomly removes neurons, as well as all their
incoming and outgoing connections, from the network as shown in
Figure 1(b) (Karpathy 2018). Because the network is prevented from using
the same neurons repeatedly, this method serves to improve the
generalization of the network (Kernell 2018).

A deep convolutional neural network developed by the Visual Geometry
Group (VGG) from University of Oxford was used to segment aerial
imagery into predefined classes. The VGG-16 model architecture is
comprised of 16 weighted layers and is freely available for download online
through GitHub. The VGG-16 is distinguished from other CNNs by the use
of many convolutional layers with progressively smaller receptive fields, as
opposed to only a few convolutional layers with large fields (Parashar et al.
2017). The receptive fields in a CNN model represent the center area of
focus (spatial extent) the model is looking at, as each convolution is
applied. These fields are commonly thought of as the filtering size window
applied in image processing tasks. The overall architecture of VGG-16 is
shown in Figure 3. The network’s convolutional layers are represented
using white rectangles of various dimensions, followed by a pink max

ERDC/GRL TR-20-7 6

pooling layer and are divided into five groups. The last two convolutional
layers, represented in blue, are flattened through a fully connected layer
and softmax is used to perform the image segmentation. This architecture
was chosen because the model is simpler to train due to the reduced
number of parameters and an increased number of nonlinearities in
between the neuron layers allowing the model to efficiently learn and
achieve better performance. This is important because it makes the
decision function more discriminative between the different classes
(Parashar et al. 2017).

The VGG-16 is fine-tuned using a loss function which gives the network
the ability to penalize mistakes, thus reducing the error when making
predictions (Kernell 2018). Loss functions are used to estimate the error of
a set of weights in a neural network. Neural networks are typically trained
using stochastic gradient descent to calculate error in model predictions.
These calculations are used to update weights in the network using
backpropagation of the error algorithm. Since neural networks are
essentially classification algorithms which yield a probability distribution
as output, cross-entropy is arguably the most commonly used loss function
(Goodfellow et al. 2016; Garcia-Garcia et al 2017). This is due to the
inverse relationship between the model’s prediction performance and the
cross-entropy function. For instance, if the cross-entropy loss value is high
the model’s predictive performance decreases and diverges from the actual
label associated with a class.

Figure 3. Fully convolutional neural network based on the VGG-16 architecture.

ERDC/GRL TR-20-7 7

1.2.2 Semantic segmentation

The advent of powerful computing platforms coupled with deep learning
architectures have recently resulted in novel approaches used to tackle
many traditional computer vision problems. This progress is reflected in
commercial-off-the-shelf (COTS) software and in academic research that
leverages traditional and deep learning methods to automate the
interpretation of geospatial information (Kingma Ba 2017; Becker et al.
2017). For example, Trimble’s eCognition® software uses Google’s
+TensorFlowTM library to construct CNNs and automate various analytic
tasks such as the segmentation of satellite and aerial imagery for land
cover mapping, object detection, and point cloud classification (Becker et
al. 2017).

Semantic segmentation of aerial imagery involves assigning a semantic (or
object class) label to each pixel in a given image. There are several
challenges that make this a difficult task. For example, imagery often
contains complex objects of varying sizes, which can make simultaneous
segmentation a challenge (Trimble Geospatial). Another example is that
redundant object details often occur when resolution is improved, thereby
increasing the difficulty of segmentation (Trimble Geospatial).

Nonetheless, neural networks have become well-known models for feature
learning. Academic literature has shown an increasing number of
applications of CNNs to geospatial problems using geospatial data. Many
of these applications are directly applicable to GEOINT gathering
including: semantic segmentation of aerial imagery (Wang et al. 2017;
Chen et al. 2018), extraction of digital terrain models from laser scanning
point cloud data (Volpi and Tuia 2017), scene (Hu and Yuan 2016) and
land use classification (Castelluccio et al. 2015), crop yield production (Hu
et al. 2015), and automated target recognition (You et al. 2017).

The performance of semantic segmentation systems can be evaluated
based on metrics such as execution time, memory footprint, and accuracy
(Parashar et al. 2017). Since the majority of systems are constrained by the
time that can be spent on the inference pass, speed or runtime is a
particularly valuable metric. Another important consideration for
segmentation methods is memory usage. In fact, even GPU-accelerated
neural networks are often constrained by the number of GPU cores and
memory capacity (Long et al. 2014). Pixel accuracy is arguably the most
important metric and generally used to gauge the performance of semantic

ERDC/GRL TR-20-7 8

segmentation techniques (Parashar et al. 2017). In this work all three
metrics are used to assess algorithm performance and segmentation
accuracy.

ERDC/GRL TR-20-7 9

2 Data, Sites and Computing Platforms
Description

2.1 Data characterization

The eBee drone is a fully autonomous, commercially available fixed wing
UAS used to capture aerial imagery. It is a hand-launched drone weighing
approximately 1.5 lbs with a 37.8 in. wingspan. The eBee drone was
purchased from senseFly, a subsidiary of Parrot Group. For this research
effort, the eBee drone was equipped with a 12-megapixel Canon Powershot
S110 and programmed to autonomously capture images at nadir (camera
lens perpendicular to ground) from approximately 50 m above the average
scene elevation. To optimize the overlap of neighboring images, an
interleaving raster flight pattern was utilized. Interleaving mode performs
two traces, a standard trace and retrace, followed by a second trace and
retrace with interleave feedback enabled. At each site, between 10 to 17
images were collected as the image collection was limited by the battery
endurance of the UAS. The collection spanned 1.25±0.5 x 105 m2
(30.9±12.4 acres) in total aerial coverage from each site. Each image is
4000 x 3000 pixels with 2.5 cm spatial resolution collected in the RGB
part of the electromagnetic spectrum. Three different research sites were
used for this effort: Fort AP Hill (Virginia), Camp Cook (Louisiana), and
Fort Campbell (Tennessee and Kentucky). Images were stored in the Joint
Photographic Experts Group (JPEG) format, which makes use of
exchangeable image file format (ExIF) tagging structure in order to store
embedded metadata (i.e. georeference data). Scenes contain
heterogeneous class representations including, but not limited to,
buildings, roads, trees, cars, etc.

