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ABSTRACT 

The Naval Smface Watfare Center, Panama City Division Fanselau Magnetic Test Facility includes 
a large, three-axis, magnet coil system that provides a highly uniform magnetic field over a large spatial 
volume. Each axis consists of an arrangement of four circular coils aligned along a common axis, whose 
relative dimensions and spacing are optimized for field uniformity. The design of the coil anangement is 
based on an analysis originally published by Gerhard Fanselau in 1929, and later improved by Werner 
Braunbeck in 1934. Since the Fanselau and Braunbeckjoumal articles were published in German, an 
examination of their theoretical analyses, along with some additional suppmting material on 
�lectromagnetic themy to introduce the problem, are presented here for the C<;)nvenience of the reader. 
The essence of their approach centers on expressing the magnetic scalar potential of the coil system as an 
infinite series and adjusting the coil diameters and spacing to zero-out the largest terms contributing to 
nonuniformity of the magnetic field. 
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INTRODUCTION 

The Naval Surface Watfare Center, Panama City Division (NSWC PCD) Fanselau Magnetic Test 

Facility features a large, three-axis, magnet coil system having a coil arrangement based on a design 

originally developed by Gerhard Fanselau 1 and later refined by Werner Braunbeck.2 Figure 1 shows the

Fanselau/Braunbeck coil arrangement of the facility. The coil design provides a magnetic field having a 

high degree of uniformity over a large spatial volume. Since the original papers by Fanselau and 

Braunbeck were published in Geiman, in 1929 and 1934, respectively, the basic theory behind the 

derivation of the coil-geomet1y parameters, based on the original works, will be presented in this 

document for the reader's convenience. We have supplemented the content of their original analyses with 

sufficient background material on electromagnetic theo1y to provide a complete treatment of the problem. 

Figure 1. NSWC PCD Fanselau Magnetic Test Facility 3-axis magnet coil 

THEORY 

Fanselau performed a theoretical analysis to optimize the magnetic field uniformity of magnet coil 

systems consisting of various numbers of circular coil pairs, all aligned along a common axis, with each 

coil carrying the same amount of total electric current. The system geomet1y based on a single coil pair 

gives the well-known Helmholtz coil configuration, and the system composed of two coil pairs (providing 

even greater field uniformity) is known as a Fanselau coil. Additional coil pairs fu1ther increase the field 

uniformity, but may not be practical or necessaiy for all situations. 
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Fanselau based his analysis upon classical electromagnetic theory. In the case of static magnetic 
fields generated by constant-current coils, Maxwell's equations pe1taining to the magnetic field are given 
by: 

V·B = 0

and 

VXH=J, 

where, in terms of the International System of Units (abbreviated SI), Bis the magnetic flux density in 
tesla, His the magnetic field intensity in Alm, and /is the cunent density in A/m2

. 

(1) 

(2) 

In any region free of current, such as the empty volume of space surrounding magnet coils, Equation 
(2) becomes

VXH=O. (3) 

From vector calculus, Equation (3) infers that H can be expressed as the gradient of a scalar potential 
(since the curl of the gradient of any scalar field is always zero): 

(4) 

where <PM is introduced as the magnetic scalar potential. The minus sign indicates the convention that H 
points towards lower levels of magnetic potential. With the assumption that air is the medium in the 
region sunmmding the magnet coils, the relation between Band His linear and given by 

where µ0 = 4n X 10-7H/m is the magnetic permeability of free space. 

Substituting Equation (5) into Equation (4) and applying Equation (1) gives: 

Dividing both sides of Equation (6) by µ0, we have 

(5) 

(6) 

(7) 

which is Laplace's equation. Therefore, the expression for the magnetic scalar potential of the magnetic 
coil system must satisfy Laplace's equation in regions of space surrounding the coils. 

