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Abstract 

The advent of powerful computing platforms coupled with deep learning 
architectures have resulted in novel approaches to tackle many traditional 
computer vision problems in order to automate the interpretation of large 
and complex geospatial data. Such tasks are particularly important as data 
are widely available and UAS are increasingly being used.  

This document presents a workflow that leverages the use of CNNs and 
GPUs to automate pixel-wise segmentation of UAS imagery for faster 
image processing. GPU-based computing and parallelization is explored 
on multi-core GPUs to reduce development time, mitigate the need for 
extensive model training, and facilitate exploitation of mission critical 
information. VGG-16 model training times are compared among different 
systems (single, virtual, multi-GPUs) to investigate each platform’s 
capabilities. 

CNN results show a precision accuracy of 88% when applied to ground 
truth data. Coupling the VGG-16 model with GPU-accelerated processing 
and parallelizing across multiple GPUs decreases model training time 
while preserving accuracy. This signifies that GPU memory and cores 
available within a system are critical components in terms of 
preprocessing and processing speed. This workflow can be leveraged for 
future segmentation efforts, serve as a baseline to benchmark future CNN, 
and efficiently support critical image processing tasks for the Military. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTRUCTION NOTICE – Destroy by any method that will prevent disclosure of contents or 
reconstruction of the document. 
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1 Introduction 

1.1 Background 

Machine learning applications have become increasingly popular due to 
the wide availability of large volumes of high resolution remotely sensed 
data and the decreasing cost for high performance computing (HPC) 
infrastructure. Data driven approaches in the fields of image processing 
and computer vision have advanced geospatial research and can be 
leveraged to determine mission critical information. Yet, deriving 
actionable information from large sets of complex imagery in an efficient 
manner remains a central challenge of geospatial intelligence (GEOINT) 
gathering. Rapid, accurate classification of aerial imagery provides 
decision makers with functional information that enables operational 
understanding and resource allocation according to identified constraints. 
Imagery collection by military units using diverse sensors onboard 
unmanned aerial systems (UAS) have increased significantly over the last 
decade and is expected to continue to rise. This suggests that the number 
of autonomous operations, collection of high definition geolocated images, 
and HPC systems that can be deployed to the tactical edge will increase. As 
such, there has been a commensurate need for faster automated image 
processing both for low level tasks, such as de-noising or segmentation, 
and high-level tasks, such as classification (Castelluccio et al. 2015).  

Semantic segmentation of predefined classes in aerial imagery involves 
assigning a class label to each pixel, thus, partitioning the image into 
meaningful segments (or sets of pixels). Semantic segmentation is a core 
problem in the field of computer vision and is a key task that enables 
complete geospatial understanding of a scene. Automated segmentation 
has many important real-world applications, including autonomous 
driving (Cordts et al. 2016), augmented reality, land cover mapping 
(Matikainen and Karila 2011), change detection (Tang and Zhang 2017), 
environmental monitoring, and urban planning (Karantzalos 2015). 

Machine learning techniques, such as convolutional neural networks 
(CNNs), have shown enormous success when applied to image 
segmentation problems for red, green, blue (RGB) imagery (Marnamis et 
al. 2016). A central challenge hindering broad adoption of such algorithms 
has been hardware limitations. The introduction of massively parallel 
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computing architectures resulted in hardware that can now more 
efficiently manage workloads related to computer vision algorithms 
(Kyrkou et al. 2018).  

This document highlights the use of CNNs and graphics processing unit 
(GPU) acceleration to address the need for an automated pixel-wise image 
segmentation approach for imagery collected by UAS. Pixel-wise image 
segmentation is a challenging problem because each pixel is assigned a 
label based on the local context surrounding the pixel, making it a 
computationally intensive task. This report addresses the challenge by 
implementing a pre-trained CNN and transfer learning to provide a series 
of time-resolved images with dynamic attributes. Additionally, GPU-based 
computing and parallelism is explored on multi-core GPUs to reduce 
development time, mitigate the need for extensive model training, and 
facilitate the exploitation of mission critical geospatial information. 
Computation times to train the CNN model are compared among three 
different systems (single GPU, virtual GPU, and multi-GPU). Thus, this 
work delivers a useful and flexible tool applicable to a range of geo-
intelligence tasks commonly undertaken by the U.S. Army Corps of 
Engineers (USACE) and the intelligence community (IC), in general. Such 
tasks include: three-dimensional (3-D) modeling, survey and mapping, 
inspection, and maneuver support. The CNN model is tested and validated 
on imagery collected over three distinct sites and tested across different 
computing platforms to assess model efficiency and accuracy.  

1.2 Related work 

1.2.1  Artificial neural networks (ANNs) 

Artificial Neural Networks (ANNs) are widely used for image classification 
tasks (Goodfellow et al. 2016; Kernell 2018). ANNs are inspired by 
biological neural networks in the human brain that have been designed to 
recognize patterns. A neural network consists of multiple layers of 
neurons, where each layer can be thought of as a single processing unit 
that can take multiple inputs, but has only one output (Wang and Xi 
2012). A representation of a standard neural network structure is shown in 
Figure 1(a).  
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Figure 1. Representation of a standard neural network with two hidden layers is shown on the 
left. On the right, the same network is shown after dropout is applied. The crossed neurons 

have been dropped. Figure taken from Srivastava et al. 2018. 

 

Large neural networks serve as powerful image classification and 
segmentation tools (Kernell 2018). Activation functions are a critical 
component of ANNs as they provide information on whether a neuron 
must be activated and if the information received is relevant or should be 
overlooked. Adding an activation function to a node introduces non-
linearity to the network. This enables the network to learn from complex 
data and provide accurate predictions (Goodfellow et al. 2016).  

Activation functions are categorized into two types - linear or nonlinear. 
The Step function represents a simple activation function that is often 
used with binary classifiers, and the outputs are either 1, indicating 
activated, or 0, indicating not activated (Goodfellow et al. 2016). In the 
past, common choices for neural network activation functions were the 
Sigmoid and hyperbolic tangent (TANH) functions as they are easily 
differentiable and non-linear. However, these functions result in dense 
activations which are computationally expensive (Kernell 2018). Modern 
neural networks commonly use the Rectified Linear Unit (ReLU) function 
because it results in sparse and efficient activations making it less 
computationally expensive (Parashar et al. 2017).  

A graphical representation of each activation function is shown in 
Figure 2. Note that the Step function (a) suppresses the input data into a 
set range (0,1), while the Sigmoid (b) and TANH (c) functions allow the 
model to generalize and adapt to the input data, forming an “S” shaped 
curve. For example, graphs (b) and (c) show that the function is limited to 
the upper and lower bounds. The ReLU (d) graph shows the function 
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creating a positive linear slope only when values exceed zero. The 
flexibility of the linear behavior (continuous values) associated within each 
activation function allows CNN models to be optimized more easily than 
activation functions that exhibit stricter behavior such as the Step function 
(discrete values) (Kernell 2018). For instance, when ReLU function values 
are less than zero, they get discarded, while values greater than zero vary 
linearly with no upper limit bounds.  

