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1. INTRODUCTION 
Ductal carcinoma in situ (DCIS) of the breast is an increasingly common diagnosis that is related 
to aggressive screening patterns (mammography).  This “pre-invasive” lesion may progress to 
invasive cancer, but does so at a relatively low frequency.  Nonetheless, it is commonly treated 
with extensive surgery, radiation, and hormonal therapy even though most of these lesions would 
never progress to invasive cancer.  Thus, there is a pressing clinical need to stratify the risk of 
DCIS tumors into those in need of intervention and those that can be safely monitored without 
intervention. Our project is designed to address this need by characterizing the evolvability of 
DCIS, detecting those that have a high likelihood of evolving to malignancy versus those that are 
likely to remain indolent. 

2. KEYWORDS 
DCIS, cancer progression, intra-tumor heterogeneity, genetic diversity, phenotypic diversity, 
somatic evolution, microenvironment, mammographic biomarkers 

3. ACCOMPLISHMENTS 

What were the major goals of the project? 
Aim 1. Determine whether genetic diversity of DCIS is greater in DCIS with adjacent invasive 
disease compared to DCIS without progression. Diversity measures must be derived from 
geographically distinct areas of tumor.  Genetic divergence of the DCIS component of tumors will 
be measured based on exome sequencing and SNP arrays run on two separate regions of the tumor, 
as well as normal tissue, in patients with DCIS either with or without adjacent invasion to 
determine the association between genetic diversity and progression to malignancy. Genetic 
diversity will be measured by the genetic divergence between the tumor samples, that is, the 
proportion of the genome that differs between the two samples from the same tumor. 
 
60 Month Milestones: 

• Protocol preparation, IRB submission and approval: Completed (Duke eIRB 
Pro00054515, initial Duke approval, 5/27/2014 and renewed for the current year), DOD 
IRB approval in place. 

• Case identification and tissue block selection: Through a variety of available databases, we 
identified a large number of cases and controls with tissue available in the Duke Pathology 
archives.  Each potential case and control requires extensive chart and pathology review in 
order to determine final eligibility and usability.  For example, there is sufficient amount 
of the DCIS lesion (>2mm size) for isolation and DCIS is not too close to invasive cancer 
(it extends outside the invasive component). There must be two blocks with DCIS present 
that are >0.8cm apart. To date we have identified 100 cases, with pathology review. 

• Sectioning of tissue blocks: Completed. New sections from candidate paraffin blocks are 
cut, stained to include one H&E at the beginning and end of each set and then reviewed by 
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the study pathologist. Remaining sections from candidate blocks (containing a sufficient 
amount of the DCIS lesion of interest) are used for macro-dissection and subsequent DNA 
extraction.  Additional sections were also stored for immunohistochemical (IHC) analysis 
of key measures of tumor and micro-environmental heterogeneity. These slides are scanned 
for analytic and archival purposes.  This process has been fully implemented and we are 
completing both cases and controls in this manner.  

• DNA extraction of test cases: Completed. 

• Exome sequencing of test cases: Completed. We chose the Genome Center at Washington 
University where cutting-edge methods for producing high quality data from these FFPE 
specimens have been developed and refined.  Over the past three years, Wash U. sequenced 
30-160ng from 300 individual DNA samples derived from 100 subjects (germ line sample 
plus 2 DCIS containing samples). They were able to derive interpretable sequence data 
(minimum of 40X depth at 50% coverage) from 30-160ng of FFPE DNA with qualities 
summarized in Figure 1, 2, 3, 4 and 5. 
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Figure 1: Exomic variants in Outer Track is genome; Middle Track is pure DCIS and Inner 
Track is adjacent DCIS.  

 
• Development of a pipeline for identification of somatic genetic alterations: Completed. In 