Since Fanselau' s analysis made use of a spherical coordinate system, let us define the nomenclature 
and angular direction conventions that we will be using in our discussion. Figure 2 shows the relationship 
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between spherical (r, 8, cp) and Cartesian (x, y, z) coordinates in three-dimensions for a position vector 

r = xx + yy + zz, where x, y, and z are unit vectors pointing along the positive orthogonal directions of 

the x-, y-, and z- axes, respectively. In spherical coordinates, the point P located by the vector r is 

specified by the radial distance rof the point from the origin, the polar angle 8 measured from the 

positive z-axis to r, and its azimuth angle ¢ measured from the positive x-axis in a counterclockwise 

direction (as shown) about the z-axis to the orthogonal projection of r onto the zy-plane. The coordinates 

ranges are: 0 $ r < ro, 0 $ 8 $ n, and O $ ¢ $ 2rr. The equations necessary to obtain Cartesian 

components of r from spherical coordinates are: 

and 

X 

x = r sin 8 cos ¢ 

y = r sin 8 sin ¢ 

z = r cos 8 

z 

p 

-------;..--�,-y 
I ......... r ,'

',,,,, J'/i) 
I 

',,, (9 / X = r sin 8 COS cp 
',, I 

', I 

',, I 

',, I 

-------------------- ''!JI 

y = r sin e sin ¢ 

Figure 2. Comparison of Cartesian and spherical coordinates 

(8) 

(9) 

(10) 

Fanselau's approach to optimize the field uniformity of a given coil system involved constructing the 

magnetic scalar potential for the system and adjusting the relative geometrical dimensions of the system 

to make the largest tenns contributing to a nonuniform field vanish. We can explain his approach by · 

refeITing to the simple case of a single pair of circular coils as illustrated in Figure 3. Here we have two 

identical, horizontal coils of radius a with their axes co-aligned with the z-axis and separated from each 

other by a distance, 2d. Each coil carries an electrical current,/, flowing counterclockwise when viewed 

from above, as indicated in the figure. 
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a 

Figure 3. Single pair of coils aligned along the z-axis 

We have shown that the magnetic scalar potential at any point P located in the region surrounding 

the coil pair (specified in the figure by the position vector r) must be a solution to Laplace's equation. In 

spherical coordinates, Laplace's equation is expressed as: 

(11) 

The two-coil system under discussion exhibits axial symmetry, since the coil geometry is 

independent of the azimuthal angle ¢. Therefore, the last term of the Laplacian in Equation ( 11) 

vanishes. With this simplification, the general solution for the potential is well known3 and takes the 

form: 

<PM(r, 8) = L (A 1r
1 
+ c1r-1-1) P1(cos 8),

l=O 

where the A i 's and Ci 's are arbitrary constants and the Pi (cos 8) are the Legendre polynomials. For 

reference, the first eight Legendre polynomials are given in Table 1 and plotted in Figure 4. Equation 

4 
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(12) simplifies fmther ifwe restrict the solution to the region between the coils, such that z = r cos e �

±d. Since this region includes the origin, at r = 0, the terms with inverse powers of r (the C1 terms) will

blow up; and thus, all the C1 's must be set equal to zero: Therefore, the general solution of the magnetic 

scalar potential in the region between the coils becomes: 

0 

1 

2 

3 

I 

4 

5 

6 

7 

¢M(r, 8) = I A1r
1P1(cos 8).

l=O 

Table 1. First Eight Legendre Polynomials 

P1 (cos8) 

1 

case 

1 
Z (3 COS

2 8 - 1)

1 

2 
(5 cos3 e - 3 cos e)

1 
8 (35 cos4 

e - 30 cos 2 
e + 3)

1 
8 (63 COS

S 
e - 70 cos3 

e + 15 cos 8)

1 

16 
(231 cos6 

e - 315 cos4 
e + 105 cos2 

e - 5)

1 

16 
(429 COS

7 8 - 693 COS
S 8 + 315 cos3 8 - 35 cos€)) 

5 

(13)
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To determine the coil diameters and spacings of a given coil system that maximize its field 

unifonnity, Fanselau started by generating the magnetic scalar potential of the system expressed as an 

infinite sum having the form of Equation (13). He then analytically solved for the coil system's 

dimensional parameters by setting as many of the largest terms in the sum contributing to a nonunifonn 

field to zero as the number of degrees of freedom of the system allowed. Any term in Equation (13) with 

l > 1 contributes to the field's nonunifotmity. 

