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ABSTRACT 

An objective evaluation of ground vehicle performance is a 

challenging task. This is further exacerbated by the increasing level of 

autonomy, dynamically changing the roles and capabilities of these 

vehicles. In the context of decision making involving these vehicles, 

as the capabilities of the vehicles improve, there is a concurrent 

change in the preferences of the decision makers operating the 

vehicles that must be accounted for. Decision based methods are a 

natural choice when multiple conflicting attributes are present, 

however, most of the literature focuses on static preferences. In this 

paper, we provide a sequential Bayesian framework to accommodate 

time varying preferences. The utility function is considered a 

stochastic function with the shape parameters themselves being 

random variables. In the proposed approach, initially the shape 

parameters model either uncertain preferences or variation in the 

preferences because of the presence of multiple decision makers. We 

consider this utility distribution as the prior and update it to a posterior 

with feedback that can be acquired from actual system use. The 

framework improves the utility function and thereby the decisions 

made for the next generation systems, allowing continuous 

improvement. We present our approach on a ground vehicle selection 

problem. 

1. Introduction 

Formal decision-based approaches offer some of the best tools for 

developing product design specifications that are optimized to satisfy 

customer preferences. In engineering design, many times the final 

attributes of the product and the tradeoff between them is an 

afterthought. As a result, many products disappoint in practice 

because they do not take into account the preferences of the end user 

or customer directly. Additionally, techniques that do integrate end-

user preferences into product design, work with static preferences on 

a static design problem. While offering an advantage over existing 

bottom-up engineering methods, such approaches neither take into 

account the fact that customer preferences evolve with time, nor that 

many times the technology itself is not fully developed. This leads to 

two challenges: products that are optimal today may not be so in the 

near future even with fixed preferences, and constant technological 

developments limit the trueness of the assessed preferences. Many 

times, it is argued, that the preference structure is not even fully 

formed in the customers’ mind. In this paper, we present a Bayesian 

approach to accommodating this interplay between the evolution of 

customers’ preferences and changes in technological capabilities. 

 

The application area where the aforementioned challenges are 

expected to manifest themselves is the advent of autonomy in ground 

vehicles. An objective evaluation of ground vehicle performance is 

typically a challenging task, and off-road operation further 

complicates this issue. Different types of approaches have been 

identified in the literature for modeling vehicle terrain interactions for 

off road mobility such as empirical, semi-empirical, analytical and 

finite and discrete element methods, with their own concomitant 

challenges (Ahlvin and Haley, 1992, Taheri et al., 2015). The 

empirical models have lower computational cost and tend to be less 

accurate, while analytical and Finite Element or Discrete Element type 

methods that utilize the physics of the problem, generally are 

computationally very expensive. Another aspect of modeling and 

evaluating mobility is the difficulty in coming up with a metric that 

takes into account all the performance attributes of the vehicle that 

captures the operator’s preferences. The above challenges are only 

exacerbated by the increasing level of autonomy, dynamically 

changing the roles and capabilities of these vehicles. For example, 

terrains considered untrafficable with traditional vehicles may become 

trafficable with assistive methods such as traction control and antilock 

braking systems. These capabilities keep enhancing and appear to be 

culminating in initially teleoperability and finally semi and full 

autonomy of these vehicles. The missions these vehicles are going to 

be expected to take part in, will only get increasingly complex 

(Department of Defense, 2012). How does one make acquisition and 

operational decisions regarding these vehicles when there is so much 

uncertainty in their future capabilities and concomitant expectations 

from them?  

 
Figure 1. Prior utility function in planning and posterior utility 

function in operation. 

 Planning 

 Requirement 

definitions 

 Acquisition 

 Systems fielded 

 Operation 

 Lifecycle 

Sustainment 

OPERATOR 
SURROGATES 

Prior preferences 

(Attributes, utility 

functions etc.) 

Posterior 

preferences 
(Attributes, utility 

functions etc.) 

U
P

D
A

TE
 

PLANNING 

OPERATION 



Page 2 
DISTRIBUTION A: Approved for public release; distribution unlimited. OPSEC#: 3432 

Another challenge with the decision making described above is the 

presence of multiple decision makers. In cases where a single decision 

maker is present with static preferences, finding the optimal decision 

is a relatively straightforward process. But most decisions involve 

multiple attributes, and involve a wide range of decision makers 

across an organization (Chen et al, 2012). Additionally, the same 

decision-maker exhibits variability in his or her preferences from one 

time to another. This could be due to the change in their frame of mind 

as described above, variability introduced by the method of preference 

elicitation, or any number of other uncontrolled or uncontrollable 

factors (Becker, et al., 1963). Consider the following events in a 

decision analysis driven planning cycle depicted in Figure 1 (top 

rectangle). In the initial phases, experts will determine the acceptable 

levels of the attributes of the vehicles to evaluate the vehicle offerings. 