order to assess and minimize artefacts induced by the FFPE procedure and the small 
amounts of DNA obtained from FFPE samples we developed a strategy based on 28 
sequencing technical replicates. We used a 5-fold cross-validation procedure. We 
partitioned the patients into 5 complementary subsets. The patients were randomly 
assigned to the groups but each group is composed of 5 samples and each sample has a 
different amount of DNA: 20, 40, 60, 80, 100 ng. One subset (training set) was taken as 
hold out and evaluated against the rest of the patients (training data set). 5 rounds of cross-
validation were performed using different partitions (Figure 2). Although our pipeline has 
been completed and is fully functional, we continue to work to improve it. These 
improvements have been statistically significant as seen in Figure 3, Improved SNV 
Bioinformatics Pipeline (Wilcoxon signed-rank test, p=0.008). 
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Figure 2: We developed an empirical method for optimizing the analysis algorithm through the 
comparison of sequences of the same DNA sample. We used a combination of 
filtering parameters on 28 different DNA samples extracted from 25 different patients. The same 
DNA analyzed twice with the same methodology should give the same results and detect the 
same somatic mutations in both analyses, ideally scoring 100% similarity. Of course, technical 
noise in the sequencing process interferes with achieving that ideal. After parameter optimization 
the similarity between the technical replicates was 96.8% ± 0.04 SD in average (x= similarity 
before optimization; — = similarity after optimization; colors indicate the amount (ng) of DNA 
used as template). 
 



5 
 

 
 
Figure 3: Improved SNV Bioinformatics Pipeline.  We achieved a significantly better 
concordance between technical replicates of exon sequenced samples using our adjusted 
mutation calling pipeline. 

• Calculation of genetic diversity scores for Aim 1: Completed. The percent of mutations 
different between two regions of the same tumor (called genetic divergence) is slightly (but 
not statistically significant) higher in DCIS adjacent to invasive disease than Pure DCIS 
(Figure 4, Exonic variants, Protein-coding variants, and Protein-altering variants). We 
found mutated genes in all patients. Current analysis of genetic diversity suggests that the 
genetic variability in DCIS adjacent samples was accumulated in the early phase of cancer 
development and then maintained during the subsequent tumor expansion. DCIS adjacent 
to invasive disease had slightly more mutations than Pure DCIS samples, but the difference 
was not statistically significant and could not be used for prognosis (Figure 5). 
 
We further analyzed the mutated genes to evaluate the molecular processes or signaling 
pathways that are deregulated based on Reactome (https://reactome.org) and DAVID 
(https://david.ncifcrf.gov) gene functional analysis. Both pure DCIS and DCIS adjacent to 
invasive disease have a statistically significant enrichment of immune-related pathways. 
The impairment of molecular mechanisms involved in immune molecular mechanisms 
could allow cancer cells to escape immune surveillance and cancer cells harboring these 
mutations could be to be positively selected in the tumor. DCIS adjacent to invasive disease 
showed an enrichment in taste of G-protein coupled receptors, TAS2Rs (Fold 
enrichment=7.4, p=0.031 after Benjamini correction, DAVID analysis).  TAS2Rs 
expression is capable of inhibiting tumorigenicity. Thus, their impairment could contribute 
to DCIS progression. Mutations in TAS2Rs are candidates for validation as prognostic 
factors in Aim 4.  

https://reactome.org/
https://david.ncifcrf.gov/
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Figure 4: Exonic variants in Pure DCIS vs. DCIS adjacent to invasive disease comparing (% 
Divergence) the two regions sequenced from each case.  Variants are categorized based on their 
protein coding consequences.  There is no statistical difference between the two groups for any of 
the comparisons. For all variants, though the median is higher in the DCIS adjacent to the invasive 
cancers, the mean divergences (marked with +) are almost identical: pure DCIS=44.09±6.57 
s.e.m., DCIS adjacent to invasive disease =43.61±6.43 s.e.m.). 
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Figure 5: Mutational burden. The number of mutations in DCIS adjacent to invasive patients 
(n=47) is slightly higher than in Pure DCIS (n=52) but it is not statistically significant. The two 
population variances differ (F-test, p=0.02). Mean (+): pure DCIS=31.04±4.02 s.e.m., DCIS 
adjacent to invasive disease =41.90±6.39 s.e.m.). 
 
 
Preliminary Conclusions: The degree of genetic divergence between regions does not seem to 
distinguish cases of pure DCIS from DCIS that is adjacent to invasive disease. Nor does the overall 
mutational burden. This suggests that the evolutionary dynamics do not significantly differ 
between DCIS that will or will not progress. Whether or not DCIS progresses may be a matter of 
which particular mutations they acquire (and differences in the ecologies – see Aim 2). This 
hypothesis is supported by the fact that DCIS adjacent to invasive disease accumulate statistically 
significantly more mutations in TAS2R genes, which may be acting as critical tumor suppressors 
in breast neoplastic progression. 
 
