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-Developed new analytical relations for rate of crack growth, which account for yielding characteristics

-Demonstrated that the upper bound for the size of the plastic zone is obtained for materials obeying Tresca yield 
condition (e.g.  aluminum alloys).
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-Developed new isotropic criterion that describes well yielding of randomly oriented face-centered polycrystalline 
metallic materials 

-Developed the extension of this criterion such as to describe orthotropy was also developed using generalized 
invariants of the stress deviator. This new orthotropic criterion is general and applicable to three-dimensional stress 
states. 

-Developed a novel potential expressed in the 3-D strain space that accounts for the gradual accumulation of both 
plastic strains and damage
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Abstract 

The project focused on the development of a novel modeling framework for low cycle fatigue under 

multiaxial loadings, with special emphasis on providing understanding of the manner in which the 

specificities of the plastic deformation influence crack propagation. Key accomplishments have been 

achieved: a) we developed a new potential for isotropic materials which is expressed in the three-

dimensional strains space and accounts for gradual accumulation of both plastic strains and damage, b) 

we addressed the question of the role of the Lode parameter on damage evolution, and discovered what is 

the relative weight of the invariants in the matrix for which this parameter has either maximum influence 

or no influence on damage evolution, c) we developed new elastic solutions for the stresses and strains in 

the vicinity of cracks that better describe the near-tip behavior and do not violate the boundary conditions 

on the surface of the crack, d) we developed new analytical relations between the external loading and the 

size of the plastic zone that accounts for yielding characteristics, e) we developed a new potential 

accounting for plastic anisotropy that it is expected to further assist in understanding the role of 

anisotropy on fatigue crack growth rate. The grant has also greatly facilitated the writing by the 

investigators of the monograph "Plasticity-Damage couplings from single-crystal to polycrystalline 

materials" which was recently published by Springer Nature 

https://www.springer.com/gb/book/9783319929217 . 

 

1. Introduction 

Models and fatigue life relations are based on stress, strain, or energy parameters. The strain-

based models are more appropriate for description of low cycle fatigue (LCF) behavior (see 

Fekete, 2015). However these formulations are predominantly one-dimensional (e.g. Coffin, 

1974; Murakami et al. 2005; Surajit et al. 2010; Zhang et al. 2013; Li et al., 2014; Lefebvre et al., 

1984) with the value of certain parameters being made dependent on whether the loading is axial 

or torsional (e.g. the exponent in the Coffin-Mason relation (see Coffin, 1974)). Three-

dimensional (3-D) fatigue models have been proposed, but those are expressed in stresses. As 

pointed out by Chaboche et al (2012), none of these models predict with accuracy fatigue 

behavior under cyclic torsion or more complex multi-axial loadings (e.g. for biaxial conditions 

involving combined shear and axial loadings, see Taleb and Cailletaud, 2010).  

One of the objectives of the project was to develop a novel potential expressed in the 3-D strain 

space that accounts for the gradual accumulation of both plastic strains and damage. Most 

https://www.springer.com/gb/book/9783319929217
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importantly, using this potential for the first time it was established that depending on the relative 

weight of the invariants in the matrix the effect of the Lode parameter on damage evolution can 

be completely erased. The key findings are summarized in Section 2 while full mathematical 

proofs and discussion is given in the paper issued from this research of Cazacu and Revil-

Baudard (2017). 