2.2 Sites description

2.2.1 Fort AP Hill

Fort A.P. Hill is a U.S. Army Installation located near Bowling Green,
Virginia, approximately 65-75 miles south of GRL. The Garrison
Commander was Lieutenant Colonel (LTC) Michael Gates and the
Garrison Command Sergeant Major (CSM) was Joseph Reilly. Fort A.P.
Hill is a Regional Collective Training Center established in June 1941 and
is used to support Army, Joint, and Interagency readiness. Fort A.P. Hill
spans 76,000 acres of land and is one of the largest East Coast military

ERDC/GRL TR-20-7 10

installations. Imagery collection from this site contains a variety of
standard land surfaces and features (i.e. grass, pavement, concrete, and
vegetation), along with a number of buildings. Data collected at this site
provides a range of standard samples of information.

2.2.2 Camp Cook

Camp Cook is located in Ball, Louisiana and was established in 1941. It is
home to the Louisiana National Guard and the Noncommissioned Officers
Academy (NCOA). The Army’s Basic Leader Course (BLC) is offered at this
location by the 1st Battalion NCOA. The Commandant was CSM
Christopher Maxwell and Deputy Commandant was First Sergeant (1SG)
Thomas Hughes. Imagery collected at Camp Cook contains similar content
to the Fort A.P. Hill collection in terms of man-made features. The
environment introduces additional vegetation types and different land
features (i.e. creek beds) into the training dataset.

2.2.3 Fort Campbell

Fort Campbell is located at the border of Tennessee and Kentucky and
spans approximately 102,000 acres. The site was identified in 1941 and
base construction commenced in 1942. The Army’s 160th Special
Operations Aviation Regiment (SOAR), 101st Airborne Division, 5th
Special Forces Group, and 19th Air Support Operation Squadron are
located at Fort Campbell. The primary mission of this base is to support
combat readiness for air assault training. The expanse has a variety of
natural and man-made features that add further information to the
training dataset.

2.3 Computing platforms description

The automated image segmentation workflow was tested on three different
systems where each system represents different computing capabilities.
These platforms are the HP Omen laptop (single GPU), Army Geospatial
Enterprise (AGE) Node (single virtual GPU), and the Nvidia DGX station
(Multi-GPU enabled). Specifications for each platform are summarized
below and in Table 1. The use of varying computing platforms allows for a
comprehensive comparison and summary of information in terms of
processing speeds between systems relative to their embedded hardware
configurations.

ERDC/GRL TR-20-7 11

2.3.1 HP OMEN 17t

The HP OMEN 17t is a gaming laptop equipped with Nvidia’s latest GPU
hardware. Nvidia is a computer technology company specializing in parallel
computing and graphics (Nvidia). Nvidia is also the inventor of the GPU
technology, which has become the state-of-the-art technology for
computing. The automated segmentation workflow was implemented on
the HP OMEN 17t, which is a laptop system typically used for PC gaming
because of the hardware. The HP OMEN 17t has an 8GB GTX 1070
graphical processing unit integrated into the system This laptop was used as
a way to provide comparative metrics at different levels of computational
capabilities when compared to more advanced hardware platforms.

2.3.2 Army Geospatial Enterprise Node

The automated segmentation workflow was also performed on a CentOS 7
virtual machine (VM) maintained by the AGE Node. A VM is an emulator
that mimics the behavior of a separate computer and is capable of running
applications as a separate computer. The AGE Node provides computing
resources and maintenance to project developers where applications can
be tested in the early stages of their lifecycle.* Nvidia GRID virtual
graphical processing unit (vGPU) enables multiple virtual machines to
have simultaneous, direct access to a single physical GPU, using the same
Nvidia graphics drivers that are deployed on non-virtualized operating
systems (Simonyan and Zisserman 2015). The benefit of this functionality
is the ability to implement the automated segmentation workflow from
any computer, while still utilizing the Nvidia GRID vGPU resource for
processing.

2.3.3 DGX Station

The DGX Station is one of the world’s fastest workstations for artificial
intelligence (AI) development (Nvidia). This workstation has been
optimized for training data, which is a significant portion of the automated
segmentation workflow. The DGX Station differentiates itself from the
aforementioned computing platforms because of its hardware
architecture. Embedded within the DGX Station are four 32 GB Tesla
V100 GPUs (Nvidia DGX).† These GPUs combine to deliver an overall

* https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/712948/army-

geospatial-enterprise-age-node/
† https://www.nvidia.com/en-us/data-center/dgx-station/

https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/712948/army-geospatial-enterprise-age-node/
https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/712948/army-geospatial-enterprise-age-node/
https://www.nvidia.com/en-us/data-center/dgx-station/

ERDC/GRL TR-20-7 12

128 GBs in GPU memory. Applications can be processed in parallel since
the DGX Station has four GPUs. This means that processes are evenly
divided across all four GPUs instead of assigning all processes to one GPU.
Implementing parallelization within a workflow is not intuitive. Additional
programming is needed in order to ensure that all four GPU’s
communicate constantly and all workloads are assigned appropriately. The
automated segmentation workflow was performed on a Nvidia DGX and
system specifications are summarized in Table 1.

ER
D

C/G
R

L TR
-20-7

13

Table 1. System specifics categorically highlighting each computing platform used for performing the image segmentation along with associated
characteristics.

Computing
Platform Category Component Model

HP OMEN

 Hardware

CPU
RAM
GPU
GPU RAM
Hard Disks

Intel Core i7-7700HQ (4 Cores)
32GB DDR4-2800 SDRAM
GTX 1070 (8GB Total System)
Data: 1TB 7200rpm SATA
512 GB PCle NVMe M.2 SSD

Software
OS
Architecture

Windows 10
X64

Army Geospatial
Enterprise (AGE)
Node

Hardware

CPU
RAM
GPU
GPU RAM
Hard Disks
NIC

Intel Xeon E5-2630v4 @2.10 GHz
132 GB
Nvidia Tesla P100-12Q
12 GB
LSI Logic Parallel, 1: 100 GB, 2: 200 GB
VMXNET

Single GPU example

Host
Cores
Model
Hypervisor

4 cores, 2 virtual sockets
Dell PowerEdge R730
VMWare ESXi 6.5.0 8294253

Virtual Machine Hardware Version ESXi 6.0 and later

Software

OS
Kernel
Architecture
Virtualization

CentOS Linux 7 (Core)
Linux 3.10.0-693.21.1. e17.x86_64
X86_64
VMWare

ER
D

C/G
R

L TR
-20-7

14

Computing
Platform Category Component Model

Nvidia DGX

Hardware

CPU
RAM
GPU
GPU RAM
Hard Disks

NIC

Intel Xeon E5-2698v4 @2.2 GHz (20-Core)
256 GB RDIMM DDR4
4x – Nvidia Tesla V100
128 GB (Total System)
Data: 3x – 1.92 TB SSD RAID O
OS: 1x – 1.92 TB SSD
Dual 10GBASE-T (RJ45