Figure 2. Graphical representation of slope for commonly used activation functions. 
Recreated from Kernell (2018).  

 

Model optimization entails finding the set of parameters, or weights, that 
minimize the loss function (Garcia-Garcia et al. 2017). This loss function is 
used to estimate how well the model is trained by calculating the 
difference between the model’s predicted values and the observed input 
data values as well as determine the optimal model weights. The model 
weights (or parameters) are then adjusted using a gradient descent 
optimization algorithm which identifies the average error of the loss 
function in the training data. A comprehensive review of gradient descent 

a b 

c d 
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optimization algorithms conducted by Sebastian Ruder (2017) found the 
Adam optimizer to be the best overall choice of optimizing algorithms. The 
Adam algorithm updates model weights iteratively based on the input data 
and is selected for this work as it is (1) straightforward to implement; (2) 
computationally efficient; (3) well-suited to big data problems; and (4) 
requires little tuning of hyperparameters (Srivastava et al. 2014; Ruder 
2017). 

A common challenge when leveraging CNN’s for image segmentation on 
large data is preventing the model from overfitting when training on the 
input data. Overfitting prevents the model from identifying and learning 
different relationships in the data, thus reducing its ability to make 
predictions when applied to new data. For this reason, regularization is 
used as a means to constrain and prevent the network from overfitting the 
data (Garcia-Garcia et al. 2017). The following three types of regularization 
are routinely used with deep learning algorithms: L1, L2, and dropout. L1 
and L2 are two of the most commonly used types of model regularization. 
L1 penalizes the absolute value of the weights, which allows the weights to 
be reduced to zero and is useful when model compression is desired. L2 
forces the weight values to decay approaching zero (Garcia-Garcia et al. 
2017; Kernell 2018). Alternatively, dropout is a means of regularization 
that temporarily and randomly removes neurons, as well as all their 
incoming and outgoing connections, from the network as shown in 
Figure 1(b) (Karpathy 2018). Because the network is prevented from using 
the same neurons repeatedly, this method serves to improve the 
generalization of the network (Kernell 2018). 

A deep convolutional neural network developed by the Visual Geometry 
Group (VGG) from University of Oxford was used to segment aerial 
imagery into predefined classes. The VGG-16 model architecture is 
comprised of 16 weighted layers and is freely available for download online 
through GitHub. The VGG-16 is distinguished from other CNNs by the use 
of many convolutional layers with progressively smaller receptive fields, as 
opposed to only a few convolutional layers with large fields (Parashar et al. 
2017). The receptive fields in a CNN model represent the center area of 
focus (spatial extent) the model is looking at, as each convolution is 
applied. These fields are commonly thought of as the filtering size window 
applied in image processing tasks. The overall architecture of VGG-16 is 
shown in Figure 3. The network’s convolutional layers are represented 
using white rectangles of various dimensions, followed by a pink max 
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pooling layer and are divided into five groups. The last two convolutional 
layers, represented in blue, are flattened through a fully connected layer 
and softmax is used to perform the image segmentation. This architecture 
was chosen because the model is simpler to train due to the reduced 
number of parameters and an increased number of nonlinearities in 
between the neuron layers allowing the model to efficiently learn and 
achieve better performance. This is important because it makes the 
decision function more discriminative between the different classes 
(Parashar et al. 2017). 

The VGG-16 is fine-tuned using a loss function which gives the network 
the ability to penalize mistakes, thus reducing the error when making 
predictions (Kernell 2018). Loss functions are used to estimate the error of 
a set of weights in a neural network. Neural networks are typically trained 
using stochastic gradient descent to calculate error in model predictions. 
These calculations are used to update weights in the network using 
backpropagation of the error algorithm. Since neural networks are 
essentially classification algorithms which yield a probability distribution 
as output, cross-entropy is arguably the most commonly used loss function 
(Goodfellow et al. 2016; Garcia-Garcia et al 2017). This is due to the 
inverse relationship between the model’s prediction performance and the 
cross-entropy function. For instance, if the cross-entropy loss value is high 
the model’s predictive performance decreases and diverges from the actual 
label associated with a class.  

Figure 3. Fully convolutional neural network based on the VGG-16 architecture. 
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1.2.2  Semantic segmentation 

The advent of powerful computing platforms coupled with deep learning 
architectures have recently resulted in novel approaches used to tackle 
many traditional computer vision problems. This progress is reflected in 
commercial-off-the-shelf (COTS) software and in academic research that 
leverages traditional and deep learning methods to automate the 
interpretation of geospatial information (Kingma Ba 2017; Becker et al. 
2017). For example, Trimble’s eCognition® software uses Google’s 
+TensorFlowTM library to construct CNNs and automate various analytic 
tasks such as the segmentation of satellite and aerial imagery for land 
cover mapping, object detection, and point cloud classification (Becker et 
al. 2017). 

Semantic segmentation of aerial imagery involves assigning a semantic (or 
object class) label to each pixel in a given image. There are several 
challenges that make this a difficult task. For example, imagery often 
contains complex objects of varying sizes, which can make simultaneous 
segmentation a challenge (Trimble Geospatial). Another example is that 
redundant object details often occur when resolution is improved, thereby 
increasing the difficulty of segmentation (Trimble Geospatial).  

Nonetheless, neural networks have become well-known models for feature 
learning. Academic literature has shown an increasing number of 
applications of CNNs to geospatial problems using geospatial data. Many 
of these applications are directly applicable to GEOINT gathering 
including: semantic segmentation of aerial imagery (Wang et al. 2017; 
Chen et al. 2018), extraction of digital terrain models from laser scanning 
point cloud data (Volpi and Tuia 2017), scene (Hu and Yuan 2016) and 
land use classification (Castelluccio et al. 2015), crop yield production (Hu 
et al. 2015), and automated target recognition (You et al. 2017). 

The performance of semantic segmentation systems can be evaluated 
based on metrics such as execution time, memory footprint, and accuracy 
(Parashar et al. 2017). Since the majority of systems are constrained by the 
time that can be spent on the inference pass, speed or runtime is a 
particularly valuable metric. Another important consideration for 
segmentation methods is memory usage. In fact, even GPU-accelerated 
neural networks are often constrained by the number of GPU cores and 
memory capacity (Long et al. 2014). Pixel accuracy is arguably the most 
important metric and generally used to gauge the performance of semantic 
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segmentation techniques (Parashar et al. 2017). In this work all three 
metrics are used to assess algorithm performance and segmentation 
accuracy. 