These attributes could include vehicle’s average speed, the fraction of 

the terrain that the vehicle can safely negotiate (trafficable percent 

area, TPA), among others. Through commonly used lottery questions, 

a multi-attribute utility function that characterizes the preference 

behavior of the stakeholders with regard to these attributes can be 

acquired (Pandey, 2013; Barseghyan et al, 2018; Farquhar, 1984). The 

steps for system realization, whether in-house or at a supplier or 

contractor will include, definition of system architecture, design of 

parts with specifications of features, dimensions and tolerances, 

assembly processes all targeted towards maximizing the expected 

utility of the product. Common practices of associating attributes with 

design specifications include the House of Quality (Chowdhury, 

2002), Design for Six Sigma (Babu and Asha, 2014), and system 

mapping (Hoffenson and Söderberg, 2015). 

Once acquired and fielded, a system is evaluated by engineering 

managers and operators. It is clearly a natural progression to want to 

use this data to update the prior belief of utility based on a design and 

acquisition perspective, to a posterior belief of utility based on actual 

system and its performance. This is clearly the case when a system is 

expected to evolve in capabilities. This leads us to utilizing a Bayesian 

approach, which can help answer the following questions: 

1. As usage data becomes available, how do we evaluate the utility 

of the fielded vehicles and compare it to the utility of the vehicles 
when ordered, given that the requirements (preferences) have 
changed?  

2. From a group decision making standpoint, will a vehicle satisfy 
the group as a whole, or the largest number of end users, or both?  

3. Does the data inform decisions about future design updates or 
adjustments needed? 
 

Our proposed approach can be summarized as follows. By looking at 

DM preferences and their resulting utility functions governed by 

random variable shape parameters, we accommodate uncertainty in 

preferences. We take a Bayesian perspective and use preference data 

from vehicle operation to update the distribution of the utility function 

parameters used in the acquisition phase. This posterior stochastic 

utility function becomes the prior stochastic utility function for the 

next generation of the product.  

The paper is organized as follows. The next section, discusses the 
evolution of DBD and identifies the gaps in the research relevant to 
this work. In section 3, the mathematical model for vehicle 
performance calculation is presented. Section 4 presents our proposed 

approach while section 5 presents the results of applying our approach 
to the vehicle selection problem. Section 6 concludes with a 
discussion of the results, strengths and weaknesses of the approach, as 
well as suggestions for future work. 
 

2. Decision making background 
The foundation of this work is in decision-based design (DBD), which 
posits that design essentially a decision-making process (Smith et al, 
2015). Formal decision analysis (DA) provides a framework for 
making good design decisions by maximizing the expected utility 
(Pandey, 2013). Bentham was one of the first to define utility and even 

used it as a measure of social welfare (Bentham, 1879). John von 
Neumann and Morgenstern proposed an axiomatic framework for 
ordering of alternatives, incorporating decision maker’s preferences 
and attitude toward risk (von Neumann and Morgenstern, 1947). It is 
agreed that the best choice in a decision problem has the highest 
(expected) utility (Friedman and Savage, 1948). Most researcher 
agree and are comfortable with the conditions outlined by von 
Neumann and Morgenstern to arrive at a cardinal measure of 

preferences when there is a single decision maker making decisions 
involving a single attribute. Some dispute and concomitant challenges 
arise when multiple attributes and multiple decision makers are 
involved. 
 
There have been many practical approaches to multi-attribute decision 
problems—for example, Edwards (1977) discusses an additive model; 
Klein et al (1985) arrive at conditional utility functions, Thurston 
(1991) formalizes the design steps using a multiattribute utility 

function. More recently, Malak et al. (2009) use set-based design in 
the early design phase; while Abbas (2009) introduces multiattribute 
utility copulas. A dissenting line of research asserts (Wassenaar and 
Chen, 2001; Abbas and Cadenbach, 2018) that, when it comes to 
design for the market, its merit should be modeled by one attribute, 
typically in monetary units. It is unclear if modeling all design 
attributes in terms of dollar amounts will not be just as arduous as 
establishing a multi-attribute utility function. Therefore, in this paper, 

we use the well-established multi-attribute utility framework 
(Thurston, 2001; Keeney, 1972; Keeney and Raiffa, 1976). With 
regard to the presence of multiple decision makers, we acknowledge 
the challenge posed by Arrow’s Impossibility Theorem, which states 
that it is impossible to aggregate a group of preference behaviors in a 
way that obeys some reasonable axioms (Arrow, 1950). Researchers 
since Arrow have shown that in practical decision making, at least 
some of the axioms can be reasonably relaxed. Goodman and 

Markowitz (1952) show that relaxing Arrow’s requirement on 
irrelevant alternatives provides multiple avenues for aggregating 
preferences. Similarly, Keeney (1976) shows that given a cardinal 
utility function, 𝑢𝑖, from 𝑛 decision makers, a grouped utility, 𝑢𝐺, is 

possible. Scott and Antonsson (1999) describe how design decision 
problems are not entirely constrained by Arrow’s axioms.  
 