Beginning with the seminal studies of fatigue service of Paris and collaborators, it is well 

accepted that the rate of crack propagation is related to the stress intensity factor, as is the plastic 

zone. While significant progress has been made in development of experimental techniques for 

small-scale testing that enable improved accuracy in the measurement of the plastic zone for 

engineering structural materials, there is still a critical need for finding how the particularities of 

yielding influence the size of the plastic zone that develops around cracks. Another objective of 

the project was to investigate this open problem. Key discoveries were made. Specifically, we 

obtained new elastic solutions for the stresses and strains in the vicinity of cracks that better 

describe the near-tip behavior and do not violate the boundary conditions on the surface of the 

crack a new elastic solution (see Section 3). This new elastic solution made possible further 

advancements in solving the long-standing problem of determining the extent of the plastic zone 

in front of a crack in a thin sheet subject to uniaxial tension. For the first time, it was established 

a correlation between the extent of the plastic zone and the ratio between the yield stresses in 

simple tension and pure shear. This in turn allows explaining the experimentally observed 

differences in terms of plastic zone sizes between engineering materials. Moreover, new analytic 

relations for the length of the plastic zone, measured from the crack tip in the crack plane, and 

the external applied load were established for the case when yielding is governed by the von 

Mises and Tresca criteria, respectively. These new results are summarized in Section 4 and more 

details can be found in the paper of Revil-Baudard et al (2018) issued as a result of this 

investigation.  

The influence of plastic anisotropy of materials on fatigue life remains a major concern. Key in 

advancing the understanding is an appropriate representation of the material symmetries induced 

by the fabrication process (e.g. transverse isotropy induced by extrusion; orthotropy induced by 

rolling). A new anisotropic plastic potential was developed in the framework of the theory of 

representation of tensor functions (Cazacu, 2018). This potential and its predictive capabilities 

are summarized in Section 4. Finally, the grant has greatly facilitated the writing by the 
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investigators of the monograph "Plasticity-Damage couplings from single-crystal to 

polycrystalline materials" very recently published by Springer Nature 

https://www.springer.com/gb/book/9783319929217 . 

 

2. Cazacu and Revil-Baudard (2017) plastic potential 

To address the question concerning what should be the relative weight of the invariants in the 

matrix for which we have the maximum influence or erase completely the effect of Lode 

parameter a two-step approach was adopted. Namely, we proposed a new isotropic model for 

fully-dense materials that depends on both invariants,  ψCB d  , and then we developed an 

analytic criterion for porous materials with matrix behavior governed by this potential  ψCB d . 

While the isotropic plastic potential for fully-dense materials developed  and its properties are 

discussed in detail in Cazacu and Revil (2017)  here we present only the main equations. This 

isotropic strain-rate potential (SRP) is expressed as:  

  
2

2 3

3

2

ψ 1CB

j j

B j


 
  

 
d  ,  (1) 

with  

 
1 4 27

4 3
B

/


  . (2) 

In Eq.(1),  2j = : 2/d d  is the second-invariant of the plastic strain-rate tensor d , 3j = det( )d  is 

the third-invariant of d , whereas   is a parameter of the model. The constant B  appearing in 

the expression of the criterion depends solely on  and it is defined such that for uniaxial 

tension  ψCB d  is equal to the axial strain rate. Let us recall that for  ψCB d to be convex, the 

range of variation of   is,  

 
9 27

β
24 68


   . (3) 

Most importantly, depending on the sign of the parameter  , this isotropic SRP is either interior 

to the von Mises strain-rate potential ( 0  ), coincides with it ( 0  ), or it is exterior to it 

https://www.springer.com/gb/book/9783319929217
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( 0  ). On the other hand, irrespective of the value of  Tresca’s potential  ψTresca d  is an 

upper-bound for  ψCB d . 

To arrive at a closed-form expression of the plastic potential for the porous material with matrix 

described by  ψCB d  (see Eq.(1)), we conducted limit analysis on a hollow sphere subjected to 

axisymmetric loadings and made use of the Rice and Tracey (1969) velocity field. It was shown 

that it is possible to solve the limit analysis problem analytically, and to obtain the plastic 

dissipation of the damaged material  ,CB f D , where D is the macroscopic strain-rate tensor 

and f is a measure of damage (void volume fraction). As a consequence, the strain-rate potential 

of the damaged material,    , , /CB CB Tf f   D D  can be obtained in closed-form. 