We will now begin the derivation of the magnetic scalar potential of a circular coil system. We start 

by deriving the expression for the potential along the z-axis of a coil pair and then generalize it later to be 

applicable to all space between the coils based on the known general form of the solution to Laplace's 

equation given by Equation (13). The solution for the magnetic scalar potential will then be adapted to 

include coil systems containing an arbitrary number of coil pairs. 

Consider a circular loop of radius a carrying a current J, located in the xy-plane of a Cartesian 

coordinate system, as shown in Figure 5 below. The center of the loop is located at the origin, with its 

axis along the z-direction. The law of Biot and Sava1t is used to calculate the magnetic field at a point 

located on the loop axis. The infinitesimal field dH, a distance z from the center of the loop along the z­

axis to the field measurement point P, associated with the current flowing in differential length element 

dl is given by 
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I dl x R 
dH=- ---

4rr R3 

(14) 

where R is the displacement vector from dl to P. The differential vector dl, shown in the figure for a 

cylindrical coordinate azimuthal angle <p = rr/2, is tangent to the loop and points along the current 

direction into the page. Its cross product with R gives the direction of dH, making the magnetic field 

direction perpendicular to both dl and R, lying in the plane of the page as shown. The field contribution 

dH makes an angle a with the z-axis and can be broken up into a component perpendicular to the loop 

axis, dllperp, and one along the axis, dHz. 

z 

dH 

p 

z 

dl 

X 

Figure 5. Current loop in the xy-plane 

Integrating Equation (14) along the current elements around the circumference of the loop gives the 

magnetic field atP. Given the symmetry of the loop, the contributions to the integral from dllperp cancel 
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out, as each dl has a balancing current element counterpati, pointing in the opposite direction, half of a 
circumference away. The dHzcontributions to the field all point in the same direction along the loop axis 
and add together to produce the entire field. As we see in Figure 5, 

and 
dHz = dHcosa 

a a 

cos a = - = -;::=== 
R -vaz + z2 

(15) 

(16) 

Since dl is perpendicular to R, the magnitude of the differential field component along the axis obtained 
using Equations (14), (15), and (16) is 

I R dl sin(rr/2) a
dHz=-------4([ R3 R 

I a2 d<p 

4rr (a2 + z2)3/2 ,
(17) 

where the substitution dl = ad<p relating the differential length element and the differential cylindrical 
azimuthal angle d<p was inse1ied. Therefore, integrating Equation ( 17) around the loop circumference, 
the magnetic field at point P can be expressed as 

H(z) = 
I az Ja2 

J

2rr 

4rr 3 
d

cp 
= 

3(az + z2)z o 2(a2 + z2)z

The magnetic scalar potential along the positive axis of the current loop is obtained by inve1iing 
Equation (4) as follows: 

fz /az fco dz' /( z ) 
<f.>M(z > O) = - H(z')dz' = 

2 � 
= 

2 1 - 2 2 · 
co z (a2 + z'2)2 -va + z 

(18) 

(19) 

For points along the z-axis below the loop, given by z < 0, the potential can be computed by 
evaluating the above integral from z' = -oo to z' = z. Below the loop, the magnetic field still points 
upward (positive z-direction) and the potential goes to zero at z = -oo along the axis. Upon evaluation of 
the integral, the potential for negative z takes the form: 

<PM(z<0)=--
2
1 (1+ z 

)
-vaz + z2 

(20) 

Figure 6 is a plot of the magnetic scalar potential along the z-axis computed using Equations ( 19) and 
(20) for a 1-m-diameter coil canying a current of 1 ampere. Note that the units of <PM are amperes, and 
thus its gradient computed in the expression given by Equation ( 4) gives the usual units for the magnetic
field intensity as amperes per meter (A/m). 
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Figure 6. Magnetic scalar potential of a current loop 

We now want to detennine the magnetic scalar potential for a pair of coaxial magnet coils like those 

shown earlier in Figure 3. Consider a system of two identically sized coils (shown in blue), each having a 

current! and a radius a, with their axes aligned along the z-axis, as illustrated in the diagram of Figure 7. 