Whether errors or inconsistencies appear during assessments of 
preferences of a single decision maker, or because of the existence of 
multiple decision makers, a probabilistic model of these variations can 

look similar (Debreu, 1958; Cyert and DeGroot, 1975; Manski, 1977; 
Karni and Safra, 2016). The idea of stochasticity in preferences has 
seen some attention in the literature (Blavatskyy, 2006, 2008). Most 
researchers describe the utility of an attribute at value 𝑥, 𝑈(𝑥),  as a 

random variable with some probability distribution (Becker et al, 
1963; Barseghyan et al, 2018; Loomes and Sugden, 1995; Chajewska 
et al, 2000). There are also techniques such as multi-dimensional 
scaling (Young, 2013), demand model estimation (Hauser and Rao, 
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2004), and conjoint analysis (Rao, 2014) that address variants of this 
problem. 
 
Keeney showed, under some assumptions, that a group utility function 
over uncertain outcomes is possible if and only if 𝑢(𝑢1 , 𝑢2, … 𝑢𝑛  ) =
∑ 𝜂𝑖𝑢𝑖

𝑛
𝑖=1  (Keeney, 1976). We regard the scaling factor 𝜂𝑖 for each 

utility function as the relative occurrence over a population of decision 

makers directly achievable if we make it proportional to the value of 
the probability distribution of the underlying random variable 
(parameters). This approach achieves two outcomes simultaneously: 
addressing Hazelrigg’s objection to the existence of customer 
satisfaction in the aggregate (Hazelrigg, 1998) and extending the 
theoretical basis of expected expected utility Boutilier (2003). The 
work also opens the doors to a Bayesian approach which 
accommodates the co-evolution of end-user preference from prior to 

posterior as generations of systems go through cycles of acquisition 
and operation. 

 

3. Mobility model used 
In this section we briefly describe the mobility model which captures 

the input-output relationships for the ground vehicles exhibiting semi 

to full autonomy. The data needed for the development of a model of 

this type typically comes from physical tests, simulations or a 

combination of these. While many relationships have been derived for 

one or two aspects vehicle mobility, a comprehensive model is 

difficult to acquire. Physical tests, even high-fidelity simulations, tend 

to be expensive and time consuming. When considering multiple 

vehicle parameters, running an exhaustive combination of inputs takes 

an enormous amount of time and resources. To demonstrate our 

approach, in this paper, we combine some existing relationships 

generally seen in the literature with parameterized functions derived 

from experience and generally expected trends. If further information 

becomes available, it can be readily accommodated. Table 1 shows 

the main elements of the model and the related optimization problem, 

additional relationships are presented in the appendix. The objective 

is to maximize the expectation of the multiobjective utility function 

over four attributes in the vector 𝐲, which are cost per mission, 𝑐, 

vehicle speed, 𝑠, trafficable area, 𝑎, and the normalized lane keeping 

error, 𝜉. The attributes in the vector 𝐲 are functions of the inputs 𝐱, 

and the vehicle characteristics in 𝐯. The inputs considered are terrain 

roughness, 𝛿𝑠 and the soil strength 𝑠𝑠, therefore, 𝐱 = (𝛿𝑠 , 𝑠𝑠)𝑇. We 

acknowledge that many additional methods for terrain material 

characterization exist, such as soil moisture content, void ratio, 

density among others, however, there appears to be little consensus on 

which of these should be utilized (Shoop, 1993; Pinto, 2012; 

Umsrithong, 2010). The vehicle characteristics include inputs such as 

teleoperation fraction, 𝑡𝑡 and vehicle intelligence level, 𝜌, among 

others. The single attributes utility functions are exponential, 

normalized between 0 and 1 as shown in equations. To calculate 

vehicle attributes, we consider operation in two modes, teleoperation 

and autonomous. The variable 𝑡𝑡 ∈ [0,1] is 1 for a teleoperated vehicle 

and 0 for an autonomous vehicle. A number strictly between 0 and 1 

spans the continuum between teleoperation and full autonomy. We 

here outline how the attribute of speed is calculated, other attributes 

are calculated in a similar fashion. The speed of a vehicle, 𝑠, is the 

maximum speed of the vehicle, 𝑠𝑚𝑎𝑥, under the given conditions 

scaled by the speed ratio 𝑠𝑟 < 1 as shown in equation A.1. This 

scaling factor takes into account that a vehicle need not be operated at 

its maximum speed. The maximum speed 𝑠𝑚𝑎𝑥 is the weighted 

average of the speed during teleoperation, and that during autonomy 

as given in equation A.2. In the equation, 𝑠𝑡 and 𝑠𝑎 are the baseline 

speeds under the two modes and the fractions 𝜂𝑡
𝑠(𝐱) and 𝜂𝑎

𝑠 (𝐱)  model 

the cumulative effect of the other variables. Attributes of trafficable 

area and error are also similarly calculated, as shown in the appendix. 

Existing relationships are used from the literature, wherever available. 

For example, the speed-latency and speed-error relationships in 

equations A.7 and A.21 match Gorsich et al. (2018). Similarly, the 

TPA-speed characteristics are qualitatively similar to Lessem et al. 