ERDC/GRL TR-20-7 9 

 

2 Data, Sites and Computing Platforms 
Description 

2.1 Data characterization 

The eBee drone is a fully autonomous, commercially available fixed wing 
UAS used to capture aerial imagery. It is a hand-launched drone weighing 
approximately 1.5 lbs with a 37.8 in. wingspan. The eBee drone was 
purchased from senseFly, a subsidiary of Parrot Group. For this research 
effort, the eBee drone was equipped with a 12-megapixel Canon Powershot 
S110 and programmed to autonomously capture images at nadir (camera 
lens perpendicular to ground) from approximately 50 m above the average 
scene elevation. To optimize the overlap of neighboring images, an 
interleaving raster flight pattern was utilized. Interleaving mode performs 
two traces, a standard trace and retrace, followed by a second trace and 
retrace with interleave feedback enabled. At each site, between 10 to 17 
images were collected as the image collection was limited by the battery 
endurance of the UAS. The collection spanned 1.25±0.5 x 105 m2 
(30.9±12.4 acres) in total aerial coverage from each site. Each image is 
4000 x 3000 pixels with 2.5 cm spatial resolution collected in the RGB 
part of the electromagnetic spectrum. Three different research sites were 
used for this effort: Fort AP Hill (Virginia), Camp Cook (Louisiana), and 
Fort Campbell (Tennessee and Kentucky). Images were stored in the Joint 
Photographic Experts Group (JPEG) format, which makes use of 
exchangeable image file format (ExIF) tagging structure in order to store 
embedded metadata (i.e. georeference data). Scenes contain 
heterogeneous class representations including, but not limited to, 
buildings, roads, trees, cars, etc.  

2.2 Sites description 

2.2.1  Fort AP Hill  

Fort A.P. Hill is a U.S. Army Installation located near Bowling Green, 
Virginia, approximately 65-75 miles south of GRL. The Garrison 
Commander was Lieutenant Colonel (LTC) Michael Gates and the 
Garrison Command Sergeant Major (CSM) was Joseph Reilly. Fort A.P. 
Hill is a Regional Collective Training Center established in June 1941 and 
is used to support Army, Joint, and Interagency readiness. Fort A.P. Hill 
spans 76,000 acres of land and is one of the largest East Coast military 
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installations. Imagery collection from this site contains a variety of 
standard land surfaces and features (i.e. grass, pavement, concrete, and 
vegetation), along with a number of buildings. Data collected at this site 
provides a range of standard samples of information.  

2.2.2  Camp Cook 

Camp Cook is located in Ball, Louisiana and was established in 1941. It is 
home to the Louisiana National Guard and the Noncommissioned Officers 
Academy (NCOA). The Army’s Basic Leader Course (BLC) is offered at this 
location by the 1st Battalion NCOA. The Commandant was CSM 
Christopher Maxwell and Deputy Commandant was First Sergeant (1SG) 
Thomas Hughes. Imagery collected at Camp Cook contains similar content 
to the Fort A.P. Hill collection in terms of man-made features. The 
environment introduces additional vegetation types and different land 
features (i.e. creek beds) into the training dataset.  

2.2.3  Fort Campbell  

Fort Campbell is located at the border of Tennessee and Kentucky and 
spans approximately 102,000 acres. The site was identified in 1941 and 
base construction commenced in 1942. The Army’s 160th Special 
Operations Aviation Regiment (SOAR), 101st Airborne Division, 5th 
Special Forces Group, and 19th Air Support Operation Squadron are 
located at Fort Campbell. The primary mission of this base is to support 
combat readiness for air assault training. The expanse has a variety of 
natural and man-made features that add further information to the 
training dataset. 

2.3 Computing platforms description 

The automated image segmentation workflow was tested on three different 
systems where each system represents different computing capabilities. 
These platforms are the HP Omen laptop (single GPU), Army Geospatial 
Enterprise (AGE) Node (single virtual GPU), and the Nvidia DGX station 
(Multi-GPU enabled). Specifications for each platform are summarized 
below and in Table 1. The use of varying computing platforms allows for a 
comprehensive comparison and summary of information in terms of 
processing speeds between systems relative to their embedded hardware 
configurations. 



ERDC/GRL TR-20-7 11 

 

2.3.1  HP OMEN 17t 

The HP OMEN 17t is a gaming laptop equipped with Nvidia’s latest GPU 
hardware. Nvidia is a computer technology company specializing in parallel 
computing and graphics (Nvidia). Nvidia is also the inventor of the GPU 
technology, which has become the state-of-the-art technology for 
computing. The automated segmentation workflow was implemented on 
the HP OMEN 17t, which is a laptop system typically used for PC gaming 
because of the hardware. The HP OMEN 17t has an 8GB GTX 1070 
graphical processing unit integrated into the system This laptop was used as 
a way to provide comparative metrics at different levels of computational 
capabilities when compared to more advanced hardware platforms.  

2.3.2  Army Geospatial Enterprise Node 

The automated segmentation workflow was also performed on a CentOS 7 
virtual machine (VM) maintained by the AGE Node. A VM is an emulator 
that mimics the behavior of a separate computer and is capable of running 
applications as a separate computer. The AGE Node provides computing 
resources and maintenance to project developers where applications can 
be tested in the early stages of their lifecycle.* Nvidia GRID virtual 
graphical processing unit (vGPU) enables multiple virtual machines to 
have simultaneous, direct access to a single physical GPU, using the same 
Nvidia graphics drivers that are deployed on non-virtualized operating 
systems (Simonyan and Zisserman 2015). The benefit of this functionality 
is the ability to implement the automated segmentation workflow from 
any computer, while still utilizing the Nvidia GRID vGPU resource for 
processing.  

2.3.3  DGX Station 

The DGX Station is one of the world’s fastest workstations for artificial 
intelligence (AI) development (Nvidia). This workstation has been 
optimized for training data, which is a significant portion of the automated 
segmentation workflow. The DGX Station differentiates itself from the 
aforementioned computing platforms because of its hardware 
architecture. Embedded within the DGX Station are four 32 GB Tesla 
V100 GPUs (Nvidia DGX).† These GPUs combine to deliver an overall 

                                                 
* https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/712948/army-

geospatial-enterprise-age-node/ 
† https://www.nvidia.com/en-us/data-center/dgx-station/ 

https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/712948/army-geospatial-enterprise-age-node/
https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/712948/army-geospatial-enterprise-age-node/
https://www.nvidia.com/en-us/data-center/dgx-station/
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128 GBs in GPU memory. Applications can be processed in parallel since 
the DGX Station has four GPUs. This means that processes are evenly 
divided across all four GPUs instead of assigning all processes to one GPU. 
Implementing parallelization within a workflow is not intuitive. Additional 
programming is needed in order to ensure that all four GPU’s 
communicate constantly and all workloads are assigned appropriately. The 
automated segmentation workflow was performed on a Nvidia DGX and 
system specifications are summarized in Table 1.  
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Table 1. System specifics categorically highlighting each computing platform used for performing the image segmentation along with associated 
characteristics. 

