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Abstract—Radars require modified signal processing to be able
to employ waveforms other than linear frequency modulated
chirps. This paper describes a computationally-efficient method
for designing pulse-compression filters that improve performance.
These pulse-compression filters have been previously described in
terms of a time-domain representation—finding the finite impulse
response filters required solving a large system of linear equa-
tions. The approach described here translates the filter design
specifications into the frequency domain. The frequency-domain
representations lead to algorithms with an order of magnitude
lower complexity and that are more readily parallelized. The
design approaches described here are an important step to using
these advanced pulse-compression filters in situations where they
must be computed in real-time.

I. INTRODUCTION

Coherent pulse trains of linear frequency-modulated (LFM)
waveforms combined with matched-filter pulse compression,
or mismatch filtering via tapering, are the workhorses of
modern surveillance radars [1]–[3]. This combination gives
excellent performance for both synthetic aperture radar (SAR)
and moving target indication (MTI) radars, but offers little
flexibility.

Recent years have seen growing interest in waveform di-
versity generally, and pulse-to-pulse waveform agility more
specifically. For example, pulse-to-pulse agile waveforms have
been proposed as a tool to mitigate range ambiguities [4], [5],
encode communication data in the radar transmission [6], or
avoid interference to other users in a dynamic spectrum envi-
ronment [7]. Additional potential benefits have been discussed
in [8], [9], and [10].

Unfortunately, moving away from a train of identical LFM
pulses can cause performance problems for a radar. The
specifics are different for SAR and MTI, but in both cases,
advanced pulse-compression filters can, to a degree, mitigate
the loss in performance.

In MTI radars, returns from multiple pulses are combined
coherently to cancel echoes from stationary ground clutter and
enable detection of only moving targets. The main problem
with using conventional pulse compression with pulse-to-pulse
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agile waveforms in MTI radar is that matched filters will
cause range-sidelobe modulation (RSM) of the clutter energy.
Because the range sidelobes of the impulse response (IPR)
differ on each pulse, clutter energy that leaks into these range
sidelobes cannot be canceled by the subsequent processing,
and prevents detection of weak targets. This clutter leakage
problem can be corrected by designing pulse-compression fil-
ters with matched IPRs. This approach was given the moniker
“joint least-squares” (JLS) filters in [6], and were studied
further in [11] and [12].

For SAR, the higher IPR sidelobes of non-LFM waveforms
cause a reduction in image contrast that is quantified by
the multiplicative noise ratio (MNR). Better MNR can be
obtained by using a pulse-compression filter that yields a low
integrated sidelobe ratio (ISLR). “Mismatch filters” (MMF)
are pulse-compression filters that minimize ISLR; they have
been described in [13]–[15].

A. Contribution of this Paper

Prior presentations of MMF and JLS filters used a time-
domain representation for the filter design objectives and
algorithms. This paper describes frequency-domain synthesis
of MMF and JLS pulse-compression filters, which is much
simpler computationally, and could open the door to greater
application of pulse-to-pulse waveform agility.

B. Radar Processing Background

Both SAR and MTI radars typically employ bursts of pulses
called a coherent processing interval (CPI). Suppose a radar il-
luminates a scene with a CPI of M pulses. In the case of pulse-
to-pulse agility, a different waveform sm, m ∈ {1 . . .M}
is used for each pulse. The received signal is the waveform
convolved with the scene response plus complex Gaussian
noise added by the receiver electronics. Pulse compression
is applied to the returns from each pulse. Finally, the data
is coherently combined across the CPI using processing that
depends on whether the radar is performing SAR or MTI [2].

The filters described in the paper are the set of FIR
filters hm used to compress returns from each pulse. The
pulse-compression filters should coherently combine signal
correlated with the radar waveform, while not amplifying the
receiver noise excessively. For SAR, the specific objective is
to design a set of FIR filters hm, which when convolved with
the corresponding waveform sm produce an IPR with low
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integrated sidelobe ratio (ISLR); this is achieved by mismatch
filters. For MTI radar, the objective is to design filters that
produce matched IPRs across a set of waveforms, so that all
the clutter energy can be canceled; this objective leads to joint
least-squares filters.

C. Example
To motivate the frequency-domain synthesis approach, and

give some intuition about what the MMF and JLS filters are
trying to accomplish, we start with an example. In Fig. 1,
we show the waveform power spectral densities (PSD) for a
set of two waveforms, each a random quadrature phase shift
keyed (QPSK) signal with 25 chips. The MMF and JLS filters
were selected to be three times the length of the waveforms,
so have 75 coefficients. The PSDs of the filters are shown in
the second row of plots; MMF in the left column, and JLS
in the right column. The third row of plots are the waveform-
filter cross-spectral densities (CSD), which is the fast Fourier
transform (FFT) of the time-domain impulse response. The
impulse responses for the MMF and JLS filters are shown in
Fig. 2. Note that, in the frequency-domain, the effect of MMF
is to cancel out the ripples in the waveform PSD, so that the
waveform-filter CSD is quite flat. A flat CSD corresponds to
an impulse response with low sidelobes. In contrast, the effect
of the JLS filters is to cancel the ripples relative to a common,
optimal magnitude response. Because this CSD is optimized
for match across the CPI rather than flatness, the resulting
IPRs are matched, but do not have low sidelobes.