 
Table 1: Cohort Demographics 

    

Pure 
DCIS  

(n=55) 

Adjacent DCIS 
(n=61) 

Age (mean) 56.9 57.5 
Race       

White 32 42 
Black 20 15 

Other 3 4 
Tumor Size (mean, cm) 3.5 4.6 
Nodal Status       
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Positive 0 27 
Negative 55 34 

Grade   DCIS Invasive 
1 1 1 11 
2 24 22 27 
3 30 37 22 

Surgery       
Lumpectomy 24 38 
Mastectomy 19 23 

Estrogen Receptor       
Positive 39 42 

Negative 9 19 
Equivocal 0 0 

Progesterone Receptor       
Positive 33 38 

Negative 12 23 
Equivocal 3 0 

HER2 Status       
Positive 0 14 

Negative 0 45 
 
 
 
 
Aim 2. Determine whether phenotypic diversity of DCIS and the tumor microenvironment (TME) 
is greater in DCIS with adjacent IDC compared to DCIS without IDC. Since genomics is not the 
sole driver of tumor behavior, we will phenotypically characterize DCIS and its microenvironment 
including markers of hypoxia, migration, proliferation, matrix organization, and immune signaling 
in the same samples used in Aim 1. We will compute microenvironmental divergence to determine 
if specific components of the TME, or the divergence between TMEs from the same tumor, differs 
between DCIS with and DCIS without adjacent IDC.  
 
In the past 12 months, we have analyzed our phenotypic diversity markers on a total of 85 cases 
(43 pure DCIS, 42 mixed invasive/DCIS, Table 1).  To evaluate these elements, we have used a 
detailed expert scoring that captures the distribution of intensity of staining.  This allows us to fully 
evaluate heterogeneity between regions of the cancer following the original study design and the 
genetic analyses.  
 
This work is still in progress, both staining the last few cases and expert quantitation of the staining.  
However, we have performed an interim analysis of the data to date specifically with respect to 
heterogeneity in the DCIS component.  We calculated earth mover distance, Manhattan distance, 
and Euclidean distance between the two areas that are genetically defined by exome sequencing 
(Aim 1).  Similar results were obtained using the three computational methods for defining 
distance.  Results shows that there is greater heterogeneity between regions in pure DCIS samples 
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for GLUT1 staining (glucose uptake) and FOXP3 (T-regulatory cells = immune suppression), but 
that DCIS adjacent to invasive disease had more heterogeneity between regions for CA9 (hypoxia), 
ALDH in the stroma (“ALDHS” stem cell marker) and COL15 (basement membrane, invasion). 
There is also evidence of an overall reduction in staining for CA9 and ALDH in the stroma of the 
DCIS samples that are adjacent to invasive disease. Reduction of ALDH expression in breast 
cancer stroma has been associated with poor survival. These are our most promising markers for 
validation in Aim 4. 
 
We hypothesize that local tumor ecology for individual DCIS creates differential selective forces 
and ultimately influences its potential for progression to invasive cancers. To characterize the 
local ecological features for each DCIS component within the tissue, we first designed a deep 
learning pipeline for automated detection and simultaneous segmentation of DCIS. Comparison 
of multiple cutting-edge convolutional neural networks including SSD, faster RCNN, showed 
that MIMOnet was the most accurate in identifying and delineating individual DCIS. 
 
To further explore the ecological features immediately adjacent to each duct, we used the 
topological context to investigate whether deep learning extracted useful image features from 
carcinoma in situ to learn the difference in biology between cases with DCIS adjacent to invasive 
cancers versus cases with pure DCIS (Figure 6). 
 
Spatial tessellation centered at each DCIS created the boundary in which local ecology can be 
studied. Subsequently, a deep learning method was used to classify single cells into lymphocytes, 
epithelial, stroma cells and others.  
 