The upper coil is located a distance d above the xy-plane containing the origin, and the lower coil is an 

equal distance below, such that the coils are separated by 2d An arbitra1y point P, used to specify the 

computation position of the potential, is located a distance z(shown in red) along the z-axis. The distance 

from the origin to the edge of either coil (indicated in green) is labeled R, and the polar angle associated 

with R will be referred to as 81 . Finally, the distances from point P to the upper and lower coil edges 

(brown lines) are labeled R_ and R+ , respectively. 
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z 

a >I

i 
d 

( a >I

Figure 7. Diagram of two vertical-axis coils 

The magnetic scalar potential in the region between the two coils is the sum of the potentials from 

each coil. For the upper coil, using Equation (20) and accounting for the fact that the coil is offset a 
becomes 

distanced from the origin, we make the change of variable z z - d, and get:

<P1:fper(z) = -- 1 + 
/
[ 

z-d l2 J (z - d)2 + az 

(21) 

Similarly, the potential between the coils contributed by the lower coil, obtained using Equation ( 19) 
becomes , 

with z z + d , is expressed as

cp�wer(z) = _ 1 _ /[ z+d
l 2 ./ (z +. d)2 + az 

(22) 

Adding Equations (21) and (22) gives us the total magnetic scalar potential (f)M (z) between the coils for 

points along the axis: 
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(23) 

Plots of Equations (21 ), (22), and (23) are shown in Figure 8 for the arbitra1y case of one ampere 
flowing through coils having a 1-meter diameter (a= 0.5 meters) and a 2-meter spacing (d= 1 meter). 
The positive polarity current circulates in a counterclockwise direction when viewed looking vertically 
downward. Since the slope of the total potential (green trace) is negative along the axis of the coil system 
at all points between the two coils, according to Equation ( 4) the magnetic field is positive and appears to 
have its minimum value at z = 0 m for this case. 
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0.8 1 

In order to use Fanselau's approach for optimizing a .circular coil system's magnetic field uniformity, 

we must put Equation (23) into a form that resembles Equation (13). Therefore, we need to take the 

closed-fonn expression of Equation (23) and transform it into an infinite series. The generating function 

for Legendre polynomials is often useful in problems of this type. It is given by:4 
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g(x,h)= 
1 

=�hlP1(x)�
..J1 -zxh + h2 L 

l=O 

(24) 

lhl < 1

With the fonn of this generating function in mind, we will proceed by canying out the squares under 

the square root tenns in Equation (23): 

and 

<PM (z)=-!_[ 
z-d

+----;:::==z=+
=
d===] 2 ,jz 2 

+ (a2 + d2) - 2zd ,jz2 + (a2 + d2) + 2zd 

RefetTing back to Figure 7, it is evident that 

Rz 
= aZ 

+ dz 

d = R cos 81.

Substituting Equations (26) and (27) into Equation (25), we get: 

<t>M(z)=-- +----;:::====== 

/ 
( 

z -R cos 81 z + R cos 81 )
2 ,J z 2 + R2 - 2zR cos 81 ,J z2 + R2 + 2zR cos 81 

Also from Figure 7, we see that: 

R_ = ,Jaz + (d - z)2 
= ,jz 2 + R2 - 2zR cos 81 

and 

R+ = ,ja2 
+ (d + z)2 

= Jz2 + R2 + 2zR cos 81 

Therefore, upon making these substitutions, Equation (28) becomes: 

__ !_ (z - R cos 81 z + R cos 81)
<t>M(z) - 2 R 

+ 
- R+ 

If we let x = cos 81 and h = z/ R, Equation (24) for the generating function gives 

Therefore, we can express the reciprocal of Equation (29) as 

12 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32)



1 

R_ 

and similarly, from Equation (30) we have 

Substituting Equations (33) and (34) into Equation (31), the potential is 

(33) 

(34) 

(35) 

The Legendre polynomials with odd values of l are odd functions and those with even l are even (see 
Figure 4), therefore, 

(36) 

Using Equation (36) to separate the Pi (-cos 81) terms of the summation of Equation (35) into even 
and odd summations leads to 

which simplifies to 

<PM (z) = -J f (;)
l+l 

Pi (cos 81) +If (;)
l 

cos 81 Pi (cos 81)

l even l odd 

The even summation of Equation (38) can be written as a summation over odd l if the index is 
shifted down by one (l � l - 1), so that 

13 

(3 
7) 

(38)