Computing 
Platform Category Component Model  

HP OMEN 

 Hardware 

CPU 
RAM 
GPU 
GPU RAM 
Hard Disks 

Intel Core i7-7700HQ (4 Cores) 
32GB DDR4-2800 SDRAM 
GTX 1070 (8GB Total System) 
Data: 1TB 7200rpm SATA 
512 GB PCle NVMe M.2 SSD 

 

Software 
OS 
Architecture 

Windows 10 
X64 

Army Geospatial 
Enterprise (AGE) 
Node 

Hardware 

CPU 
RAM 
GPU 
GPU RAM 
Hard Disks 
NIC 

Intel Xeon E5-2630v4 @2.10 GHz 
132 GB 
Nvidia Tesla P100-12Q 
12 GB 
LSI Logic Parallel, 1: 100 GB, 2: 200 GB 
VMXNET 

Single GPU example 

Host 
Cores 
Model 
Hypervisor 

4 cores, 2 virtual sockets 
Dell PowerEdge R730 
VMWare ESXi 6.5.0 8294253 

Virtual Machine Hardware Version ESXi 6.0 and later 

Software 

OS 
Kernel 
Architecture 
Virtualization 

CentOS Linux 7 (Core) 
Linux 3.10.0-693.21.1. e17.x86_64 
X86_64 
VMWare 
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Computing 
Platform Category Component Model  

Nvidia DGX 

Hardware 

CPU 
RAM 
GPU 
GPU RAM 
Hard Disks 
 
NIC 

Intel Xeon E5-2698v4 @2.2 GHz (20-Core) 
256 GB RDIMM DDR4 
4x – Nvidia Tesla V100 
128 GB (Total System) 
Data: 3x – 1.92 TB SSD RAID O 
OS: 1x – 1.92 TB SSD 
Dual 10GBASE-T (RJ45 

 

Software 
OS 
Kernel 
Architecture 

Ubuntu Desktop Linux 16.04 
4.4.0-141-generic #167-ubuntu 
X86_64 
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3 Methods 

This document presents a workflow that leverages the use of CNNs and 
high-performance GPU processing to automate the pixel-wise 
segmentation of UAS imagery for faster image processing. Specifically, 
different computing platforms (HP Omen, AGE Node, Nvidia DGX) are 
compared to investigate each platform’s advantages and limitations for 
tasks that often require high computing resources. Transfer learning is 
applied from an off the shelf, pre-trained CNN for model initialization. 
Accordingly, this reduces model development time and the extensive need 
for model training. Each image is individually segmented into seven 
independent classes resulting in a final segmented product. All steps 
necessary for acquiring aerial imagery, creating training and validation 
data sets, and segmenting imagery are described below. 

3.1 Training data creation 

Reliable training data is a foundational component in machine learning 
processes as these data are used by the algorithm to train and learn 
underlying trends. However, for this project, creating training data is labor 
intensive as it requires each individual pixel in an image to be manually 
labelled into seven predetermined classes. These classes are as follows: low 
vegetation, high vegetation, buildings, road surfaces, vehicles, water, and 
clutter. For this assessment, clutter consists of all other features present in 
the images that fall outside of the other six classes. The International 
Society for Photogrammetry and Remote Sensing (ISPRS) guidelines were 
used as a reference to distinguish between these classes. The process of 
manually labeling each pixel is known as digitizing, where a trained user 
traces information from an image and assigns a label associated with the 
predefined classes. Once the training data are assigned a label they are 
converted to a single standardized value. This step allows pixel values that 
are often unsigned integers between 0 and 255 to be represented directly, 
as numbers to the neural network scaled to pixel values in an array 
ranging from 0 to 6 standardizing the values as shown in Figure 4. Thus, 
each value corresponds to a class as follows: low vegetation - 0, high 
vegetation -1, buildings –2, roads –3, vehicles -4, water -5, clutter -6. An 
open source image manipulation software (Gnu Image Manipulation 
Program, Version 2.8) was used to manually create the training data.*  

                                                 
* https://www.gimp.org/ 

https://www.gimp.org/
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Figure 4. Sample image converted to training labels and represented to integers. 

  

3.2 Image splitting 

The dimensions of the original images collected from the eBee are 4000 X 
3000 pixels. Since these dimensions are too large for the vGPU on the 
AGE node to process individually, all images in the dataset are split into 
tiles with a uniform size of 512 x 512 pixels for processing. This step is 
shown in Figure 6. The original eBee image is represented by Figure 5(a). 
This image is then split into equal tiles represented by a red grid as shown. 
The output results into 100 individual tiles as shown by Figure 5 (b and c). 
A 50% overlap is used when splitting the original image as this percentage 
has shown promising orthorectification results when images are 
mosaicked back together using a custom python script. Tiling images with 
no overlap often result in strong boundary artifacts created after each 
image is processed individually. This step was carried out throughout each 
computing platform for a uniform comparison across all systems. 
However, the Nvidia DGX station has 32 gigabytes (GB) of random-access 
memory (RAM) per GPU, and the images do not need to be tiled to execute 
the same workflow. After each original image is split into tiles, 80% of the 
data are divided into a training set and the remaining 20% are used for a 
validation set. The validation set is used to evaluate the model’s 
performance and minimize bias in the algorithm.  



ERDC/GRL TR-20-7 17 

 

Figure 5. Representation of image splitting used to crop the eBee data into multiple tiles for 
processing.  

 

3.3 Wavelet transformation 

Wavelet transformation is a mathematical function and signal processing 
technique that helps localize data by decomposing a signal into different 
frequency sub-bands. The wavelet transformation technique can be 
applied to a variety of fundamental signal processing tasks such as 
enhancing images and sounds recordings by removing noise or for data 
reduction by compression (e.g. jpeg compression) (Baaziz et al. 2010). 
When applying a wavelet transformation, data are compressed and 
transformed based on multi-resolution analysis (Huang and Aviyente 
2008). This consists of the decomposition of an image into subimages 
containing different fractions of signal value which are known as wavelet 
coefficients, as shown in Figure 6. This preserves the relative distance 
between objects at different levels and allows natural clusters in the data 
to be easily identified. In practice, the transformation divides the data 
equally at each iteration (Han et al. 2006). First, it applies a data 
smoothing technique such as sum or weighted average. Next, it performs a 
weighted difference, which allows the details of features to be identified. 
The output results in a smoothed or low frequency version of the original 
data by removing the high-frequency information. This procedure occurs 
recursively by applying the transformation on the image resulting from the 
previous iteration and continues until a termination condition is met 
(Arivazhagan and Ganesan 2003; Amolins et al. 2007).  

  

A 

B C 
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Figure 6. Sample image representing the wavelet decomposition process. The original image 
is shown in the upper left quadrant. The other three quadrants represent the original image 

being transformed after a horizontal, vertical, and diagonal filter are applied.  

 

For this project, the function was built to serve as a pre-processing step 
and to create multi band images outside the original 3-bands (RGB). Thus, 
the dimensionality of the image would entail RGB along with the 
computed wavelet sub-images as additional bands with total bands of six. 
This pre-processing step would introduce spatial and textural information 
to the CNN along with the color information for model training. However, 
due to time constraints, the assessment of the model training and testing 
with the wavelet decomposition is not incorporated for this analysis.  