(1996) and roughness-speed relationship is qualitatively similar to 

Vong et al (1999). If updated relationships are available for a vehicle 

under consideration, let us say those from physics based models for a 

specific vehicle, these equations can be updated without affecting the 

applicability of the remainder of the model.

 

Table 1: Formulation of the mobility model. Additional relationships described in the appendix. 

Optimization Problem 

     Maximize
𝐯

𝔼[𝑈(𝐲(𝐱, 𝐯))]                                                                                                                   (1) 

Where: 

𝐲 = (𝑐(𝐱, 𝐯), 𝑠(𝐱, 𝐯), 𝑎(𝐱, 𝐯), 𝑡(𝐱, 𝐯))𝑇                                                                                              (2) 

𝐱 = (𝛿𝑠, 𝑠𝑠)𝑇                                                                                                                                      (3) 

𝐯 = (𝑐, 𝑡𝑡 , 𝜌, 𝜌𝑡𝑒𝑟𝑟𝑎𝑖𝑛 , 𝜏, 𝑎0, 𝑠𝑡 , 𝑠𝑎 , 𝑠𝑟)𝑇                                                                                               (4) 

Utility functions 

    𝑈(𝑐, 𝑠, 𝑎, 𝜉) =
1

𝐾
[(𝐾𝑘𝑐𝑈𝑐(𝑐) + 1)(𝐾𝑘𝑠𝑈𝑠(𝑠) + 1)(𝐾𝑘𝑎𝑈𝑎(𝑎) + 1)(𝐾𝑘𝜉𝑈𝜉(𝜉) + 1) − 1]           (5) 

𝑈𝑐(𝑐) =
1

𝑛𝑐
(1 − 𝑒

−
𝑐𝑚𝑎𝑥−𝑐

𝑅𝑐 )             (6);                                         𝑈𝑠(𝑠) =
1

𝑛𝑠
(1 − 𝑒

−
𝑠−𝑠𝑚𝑖𝑛

𝑅𝑠 )          (7) 

   𝑈𝑎(𝑎) =
1

𝑛𝑎
(1 − 𝑒

−
𝑎−𝑎𝑚𝑖𝑛

𝑅𝑎 )            (8);                                        𝑈𝜉(𝜉) =
1

𝑛𝜉
(1 − 𝑒

−
𝜉𝑚𝑎𝑥−𝜉

𝑅𝜉 )         (9) 
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4. Approach 
Through a set of lottery questions one assesses the single attribute 
utility functions in equations 6-9. Further assessment questions lead 
to the multiattribute utility function of equation 5, which serves as an 
adequate way to measure the worth of multiattribute alternatives under 
uncertainty. In single attribute utility function assessments, for a 

sequence of values of an attribute in question, one gets the 
corresponding values for the utility which are then fitted to a smooth 
curve. Expectedly, fitting this curve by selecting the values of utility 
function parameters usually ignores the ramifications of representing 
many different risk behaviors with one curve (Ambrus et al, 2015), 
something we intend to address in this work. For the exponential 
functions shown in the equations 6-9, it is easy to show that a change 
in the value of 𝑅 affects a decision substantially, both in the valuation 

of alternatives and also in preferences over risk. Given the probability 
distribution of 𝐑, the vector of risk tolerances, the expected utility of 

equation 1 is now calculated over the distribution of both the outcome 

and the preferences as: 
 

𝐸𝑈 = ∫ 𝔼
𝐱,𝐯

[𝑈(𝐲(𝐱, 𝐯), 𝐫)]
𝐷𝑅

𝑓𝐑(𝐫)𝑑𝐫          (10) 

 
 

 
Figure 2. Summary of the proposed approach. Posterior from a 

stage acts as the prior for the next cycle of updating. 

 

 
To model its probability distribution, we define a prior distribution on 
the risk tolerance 𝑅 for each attribute individually assuming 

independence. This is a reasonable assumption since when using the 
multilinear utility function, the individual attribute utility functions 
are assessed independently. If there is dependence between attribute 
risk tolerances, the updating process presented later will automatically 
include it. The degree of our ignorance inversely corresponds to the 

degree of significance we place on the prior utility and this serves as 
a starting point for Bayesian updating. Figure 2 describes this 
approach. Notice that at each step, the assessment questions can be 
posed to the decision maker(s) to get data on 𝑅, or their assessment of 

existing designs can be directly noted, hence the bidirectional arrows 
in each stage. The latter option provides us the distribution of utilities 
which must then be converted to data on the distribution of R. This is 
straightforward as it can be shown for a single valued monotonic 
function 𝑈 = 𝑞(𝑅) we can relate the pdf of U and R: 

 
 

𝑔𝑈(𝑢) = 𝑓𝑅(𝑞−1(𝑢)) |
𝑑𝑞−1(𝑢)

𝑑𝑢
| (11) 

 

Where 𝑞−1(𝑢) is the inverse of the utility function in terms of 𝑅. Note 

that the attribute value is also an argument to the utility function but 
has been dropped for clarity. 