These developments in methodologies enable us to quantify the spatial relationship between 
lymphocytes and DCIS. Our preliminary results indicate that, while pure DCIS cases have overall 
more lymphocytes, the lymphocytes in adjacent cases tend to co-localize with DCIS (p<10-8), 
suggesting a more inflamed ecology locally to DCIS in tissue adjacent to invasive breast cancer. 
This is one of our most promising measures for prognosis that we will evaluate in the full cohort 
for Aim 2 and then validate in Aim 4. 
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Figure 6:  Comparison of TIL distribution pattern local to DCIS ducts in adjacent versus pure 
DCIS cases. (a) Voronoi tessellation of adjacent DCIS excluding invasive components (b) Voronoi 
tessellation of Pure DCIS. Scale bar represents 100m. (c) Representative DCIS region enclosed 
within the voronoi of adjacent DCIS. (d) Representative DCIS region enclosed within the voronoi 
of Pure DCIS. (e) Boxplot illustrating the difference in DCIS immune colocalisation score 
calculated using the Morisita index. It was computed by associating individual DCIS duct with the 
surrounding lymphocyte within the voronoi region; a high score indicates the spatial colocalisation 
of lymphocytes and DCIS ducts. Each point corresponds to a WSI image, 52 WSI from n=40 
patients in the pure DCIS and 40 WSI from n=25 patients in the adjacent DCIS group. (f) Box plot 
illustrating the difference in overall lymphocyte percentage in all cells for WSIs of pure DCIS and 
adjacent DCIS cases (after exclusion of invasive tumor regions), using only single-cell 
classifications.  
 
 60 Month Milestones: 

• IHC staining of candidate markers on all cases Close to completion (80%) 

• Expert scoring of all markers on all cases (50% Completed) 

• Data analysis using distance metrics to determine which markers demonstrate significant 
heterogeneity that distinguishes pure DCIS from mixed DCIS/invasive cases Completed 

• Stain Aim 4 cases with the most promising markers of tumor and microenvironmental 
heterogeneity 

• Scan IHC and H&E stained slides for Automated image analysis (AIA) Completed 

• Training and validation of AIA for the identification and enumeration of cell types 
(epithelial, stromal, lymphocytes, blood vessels).  Computer algorithms are trained by 
expert identification of cell types (study pathologist, Allison Hall).  Accuracy of the 
computer identification is evaluated by comparison back to the expert scoring.  Apply 
methods for quantitative image analysis 

• Test computer vision methods for measuring nuclear size as a surrogate for tumor grade 
 
 
Aim 3. Create and test a computational learning algorithm to compare mammographic 
characteristics and diversity measures in pure DCIS compared to DCIS with IDC. A weighted 
computational algorithm using mammographic features of lesional and stromal characteristics as 
well as heterogeneity measures derived from Aims 1 and 2 will be constructed. The tool will be 
designed to allow for radiologic discrimination between good and poor prognosis DCIS, and will 
be evaluated in a validation set. 
 
 60 Month Milestones:  
 

• We published in IEEE Transactions in Biomedical Engineering the study to improve the 
prediction of pure DCIS (negative) versus upstaged (positive) cases by leveraging the 
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adjunctive roles of two related classes, Atypical Ductal Hyperplasia (ADH) and Invasive 
Ductal Carcinoma (IDC). This study compared four different predictive models based on 
a suite of over 100 computer vision or “radiomics” features derived from the 
mammography images. 

• We developed a new, deep learning model for segmentation of microcalcifications in 
mammograms. Our previous studies for this project were all based on computer vision 
algorithms, which are subjectively designed to fit a certain data set. Such “handcrafted” 
approaches do not generalize well to other data sets, such as mammograms from a 
different manufacturer. The new deep learning model is a U-Net that was trained only on 
magnification views from a single manufacturer (GE), but has so far demonstrated robust 
performance on not only magnification but also full-field digital mammograms, as well 
as being able to generalize between the two major manufacturers (GE and Hologic). An 
example is shown below in Fig 7. 

 

 
 
Figure 7: Example of microcalcification segmentation based on a U-Net deep learning model. 
Left: Mammogram with DCIS lesion annotated by radiologist. Right: Close-up of showing 
radiologist annotation as a white boundary, individual microcalcifications as white objects, and 
automated lesion boundary as a convex black polygon. 
 



13 
 

 
 
Table 2: Overview of radiology image data collection. The top portion (gray) shows the 137 
cases used during the first 4 years of this project. We now have 618 total cases, which have been 
split in preparation for the final training and testing phase of the project. 
 

• All studies in previous years were based on an initial 137 mammography cases while we 
focused our efforts on collecting all cases from our institution. We have concluded this 
effort now with 618 total cases (including the previous subset of 137 cases). We have 
randomly selected a cohort of 400 cases for training and validation, which have been 
matched for age and upstage rate. This data is approximately 3 times the size of our 
previous data, and will allow us to create more stable versions of the 4 types of logistic 
regression models recently published in the IEEE paper as well as to create new machine 
learning models using random forests.  