3.4 Parallelization 

Parallelization is the process of designing a program or system to perform 
a given task in parallel. Implementing an automated image segmentation 
workflow on a platform with a single-GPU differs greatly from 
implementing the same process on a system that has multiple GPUs 
available. Single-GPU and multi-GPU platforms have strict software 
dependencies. GPU hardware determines the dependencies needed within 
each platform. Guidelines provided by Nvidia were followed in order to 
seamlessly integrate libraries and toolkits with the deep learning 
framework, Tensorflow-GPU, needed to perform the image segmentation. 
The Nvidia Compute Unified Device Architecture (CUDA) toolkit was used 
with the deep neural network library (cuDNN). This enabled libraries, 
debugging, and optimization tools needed for GPU recognition and 
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accelerated computing with Python. The Nvidia CUDA toolkit and cuDNN 
are freely available for download though the Nvidia website.*  

3.4.1  Single GPU versus Multi-GPU 

System configuration for single-GPU acceleration has fewer scripting and 
dependency requirements as opposed to a multi-GPU set-up. For single 
GPU initiation, the working directory requires all modules listed in Table 2 
to be available. Due to traditional methods for deep learning tasks being 
performed on CPUs, model configurations remain agnostic to the 
hardware available in the system and require the code to be altered in 
order to distinguish and utilize the GPUs from CPUs. In order to test if the 
GPUs are being recognized, and therefore used by Tensorflow and NVIDIA 
cuDNN, the following command is used: “tf.test.is gpu available” 
(Tensorflow). If there is only one GPU on the platform, the result is 
“/GPU:0.” Because data initialization and parameter settings should be 
performed on the CPU, specifying GPU use only needs to be performed 
directly prior to when training starts using the command “with 
tf.device(‘/GPU:0’).”  

Table 2. Summary of libraries used for implementing the VGG-
16 model on single and multiple GPUs.  

Li
br

ar
ie

s 

Single GPU Multi-GPU 

python 3.6 nose python 3.6 nose 
numpy mat mpi4py numpy mat mpi4py 
plotlib sphinx plotlib sphinx 
scipy m2w64 scipy m2w64 
scikit-learn tensorflow scikit-learn tensorflow 
pillow keras pillow keras 
libpython  libpython horovod 
pygpu  pygpu MPI 
theano  theano  
libgpuarray  libgpuarray  

The Nvidia DGX system is used as the operating platform to test single 
GPU vs multi-GPU implementation. In contrast to single GPUs that 
process natively on the platform, multi-GPU is a more complex workflow 
because it uses GPU-enabled Nvidia Docker containers. The Nvidia Docker 
containers package applicable dependencies needed to run an application 

                                                 
* https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html 

https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html
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utilizing onboard GPUs (NvidiaDocker). The Nvidia GPU Cloud hosts 
predefined, application specific, containers that a user can import into a 
working directory and use. The Nvidia container used for this work is 
Tensorflow 1.8.0 py3. Once the container is pulled, it is then saved with an 
image identification number (ID) for example, 8289b0a3b285.  

The Tensorflow 1.8.0 py3 container containins all the required libraries to 
execute the VGG-16 model. In addition to the Docker containers, two extra 
libraries are required in order to run the VGG-16 model in parallel. These 
libraries are Horovod and message passing interface (MPI) listed in 
Table 2. Horovod is an open source distributed (parallelization) training 
framework for deep learning tasks – Github (Sergeev and Del Balso 2018). 
Seamless to the user, Horovod handles variable updates, data 
management, and appends tasks to GPUs. This library simplifies the 
transition to multi-GPU usage and enables the code to scale to the number 
of GPUs available.  

MPI is the second library needed to efficiently leverage GPUs. It is an 
internal process communication interface that distributes data in memory 
and efficiently represents or “communicates” the data across processors. 
Essentially, it enables the user to execute a program in parallel without 
compiling and running the process sequentially across processors 
(Abernathey and Key 2017).* This library is widely used from large-scale 
supercomputers to cloud computing infrastructures and single nodes on 
systems. The Horovod and MPI libraries also work together by using the 
platforms' CPU to gather information from each individual GPU at each 
training iteration. The CPU then redistributes updated information to 
each GPU for the next training iteration 

Although these systems have similar software components, highlighted in 
Table 1, each platform requires an independent configuration to perform 
the image segmentation workflow due to the hardware differences. For 
example, systems like the HP Omen and AGE Node are not able to handle 
UAS imagery at their full resolution, thus each image had to be split into 
several small ones. On the contrary, the DGX system, which is naturally 
designed for large data processing tasks, can handle the full resolution 
imagery.  

                                                 
* https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html 

https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
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4 Results and Discussion 

4.1 Model training and image segmentation 

The VGG-16 algorithm was initially pre-trained on a large benchmark 
dataset to distinguish general classes. This provided the model with “pre-
packaged” weights representing the importance between the input values 
at each node. These initial weights were used to fine-tune the deeper layers 
of the model’s network as the model was trained on our dataset (Fort AP 
Hill, Camp Cook, and Fort Campbell) for specific classes of interest. The 
training set comprised of 1,000 image tiles and was constructed as 
discussed in Section 3.1. Additional model optimization parameters that 
influenced the model training are discussed below.  

The ReLU activation function is used to evaluate and shape the training of 
the network. This function results in sparse and efficient activations by 
computing true zero values, making it less computationally expensive for 
complex networks. Thus, the function does not saturate for large inputs 
and has been shown to surpass human-level performance (Wang and Xi 
2012; Nvidia Corporation 2015). This makes it particularly effective for use 
with the VGG-16 network, which consists of a number of convolutional 
and max pooling layers with a fully connected layer at the end of the 
network.  

The cross-entropy loss function is chosen to estimate error in the neural 
network by calculating the difference between the true and the estimated 
distribution. This function is represented by the equation below:  

𝐻𝐻(𝑝𝑝𝑖𝑖,𝑞𝑞𝑖𝑖) =  −∑ 𝑝𝑝𝑖𝑖𝑖𝑖  log (𝑞𝑞𝑞𝑞 +  𝜀𝜀)   (1) 

where 

 ε << 1 = small bias introduced for numerical stability 
 p = the true distribution 
 q = the estimated distribution. 

The cross-entropy function, in conjunction with a softmax layer, provides 
probabilities for each output class. Lastly, the dropout regularization 
technique and the Adam optimizer were added to the networks 
architecture to simplify the network and improve model generalization 
and robustness.  
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The trained CNN model is applied to classify all unlabeled pixels in the 
remaining images. The resulting segmentation of each image is a discrete 
output indicating various classes of heterogeneous features present within 
each image. Figure 7 represents the segmented images classified by the 
CNN in comparison to the original images and ground truth data (training 
labels).  

Figure 7. Qualitative results of two-dimensional (2D) segmentation showing the original 
images on the left, ground truth data in the middle, and segmented images as classified by 

the CNN.  

 

Figure 7 compares model output between study sites with different 
densities of urban terrain and vegetative cover. In comparison to the 
original images and the associated ground truth data, the predicted classes 
from the model are well preserved. This is true for large continuous 
features such as buildings, seen in Fort AP Hill, or low vegetated regions 
present at the Camp Cook site. This is also true for smaller features such as 
cars as seen in the Fort Campbell and Fort AP Hill images. It can be 
concluded that the model is not affected by the underrepresentation of 
pixels representing a class (e.g. cars) in the overall pixel count of an image. 
Additionally, it can be inferred that the model is resistant to overfitting the 
dominant classes. If class overfitting occurred, then low vegetated areas 
(e.g. grass) that have similar color values as high vegetated regions (trees) 
would be predicted as one class. Whereas in Figure 7, they are predicted as 
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separate classes highlighted by a green color (low vegetation) and yellow 
(high vegetation). Lastly, it can be seen that the model can distinguish 
between in-class variations with similar spectral values such as the road 
and building in Fort AP Hill, yet ignores variations in spectral values cause 
by shadows as seen in Camp Cook.  