II. TIME DOMAIN FILTER SYNTHESIS

The time-domain filter synthesis for MMF and JLS filters,
and proofs of optimality of the filters for their corresponding
objective functions are given in [11]-[12]. The derivations will
not be repeated here.

We will merely mention that time-domain synthesis for both
kinds of filters involves solving very large systems of equations
that describe the objective functions in terms of time-domain
convolution of the filters and waveforms. The superiority of
frequency-domain filter synthesis approaches described here
are based on the idea that convolution in the time-domain
is equivalent to point-wise multiplication in the frequency-
domain. Computations that are coupled together in the time-
domain synthesis become uncoupled in the frequency domain,
leading to algorithms that are much simpler.

As described in [12], the linear system of equations describ-
ing the JLS or MMF filters in the time-domain can also be
solved via gradient descent. Because the system of equations
involves convolutions, the matrix multiplications required by
the gradient solver can be replaced by fast convolutions. As
we will show in Section IV, this gradient descent approach is
much faster than the direct solution of the system of equations.
Nevertheless, frequency-domain synthesis is even faster.

III. FREQUENCY-DOMAIN FILTER SYNTHESIS

The basic idea is that the target frequency-domain con-
tent of the filters can be determined point-wise. The point-
wise value is determined by dividing the target value of

the waveform-filter cross-spectral density by the waveform
frequency-domain content. The difficulty with this approach is
that the point-wise optimal frequency-domain content does not
correspond to a time-domain FIR filter of the desired length.
Simply truncating the synthesized time-domain filter taps leads
to poor performance. Instead, we follow the classic “window
method” filter design approach [16]. The window method is
typically used to design filters with much simpler frequency
responses, but since the waveform spectra are oversampled (by
at least a factor of κ), the frequency-domain target is smooth
enough that the time-domain filter taps are well behaved.

We next derive the target frequency-domain content for
MMF and JLS filters in terms of optimization problems, and
later describe the window functions that are used to obtain
time-limited filters.

A. Notation

We use (·)∗ to indicate complex conjugate, (·)T for trans-
pose, and (·)′ for Hermitian conjugate. Re(·) will indicate
the real part of a complex number; F(·) will indicate discrete
Fourier transform of a sequence. Let IM stand for the M×M
identity matrix, and diag(X) for the matrix with the elements
of vector X along the diagonal.

Let xm be the mth sampled, complex-baseband waveform.
The sampled waveforms have length Nc. The filters sought
have length Ñc = κNc, where κ ≥ 1.

The clutter-to-noise ratio (CNR) from clutter in one range-
bin, before Doppler processing, is σ2

c/σ
2
n.

B. Matched-Sidelobe JLS Filters

The JLS objective of matching IPRs across a set of M
pulses can be framed as matching of filter-waveform CSDs.
Let Xm = F (xm) be the FFT of the mth waveform of the
CPI, and let H jls

m = F
(
hjlsm
)

be the FFT of the corresponding
filter that we want to design. The FIR filter and waveform
should be zero-padded, so that they have a convenient length
for computing FFTs; let this FFT length be Nf .

The objective of matching IPRs is captured by the following
constrained minimization problem:

Γjls =
1

2M(M−1)

σ2
C

σ2
n

M∑
m=1

M∑
n=1

Nf∑
k=1

|Hm[k]X∗m[k]−Hn[k]X∗n[k]|2

+
1

M

∑M

m=1
‖Hm‖2, (1)

{H jls
1 , . . . ,H jls

M } ← arg min Γjls (2)

subject to
Nf∑
k=1

Xm[k]·Hm[k] = Nf , ∀m = 1 . . .M (3)

The first term of (1) penalizes mismatch between the CSDs,
and the second term penalizes increased filter noise gain. The
M constraints (3) ensure that the zero-delay sample of each
time-domain impulse response is unity.

We now rearrange the summations in the objective (1) by
stacking the coefficients involved at a particular frequency k so
that X[k] = (X1[k], . . . , XM [k])T is the vector of waveform
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Fig. 1. Filter and waveform power spectral densities and corresponding impulse responses, showing the frequency domain content of two waveforms (a), the
corresponding MMF and JLS filters (b,e), and the waveform-filter cross-spectral densities for each (c,f). Subplot (a) is duplicated for ease of comparison. The
impulse responses for these waveforms and filters are shown in Fig. 2.
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Fig. 2. Impulse responses produced by MMF and JLS filters for the waveforms in Fig. 1.

coefficients and H[k] is the corresponding vector of JLS filter
coefficients at frequency k.