Software
OS
Kernel
Architecture

Ubuntu Desktop Linux 16.04
4.4.0-141-generic #167-ubuntu
X86_64

ERDC/GRL TR-20-7 15

3 Methods

This document presents a workflow that leverages the use of CNNs and
high-performance GPU processing to automate the pixel-wise
segmentation of UAS imagery for faster image processing. Specifically,
different computing platforms (HP Omen, AGE Node, Nvidia DGX) are
compared to investigate each platform’s advantages and limitations for
tasks that often require high computing resources. Transfer learning is
applied from an off the shelf, pre-trained CNN for model initialization.
Accordingly, this reduces model development time and the extensive need
for model training. Each image is individually segmented into seven
independent classes resulting in a final segmented product. All steps
necessary for acquiring aerial imagery, creating training and validation
data sets, and segmenting imagery are described below.

3.1 Training data creation

Reliable training data is a foundational component in machine learning
processes as these data are used by the algorithm to train and learn
underlying trends. However, for this project, creating training data is labor
intensive as it requires each individual pixel in an image to be manually
labelled into seven predetermined classes. These classes are as follows: low
vegetation, high vegetation, buildings, road surfaces, vehicles, water, and
clutter. For this assessment, clutter consists of all other features present in
the images that fall outside of the other six classes. The International
Society for Photogrammetry and Remote Sensing (ISPRS) guidelines were
used as a reference to distinguish between these classes. The process of
manually labeling each pixel is known as digitizing, where a trained user
traces information from an image and assigns a label associated with the
predefined classes. Once the training data are assigned a label they are
converted to a single standardized value. This step allows pixel values that
are often unsigned integers between 0 and 255 to be represented directly,
as numbers to the neural network scaled to pixel values in an array
ranging from 0 to 6 standardizing the values as shown in Figure 4. Thus,
each value corresponds to a class as follows: low vegetation - 0, high
vegetation -1, buildings –2, roads –3, vehicles -4, water -5, clutter -6. An
open source image manipulation software (Gnu Image Manipulation
Program, Version 2.8) was used to manually create the training data.*

* https://www.gimp.org/

https://www.gimp.org/

ERDC/GRL TR-20-7 16

Figure 4. Sample image converted to training labels and represented to integers.

3.2 Image splitting

The dimensions of the original images collected from the eBee are 4000 X
3000 pixels. Since these dimensions are too large for the vGPU on the
AGE node to process individually, all images in the dataset are split into
tiles with a uniform size of 512 x 512 pixels for processing. This step is
shown in Figure 6. The original eBee image is represented by Figure 5(a).
This image is then split into equal tiles represented by a red grid as shown.
The output results into 100 individual tiles as shown by Figure 5 (b and c).
A 50% overlap is used when splitting the original image as this percentage
has shown promising orthorectification results when images are
mosaicked back together using a custom python script. Tiling images with
no overlap often result in strong boundary artifacts created after each
image is processed individually. This step was carried out throughout each
computing platform for a uniform comparison across all systems.
However, the Nvidia DGX station has 32 gigabytes (GB) of random-access
memory (RAM) per GPU, and the images do not need to be tiled to execute
the same workflow. After each original image is split into tiles, 80% of the
data are divided into a training set and the remaining 20% are used for a
validation set. The validation set is used to evaluate the model’s
performance and minimize bias in the algorithm.

ERDC/GRL TR-20-7 17

Figure 5. Representation of image splitting used to crop the eBee data into multiple tiles for
processing.

3.3 Wavelet transformation

Wavelet transformation is a mathematical function and signal processing
technique that helps localize data by decomposing a signal into different
frequency sub-bands. The wavelet transformation technique can be
applied to a variety of fundamental signal processing tasks such as
enhancing images and sounds recordings by removing noise or for data
reduction by compression (e.g. jpeg compression) (Baaziz et al. 2010).
When applying a wavelet transformation, data are compressed and
transformed based on multi-resolution analysis (Huang and Aviyente
2008). This consists of the decomposition of an image into subimages
containing different fractions of signal value which are known as wavelet
coefficients, as shown in Figure 6. This preserves the relative distance
between objects at different levels and allows natural clusters in the data
to be easily identified. In practice, the transformation divides the data
equally at each iteration (Han et al. 2006). First, it applies a data
smoothing technique such as sum or weighted average. Next, it performs a
weighted difference, which allows the details of features to be identified.
The output results in a smoothed or low frequency version of the original
data by removing the high-frequency information. This procedure occurs
recursively by applying the transformation on the image resulting from the
previous iteration and continues until a termination condition is met
(Arivazhagan and Ganesan 2003; Amolins et al. 2007).

A

B C

ERDC/GRL TR-20-7 18

Figure 6. Sample image representing the wavelet decomposition process. The original image
is shown in the upper left quadrant. The other three quadrants represent the original image

being transformed after a horizontal, vertical, and diagonal filter are applied.

For this project, the function was built to serve as a pre-processing step
and to create multi band images outside the original 3-bands (RGB). Thus,
the dimensionality of the image would entail RGB along with the
computed wavelet sub-images as additional bands with total bands of six.
This pre-processing step would introduce spatial and textural information
to the CNN along with the color information for model training. However,
due to time constraints, the assessment of the model training and testing
with the wavelet decomposition is not incorporated for this analysis.

3.4 Parallelization

Parallelization is the process of designing a program or system to perform
a given task in parallel. Implementing an automated image segmentation
workflow on a platform with a single-GPU differs greatly from
implementing the same process on a system that has multiple GPUs
available. Single-GPU and multi-GPU platforms have strict software
dependencies. GPU hardware determines the dependencies needed within
each platform. Guidelines provided by Nvidia were followed in order to
seamlessly integrate libraries and toolkits with the deep learning
framework, Tensorflow-GPU, needed to perform the image segmentation.
The Nvidia Compute Unified Device Architecture (CUDA) toolkit was used
with the deep neural network library (cuDNN). This enabled libraries,
debugging, and optimization tools needed for GPU recognition and

ERDC/GRL TR-20-7 19

accelerated computing with Python. The Nvidia CUDA toolkit and cuDNN
are freely available for download though the Nvidia website.*

3.4.1 Single GPU versus Multi-GPU

System configuration for single-GPU acceleration has fewer scripting and
dependency requirements as opposed to a multi-GPU set-up. For single
GPU initiation, the working directory requires all modules listed in Table 2
to be available. Due to traditional methods for deep learning tasks being
performed on CPUs, model configurations remain agnostic to the
hardware available in the system and require the code to be altered in
order to distinguish and utilize the GPUs from CPUs. In order to test if the
GPUs are being recognized, and therefore used by Tensorflow and NVIDIA
cuDNN, the following command is used: “tf.test.is gpu available”
(Tensorflow). If there is only one GPU on the platform, the result is
“/GPU:0.” Because data initialization and parameter settings should be
performed on the CPU, specifying GPU use only needs to be performed
directly prior to when training starts using the command “with
tf.device(‘/GPU:0’).”