4.1.1  Evaluation metrics 

Since no single measurement gauges every aspect of system performance, 
a number of different evaluation metrics were used to assess the accuracy 
of the CNN model. These metrics are accuracy, precision, recall, and F-1 
score. Accuracy refers to the portion of correct classifications calculated by 
counting the number of times the classifier correctly predicts a class and 
dividing by the total number of overall predictions (Kernell 2018).  

The loss function can be used to estimate the model’s training performance 
and complement the overall accuracy metric due to the inverse relationship 
between the two. For instance, the higher the loss function is during 
training, the lower the model accuracy is, and the lower the loss function is 
during training, the higher the overall accuracy metric is. 

Caution, however, should be used when looking at overall model accuracy 
because it can be inaccurate for datasets that have a skewed distribution 
and uneven class representation leading to high class imbalance (Kernell 
2018). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 # 𝑇𝑇𝑜𝑜 𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑇𝑇 𝑝𝑝𝐴𝐴𝑐𝑐𝑑𝑑𝑞𝑞𝐴𝐴𝑇𝑇𝑞𝑞𝑇𝑇𝑑𝑑𝑑𝑑

𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 # 𝑇𝑇𝑜𝑜 𝑝𝑝𝐴𝐴𝑐𝑐𝑑𝑑𝑞𝑞𝐴𝐴𝑇𝑇𝑞𝑞𝑇𝑇𝑑𝑑𝑑𝑑
 

Precision is obtained by dividing the number of true positives by the total 
number predicted positives. Recall is calculated by dividing the number of 
true positives by the number of actual positives (i.e., the sum of all true 
positives and false negatives). Therefore, precision is the metric of choice 
when the cost of false positives is high, and recall is the metric of choice 
when the cost of false negatives is high (He et al. 2015). 

𝑃𝑃𝐴𝐴𝑐𝑐𝐴𝐴𝑞𝑞𝑑𝑑𝑞𝑞𝑇𝑇𝑑𝑑 =  
𝑇𝑇𝐴𝐴𝐴𝐴𝑐𝑐 𝑝𝑝𝑇𝑇𝑑𝑑𝑞𝑞𝑇𝑇𝑞𝑞𝑝𝑝𝑐𝑐𝑑𝑑

𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 # 𝑇𝑇𝑜𝑜 𝑝𝑝𝑇𝑇𝑑𝑑𝑞𝑞𝑇𝑇𝑞𝑞𝑝𝑝𝑐𝑐 𝑝𝑝𝐴𝐴𝑐𝑐𝑑𝑑𝑞𝑞𝐴𝐴𝑇𝑇𝑞𝑞𝑇𝑇𝑑𝑑𝑑𝑑
 𝑅𝑅𝑐𝑐𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 =  

𝑇𝑇𝐴𝐴𝐴𝐴𝑐𝑐 𝑃𝑃𝑇𝑇𝑑𝑑𝑞𝑞𝑇𝑇𝑞𝑞𝑝𝑝𝑐𝑐𝑑𝑑
𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 # 𝑇𝑇𝑜𝑜 𝑇𝑇𝐴𝐴𝐴𝐴𝑐𝑐 𝑝𝑝𝑇𝑇𝑑𝑑𝑞𝑞𝑇𝑇𝑞𝑞𝑝𝑝𝑐𝑐𝑑𝑑

 

The F-1 score is a function of precision and recall and reflects a balance 
between the two metrics. For example, a high F-1 score indicates low false 
positives and low false negatives. In other words, a perfect model would 
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have a score of 1, while a completely failed model would have a score of 0 
(He et al. 2015). 

𝐹𝐹1 = 2 �
𝑃𝑃𝐴𝐴𝑐𝑐𝐴𝐴𝑞𝑞𝑑𝑑𝑞𝑞𝑇𝑇𝑑𝑑 ∗ 𝑅𝑅𝑐𝑐𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇
𝑃𝑃𝐴𝐴𝑐𝑐𝐴𝐴𝑞𝑞𝑑𝑑𝑞𝑞𝑇𝑇𝑑𝑑 + 𝑅𝑅𝑐𝑐𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇

� 

The model’s precision, recall, and mean F-1 score are calculated across 
GPU enabled platforms to assess how system characteristics affect the 
models’ performance. For this assessment, the AGE Node (single virtual 
GPU) was used in comparison with a single GPU from the multi-GPU DGX 
system. Table 3 highlights the results after the accuracy calculations are 
derived. It can be noted that overall model precision, recall, and F-1 scores 
are similar and not significantly affected by the differences in systems. An 
F-1 score of 0.82 suggests that overall, the CNN algorithm performs 
relatively well at accurately predicting pixels to the correct associated 
classes. This is further confirmed by the precision and recall values, which 
are close in value. This similarity implies that there is an overall balance 
between correct and incorrect predictions by the algorithm. 

Table 3. Comparison of precision, recall and F-1 scores for the AGE Node vGPU and a single 
GPU on the DGX Station.  

 Precision Recall 
Mean F-1 
Score 

Batch Size 
(# of image tiles) 

Processing Speed  
(image tiles/second) 

AGE Node vGPU 0.88 0.80 0.82 5 126 

DGX Station 0.87 0.81 0.83 128 459 

The most noteworthy difference between the systems is the batch size and 
processing speed used to execute the CNN. Batch size refers to the number 
of images provided to the model at a time. For example, the AGE node 
(vGPU) only has access to a portion of the 12 GB of GPU RAM resident on 
the host system. For this reason, images had to be split into tiles and run 
in batch sizes of 5 tiles. This yields a total processing speed of 126 image 
tiles per second as shown in Table 3. In essence, defining the batch size 
allows the model to start training with the first set (batch) of images and 
iterate throughout the entire dataset accordingly until all samples are 
propagated through the nodes of the CNN.  

In contrast to the AGE node, the workflow in the DGX occurs considerably 
faster. Because the DGX has 32 GB of GPU RAM on each video card, the 
batch size can be increased significantly. Table 3 lists the batch size and 
processing speeds on the DGX Station for a single GPU with a batch size of 



ERDC/GRL TR-20-7 25 

 

128 images at a rate of 459 image tiles per second. Although it is intuitive 
that the system built for tasks that require large amounts of processing will 
perform better. This comparison shows that nearly identical results are 
obtained with the trade-off for processing time. Nevertheless, this 
processing time is critical for time sensitive military applications that 
require large data processing. Furthermore, as the problem is scaled, 
computational needs will scale accordingly. 

Model training time provides an additional assessment used to evaluate 
the differences between the three computing platforms. This metric is 
selected because training CNN models is the most time-consuming stage 
of the workflow. However, this is also the most critical determinant to the 
overall model performance. For this experiment, 1,000 training images of 
a slightly larger tile size (921 x 691 pixels) were used to train the CNN 
across the HP Omen (single GPU), AGE Node (vGPU), and DGX station. 
The code was run in parallel in order to utilize the maximum potential of 
each system.  