Using the stacked notation, the objective function can be
rewritten as a sum of quadratic forms, one at each frequency:

Γjls =
1

2

∑Nf

k=1
H′[k] ΣS[k] H[k] (4)

where ΣS[k] is an M ×M matrix equal to:

η ·
(
M · diag(X[k]) diag(X∗[k])−X[k] X′[k]

)
+ ε IM (5)

and where η = 2(σ2
c/σ

2
n)/(M(M − 1)) and ε = 2/M .

Finally, we incorporate Lagrange multiplier terms to enforce
the normalization constraints in (3). Let 1 be a vector of M
ones, and Λ a vector of the M Lagrange multipliers. In this
notation, the unconstrained objective is:

Γ̃jls =
1

2

∑Nf

k=1
H′[k] ΣS[k] H[k] (6)

+ Re

{
Λ′
(
Nf · 1 −

∑Nf

k=1
diag(X[k]) ·H[k]

)}
By equating the Wirtinger gradient [17] of Γ̃jls with respect

to H[k] to zero, the minimum for frequency index k can be
shown to occur at:

Hjls[k] = Σ−1S [k] · diag(X∗[k]) ·Λ (7)

Substituting this into the constraint (3), the normalization
constants Λ can be found to be:

Λ = Nf ·

( Nf∑
k=1

diag(X[k]) ·Σ−1S [k] · diag(X∗[k])

)−1
· 1 (8)

C. Low-Sidelobe Mismatch Filters

Mismatch filters (MMF) result when we seek pulse-
compression filters that minimize the integrated sidelobe ratio
(ISLR) of the impulse responses.

As above, let Xm stand for the FFT of the mth waveform,
and Hm for the FFT of the coefficients of the mismatch filter
that we want to design.

Given M waveforms, we seek a set of corresponding
pulse-compression filters that solve the following constrained
minimization:

Γmmf =
1

M
· σ

2
C

σ2
n
·

M∑
m=1

Nf∑
k=1

|Hm[k]X∗m[k]|2 +
1

M
·

M∑
m=1

‖Hm‖2,

(9)

{hmmf
1 , . . . , hmmf

M } ← arg min Γmmf (10)

subject to
Nf∑
k=1

Xm[k] ·Hm[k] = Nf , ∀m = 1 . . .M

(11)

The objective function balances the need for low ISLR (first
term) with a that for low noise gain (second term), because
both will increase the SAR image background level.

The objective function (9) can be rewritten in the stacked,
point-wise frequency notation as:

Γmmf =
1

2

∑Nf

k=1
H′[k] ΣD[k] H[k] (12)

where ΣD[k] is an M ×M matrix equal to:

ΣD = η̃ ·
(

diag(X[k]) · diag(X∗[k])
)

+ ε IM , (13)

and where η̃ = 2(σ2
c/σ

2
n)/M and ε = 2/M . Finally, as for

the JLS filters, Lagrange multipliers are added to the objective
function to enforce the normalization constraints (11):

Γ̃mmf =
1

2

∑Nf

k=1
H′[k] ΣD[k] H[k] (14)

+ Re

{
Λ′
(
Nf · 1 −

∑Nf

k=1
diag(X[k]) ·H[k]

)}
The MMF are given by the minimizer of (14), which is:

Hmmf [k] = Σ−1D [k] · diag(X∗[k]) ·Λ (15)



Since ΣD is diagonal, the filters can be computed indepen-
dently. The kth Fourier component of the mth MMF filter is
related to the kth Fourier component of the mth waveform by:

Hmmf
m [k] =

X∗m[k] · λm
η̃ · |Xm[k]|2 + ε

(16)

The Lagrange multipliers Λ = (λ1 . . . λM )T enforce normal-
ization of each filter impulse response, and are independent.

D. Windowing Functions

The time-domain filter taps for each filter hm are then
obtained via inverse FFT and are multiplied by a window
function:

hm = w � F−1 (Hm) (17)

Recall that the FFT length Nf was chosen to be longer than
the desired number of taps. Using a window function when
truncating the taps avoids introducing ripples in the spectrum
[16]. To obtain filters more similar to those obtained via the
time-domain method, only those coefficients that extend be-
yond the sample support of the waveform should to be shaped
by the window function—the central Nc coefficients should be
left unmodified. The remaining (κ− 1)Nc coefficients can be
shaped by a splitting a conventional window function, such as
a Kaiser window. Because the central taps are left unmodified,
the normalization conditions (3) and (11) are still satisfied after
windowing.