Table 2. Summary of libraries used for implementing the VGG-
16 model on single and multiple GPUs.

Li
br

ar
ie

s

Single GPU Multi-GPU

python 3.6 nose python 3.6 nose
numpy mat mpi4py numpy mat mpi4py
plotlib sphinx plotlib sphinx
scipy m2w64 scipy m2w64
scikit-learn tensorflow scikit-learn tensorflow
pillow keras pillow keras
libpython libpython horovod
pygpu pygpu MPI
theano theano
libgpuarray libgpuarray

The Nvidia DGX system is used as the operating platform to test single
GPU vs multi-GPU implementation. In contrast to single GPUs that
process natively on the platform, multi-GPU is a more complex workflow
because it uses GPU-enabled Nvidia Docker containers. The Nvidia Docker
containers package applicable dependencies needed to run an application

* https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

ERDC/GRL TR-20-7 20

utilizing onboard GPUs (NvidiaDocker). The Nvidia GPU Cloud hosts
predefined, application specific, containers that a user can import into a
working directory and use. The Nvidia container used for this work is
Tensorflow 1.8.0 py3. Once the container is pulled, it is then saved with an
image identification number (ID) for example, 8289b0a3b285.

The Tensorflow 1.8.0 py3 container containins all the required libraries to
execute the VGG-16 model. In addition to the Docker containers, two extra
libraries are required in order to run the VGG-16 model in parallel. These
libraries are Horovod and message passing interface (MPI) listed in
Table 2. Horovod is an open source distributed (parallelization) training
framework for deep learning tasks – Github (Sergeev and Del Balso 2018).
Seamless to the user, Horovod handles variable updates, data
management, and appends tasks to GPUs. This library simplifies the
transition to multi-GPU usage and enables the code to scale to the number
of GPUs available.

MPI is the second library needed to efficiently leverage GPUs. It is an
internal process communication interface that distributes data in memory
and efficiently represents or “communicates” the data across processors.
Essentially, it enables the user to execute a program in parallel without
compiling and running the process sequentially across processors
(Abernathey and Key 2017).* This library is widely used from large-scale
supercomputers to cloud computing infrastructures and single nodes on
systems. The Horovod and MPI libraries also work together by using the
platforms' CPU to gather information from each individual GPU at each
training iteration. The CPU then redistributes updated information to
each GPU for the next training iteration

Although these systems have similar software components, highlighted in
Table 1, each platform requires an independent configuration to perform
the image segmentation workflow due to the hardware differences. For
example, systems like the HP Omen and AGE Node are not able to handle
UAS imagery at their full resolution, thus each image had to be split into
several small ones. On the contrary, the DGX system, which is naturally
designed for large data processing tasks, can handle the full resolution
imagery.

* https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html

https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html

ERDC/GRL TR-20-7 21

4 Results and Discussion

4.1 Model training and image segmentation

The VGG-16 algorithm was initially pre-trained on a large benchmark
dataset to distinguish general classes. This provided the model with “pre-
packaged” weights representing the importance between the input values
at each node. These initial weights were used to fine-tune the deeper layers
of the model’s network as the model was trained on our dataset (Fort AP
Hill, Camp Cook, and Fort Campbell) for specific classes of interest. The
training set comprised of 1,000 image tiles and was constructed as
discussed in Section 3.1. Additional model optimization parameters that
influenced the model training are discussed below.

The ReLU activation function is used to evaluate and shape the training of
the network. This function results in sparse and efficient activations by
computing true zero values, making it less computationally expensive for
complex networks. Thus, the function does not saturate for large inputs
and has been shown to surpass human-level performance (Wang and Xi
2012; Nvidia Corporation 2015). This makes it particularly effective for use
with the VGG-16 network, which consists of a number of convolutional
and max pooling layers with a fully connected layer at the end of the
network.

The cross-entropy loss function is chosen to estimate error in the neural
network by calculating the difference between the true and the estimated
distribution. This function is represented by the equation below:

𝐻𝐻(𝑝𝑝𝑖𝑖,𝑞𝑞𝑖𝑖) = −∑ 𝑝𝑝𝑖𝑖𝑖𝑖 log (𝑞𝑞𝑞𝑞 + 𝜀𝜀) (1)

where

 ε << 1 = small bias introduced for numerical stability
 p = the true distribution
 q = the estimated distribution.

The cross-entropy function, in conjunction with a softmax layer, provides
probabilities for each output class. Lastly, the dropout regularization
technique and the Adam optimizer were added to the networks
architecture to simplify the network and improve model generalization
and robustness.

ERDC/GRL TR-20-7 22

The trained CNN model is applied to classify all unlabeled pixels in the
remaining images. The resulting segmentation of each image is a discrete
output indicating various classes of heterogeneous features present within
each image. Figure 7 represents the segmented images classified by the
CNN in comparison to the original images and ground truth data (training
labels).

Figure 7. Qualitative results of two-dimensional (2D) segmentation showing the original
images on the left, ground truth data in the middle, and segmented images as classified by

the CNN.

Figure 7 compares model output between study sites with different
densities of urban terrain and vegetative cover. In comparison to the
original images and the associated ground truth data, the predicted classes
from the model are well preserved. This is true for large continuous
features such as buildings, seen in Fort AP Hill, or low vegetated regions
present at the Camp Cook site. This is also true for smaller features such as
cars as seen in the Fort Campbell and Fort AP Hill images. It can be
concluded that the model is not affected by the underrepresentation of
pixels representing a class (e.g. cars) in the overall pixel count of an image.
Additionally, it can be inferred that the model is resistant to overfitting the
dominant classes. If class overfitting occurred, then low vegetated areas
(e.g. grass) that have similar color values as high vegetated regions (trees)
would be predicted as one class. Whereas in Figure 7, they are predicted as

ERDC/GRL TR-20-7 23

separate classes highlighted by a green color (low vegetation) and yellow
(high vegetation). Lastly, it can be seen that the model can distinguish
between in-class variations with similar spectral values such as the road
and building in Fort AP Hill, yet ignores variations in spectral values cause
by shadows as seen in Camp Cook.