Inserting this equation into Equation (3 8), the expression for the potential becomes 

00 

<PM (z) =-IL (;)
l 

[P1_1 (cos81)- cos81 P1 (cos81)] 

l odd 

An established recmsive relationship that holds true for the Legendre polynomials is5 

where 

Taking x = cos 81 and reananging Equation ( 41 ), we see that 

Substituting Equation ( 43) into Equation ( 40) leaves us with 

00 

'PM (z) = -I sin2 81 L f (;) 1 P( (cos 81)

lodd 

(399) 

(40) 

(41) 

(42) 

(43) 

(44) 

We can generalize this expression that is restricted to positions along the z-axis between the coils, to 

include all r and 8 in this region, by comparing Equation ( 44) with the fonn of the general solution given 

in terms of spherical coordinates by Equation (13); and so the complete solution valid for all positions 

between the coils must be 

(45) 

where the general coefficient of Equation (13) is given by 

(46) 
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Rewriting Equation ( 45) to separate the coil-geometry factors from the general factors, we get 

where the term in square brackets exclusively contains the information about the relative size and 

separation of the coils. 

(47) 

From the above derivation, it is clear on how to proceed to compute the total magnetic scalar 

potential if additional circular coil-pairs are added to the magnetic coil system, assuming the midpoint of 

each pair is centered at the origin canying cmTent I, and all pairs share a common axis. The complete 

potential for such a system consisting of K coil-pairs can be obtained by replacing the bracketed coil­

geomet1y term in Equation ( 4 7) by a summation over the coil-geometry te1ms appropriate to each coil 

pair. The resulting potential is oo [/( 2 
l1 1 

sin 8k 
<PM(r, 8) = -I I yr P1(cos 8) I 

RL P{ (cos 81J 

lodd k=1 
k 

(48) 

where R1c and 8kare the radial distance and polar angle, respectively, defining the geometry of coil-pair k, 

generalizing the nomenclature we originally used for a single coil-pair in Figure 7. 

As stated earlier, any terms in the magnetic scalar potential of a coil system having l > 1 introduce 

nonunifmmity to the conesponding magnetic field. Since the potential of the system given by Equation 

( 48) contains all of the terms containing odd values of lout to l = co, it is impossible to generate a

perfectly unifmm magnetic field with a coil system of this type. However, field uniformity of such a coil

system can be maximized by adjusting the coil-geometty parameters Rk and ek for each coil-pair so that

as many of the largest terms having l � 3 vanish. Each term of Equation ( 48) in the summation over l

gets smaller as l increases because of the 1/l and (r /R1J
1 factors. Therefore, making as many of the

lowest !-terms vanish as is possible, starting with l = 3 and progressing upward in l if the number of

adjustable parameters allows, produces the greatest increase in field uniformity.

Using Equation (48) for <PM (r, 8), we can now calculate coil parameters for systems composed of

various numbers of coil-pairs. We will demonstrate Fanselau's method in the computation of the coil 

geomett·ies for the case of a single coil-pair (I( = 1), resulting in the familiar Helmholtz coil geometty;

and for a system based on two pairs of coils (K = 2), the so-called Fanselau coil. Braun beck's improved 

solution to the Fanselau coil geometry is then discussed. 

Helmholtz Coil 

For the case of one pair of coils, K = 1, and Equation ( 48) reduces to the expression for the potential 

given in Equation (47). The coils each have a radius a, and are separated by a distance of2d. A diagram

illustrating the coil geometty parameters R1and 81is shown in Figure 9. In a practical coil design, in most 

cases, either the coil radius or separation will be specified based on requirements, and their ratio will be 
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determined by the solution for 81 . Therefore, this coil configuration has only the single adjustable 

parameter 81 , but the coil dimensions can be scaled to arbitrary size based on this angle. 

z 

a >I

d 

< a >I

Figure 9. Geometrical parameters for the Helmholtz coil analysis 

To maximize the magnetic field uniformity, the bracketed term of Equation (47) must vanish for the 

l = 3 term. Thus, this condition requires 

(49) 

which, after eliminating the nonphysical trivial solutions (81 = 0 or R1 = oo), becomes 

(50) 