E. Frequency-domain Tapering

Extra care is required in constructing MMF when the wave-
forms are oversampled (i.e. faster than Nyquist sampling).
In the time-domain synthesis, good sidelobe suppression is
obtained only if certain rows of the waveform correlation
matrices are zeroed out, so as not to perturb the IPR mainlobe
[18]. In the frequency-domain construction of MMF, this
problem is mitigated by applying a frequency-domain taper.
We find that if the waveform is oversampled by a factor Θ,
tapering with the function

Ω(f) =

∣∣∣∣ sin (πfΘ)

πfΘ

∣∣∣∣ , f ∈ [−0.5, 0.5) (18)

gives a similar response to the time-domain synthesis.
For JLS filters, it is not necessary to zero out any rows of

the waveform correlation matrices when synthesizing in the
time domain [12], nor is it necessary to apply a taper when
using the frequency-domain approach.

F. Selection of Filter Length Multiple κ

Larger values of κ yield better theoretical filter performance.
However, in a real employment where the extent of data
recorded between successive pulses is finite, larger κ increases
the range-extent over which edge-effects degrade the actual
achieved sidelobe performance. Longer filters also have worse
Doppler tolerance [12], [14].

IV. RESULTS

A. Comparison of Time- versus Frequency-Domain Synthesis

With appropriate selection of window function, frequency-
domain synthesis produces taps with performance quite similar
to the time-domain approach. In Fig. 3 we show how the
ISLR of the mismatch filter designed in the frequency domain
depends on the window parameter. For a Kaiser window
parameter near 1.5, frequency-domain MMF achieves an ISLR
within 1 dB of the filter synthesized in the time domain. The
results shown are the average ISLR for 50 random QPSK
sequences, each of length 300. The approximation is better for
larger κ. By comparison, pulse compression with a matched
filter leads to ISLR ≈ 0 dB for random QPSK waveforms.
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Fig. 3. Integrated sidelobe ratio performance of frequency-domain synthesized
MMF versus Kaiser window parameter. Results are shown for κ = 2
(squares), κ = 3 (circles), and κ = 5 (triangles). ISLR for matched filter
and time-domain synthesized MMF are shown for comparison.

The taps obtained by the two methods are quite similar—
the correlation coefficient for the filter tap sequences obtained
by the two methods is typically above 0.99. Example MMFs
are shown in Fig. 4.
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Fig. 4. Mismatch filter tap amplitudes synthesized via time-domain and
frequency-domain methods. Example waveform was 30-sample QPSK se-
quence. Filter is three times longer than waveform (κ = 3). Filter taps
generated by the two methods have correlation coefficient of 0.994.
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Fig. 5. Scaling of complexity for three JLS synthesis methods versus filter
length κNc, for fixed number of waveforms M = 7.

B. Comparison of Computational Complexity

We now examine how the time to synthesize JLS filters
scales with filter length κNc and number of waveforms M .
For the time-domain synthesis, we considered both the direct
solution of the linear system involving the waveform corre-
lations, as well as a gradient descent method. We recorded
computation times for Matlab implementations of each algo-
rithm; results are shown in Figs. 5–6. We now examine how
complexity scales for the step in each algorithm that was the
primary driver of computation time.

For the direct time-domain approach, complexity is driven
by solving a linear system of size MκNc, which has com-
plexity:

CTD, direct = O
(
M3κ3N3

c

)
(19)

A more efficient time-domain approach uses gradient de-
scent and furthermore takes advantage of the block structure
inherent in the problem to replace matrix multiplications in the
gradient computation with fast FFT-based convolutions [12].
Each matrix multiply involves M2 blocks, and the system of
equations must be solved M times. Thus, each iteration of the
gradient method has complexity:

CTD, gradient = O
(
M3 · κNc · log2(κNc)

)
(20)

To obtain more consistent timing, we used a fixed number
(=20) of iterations for the gradient descent solver, instead of
a stopping criterion based on error.

Finally, the frequency-domain JLS filter synthesis inverts a
size M matrix for each of roughly κNc frequency points, so
complexity scales as:

CFreqDomain = O
(
M3κNc

)
(21)

The complexities for the MMF constructions are much less
than those for JLS, because the filter for each waveform of
the CPI is synthesized independently of the others. Thus the
scaling with number of waveforms is O(M) for MMF instead
of O(M3) for JLS. The scalings with κNc are the same as
for JLS filters.

Fig. 6. Scaling of complexity for three JLS synthesis methods versus number
of waveforms M , for fixed filter length κNc = 1800.

V. CONCLUSION

We have shown that MMF and JLS pulse-compression
filters, which have previously been defined via a time-domain
system of equations, can also be synthesized via a more
efficient frequency-domain representation. This is an important
step toward just-in-time computation of pulse-compression
filters for radars employing pulse-to-pulse agility.
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