 
Given data on 𝑈 for 𝑠 values, or the new values for R directly, we can 

get data for an attribute as 𝐷 = (𝑟1 … 𝑟𝑠  ). We can then determine the 

posterior distribution of 𝑅 based on Bayes Theorem (Holicky, 2013): 

 
 

𝑓𝑅
𝑝𝑜𝑠𝑡(𝑟|𝐷) ∝ 𝐿(𝑟|𝐷)𝑓𝑅

𝑝𝑟𝑖𝑜𝑟(𝑟) (12) 
 

 

Given the posterior distribution of the utility shape parameter 𝑅, we 

can now update the utility function.  

Prior selection 

Under conjugacy, which depends on certain assumptions for the types 

of prior and the likelihood functions, the posterior can be calculated 

without expensive calculations. Assuming normally distributed risk 

tolerance: 

 

  𝑓𝐑(𝒓) =
1

(2𝜋)𝑝/2|𝚺|1/2 
𝑒𝑥𝑝 [− 

(𝒓−𝝁)𝑇𝚺−1(𝒓−𝝁)

2
] (13) 

 

With priors defined as follows: 

𝒓|𝝁, 𝚺~𝑁(𝝁, 𝚺)    (14)      

𝝁|𝚺~𝑁(𝝁𝟎,
1

𝑛0
𝚺)                                  (15) 

 𝚺~𝑊𝑖−1(𝛼, 𝚿)                   (16) 

Where  

 𝝁𝟎 is the prior mean of 𝝁. 

 𝑛0 reflects the prior confidence and can be selected 

manually.  

 𝛼 is the degrees of freedom of the inverse Wishart 

distribution where 𝛼 > 𝑝 − 1; since the mean of the 

inverse Wishart is 
Σ

𝛼−𝑝−1
, 𝛼 = 𝑝 + 2 will give a mean 

value of 𝚺. 

 𝚿 is the conjugate prior of 𝚺. It must be non-singular and 

symmetric. 

The posterior is then given directly by the following expressions 

(Gill, 2014): 

 

           𝝁|𝚺~𝑁 (
𝑛0𝝁𝟎+𝑛�̅�

𝑛0+𝑛
,

1

𝑛0+𝑛
𝚺)                   (17) 

        𝚺~𝑊𝑖−1(𝛼 + 𝑛, 𝚿 + �̅� +
𝑛0𝑛

𝑛0+𝑛
(�̅� − 𝝁𝟎)(�̅� − 𝝁𝟎)𝑇 )  (18) 

 

5.  Vehicle selection decision problem 

Let us consider the decision problem involving selection between 
eight vehicle offerings given below in Table 2. The general trends 
observable in the table are that the vehicle autonomy level increases 
from vehicle 1 to 8, and concurrently, so does the cost of operating 

them per mission. Vehicles 1 through 3 are teleoperated vehicles while 
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the rest can both be teleoperated or operated in full autonomy. The 
teleoperation fraction lists the fraction of the time each vehicle is 
teleoperated. The rest of the parameters list vehicle characteristics 
such as base speed under teleoperation and that under autonomy. All 
vehicles are assumed to have some level of basic assistive features 

such as traction control and ABS included under the variable 𝜌𝑡𝑒𝑟𝑟𝑎𝑖𝑛. 

The terrain input variables of roughness, Δs, and soil strength, 𝑆𝑠 are 

assumed to be normally distributed with parameters given by: 𝜇𝛿𝑠
=

0.8 inch rms, 𝜇𝑠𝑠
= 80 Cone Index and 𝚺 = [

0.04 0
0 900

]. The value 

of the soil strength is within the typical range specified for most types 
of soils (Priddy, 1995).  

 

 

Table 2. Vehicle parameters for the eight types considered. 

 

Vehicles Cost ($) Tele. Fraction Latency Auto. Level Base speed 
Base speed 

(autonomy) 
𝝆𝒕𝒆𝒓𝒓𝒂𝒊𝒏 

Base 

area 

Speed 

ratio 

1 4000 1 0.4 0 55 0 0.9 90 0.8 

2 5000 1 0.4 0 55 0 0.9 95 0.7 

3 7000 1 0.4 0 60 0 0.9 95 0.8 

4 7500 0.6 0.4 0.2 65 70 0.95 95 0.8 

5 9500 0.4 0.4 0.4 65 75 0.95 95 0.8 

6 12000 0.3 0.5 0.6 65 70 0.95 95 0.7 

7 13000 0.3 0.5 0.6 65 75 0.95 95 0.7 

8 18000 0.2 0.4 0.8 70 80 1 95 0.8 

 

 
We start with the prior distributions on the mean and standard 
deviations for the risk tolerance for the attributes. As mentioned 
earlier, these represent the variation because of the assessment 
procedure(s) used or because of the multiplicity of the decision 

makers involved. In our work, these are sampled from first using an 
inverse Wishart prior for the covariance matrix, and using that 
information to then generate realizations of the mean. This provides 
us the parameters to generate the realizations of the risk tolerances. 
For demonstration purposes, we consider the risk tolerance for cost, 

speed and TPA as random while the risk tolerance for error is fixed at 
5.  The histograms of the three risk tolerances are given in Figure 3. 