From Table 1, the Legendre polynomial of degree 3 is 

P3 (cos e) = 2 (5 cos3 e - 3 cos e) 
I 

(51) 

and therefore, its first derivative with respect to cos 8 is given as 
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3 
P�(cos 8) = z (5 COS

2 8 - 1) 

Substituting Equation (52) into Equation (50) and solving gives 

1 
CQS 81 = ±

{s 

(52) 

(53) 

where the positive solution corresponds to 81 = 63.4° for the upper coil and the negative solution to 81 = 
\ 

116.6° for the lower coil. From Figure 9 we see that 

(54) 

and so it follows (using the Pythagorean theorem) that the coil radius is 

(55) 

From Equations (54) and (55), we conclude that a = 2d, indicating that the coil radius is equal to the coil 
separation, confirming the well-established design of a Helmholtz coil. 

Fanselau Coil 

We will now examine a system configuration containing two pairs of coils as illustrated in Figure 10. 
Fanselau's analysis of this coil system allows the relative relationships between the four parameters (a1, 
a2, d1, d2) to be determined. 
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l 

Figure 10. Fanselau coil configuration 

Figure 11 defines the geometry of the four-coil system. The outer coils are shown in red and the 
inner coils in blue. This coil configuration has three adjustable parameters: the angles 81 and 82 , and the 
ratio Rd R2', which relates the dimensions of one coil pair to the other. Fanselau's approach to optimize 
the magnetic field unifo1mity of this system is to find parameter values that make the l = 3 and l = S 
terms of the potential vanish. He begins his solution of the K = 2 case by setting the bracketed term of 
Equation ( 48) to zero for l = 5, giving: 

(56) 

Defining the variable p = Rd R2, we can rewrite the above equation as 

(57) 
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z 

a1 ----?I 

di

d2

r 
d2

di

a2 �, 

Figure 11. Fanselau coil geometry diagram 

Though Equation (57) has three unknowns, Fanselau recognizes he can solve for the two angular 

parameters by setting the two individual terms of the sum equal to zero. This reduces the problem to 

independently choosing 81 and ()2so that P5 ( cos 81) and P5 ( cos ()2) each vanish, analogous to the manner 

in which he solved the Helmholtz coil geometry. This approach allows for an analytical solution. The 

Legendre polynomial with l = 5 (see Table 1) is 

1 
P5 (cos 8) = 

S 
(63 cos 5 8 - 70 COS

3 8 + 15 COS 8)
(58) 

Setting its derivative to zero, produces 

' 1 
P5 (cos 8) = 

8 
(315 cos4 8 - 210 cos 2 

e + 15) = o
(59) 

This equation reduces further and is then easily solved for cos2 e by using the quadratic formula. The 

final solutions are simply the square roots of the cos2 e solutions, which are 

(60) 
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Based on the angular designations given in Figure 11, the angle for the outer pair of coils conesponds to 

the cosine solution with the larger magnitude 

and the inner coil solution is therefore equal to 

1 2 1/2 

cos 82 = ± (3- 21 v) = ±0.28523 

These results give angular values of 81 = 40.088° and 82 = 73.427°, for the outer and inner coils, 

respectively. 

Next, Fanselau solves for p by making the l = 3 term of the potential vanish. Setting the 

c01Tesponding square-bracketed term in Equation ( 48) equal to zero, gives us 

(61) 

(62) 

(63) 

Upon rearranging and using the above solutions for the angular parameters 81 and 82 , the solution for p is 

_ [-
sin2 81 P�(cos 81)

]

113 
_ p - 2 '( ) - 1.1359 ,

sin 82 P3 
cos 82 

(64) 

where Equation (52) was used for the computations of P�(cos e). 