Similar to the previous experiment, the models achieved comparable 
accuracy across all platforms. However, parallelizing the CNN across four 
GPUs greatly reduced the overall model training time by an order of 
magnitude as shown by Table 4. Multi-core systems, such as the DGX 
station, which allow for large-scale, distributed model training can be 
leveraged by Army planning analysts needing on-the-fly, large-scale data 
processing capabilities.  

Table 4. Comparison between single and multi-GPU computing platforms used for CNN model 
training and accuracy.  

 HP Omen 
Single GPU 

AGE Node 
Single vGPU 

DGX Station 
Multi-GPU (4) 

Batch Size 1 5 120 (30 per GPU ) 

Epoch 40 40 40 

Training Time (hrs) 21.75  10  2.6  

Accuracy (%) 83 82 84 

Observing the models’ loss function throughout training provides insight 
on overall model’s performance. However, this performance may be 
influenced by a number of forward and backward passes, known as 
epochs, which the CNN conducts during the training stage. For instance, 
when 1,000 training images are used and the batch size is 500, then 
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2 iterations (1 forward and 1 backwards) are conducted to complete 
1 epoch. The number of training samples also influence model 
performance by impacting model bias and variance. For these reasons it is 
important to understand where the balance is met between training size 
and epoch. Finding a balance between the number of epochs and training 
size is important to train the model efficiently and accurately. Training 
sizes that are too large may take too long to process and overload memory. 
Conversely, insufficient training sizes can potentially increase bias by not 
having enough data to train on in each epoch 

Model learning curves are commonly used as a diagnostic tool to visualize 
machine learning algorithms performance over a period of time. 
Validation accuracy, validation loss, and training loss are good estimates 
used to identify potential model learning problems in the early stages of 
the workflow. These curves allow the end user to foresee if the model is 
overfitting or underfitting and provide insight if model adjustments are 
required. Learning curves for validation accuracy, validation loss, and 
training loss curves are shown in Figure 8 for the CNN for a series of 
epochs and iterations.  

Comparing the validation and training loss respectively, both loss curves 
follow a similar pattern where both converge to a point of stability at 
approximately 40 epochs. This pattern between the two curves suggests 
that the model does not overfit or underfit while training. Instead it shows 
it has an overall good fit. Associating the validation curves with the 
training curve allows the end user to understand and evaluate the state of 
the CNN model at each stage of training. For example, this evaluation is 
performed while the model is training on the training dataset, as well as, 
during its validation stage when it is applied on a dataset that it has not 
seen before.  

The validation accuracy curve, represented in blue, shows that the CNN 
converges at approximately 0.85 (85%) accuracy when the model is 
applied to the validation dataset. This level of accuracy is also highlighted 
in Table 4 when the model is applied across different computing platforms 
and GPUs. 
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Figure 8. Model learning curves for validation accuracy (blue line), validation loss (red line) 
and training loss (shown in pink) for the CNN for a series of epochs and iterations.  

 

An additional graph is generated to compare how the accuracy of the 
model changes as more training data is introduced. This fosters an 
understanding of how the model is performing over the training sequence. 
It visualizes the minimum amount of data that the model needs to reach 
the best compromise between bias and variance, which in turn can 
minimize training time. Figure 9 depicts the model accuracy with respect 
to the amount of training data. After a certain point (approximately 18 
images) the CNNs validation accuracy marginally increases as more 
training images are added. Additionally, the graph shows that the best 
accuracy of 0.92 is achieved with only 42 training images.  

Figure 9. Comparison of model accuracy in relation to the 
number of training images used.  

 



ERDC/GRL TR-20-7 28 

 

5 Conclusion 

This document presents a workflow that leverages the use of CNNs and 
high-performance GPU processing to automate pixel-wise image 
segmentation of aerial imagery collected from UAS. Specifically, different 
computing platforms are compared to investigate each platforms 
advantages and limitations for tasks that often require high computing 
resources. Such tasks are particularly important as data becomes more 
widely available and as UASs are increasingly used to improve situational 
awareness. The ability to perform a quick and accurate analysis on aerial 
imagery becomes vital for agile decision making. 

The results presented in the report indicate that CNNs are an effective 
method for image segmentation tasks and this method can be successfully 
applied in regions with various land cover types and complexities. This 
application is illustrated in Figure 7 where the classes predicted by the 
VGG-16 model corresponded well to the ground truth data with a precision 
accuracy of 88% (Table 3). The CNN model was able to accurately predict 
pixels that were continuous, signifying large features (e.g. buildings or 
sizable areas of low vegetation) as well as smaller features (e.g. cars and 
railroads). This shows the model is resistant to overfitting in the dominant 
classes and can distinguish which class a pixel belongs to regardless of 
neighboring pixels with similar characteristics.  

The model’s training performance was evaluated using a sequence of 
epochs and training sample sizes. The analysis suggested that the CNN 
algorithm converges after 40 epochs with approximately 85% accuracy. 
When a larger number of epochs were tested, the model’s accuracy slightly 
increased. This suggests that as the number of epochs increases, the model 
weights adjust in the neural network and causes the model to begin to 
overfit. 

When the VGG-16 model is coupled with GPU-accelerated processing and 
parallelized across multiple GPUs, the model training time is significantly 
reduced while preserving the same accuracy as summarized in Table 4. 
Although the workflow between the systems varies slightly in the number 
of epochs and batch size, approximately the same accuracy is retained 
across all three systems (HP Omen, AGE Node, DGX). This signifies that 
GPU memory and core count available within a system are critical 
components in terms of processing speed and preprocessing steps. For 
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example, due to the 128 GB of memory available in the DGX, the system is 
able to process large amounts of data with no preprocessing required. 
Whereas, with the HP Omen and AGE Node, which have single GPUs, 
images must be split into small tiles and processed in batches.  

The VGG-16 model was initially chosen due to its simple architecture and 
literature support that it was more accurate and less prone to over-fitting 
than other algorithms such as the InceptionV3 network. Limitations of the 
VGG-16 model derive from the large number of parameters and weights, 
which require expert input to fine tune the model. Additionally, specific 
tasks may require many convolutions which could decrease the model’s 
efficiency. Future work could investigate the application of the model to 
datasets with supplementary layers. For example, expanding the imagery 
to include textural information derived from wavelet decomposition. This 
step allows the end user to introduce additional layers and identify optimal 
combination to reduce workload.  