• We have also investigated the potential to leverage radiologist interpretations of DCIS. 
We published a study in Radiology to model the growth dynamics of DCIS vs. benign 
lesions. We also conducted a large reader study involving ten radiologists each 
interpreting 150 DCIS cases for the task of predicting DCIS. Interestingly, radiologists 
performed comparably to our radiomics-based models with average AUC of 0.62. Their 
individual ROC curves and AUCs are shown in Fig 8. We conducted a follow-up reader 
study, where the same radiologists underwent a training process based on their collective 
experiences, defined new clinical criteria to predict upstaging, then applied those criteria 
to try to improve their performance on a new set of DCIS cases. That data is now 
undergoing statistical analysis. 
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Figure 8: ROC results from radiologist reader study. Ten radiologists each interpreted 
150 DCIS cases to predict upstaging. Average AUC was 0.620 (95% CI: 0.489-0.751). 
 

• Future plans: We will also finish the collection of physician-derived features, including 
radiological, pathological, and clinical data. We will create new models based only on 
those physician-derived features, and also combine them with the imaging features for an 
hybrid models that use all available data. We will select the top few logistic regression and 
random forest models. After selecting a few best models, we will conduct independent 
testing on the reserved 218 cases. This will conclude the work for this project. 

 
 
 
Aim 4. Test the predictive performance of the best diversity measures in an independent validation 
set of pure DCIS with and without subsequent invasive recurrence. Genotypic and phenotypic 
measures of diversity derived from Aims 1-2 will be applied to an independent case-control, 
longitudinal, tissue bank of DCIS with and without invasive recurrence to validate their utility. 
The Duke IRB approved protocol has been approved at 12 sites. For the next budget year, we will 
continue to accrue cases of pure DCIS that are long term disease free or recurred with invasive 
cancer.  Slides are being shipped to Duke for macrodissection for DNA analysis and for 
immunodetection of phenotypic heterogeneity.   
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60 Month Milestones: This aim will be carried out after aims 1-3 are complete. We obtained 
approval to obtain these specimens through the Translational Breast Cancer Research Consortium 
(TBCRC) and Duke IRB approval.  We have identified 12 high volume academic medical center 
members of the consortium who obtained regulatory approval, DOD approval and MTA’s.  
  
The REDCap database is used for data entry online and slide inventory control. To date we have 
obtained cases from 11 of the 12 sites. We have received 93 cohort 0, 68 cohort 1 and 57 cohort 2 
cases to date.  Overall, this aspect of the project is adhering to our proposed timeline and should 
achieve its accrual and analysis goals.   
 
Below is the list of approved centers participating in this study and accrual to date. 
 
Table 3: Multicenter Site Update for Aim 4 

Site Name PI Cohort 0 Cohort 1 Cohort 2 

Baylor Julie Nangia  0 2 3 

Chicago Rita Nanda 0 0 3 

DFCI Tari King 0 6 2 

Duke ES Shelley Hwang 71 26 17 

Indiana 
Anna Maria 

Storniolo 0 1 1 

Mayo Fergus Couch  5 5 7 

MDACC Joanna Lee 0 1 3 

Montefiore Bryan Harmon 10 13 6 

Pittsburgh Priscilla McAuliffe       

UNC Kristalyn Gallagher 5 3 2 

UWashington Mark Kilgore  0 6 4 

UPENN Angela DeMichele  0 4 4 

UAB Gabrielle Rocque  2 1 5 

Total   93 68 57 
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What was accomplished under these goals? 
Our primary goals have been met including, most importantly, identifying the most efficient 
method of sequence generation from small amounts of fixed DNA. We have acquired more 
radiology imaging data sets and established the computer vision algorithms for their analysis. 
Further, based on our databases, we are confident of accruing sufficient cases and controls at 
Duke to fulfill the Aim 1 and 2 goals of the project.  Overall, we are in excellent position to 
complete the proposed work in the project period along the time line that was provided.   

What opportunities for training and professional development has the project 
provided? 

We hired several new post-doctoral fellows in the previous year to continue expanding our 
analysis. Priya Narayananhas and Faranak Sobhani acquired new skills in deep learning methods 
and attended a conference on breast cancer diagnosis.  

How were the results disseminated to communities of interest? 
We had a DCIS abstract based on aims 1 and 2 presented at the San Antonio Breast Cancer 
Symposium in December 2018. 
Rui Hou was accepted for a talk at SPIE Medical Imaging 2018. 
 