Since sin 8i = ad R i and cos 8i = di/ Ri for i = I or 2 (see Figure 11), the following dimensional ratios 

result from Fanselau's solution of the four coil problem: 

sinfJ2 . 8 = 1.3102 psm 1

d1 cos 81 
-=--= 1 1880 a1 sin 81

cos 82 . 8 = o.3899
psm 1

d2 cos 82 

- = -- = 0.2976 
a2 sin 82 
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Braunbeck Coil 

Five years after Fanselau's analysis of the two-coil-pair geometry, Braunbeck published a paper with 

an improved solution of the K = 2 case of Equation (48). With two coil pairs, as stated earlier, there are 

three parameters in the solution: (Ji , 82, and p. Fanselau was able to solve for these parameters 

analytically by setting the l = 3 and l = S te1ms of the magnetic scalar potential to zero. Due to the 

particular structure of Equation (57), he was able to break it into two independent equations, with each 

one depending on the angle col1'esponding to a different coil pair. Fanselau simply solved Equation (59) 

twice by finding two angles (81 and 8z) that made P� ( cos 8) vanish. He then used the equation making 

the l = 3 term of the potential vanish to solve for p. 

Braunbeck realized that he could use the three adjustable parameters to not only zero-out the l = 3 

and l = S terms of the potential, but also the l = 7 term. This modification results in an increase in field 

unifo1mity over the Fanselau solution because an additional nonunifo1m contribution to the field 

vanishes. He set the term that is in brackets in Equation ( 48) to zero for l = 3, 5, and 7, to produce the 

fo11owing set of equations: 

(69) 

(70) 

(71) 

These nonlinear equations cannot be solved analytically. Braunbeck solved these three equations in 

three unknowns with a numerical technique, the details of which were left unspecified in his paper. The 

solutions he obtained for the parameters are: 

cos 81 = ±0.74213 (72) 

cos 82 = ±0.26789 (73) 

p = 1.0980 (74) 

Braunbeck claims there is some unce1iainty in the last digit of his quoted results. To check 
Braunbeck's results, we solved the set of Equations (69), (70), and (71) using a brute-force approach on a 

desktop personal computer. The computer program used nested loops to step through values of the 

parameters cos 81 and cos 82 in very fine increments. Within the inner loop, p was computed using 
Equation (70). This value was used along with the stepped cosine values to compute the left sides of 

Equations ( 69) and (71 ). If the absolute values of both of these computed terms were lower than their 
previous minimum values, the current values of the parameters were stored as the solution. This process 

was repeated over the full range of programed cosine values. To increase the precision of the results, 

21 



after the solution region of parameter space was narrowed down, the cosine step sizes and their range 
were progressively reduced until the desired number of significant figures was attained. Table 2 
summarizes the results obtained for the two-coil-pair configuration by Fanselau, Braunbeck, and our 
computer solution. 

Braunbeck's higher field-uniformity coil-geometry parameters were slightly different from those 
computed by Fanselau. His f\ and ()2 angles were two degrees and one degree higher, respectively, than 
Fanselau calculated. His value for p was approximately 3 .5 percent lower than Fanselau 's result. Our 
computer results ( carried out to nine decimal places) confumed the accuracy of Braunbeck' s 1934 
numerical approach. 

Table 2. Fanselau/Braunbeck Coil Parameters 

Parameter Fanselau Braunbeck Computer 

cos ()1 ±0.7651 ±0.74213 ±0.742070427 

cos ()2 ±0.2852 ±0.26789 ±0.267867793 

p 1.1359 1.0980 1.097954859 

81 40.09° 

42.087° 

42.0919° 

()2 73.43° 

74.461° 

74.4626
° 

a2/ a1 1.310 1.309 1.30907 

d11 1.188 1.107 1.10704 a1 

dz/ 0.3899 0.364 0.36396 a1 I 

d21 0.2976 0.278 0.27803 a2 
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SUMMARY 

We have presented the details of the approach used by Fanselau in his 1929 paper to design circular 

magnet coil systems providing a high degree of field uniformity. He based his method around 

constructing an infinite series to represent the magnetic scalar potential of a coil system containing a 

pmiicular number of coaxial coil pairs. He analytically solved for the system's dimensional parameters 

(i.e., radius of each coil pair and coil spacing) by setting as many of the largest tem1s of the series 

contributing to a nonunif01m field to zero as the number of dimensional degrees of freedom allowed. We 

demonstrated Fanselau' s analysis for the cases of both a single coil pair and a system of two pairs of coils, 

the latter of which is known as a "Fanselau Coil." Next, we presented Braunbeck's improved solution to 

the Fanselau coil geometry. Braunbeck increased field uniformity by removing an additional nonuniform 

term in the potential by numerically solving the equations for the coil parameters. 
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