Fully convolutional networks represent a rich class of models capable of 
performing a wide range of tasks such facial recognition, scene labeling, 
and image segmentation. Reliable training data is a critical component 
when working with such models as it is used to fit the algorithm. This 
research created a unique training dataset. This dataset can be leveraged 
for future segmentation efforts and serve as a baseline to benchmark 
future CNN and efficiently support critical image processing tasks for the 
Military.  
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Unit Conversion Factors 

Multiply By To Obtain 

acres 4,046.873 square meters 

cubic feet 0.02831685 cubic meters 

cubic inches 1.6387064 E-05 cubic meters 

cubic yards 0.7645549 cubic meters 

feet 0.3048 meters 

hectares 1.0 E+04 square meters 

inches 0.0254 meters 

microns 1.0 E-06 meters 

miles (nautical) 1,852 meters 

miles (U.S. statute) 1,609.347 meters 

miles per hour 0.44704 meters per second 

mils 0.0254 millimeters 

pounds (mass) 0.45359237 kilograms 

square feet 0.09290304 square meters 

square inches 6.4516 E-04 square meters 

square miles 2.589998 E+06 square meters 

square yards 0.8361274 square meters 

tons (2,000 pounds, mass) 907.1847 kilograms 

tons (2,000 pounds, mass) per square foot 9,764.856 kilograms per square meter 

yards 0.9144 meters 
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Acronyms and Abbreviations 

AI Artificial intelligence  

AGE Army Geospatial Enterprise 

ANN Artificial Neural Network 

BLC Basic Leader Course 

CNN Convolutional Neural Network 

COTS Commercial-Off-The-Shelf 

CUDA Compute Unified Device Architecture 

cuDNN deep neural network library 

ERDC Engineer Research and Development Center 

EPEL Enterprise Linux 

ExIF Exchangeable Image File Format 

GEOINT Geospatial Intelligence 

GeoICUE Geo-Intelligence for Complex Urban Environments 

GB Gigabytes 

GRL Geospatial Research Laboratory 

HPC High Performance Computing 

IC Intelligence Community 

ISPRS International Society for Photogrammetry and Remote 
Sensing 

JPEG Joint Photographic Experts Group 

MPI message passing interface 

NCOA Noncommissioned Officers Academy 

RAM random access memory 

RGB red, green, blue 

ReLU Rectified Linear Unit 

SOAR Special Operations Aviation Regiment 

TANH hyperbolic tangent 

UAS Unmanned Aerial Systems 

USACE U.S. Army Corps of Engineers 

VGG Visual Geometry Group 

vGPU virtual graphical processing unit 
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VM virtual machine 

2-D two-dimensional 

3-D three-dimensional 

 

 
 



 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining 
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for 
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a 
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

March 2020 
2. REPORT TYPE 

Final report 
3. DATES COVERED (From - To) 

      
4. TITLE AND SUBTITLE 

Use of Convolutional Neural Networks for Semantic Image Segmentation Across 
Different Computing Systems 

5a. CONTRACT NUMBER 
      

5b. GRANT NUMBER 
      

5c. PROGRAM ELEMENT NUMBER 
62784 

6. AUTHOR(S) 

Andmorgan R. Fisher, Timothy A. Middleton, Jonathan Cotugno, Elena Sava, Laura 
Clemente-Harding, Joseph Berger, Allistar Smith, and Teresa C. Li 

5d. PROJECT NUMBER 
855 

5e. TASK NUMBER 
23 

5f. WORK UNIT NUMBER 
      

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT 
 NUMBER 

Geospatial Research Laboratory 
U.S. Army Engineer Research and Development Center 
7701 Telegraph Road 
Alexandria, VA 22315-3864 

ERDC/GRL TR-20-7 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

Headquarters, U.S. Army Corps of Engineers 
Washington, DC 20314-1000 
 

      
11. SPONSOR/MONITOR’S REPORT  
 NUMBER(S) 

      
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES      

14. ABSTRACT 
The advent of powerful computing platforms coupled with deep learning architectures have resulted in novel approaches to tackle many 
traditional computer vision problems in order to automate the interpretation of large and complex geospatial data. Such tasks are 
particularly important as data are widely available and UAS are increasingly being used.  

This document presents a workflow that leverages the use of CNNs and GPUs to automate pixel-wise segmentation of UAS imagery for 
faster image processing. GPU-based computing and parallelization is explored on multi-core GPUs to reduce development time, 
mitigate the need for extensive model training, and facilitate exploitation of mission critical information. VGG-16 model training times 
are compared among different systems (single, virtual, multi-GPUs) to investigate each platform’s capabilities. 

CNN results show a precision accuracy of 88% when applied to ground truth data. Coupling the VGG-16 model with GPU-accelerated 
processing and parallelizing across multiple GPUs decreases model training time while preserving accuracy. This signifies that GPU 
memory and cores available within a system are critical components in terms of preprocessing and processing speed. This workflow can 
be leveraged for future segmentation efforts, serve as a baseline to benchmark future CNN, and efficiently support critical image 
processing tasks for the Military. 

15. SUBJECT TERMS 
Aerial photography 
Drone aircraft 
Geospatial data – Computer processing 

Remote-sensing images 
Image processing 
Neural networks (Computer science) 

Computer vision 
 
 
      

16. SECURITY CLASSIFICATION OF: 17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE 
PERSON 

a. REPORT 

UNCLASSIFIED 

b. ABSTRACT 

UNCLASSIFIED 

c. THIS PAGE 

UNCLASSIFIED SAR 42 
19b. TELEPHONE NUMBER (include 
area code) 
      

 andard Form 298 (Rev. 8-98) 
escribed by ANSI Std. 239.18 


	Abstract
	Contents
	Figures and Tables
	Preface
	1 Introduction
	1.1 Background
	1.2 Related work
	1.2.1  Artificial neural networks (ANNs)
	1.2.2  Semantic segmentation


	2 Data, Sites and Computing Platforms Description
	2.1 Data characterization
	2.2 Sites description
	2.2.1  Fort AP Hill
	2.2.2  Camp Cook
	2.2.3  Fort Campbell

	2.3 Computing platforms description
	2.3.1  HP OMEN 17t
	2.3.2  Army Geospatial Enterprise Node
	2.3.3  DGX Station


	3 Methods
	3.1 Training data creation
	3.2 Image splitting
	3.3 Wavelet transformation
	3.4 Parallelization
	3.4.1  Single GPU versus Multi-GPU


	4 Results and Discussion
	4.1 Model training and image segmentation
	4.1.1  Evaluation metrics


	5 Conclusion
	References
	Unit Conversion Factors
	Acronyms and Abbreviations
	REPORT DOCUMENTATION PAGE


<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.4

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.0000

  /ColorConversionStrategy /CMYK

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams false

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments true

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 300

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 300

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 1200

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile ()

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<

    /ARA <>

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <>

    /DAN <>

    /DEU <>

    /ESP <>

    /ETI <>

    /FRA <>

    /GRE <>



    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

    /HUN <>

    /ITA <>

    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <>

    /LVI <>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

    /NOR <>

    /POL <>

    /PTB <>

    /RUM <>

    /RUS <>

    /SKY <>

    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

    /SUO <>

    /SVE <>

    /TUR <>

    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

  >>

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /ConvertColors /ConvertToCMYK

      /DestinationProfileName ()

      /DestinationProfileSelector /DocumentCMYK

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure false

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles false

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /DocumentCMYK

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /UseDocumentProfile

      /UseDocumentBleed false

    >>

  ]

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [612.000 792.000]

>> setpagedevice