4.1.1 Evaluation metrics

Since no single measurement gauges every aspect of system performance,
a number of different evaluation metrics were used to assess the accuracy
of the CNN model. These metrics are accuracy, precision, recall, and F-1
score. Accuracy refers to the portion of correct classifications calculated by
counting the number of times the classifier correctly predicts a class and
dividing by the total number of overall predictions (Kernell 2018).

The loss function can be used to estimate the model’s training performance
and complement the overall accuracy metric due to the inverse relationship
between the two. For instance, the higher the loss function is during
training, the lower the model accuracy is, and the lower the loss function is
during training, the higher the overall accuracy metric is.

Caution, however, should be used when looking at overall model accuracy
because it can be inaccurate for datasets that have a skewed distribution
and uneven class representation leading to high class imbalance (Kernell
2018).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 # 𝑇𝑇𝑜𝑜 𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑇𝑇 𝑝𝑝𝐴𝐴𝑐𝑐𝑑𝑑𝑞𝑞𝐴𝐴𝑇𝑇𝑞𝑞𝑇𝑇𝑑𝑑𝑑𝑑

𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 # 𝑇𝑇𝑜𝑜 𝑝𝑝𝐴𝐴𝑐𝑐𝑑𝑑𝑞𝑞𝐴𝐴𝑇𝑇𝑞𝑞𝑇𝑇𝑑𝑑𝑑𝑑

Precision is obtained by dividing the number of true positives by the total
number predicted positives. Recall is calculated by dividing the number of
true positives by the number of actual positives (i.e., the sum of all true
positives and false negatives). Therefore, precision is the metric of choice
when the cost of false positives is high, and recall is the metric of choice
when the cost of false negatives is high (He et al. 2015).

𝑃𝑃𝐴𝐴𝑐𝑐𝐴𝐴𝑞𝑞𝑑𝑑𝑞𝑞𝑇𝑇𝑑𝑑 =
𝑇𝑇𝐴𝐴𝐴𝐴𝑐𝑐 𝑝𝑝𝑇𝑇𝑑𝑑𝑞𝑞𝑇𝑇𝑞𝑞𝑝𝑝𝑐𝑐𝑑𝑑

𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 # 𝑇𝑇𝑜𝑜 𝑝𝑝𝑇𝑇𝑑𝑑𝑞𝑞𝑇𝑇𝑞𝑞𝑝𝑝𝑐𝑐 𝑝𝑝𝐴𝐴𝑐𝑐𝑑𝑑𝑞𝑞𝐴𝐴𝑇𝑇𝑞𝑞𝑇𝑇𝑑𝑑𝑑𝑑
 𝑅𝑅𝑐𝑐𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 =

𝑇𝑇𝐴𝐴𝐴𝐴𝑐𝑐 𝑃𝑃𝑇𝑇𝑑𝑑𝑞𝑞𝑇𝑇𝑞𝑞𝑝𝑝𝑐𝑐𝑑𝑑
𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 # 𝑇𝑇𝑜𝑜 𝑇𝑇𝐴𝐴𝐴𝐴𝑐𝑐 𝑝𝑝𝑇𝑇𝑑𝑑𝑞𝑞𝑇𝑇𝑞𝑞𝑝𝑝𝑐𝑐𝑑𝑑

The F-1 score is a function of precision and recall and reflects a balance
between the two metrics. For example, a high F-1 score indicates low false
positives and low false negatives. In other words, a perfect model would

ERDC/GRL TR-20-7 24

have a score of 1, while a completely failed model would have a score of 0
(He et al. 2015).

𝐹𝐹1 = 2 �
𝑃𝑃𝐴𝐴𝑐𝑐𝐴𝐴𝑞𝑞𝑑𝑑𝑞𝑞𝑇𝑇𝑑𝑑 ∗ 𝑅𝑅𝑐𝑐𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇
𝑃𝑃𝐴𝐴𝑐𝑐𝐴𝐴𝑞𝑞𝑑𝑑𝑞𝑞𝑇𝑇𝑑𝑑 + 𝑅𝑅𝑐𝑐𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇

�

The model’s precision, recall, and mean F-1 score are calculated across
GPU enabled platforms to assess how system characteristics affect the
models’ performance. For this assessment, the AGE Node (single virtual
GPU) was used in comparison with a single GPU from the multi-GPU DGX
system. Table 3 highlights the results after the accuracy calculations are
derived. It can be noted that overall model precision, recall, and F-1 scores
are similar and not significantly affected by the differences in systems. An
F-1 score of 0.82 suggests that overall, the CNN algorithm performs
relatively well at accurately predicting pixels to the correct associated
classes. This is further confirmed by the precision and recall values, which
are close in value. This similarity implies that there is an overall balance
between correct and incorrect predictions by the algorithm.

Table 3. Comparison of precision, recall and F-1 scores for the AGE Node vGPU and a single
GPU on the DGX Station.

 Precision Recall
Mean F-1
Score

Batch Size
(# of image tiles)

Processing Speed
(image tiles/second)

AGE Node vGPU 0.88 0.80 0.82 5 126

DGX Station 0.87 0.81 0.83 128 459

The most noteworthy difference between the systems is the batch size and
processing speed used to execute the CNN. Batch size refers to the number
of images provided to the model at a time. For example, the AGE node
(vGPU) only has access to a portion of the 12 GB of GPU RAM resident on
the host system. For this reason, images had to be split into tiles and run
in batch sizes of 5 tiles. This yields a total processing speed of 126 image
tiles per second as shown in Table 3. In essence, defining the batch size
allows the model to start training with the first set (batch) of images and
iterate throughout the entire dataset accordingly until all samples are
propagated through the nodes of the CNN.

In contrast to the AGE node, the workflow in the DGX occurs considerably
faster. Because the DGX has 32 GB of GPU RAM on each video card, the
batch size can be increased significantly. Table 3 lists the batch size and
processing speeds on the DGX Station for a single GPU with a batch size of

ERDC/GRL TR-20-7 25

128 images at a rate of 459 image tiles per second. Although it is intuitive
that the system built for tasks that require large amounts of processing will
perform better. This comparison shows that nearly identical results are
obtained with the trade-off for processing time. Nevertheless, this
processing time is critical for time sensitive military applications that
require large data processing. Furthermore, as the problem is scaled,
computational needs will scale accordingly.