What do you plan to do during the next reporting period to accomplish the goals? 
Aim 1:  We have completed the identification, extraction and DNA sequencing for cases and 
controls (n=100).  DNA extracted from these slides has been exome sequenced.  Returned data 
from these assays is being analyzed using our current pipeline in order to scale up from the pilot 
study to a study with a bigger sample size, which will allow us to get more insights from the 
data. Moreover, we will investigate the biological meaning of the most common variants of the 
two different tumor types. These data will be prepared for publication during this period. In 
addition, we are preparing a manuscript to detail our methodologic approaches to sequence 
analysis focused on the technical replicates and the pipeline developed from these samples.   
 
Aim 2:   
We will complete the dual IHC staining on the remaining cases, as they come off line after 
pathology review.  We will refine methods for agnostic computer scoring of IHC stains.  These 
methods will be implemented on all images. Further, we will develop computer vision methods 
to measure nuclear size of the epithelial component.  These methods have been developed by Dr. 
Yuan’s team and are in testing phase.  All cases will be analyzed for this parameter by Dr. 
Narayanan and Dr. Sobhani.  .   
 
Aim 3:   
We will complete another paper describing the final results of the transfer learning of deep 
features. We will complete the analysis of the forced labeling study to improve classification by 
addition of neighboring classes, and submit that as an additional paper. We will then perform the 
majority of the final modeling studies using all cases from our institution, as well as begin to 
analyze cases from other institutions.  
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Aim 4:   
This multicenter validation arm of the project is set up through the Translational Breast Cancer 
Research Consortium (TBCRC), a collaborative group set up to conduct innovative and high-
impact breast cancer clinical trials.  
 
The validation protocol has been approved by both the TBCRC and the Duke IRB (3/18/2016).  
Twelve (13 including Duke) external sites have obtained local IRB approval.  Sites have both 
IRB as well as DOD approval and completed an SIV call training session with key personnel 
from each site,  
 
We will finalize the collection of cases from sites. We have 218 cases in the RedCap database 
from all sites. We currently participate in monthly calls with TBCRC participating sites (12) 
where clinical coordinators, from all active TBCRC studies, provide updates and questions are 
addressed.  These cases will be analyzed using the genetic, informatic, and phenotypic 
approaches developed in Aims 1 and 2.  These data will constitute the validation of the results 
from the first two aims and will be prepared for publication.   

4. IMPACT 
Successful completion of this project will lead to a variety of biomarkers (genetic, IHC and 
radiographic) to distinguish high risk from low risk DCIS. This would reduce patient suffering 
and conserve clinical resources for the women with low risk DCIS, and focus management 
efforts and clinical resources on women with high risk disease, potentially justifying the risks of 
interventions. As the project is in its initial stages, these important impacts await in the future. 

What was the impact on the development of the principal discipline(s) of the project? 
We continue to advance the field’s understanding of DCIS progression and the impact of tumor 
heterogeneity on the fate of DCIS.  The final deliverables of this proposal will impact how DCIS 
is regarded both by the scientific and clinical communities.  

What was the impact on other disciplines? 
We have contributed to emerging knowledge regarding the digital radiographic characteristics of 
DCIS and continue to extend the applications for machine learning in breast cancer.  We are one 
of the most active teams in the field, as evidenced by numerous publications and invited talks. 

What was the impact on technology transfer? 
Nothing to report. 

What was the impact on society beyond science and technology? 
Nothing to report. 
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5. CHANGES/PROBLEMS 

Changes in approach and reasons for change 
There have been no changes in approach. 

Actual or anticipated problems or delays and actions or plans to resolve them 
So far the problems that have emerged have been primarily technical. Full exome sequencing 
from small amounts of FFPE tissue has been the primary challenge, and is now proceeding 
smoothly at Wash U. 

Changes that had a significant impact on expenditures 
None 

Significant changes in use or care of human subjects, vertebrate animals, biohazards, 
and/or select agents 

None 

Significant changes in use or care of human subjects 
None 

Significant changes in use or care of vertebrate animals. 
Not applicable. 

Significant changes in use of biohazards and/or select agents 
Not applicable 
 

6. PRODUCTS 

Publications 
1. J Hou R, Mazurowski MA, Grimm LJ, Marks JR, King LM, Maley CC, Hwang ES, Lo 

JY. Prediction of Upstaged Ductal Carcinoma in situ Using Forced Labeling and Domain 
Adaptation. IEEE Trans Biomed Eng. 2019. Epub 2019/09/11. doi: 
10.1109/TBME.2019.2940195. PubMed PMID: 31502960. 
 