The mean vector is given by 𝝁𝑹 = (𝜇𝑅𝑐
, 𝜇𝑅𝑠

, 𝜇𝑅𝑎
)

𝑇
=

(14000, 50,70)𝑇and the standard deviations are given by 𝜎𝑅𝑐
=

1000; 𝜎𝑅𝑠
= 20; and 𝜎𝑅𝑎

= 20. Notice that it is initially assumed that 

that risk tolerances are independent. This is a reasonable assumption 
since when using the multilinear utility function, the individual 
attribute utility functions are assessed independently. 

 

 

 
Figure 3. Histograms of risk tolerances associated with the three attributes. 

 

 
Table 3 below shows the baseline expected-expected utilities (EU) that 
were calculated for the eight vehicles. The EU is calculated 
numerically using Matlab by averaging over many realizations of the 
vehicle input random variables and then by averaging over the 

realizations of the risk-tolerances. We see that vehicle 1 has the 

highest utility and is preferred over the others. The ranking of the 
vehicles suggests that the low cost nature of vehicles 1, 2, and 3 make 
them attractive for the given set of decision makers, with the given set 
of preferences. 
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Table 3. Prior utilities of the eight vehicles considered. 

Vehicle Utility 

1 0.5726 

2 0.566 

3 0.569 

4 0.5346 

5 0.5637 

6 0.5646 

7 0.5594 

8 0.5663 

 
Let us now assume that a number of vehicle 1 have been acquired and 
fielded, and based upon observing their performance the decision 
makers have updated their preferences. These could be in the form of 

ranking of all the fielded vehicles, assessments of new utility functions 
or any combination of these. This data can then be incorporated into 
the Bayesian setup described earlier. The plot of the prior distribution, 
simulated example data, and the posterior are shown pairwise as two 
dimensional slices in Figures 4(a), (b) and (c). The resulting posterior 

distribution of risk tolerances is found to be 𝝁𝑹
𝒑𝒐𝒔𝒕

=

(𝜇𝑅𝑐

𝑝𝑜𝑠𝑡 , 𝜇𝑅𝑠

𝑝𝑜𝑠𝑡 , 𝜇𝑅𝑎

𝑝𝑜𝑠𝑡)
𝑇

= (9977, 60.1,81.3)𝑇and standard deviations 

are given by  𝜎𝑅𝑐

𝑝𝑜𝑠𝑡 = 776; 𝜎𝑅𝑠

𝑝𝑜𝑠𝑡 = 14; and 𝜎𝑅𝑎

𝑝𝑜𝑠𝑡 = 12.2. This 

indicates that the mean risk tolerance decreased for cost, while it 
increased for the other two variables. Additionally, there is a decrease 
in the standard deviation for all the variables, as expected. There still 
is a significant amount of variation, especially in figure 4(c) because 
only 50 data points were used for updating. It was also observed that 
the variables now showed some dependence because of the mean shift 
term of equation 18, however, the correlation values were found to be 

mostly negligible. It may be interesting to investigate the induced 
dependence between attribute risk tolerances as more information 
about preferences is acquired, in a future work. 
 

 
                                  (a) 

 
                                  (b)  

 
                                  (c) 

Figure 4. Scatter plots of the prior and posterior distributions and the 
incoming data for the three random variables. 
 
We now plot the single attribute utility functions based on prior and 

posterior values of risk tolerance. The plots for the three attributes are 
shown in Figure 5, clearly showing the difference in preferences and 
the possible variations in the decisions made. The posterior cost utility 
functions, figure 5(a), show that the decision makers became more 
risk averse (increased concavity). This implies that they are more 
likely accept an expensive vehicle in this case, as even a small 
reduction in cost from the maximum acceptable $20,000 is enough to 
increase their utility functions substantially. Looking at the speed 
utility function, figure 5(b) we see that the decision makers in general 

have become less risk averse. This translates to them requiring better 
performance from the vehicles on the speed attribute. Similarly, for 
the trafficable area attribute, figure 5(c), we see that the decision 
makers have become less risk averse. All together, the updated 
preferences imply that the decision makers are more inclined to pay 
more for improved performance of the vehicles. It is interesting to note 
that some of the decision makers in the prior assessment actually 
exhibited risk-seeking behavior as evidenced by a few realizations of 

convex utility functions shown. This is expected in a group of decision 
makers with differing preferences and corresponds to a negative value 
of risk tolerance. 
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                                         (a)

 
                                         (b)                                          

 
                                     (c) 

Figure 5. Plots of the prior and posterior utility functions for the 
three attributes. 