Model training time provides an additional assessment used to evaluate
the differences between the three computing platforms. This metric is
selected because training CNN models is the most time-consuming stage
of the workflow. However, this is also the most critical determinant to the
overall model performance. For this experiment, 1,000 training images of
a slightly larger tile size (921 x 691 pixels) were used to train the CNN
across the HP Omen (single GPU), AGE Node (vGPU), and DGX station.
The code was run in parallel in order to utilize the maximum potential of
each system.

Similar to the previous experiment, the models achieved comparable
accuracy across all platforms. However, parallelizing the CNN across four
GPUs greatly reduced the overall model training time by an order of
magnitude as shown by Table 4. Multi-core systems, such as the DGX
station, which allow for large-scale, distributed model training can be
leveraged by Army planning analysts needing on-the-fly, large-scale data
processing capabilities.

Table 4. Comparison between single and multi-GPU computing platforms used for CNN model
training and accuracy.

 HP Omen
Single GPU

AGE Node
Single vGPU

DGX Station
Multi-GPU (4)

Batch Size 1 5 120 (30 per GPU)

Epoch 40 40 40

Training Time (hrs) 21.75 10 2.6

Accuracy (%) 83 82 84

Observing the models’ loss function throughout training provides insight
on overall model’s performance. However, this performance may be
influenced by a number of forward and backward passes, known as
epochs, which the CNN conducts during the training stage. For instance,
when 1,000 training images are used and the batch size is 500, then

ERDC/GRL TR-20-7 26

2 iterations (1 forward and 1 backwards) are conducted to complete
1 epoch. The number of training samples also influence model
performance by impacting model bias and variance. For these reasons it is
important to understand where the balance is met between training size
and epoch. Finding a balance between the number of epochs and training
size is important to train the model efficiently and accurately. Training
sizes that are too large may take too long to process and overload memory.
Conversely, insufficient training sizes can potentially increase bias by not
having enough data to train on in each epoch

Model learning curves are commonly used as a diagnostic tool to visualize
machine learning algorithms performance over a period of time.
Validation accuracy, validation loss, and training loss are good estimates
used to identify potential model learning problems in the early stages of
the workflow. These curves allow the end user to foresee if the model is
overfitting or underfitting and provide insight if model adjustments are
required. Learning curves for validation accuracy, validation loss, and
training loss curves are shown in Figure 8 for the CNN for a series of
epochs and iterations.

Comparing the validation and training loss respectively, both loss curves
follow a similar pattern where both converge to a point of stability at
approximately 40 epochs. This pattern between the two curves suggests
that the model does not overfit or underfit while training. Instead it shows
it has an overall good fit. Associating the validation curves with the
training curve allows the end user to understand and evaluate the state of
the CNN model at each stage of training. For example, this evaluation is
performed while the model is training on the training dataset, as well as,
during its validation stage when it is applied on a dataset that it has not
seen before.

The validation accuracy curve, represented in blue, shows that the CNN
converges at approximately 0.85 (85%) accuracy when the model is
applied to the validation dataset. This level of accuracy is also highlighted
in Table 4 when the model is applied across different computing platforms
and GPUs.

ERDC/GRL TR-20-7 27

Figure 8. Model learning curves for validation accuracy (blue line), validation loss (red line)
and training loss (shown in pink) for the CNN for a series of epochs and iterations.

An additional graph is generated to compare how the accuracy of the
model changes as more training data is introduced. This fosters an
understanding of how the model is performing over the training sequence.
It visualizes the minimum amount of data that the model needs to reach
the best compromise between bias and variance, which in turn can
minimize training time. Figure 9 depicts the model accuracy with respect
to the amount of training data. After a certain point (approximately 18
images) the CNNs validation accuracy marginally increases as more
training images are added. Additionally, the graph shows that the best
accuracy of 0.92 is achieved with only 42 training images.

Figure 9. Comparison of model accuracy in relation to the
number of training images used.

ERDC/GRL TR-20-7 28

5 Conclusion

This document presents a workflow that leverages the use of CNNs and
high-performance GPU processing to automate pixel-wise image
segmentation of aerial imagery collected from UAS. Specifically, different
computing platforms are compared to investigate each platforms
advantages and limitations for tasks that often require high computing
resources. Such tasks are particularly important as data becomes more
widely available and as UASs are increasingly used to improve situational
awareness. The ability to perform a quick and accurate analysis on aerial
imagery becomes vital for agile decision making.

The results presented in the report indicate that CNNs are an effective
method for image segmentation tasks and this method can be successfully
applied in regions with various land cover types and complexities. This
application is illustrated in Figure 7 where the classes predicted by the
VGG-16 model corresponded well to the ground truth data with a precision
accuracy of 88% (Table 3). The CNN model was able to accurately predict
pixels that were continuous, signifying large features (e.g. buildings or
sizable areas of low vegetation) as well as smaller features (e.g. cars and
railroads). This shows the model is resistant to overfitting in the dominant
classes and can distinguish which class a pixel belongs to regardless of
neighboring pixels with similar characteristics.

The model’s training performance was evaluated using a sequence of
epochs and training sample sizes. The analysis suggested that the CNN
algorithm converges after 40 epochs with approximately 85% accuracy.
When a larger number of epochs were tested, the model’s accuracy slightly
increased. This suggests that as the number of epochs increases, the model
weights adjust in the neural network and causes the model to begin to
overfit.

When the VGG-16 model is coupled with GPU-accelerated processing and
parallelized across multiple GPUs, the model training time is significantly
reduced while preserving the same accuracy as summarized in Table 4.
Although the workflow between the systems varies slightly in the number
of epochs and batch size, approximately the same accuracy is retained
across all three systems (HP Omen, AGE Node, DGX). This signifies that
GPU memory and core count available within a system are critical
components in terms of processing speed and preprocessing steps. For

ERDC/GRL TR-20-7 29

example, due to the 128 GB of memory available in the DGX, the system is
able to process large amounts of data with no preprocessing required.
Whereas, with the HP Omen and AGE Node, which have single GPUs,
images must be split into small tiles and processed in batches.