2. Grimm LJ, Miller MM, Thomas SM, Liu Y, Lo JY, Hwang ES, Hyslop T, Ryser MD, 
“Growth Dynamics of Mammographic Calcifications: Differentiating Ductal Carcinoma 
in Situ from Benign Breast Disease,” Radiology, 182599 (2019). Epub 2019/05/22. 
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3. Hou R, Ren Y, Grimm LJ, Mazurowski MA, Marks JR, King L, Maley CC, Hwang ES, 
Lo JY, "Malignant microcalcification clusters detection using unsupervised deep 
autoencoders," Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 
109502Q (13 March 2019). 
 

4. Walther, V., Hiley, C.T., Shibata, D., Swanton, C., Turner, P.E., and Maley, C.C.: Can 
oncology recapitulate paleontology? Lessons from species extinctions. Nature Reviews 
Clinical Oncology, 12:273-285, 2015. doi:10.1038/nrclinonc.2015.12.  Published. 
Acknowledged federal support. 

5. Caulin, A.F., Maley, C.C.: Solutions to Peto’s Paradox Revealed by Mathematical 
Modeling and Cross-Species Cancer Gene Analysis. Philosophical Transactions of the 
Royal Society of London B, 370 (1673):20140222.  Published. Acknowledged federal 
support. 

 
6. Aktipis, C.A., Boddy, A.M., Jansen, G., Hibner, U., Hochberg, M.E., Maley, C.C., 

Wilkinson, G.S.: Cancer across the tree of life: Cooperation and cheating in 
multicellularity. Philosophical Transactions of the Royal Society of London B, 370 
(1673):20140219.  Published. Acknowledged federal support. 

 
7. Noemi Andor, Trevor A. Graham, Marnix Jansen, Li C. Xia, C. Athena Aktipis, Claudia 

Petritsch, Hanlee P. Ji, Carlo C. Maley: Pan-cancer analysis of the extent and 
consequences of intra-tumor heterogeneity. Published. Nature Medicine 22:105-13, 2016. 
Acknowledged federal support. 

 
8. Carlo C. Maley, Konrad Koelble, Rachael Natrajan, Athena Aktipis and Yinyin Yuan: 

An ecological measure of immune-cancer colocalization as a prognostic factor for breast 
cancer. Breast Cancer Research 17:1-13, 2015. Published. Acknowledged federal 
support. 
 

9.  Shi B, Grimm LJ, Mazurowski MA, Baker JA, Marks JR, King LM, Maley CC, Hwang 
ES, Lo JY, “Can Occult Invasive Disease in Ductal Carcinoma In Situ Be Predicted 
Using Computer-extracted Mammographic Features?” Academic Radiology, 24 (9), 
1139-1147 (2017). PMC5557686. Published. Acknowledged federal support. 
 

10. Shi B, Grimm LJ, Mazurowski MA, Baker JA, Marks JR, King LM, Maley CC, Hwang 
ES, Lo JY, Prediction of occult invasive disease in ductal carcinoma in situ using 
deep learning features, J Am Coll Radiol, accepted (2017). Acknowledged federal 
support 
 

11.   Shi B, Grimm LJ, Mazurowski MA, Marks JR, King LM, Maley CC, Hwang ES, Lo 
JY, Prediction of occult invasive disease in ductal carcinoma in situ using computer-
extracted mammographic features, Proc. SPIE 10134, Medical Imaging 2017: Computer-
Aided Diagnosis, Armato SG, Petrick NA, Eds., 101341I (2017). Published. 
Acknowledged federal support. 
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12. Shi B, Grimm LJ, Mazurowski MA, Marks JR, King LM, Maley CC, Hwang ES, Lo JY, 
“Can upstaging of ductal carcinoma in situ be predicted at biopsy by histologic and 
mammographic features?” Proc. SPIE 10134, Medical Imaging 2017: Computer-Aided 
Diagnosis, Armato SG, Petrick NA, Eds., 101342X (2017). Published. Acknowledged 
federal support. 
 

13. Abegglen, L.M., Caulin, A.F., Chan, A., Lee, K., Robinson, R., Campbell, M.S., Kiso, 
W.K., Schmitt, D.L., Waddell, P.J., Bhaskara, S., Jensen, S.T., Maley, C.C.†, 
Schiffman , J. D.†: Potential Mechanisms for Cancer Resistance in Elephants and 
Comparative Cellular Response to DNA Damage in Humans. JAMA, 314:1850-1860, 
2015. Published. Acknowledged federal support. 
 