 
The posterior utilities for the vehicles are shown below in Table 4. We 

see that in this case vehicle 6 has the highest utility and should be 
preferred if only one vehicle is to be selected by the organization. A 
close second is vehicle 8, while vehicle 1 underperforms compared to 
before. It is important to realize that utility values from tables 3 and 4 
cannot be directly compared, only the relative rankings based on the 
utilities in each case can be compared. The change in the rankings is 
in line with the type of change exhibited by the decision makers that 

tend to now prefer a higher performing vehicle and are willing to 
accept an increased cost. A look at the average attribute values for 
vehicles 1, 6 and 8, shown in Figure 6, highlights this choice. Notice 
that some attributes have been scaled to better represent them on the 
chart. We see that both vehicles 6 and 8 outperform vehicle 1 on all 

attributes except cost. Vehicle 6, underperforms vehicle 8 on speed 
and error, but performs almost as well on TPA. The cost advantage 
ensures that the overall utility of vehicle 6 is higher. 

 

 

Table 4. Posterior utilities of the eight vehicles considered. 

Vehicle Utility 

1 0.5525 

2 0.549 

3 0.5531 

4 0.5203 

5 0.5515 

6 0.5549 

7 0.5499 

8 0.5546 

 

 

 

 
Figure 6. Relative attribute levels achieved by vehicles 1, 6 and 8. 

 

Another way to look at how vehicles fare is to investigate the utilities 
of individual decision makers and based on it, the vehicles they would 

individually prefer. Recall that earlier we had averaged the decision 
maker utilities (equation 10). From the simulation of 200 decision 
makers based on posterior preferences, it is seen that about 67% of the 
decision makers prefer vehicle 6 over vehicle 1 in a pairwise 
comparison. Recall that vehicle 1 was preferred using prior preference 
data. This implies that if the decision were not changed based on the 
current distribution of risk tolerances, a majority of decision makers 
will have a suboptimal vehicle. Figure 7 below shows percentage wins 

for all the vehicles in the two cases. We see that between the prior and 
the posterior preferences, the choices are dominated by vehicles 1, 6 
and 8. This information can be useful in that one can choose to remove 
2, 3, 4 and 7 from further consideration. Another interesting 
observation is that while vehicle 8 does not win in either the prior or 
posterior case, it seems robust to changes in preferences. It is 
important to note that, while calculating the percentage of decision 
makers that prefer a vehicle gives insights to individual decisions, it 

may not always be a useful approach for two reasons. Firstly, in group 

Prior utility 

Posterior utility 

Prior utility 

Posterior utility 

Prior utility 

Posterior utility 
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decision making, it may be necessary to select just one solution as a 
group. Secondly, it is possible for decision makers that do not prefer, 
say vehicle 8, to have strong preferences against it. Therefore, using 
expected utility is the recommended method for making decisions in 
these cases (tables 1 and 4). 

 

 
 

Figure 7. Percentage of decision makers preferring each vehicle. 
 

6.  Discussion and conclusions 
In this paper, we addressed the issue of uncertain decision maker 

preferences in acquisition decisions focused on autonomous ground 

vehicles. Autonomous ground vehicles keep improving in their 

capabilities, challenging the current methods of evaluating vehicle 

performance. This is partly because, given the uncertainty about their 

future capabilities and the types of missions they may become capable 

of, it is unclear what an operator’s preferences regarding them would 

be. In our approach, we accommodate uncertainty in DM preferences 

by modeling their utility function shape parameters as random 

variables. We then take a Bayesian perspective and use preference 

data that may be acquired from vehicle operation, to update the 

probability distribution of the parameters of the utility function used 

in the acquisition phase. This posterior stochastic utility function can 

then become the prior stochastic utility function for the next 

generation of the product. We applied our approach on selection 

decisions involving vehicles exhibiting partial to full autonomy. Our 

approach showed how one can accommodate the variation in the 

preferences of the decision makers to make a decision. Furthermore, 

if more information becomes available, how one can update the 

distribution of variables modeling these preferences. We showed how 

this resulted in a changed decision and also showed the effect of not 

updating the decision as new data became available. 

We restricted the application to the parameters of single attribute 

utility functions. In the future, we intend to also consider the variation 

in the scaling constants for the multiattribute utility function. This way 

we can account for variation in the tradeoff behavior between 

different decision makers. Along the same lines, the assumption that 

all decision makers have the same worst and best case of each attribute 

may not always be correct and we will attempt to relax this 

assumption. We intend to also extend our approach to non-normal 

distributions as well.  

The strength of a Bayesian approach is the choice of the prior, and 

contrastingly, it also is its biggest weakness. In our application, we 

selected distribution parameters that would best differentiate between 

the prior and the posterior. We believe exploration of the sensitivity 

to the distribution form and the parameter values is worth pursuing. 