The VGG-16 model was initially chosen due to its simple architecture and
literature support that it was more accurate and less prone to over-fitting
than other algorithms such as the InceptionV3 network. Limitations of the
VGG-16 model derive from the large number of parameters and weights,
which require expert input to fine tune the model. Additionally, specific
tasks may require many convolutions which could decrease the model’s
efficiency. Future work could investigate the application of the model to
datasets with supplementary layers. For example, expanding the imagery
to include textural information derived from wavelet decomposition. This
step allows the end user to introduce additional layers and identify optimal
combination to reduce workload.

Fully convolutional networks represent a rich class of models capable of
performing a wide range of tasks such facial recognition, scene labeling,
and image segmentation. Reliable training data is a critical component
when working with such models as it is used to fit the algorithm. This
research created a unique training dataset. This dataset can be leveraged
for future segmentation efforts and serve as a baseline to benchmark
future CNN and efficiently support critical image processing tasks for the
Military.

ERDC/GRL TR-20-7 30

References
Amolins, K., Y. Zhang, and P. Dare, P. 2007. Wavelet based image fusion techniques—An

introduction, review and comparison. ISPRS Journal of photogrammetry and
Remote Sensing, 62(4):249-263.

Arivazhagan, S., and L. Ganesan. 2003. Texture classification using wavelet
transform. Pattern recognition letters, 24(9-10):1513-1521.

Baaziz, N., O. Abahmane, and R. Missaoui. 2010. Texture feature extraction in the
spatial-frequency domain for content-based image retrieval. arXiv preprint
arXiv:10125208

Becker, C., N. Hani, E. Rosinskaya, E. d'Angelo, and C. Strecha. 2017. Classification of
aerial photogrammetric 3D point clouds. Photographic Imaging and Remote
Sensing 84(5):297–295. https://doi.org/10.14358/PERS.84.5.287.

Castelluccio, M., G. Poggi, C. Sansone, and L. Verdoliva. 2015. Land use classification in
remote sensing images by convolutional neural networks. arXiv preprint
arXiv:1508.00092.

Chen, K., K. Fu, M. Yan, X. Gao, X. Sun, and X. Wei. 2018. Semantic segmentation of
aerial images with shuffling convolutional networks. In IEEE Geoscience and
Remote Sensing Letters 15(2):173–177. doi: 10.1109/LGRS.2017.2778181.

Cordts, M., M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S.
Roth, and B. Schiele. 2016. The cityscapes dataset for semantic urban scene
understanding. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition 3213–3223.

Garcia-Garcia, A., S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-
Rodriguez. 2017. A review on deep learning techniques applied to semantic
segmentation. arXiv preprint arXiv:1704.06857v1, 2017.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. Cambridge, MA: MIT
Press.

Han, J., M. Kamber, and D. Mining. 2006. Southeast Asia Edition: Concepts and
Techniques.

He, K., X. Zhang, S. Ren, and J. Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification.

Huang, K., and S. Aviyente. 2008. Wavelet feature selection for image classification. IEEE
Transactions on Image Processing, 17(9):1709-1720.

Hu, X., and Y. Yuan. 2016. Deep-learning-based classification for dtm extraction from als
point cloud. Remote Sensing 8(9):730.

Hu, F., G. Xia, J. Hu, and L. Zhang. 2015. Transferring deep convolutional neural
networks for the scene classification of high-resolution remote sensing imagery.
Remote Sensing 7(11):14680–14707.

https://doi.org/10.14358/PERS.84.5.287

ERDC/GRL TR-20-7 31

Karantzalos, K. 2015. Recent Advances on 2D and 3D Change Detection in Urban
Environments from Remote Sensing Data. In Linked Activity Spaces:
Embedding Social Networks in Urban Space Springer pp. 237 - 272.

Karpathy, A. 2018. CS231n - Convolutional Neural Networks for Visual Recognition.
Stanford University. (Accessed 11 March 2019) http://cs231n.github.io/.

Kernell, B. 2018. Improving Photogrammetry Using Semantic Segmentation. Advanced
Level Thesis. Linkoping, Sweden: Linkoping University.

Kingma, D., and J. Ba. 2017. Adam: A method for stochastic optimization. arXiv preprint
arXiv: 1412.6980v9.

Kyrkou, C., G. Plastiras, T. Theocharides, S. Venieris, and C. Bouganis. 2018. Dronet:
Efficient convolutional neural network detector for real-time UAV applications.
In 2018 Design, Automation and Test in Europe Conference and Exhibition. doi:
10.23919/DATE.2018.8342149.

Long, J., E. Shelhamer, and T. Darrell. 2014. Fully convolutional networks for semantic
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 3431–3440.

Marmanis, D., J. D. Wegner, S. Galliani, K. Schindler, M. Datcu, and U. Stilla. 2016.
Semantic segmentation of aerial images with an ensemble of CNNs. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 3, 473.

Matikainen, L., and K. Karila. 2011. Segment-based land cover mapping of a suburban
area - Comparison of high-resolution remotely sensed datasets using
classification treees and test field points Remote Sensing 3(8):1777–1804.
https://doi.org/10.3390/rs3081777.

Nvidia Corporation. 2015. GRID Virtual GPU User Guide, DU-06920-001. Santa Clara,
CA. (Accessed on 20 June 2019).
http://us.download.Nvidia.com/Windows/Quadro_Certified/GRID/354.80/ESXi-6.0/352.83-
354.80-Nvidia-grid-vgpu-user-guide.pdf.

Parashar, A., M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W.
Keckler, and W. J. Dally. 2017. SCNN: an accelerator for compressed-sparse
convolutional neural networks. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). Doi: 10.1145/3079856.3080254.

Ruder, S. 2017. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv: 1609.04747v2.

Sergeev, A., and M. Del Balso. 2018. Horovod: Fast and easy distributed deep learning
in TensorFlow.

Simonyan, K., and A. Zisserman. 2015. Very deep convolutional networks for large-scale
image recognition. arXiv: 1409.1556v6.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15:1929–1958.

http://cs231n.github.io/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8337149
https://doi.org/10.3390/rs3081777
http://us.download.nvidia.com/Windows/Quadro_Certified/GRID/354.80/ESXi-6.0/352.83-354.80-nvidia-grid-vgpu-user-guide.pdf
http://us.download.nvidia.com/Windows/Quadro_Certified/GRID/354.80/ESXi-6.0/352.83-354.80-nvidia-grid-vgpu-user-guide.pdf

ERDC/GRL TR-20-7 32

Tang, Y., and L. Zhang. 2017. Urban change analysis with multi-sensor multispectral
imagery. Remote Sensing 9(3):252. https://doi.org/10.3390/rs9030252.