14. Li, X., Paulson, T.P., Galipeau, P.C., Sanchez, C.A., Liu, K., Kuhner, M.K., Maley, 
C.C., Self, S.G., Vaughan, T.L., Reid, B.J., Blount,  P.L.,: Assessment of esophageal 
adenocarcinoma risk using somatic chromosome alterations in longitudinal samples in 
Barrett's esophagus. Cancer Prevention Research, 8:845-56, 2015. Published. 
Acknowledged federal support. 
 

15. Kostadinov, R., Maley, C.C., Kuhner, M.K.: Bulk genotyping of biopsies can create 
spurious evidence for hetereogeneity in mutation content. PLoS Computational Biology, 
12:e1004413, 2016. Published. Acknowledged federal support. 

 
16. Andor, N., Maley, C.C., Ji, H. P. Genomic Instability in Cancer: Teetering on the Limit 

of Tolerance. Cancer Research 77:2179-2185, 2017. Published. Acknowledged federal 
support. 
 

17. Tollis, M., Boddy, A. M., Maley, C.C ,. Peto's Paradox: How has evolution solved the 
problem of cancer prevention? BMC Biology 15:60, 2017. Published. Acknowledged 
federal support. 
 

18. Fortunato, A., Boddy, A., Mallo, D., Aktipis, A., Maley, C.C. †, & Pepper, J. W. †: 
Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait 
Hallmarks. Cold Spring Harbor Perspectives in Medicine, a029652, 2016. († = co-senior 
authors) Published. Acknowledged federal support. 
 

19. Maley, C.C., Aktipis, A., Graham, T.A., Sottoriva, A., Boddy, A.M., Janiszewska, M., 
Silva, A.S., Gerlinger, M., Yuan, Y., Pienta, K.J., Anderson, K.S., Gatenby, R., Swanton, 
C., Posada, D., Wu, C.-I., Schiffman, J.D., Hwang, E.S., Polyak, K., Anderson, A.R.A., 
Brown, J.S., Greaves, M., Shibata, D.: Classifying the Evolutionary and Ecological 
Features of Neoplasms. Nature Reviews Cancer, Sept. 15, 2017. Published. 
Acknowledged federal support. 

Technologies or techniques 
Nothing to report 
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Inventions, patent applications, and/or licenses 
Nothing to report 

Other Products 
Case report forms for Duke and outside cases and databases to efficiently capture this 
information  

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS 

What individuals have worked on the project? 
Co-PI:  Dr. Shelley Hwang (M.D., M.P.H.): Duke University (no change) 
Co-PI:  Dr. Carlo C. Maley (Ph.D.): Arizona State University (no change) 
 
Co-Investigators: 
Dr. Jeffrey Marks (Ph.D.): Duke University (no change) 
Dr. Joseph Geradts (M.D.): Duke University (departed during year one) 
Dr. Allison Hall (M.D.): Duke University, replacing Dr. Geradts. 
Dr. Joseph Lo (Ph.D.):  Duke University (no change) 
Dr. Jay Baker (M.D.):  Duke University (no change) 
Dr. Yin Yin Yuan (Ph.D):  Institute for Cancer Research, UK (no change) 
Dr. Lars Grimm (M.D.): Duke University (no change) 
Dr. Trevor Graham (Ph.D.): Barts Cancer Institute, Queen Mary University of London (no 
change) 
Dr. C. Athena Aktipis (Ph.D.): Arizona State University (no change) 
Dr. Shane Jensen (Ph.D.): University of Pennsylvania (departed during year one) 
 
Post-Docs: 
Dr. Mengyu Wang (Ph.D):  Duke University (departed during year one) 
Dr. Violet Kovacheva (Ph.D):  Institute for Cancer Research, UK (departed during year two) 
Dr. Narayanan (Ph.D):  Institute for Cancer Research, UK, replacing Dr. Kovacheva. 
Dr. Sobhani (Ph.D):  Institute for Cancer Research, UK. 
Dr. Lorraine King (Ph.D):  Duke University (no change) 
Dr. Bibo Shi (Ph.D):  Duke University (departed during year two) 
Rui Hou, ECE Ph.D. student, Duke University (no change) 
Dr. Angelo Fortunato (Ph.D):  Arizona State University (no change) 
Dr. Diego Mallo (Ph.D):  Arizona State University (no change) 
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