Finally, we believe this is a powerful tool for continuous improvement 

of the decision making process, especially for problems as dynamic as 

encountered in vehicle autonomy. In large organizations, this 

approach and its future extensions should provide a feedback loop that 

translates anticipated design needs with experience from the field in 

the continuous cycle of design development. 
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APPENDIX 

Attribute calculations 

   𝑠(𝐱, 𝐯) = 𝑠𝑟𝑠𝑚𝑎𝑥(𝐱, 𝐯)                                                                                                                        A.1 

𝑠𝑚𝑎𝑥(𝐱, 𝐯) = 𝑡𝑡𝑠𝑡𝜂𝑡
𝑠(𝐱, 𝐯) + (1 − 𝑡𝑡)𝑠𝑎𝜂𝑎

𝑠 (𝐱, 𝐯).                                                                               A.2  

𝜂𝑡
𝑠(𝐱, 𝐯) = 𝜂𝛿𝑠

(𝛿𝑠)𝜂𝑠𝑠
(𝑠𝑠)𝜂𝜏(𝜏)                                                                                                         A.3 



Page 10 
DISTRIBUTION A: Approved for public release; distribution unlimited. OPSEC#: 3432 

𝜂𝑎
𝑠 (𝐱, 𝐯) = 𝜂𝛿𝑠

(𝛿𝑠)𝜂𝑠𝑠
(𝑠𝑠)𝜂𝜌(𝜌)                                                                                                        A.4 

𝜂𝛿𝑠
(𝛿𝑠) = 𝑒−(

𝛿𝑠
1.1

)
2

                                                                                                                              A.5 

𝜂𝑠𝑠
(𝑠𝑠) = 1 − 𝑒−

𝑠𝑠
20                                                                                                                             A.6 

𝜂𝜏(𝜏) = −0.07𝑒1.93𝜏 + 1.07                                                                                                              A.7  

𝜂𝜌(𝜌) = 2.7182(1 − 𝑒−𝜌)                                                                                                                 A.8  

𝑎(𝐱, 𝐯) = 𝑡𝑡𝑎0𝜂𝑡
𝑎(𝐱, 𝐯) + (1 − 𝑡𝑡)𝑎0𝜂𝑎

𝑎(𝐱, 𝐯)                                                                                    A.9    

𝜂𝑡
𝑎(𝐱, 𝐯) = 𝜂𝑎

𝑠𝑡(𝑠𝑡)𝜂𝑎
𝛿𝑠(𝛿𝑠)𝜂𝑡,𝑎

𝑖𝑛𝑡(𝜌𝑡𝑒𝑟𝑟𝑎𝑖𝑛)                                                                                          A.10  

𝜂𝑎
𝑎(𝐱, 𝐯) = 𝜂𝑎

𝑠𝑡(𝑠𝑡)𝜂𝑎
𝛿𝑠(𝛿𝑠)𝜂𝑎,𝑎

𝑖𝑛𝑡(𝜌, 𝜌𝑡𝑒𝑟𝑟𝑎𝑖𝑛)                                                                                       A.11 

𝜂𝑎
𝑠𝑡(𝑠𝑡) = 1 − exp ( −

𝑠𝑠

20
)                                                                                                                 A.12 

𝜂𝑎
𝛿𝑠(𝛿𝑠) = exp ( −

𝛿𝑠

10
)                                                                                                                       A.13 

𝜂𝑡,𝑎
𝑖𝑛𝑡(𝜌𝑡𝑒𝑟𝑟𝑎𝑖𝑛) = 𝑒𝑥𝑝 (−

𝑠𝑟

2𝜌𝑡𝑒𝑟𝑟𝑎𝑖𝑛
)                                                                                                     A.14 

𝜂𝑎,𝑎
𝑖𝑛𝑡(𝜌, 𝜌𝑡𝑒𝑟𝑟𝑎𝑖𝑛) = 𝑒𝑥𝑝 (−

𝑠𝑟

2(𝜌+𝜌𝑡𝑒𝑟𝑟𝑎𝑖𝑛)
)                                                                                           A.15 

𝜉(𝐱, 𝐯) = 𝑡𝑡𝜂𝑡
𝜉(𝐱, 𝐯) + (1 − 𝑡𝑡)𝜂𝑎

𝜉(𝐱, 𝐯)                                                                                             A.16 

𝜂𝑡
𝜉(𝐱, 𝐯) = 𝜂𝜉

𝑠𝑠  (𝑠𝑠)𝜂𝜉
𝛿𝑠 (𝛿𝑠)𝜂𝜉

𝜏(𝜏)                                                                                                       A.17 

𝜂𝑎
𝜉

(𝐱, 𝐯) = 𝜂𝜉
𝑠𝑠  (𝑠𝑠)𝜂𝜉

𝛿𝑠 (𝛿𝑠)𝜂𝜉
𝑎(𝜌)                                                                                                      A.18 

𝜂𝜉
𝑠𝑠  (𝑠𝑠) = 1 + exp (−

𝑠𝑠

50
)                                                                                                                 A.19 

𝜂𝜉
𝛿𝑠  (𝛿𝑠) = 2 − exp ( −

𝛿𝑠

10
)                                                                                                               A.20 

𝜂𝜉
𝜏(𝜏) = 0.29𝑒2.93𝜏 + 0.71                                                                                                                 A.21 

   𝜂𝜉
𝑎(𝜌) = 3𝑒−𝜌                                                                                                                                     A.22 