Trimble Geospatial. nd. eCognition 9, Trimble. (Accessed 20 June 2019)
http://www.ecognition.com/.

You, J., X. Li, M. Low, D. Lobell, and S. Ermon. 2017. Deep gaussian process for crop
yield prediction based on remote sensing data. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence 4559–4566.

Volpi, M., and D. Tuia. 2017. Dense semantic labeling of subdecimeter resolution images
with convolutional neural networks. In IEEE Transactions o Geoscience and
Remote Sensing 55(2):881–893.

Wang, C., and Y. Xi. 2012. Convoluional neural network for image classification.,
Baltimore, MD: Johns Hopkins University.

Wang, H., Y. Wang, Q. Zhang, S. Xiang, and C. Pan. 2017. Gated convolutional neural
network for semantic segmentation in high resolution images. Remote Sensing,
9(5):446. https://doi.org/10.3390/rs9050446.

https://doi.org/10.3390/rs9030252
http://www.ecognition.com/
https://doi.org/10.3390/rs9050446

ERDC/GRL TR-20-7 33

Unit Conversion Factors

Multiply By To Obtain

acres 4,046.873 square meters

cubic feet 0.02831685 cubic meters

cubic inches 1.6387064 E-05 cubic meters

cubic yards 0.7645549 cubic meters

feet 0.3048 meters

hectares 1.0 E+04 square meters

inches 0.0254 meters

microns 1.0 E-06 meters

miles (nautical) 1,852 meters

miles (U.S. statute) 1,609.347 meters

miles per hour 0.44704 meters per second

mils 0.0254 millimeters

pounds (mass) 0.45359237 kilograms

square feet 0.09290304 square meters

square inches 6.4516 E-04 square meters

square miles 2.589998 E+06 square meters

square yards 0.8361274 square meters

tons (2,000 pounds, mass) 907.1847 kilograms

tons (2,000 pounds, mass) per square foot 9,764.856 kilograms per square meter

yards 0.9144 meters

ERDC/GRL TR-20-7 34

Acronyms and Abbreviations

AI Artificial intelligence

AGE Army Geospatial Enterprise

ANN Artificial Neural Network

BLC Basic Leader Course

CNN Convolutional Neural Network

COTS Commercial-Off-The-Shelf

CUDA Compute Unified Device Architecture

cuDNN deep neural network library

ERDC Engineer Research and Development Center

EPEL Enterprise Linux

ExIF Exchangeable Image File Format

GEOINT Geospatial Intelligence

GeoICUE Geo-Intelligence for Complex Urban Environments

GB Gigabytes

GRL Geospatial Research Laboratory

HPC High Performance Computing

IC Intelligence Community

ISPRS International Society for Photogrammetry and Remote
Sensing

JPEG Joint Photographic Experts Group

MPI message passing interface

NCOA Noncommissioned Officers Academy

RAM random access memory

RGB red, green, blue

ReLU Rectified Linear Unit

SOAR Special Operations Aviation Regiment

TANH hyperbolic tangent

UAS Unmanned Aerial Systems

USACE U.S. Army Corps of Engineers

VGG Visual Geometry Group

vGPU virtual graphical processing unit

ERDC/GRL TR-20-7 35

VM virtual machine

2-D two-dimensional

3-D three-dimensional

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

March 2020
2. REPORT TYPE

Final report
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Use of Convolutional Neural Networks for Semantic Image Segmentation Across
Different Computing Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62784

6. AUTHOR(S)

Andmorgan R. Fisher, Timothy A. Middleton, Jonathan Cotugno, Elena Sava, Laura
Clemente-Harding, Joseph Berger, Allistar Smith, and Teresa C. Li

5d. PROJECT NUMBER
855

5e. TASK NUMBER
23

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

Geospatial Research Laboratory
U.S. Army Engineer Research and Development Center
7701 Telegraph Road
Alexandria, VA 22315-3864

ERDC/GRL TR-20-7

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Headquarters, U.S. Army Corps of Engineers
Washington, DC 20314-1000

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The advent of powerful computing platforms coupled with deep learning architectures have resulted in novel approaches to tackle many
traditional computer vision problems in order to automate the interpretation of large and complex geospatial data. Such tasks are
particularly important as data are widely available and UAS are increasingly being used.

This document presents a workflow that leverages the use of CNNs and GPUs to automate pixel-wise segmentation of UAS imagery for
faster image processing. GPU-based computing and parallelization is explored on multi-core GPUs to reduce development time,
mitigate the need for extensive model training, and facilitate exploitation of mission critical information. VGG-16 model training times
are compared among different systems (single, virtual, multi-GPUs) to investigate each platform’s capabilities.

CNN results show a precision accuracy of 88% when applied to ground truth data. Coupling the VGG-16 model with GPU-accelerated
processing and parallelizing across multiple GPUs decreases model training time while preserving accuracy. This signifies that GPU
memory and cores available within a system are critical components in terms of preprocessing and processing speed. This workflow can
be leveraged for future segmentation efforts, serve as a baseline to benchmark future CNN, and efficiently support critical image
processing tasks for the Military.

15. SUBJECT TERMS
Aerial photography
Drone aircraft
Geospatial data – Computer processing

Remote-sensing images
Image processing
Neural networks (Computer science)

Computer vision

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

UNCLASSIFIED

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED SAR 42
19b. TELEPHONE NUMBER (include
area code)

 andard Form 298 (Rev. 8-98)
escribed by ANSI Std. 239.18

	Abstract
	Contents
	Figures and Tables
	Preface
	1 Introduction
	1.1 Background
	1.2 Related work
	1.2.1 Artificial neural networks (ANNs)
	1.2.2 Semantic segmentation

	2 Data, Sites and Computing Platforms Description
	2.1 Data characterization
	2.2 Sites description
	2.2.1 Fort AP Hill
	2.2.2 Camp Cook
	2.2.3 Fort Campbell

	2.3 Computing platforms description
	2.3.1 HP OMEN 17t
	2.3.2 Army Geospatial Enterprise Node
	2.3.3 DGX Station

	3 Methods
	3.1 Training data creation
	3.2 Image splitting
	3.3 Wavelet transformation
	3.4 Parallelization
	3.4.1 Single GPU versus Multi-GPU

	4 Results and Discussion
	4.1 Model training and image segmentation
	4.1.1 Evaluation metrics

	5 Conclusion
	References
	Unit Conversion Factors
	Acronyms and Abbreviations
	REPORT DOCUMENTATION PAGE

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