Moreover, we derived an explicit analytic expression of the yield criterion for the damaged 

material, namely: 

 

 

 

,1
/  

3

,
/ = 

CB

m T

m

CB

e T

e

f

D

f

D









 
 






 

D

D
,  (4) 

 

where Dm and De denote the first-invariant and the second-invariant of the macroscopic strain-

rate tensor D, respectively. It is worth noting that the potential of the damaged material, 

 ,CB f D , needs to be calculated only for loadings such that ( 0mD  , 11 0D  ) and 

( 0mD  , 11 0D   ), respectively.  

In the following, we present only the key steps of the proof and the parametric representation of 

the yield surface of the damaged material. For more details, the reader is referred to the 

referenced paper of Cazacu and Revil-Baudard (2017). 

 

Theorem 1 (Strain-rate potential for porous materials with matrix depending on both 

invariants) 

For axisymmetric states, the strain-rate potential of the porous material is given by: 

a) For 0mD   and 3 0DJ    ( 11 0D   ), irrespective of the value of m e2 D / Du  : 
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 

 
 

   
 
 
 
 


  



 

  
3/2

2 3/2

3/2

3 - 3

9
ln 3   1

-12 3 6 3 -9 - 2 3

27

y
y y

y y y

y


 
 

   
 
 
 
 

     (6) 

 

b) 0mD   and 3 0DJ   ( 11 0D   ), 

 

 

 

 

 

 

1 1

2 1

+

2 2

3
- ,  

4

-

3 7 4 3 4 3
   , f - - ln 3 ,    1      

4 27 27 9

4 3
- 3 ln 3 -

3 9

3
- ,    1

4

e

e

e

uD u
A A u u f

B f

u
A A u

f

uD
f u

B

uD u
A A u u

B f

 



   
    

  


        


  
           
 
     


   

   
  

D   (7) 

 

with  1A u  and  2A u  given by: 
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 

 

 
 

   
 

1

1

1

1

2 2 1

3/2

2 2

2

2

2 1
tan

32 2 1 2 3
( ) tan 3 11

273 3 2 1
tan

3

32 3 2
3 3 1 3 6 1 tan

9 3 1

4 4 1 9 14 27 4
ln 1 ,

27 27 1

y

y
A y

y

y
y y y y

y y

y y y y
y y

y y y
















  
   
    

      
    

    
  

  
             

     
    
  
 

    (8) 

and  

 

 

 
 

 

1

2

1 1

2 2 1

3/2

2 2

2

2

2 2 1
( ) tan

3 3

2 1 2 12 3
3 11 tan tan

27 3 3

32 3 2
3 3 1 3 1 6 tan

3 19

4 4 1 9 9 927 4 4
ln 1 .

27 27 1

y
A y

y y

y
y y y y

yy

y y y y
y y

y y y











 



 
   

 

     
      

    
    

  
             

    
   

 

    (9) 

 

Proofs: 

Case (a) : For 0mD   and 3 0DJ   ( 11 0D   ): 

       

         
      

6 32 2 2

11 11

2 2
3 6 32 2 2

11 11 11

5/2
6 32 2 2

11 11

ψ = / / 3cos -1
3

/ 2 / / 9cos - 5 2

27 / / 3cos -1

CB m m

m m m

m m

B
D b r D D b r D

D b r D D b r D D b r D

D b r D D b r D








  

    


  

d

            (10) 

Since for the applied loading, the strain-rate triaxiality 112 / /m e mu D D D D   using the change 

of variable  
3

u /y b r  and cos   in the integral representing  ,CB f D , we obtain:  
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       

 

2 2

/ 1

2

1

22 2 2

5/2
2 2

( 13 1

1 2 9β

27 3 1

)

4
, ( 5) 2

3
( 1)

u f

CB e

u

y y

y y y
B dy

f

y y

uD d
y













  
 
     
 







  
 

 D   (11) 

Further integration with respect to y  leads to the expression given in Eq.(5). Furthermore, for 

( 0mD   and 11 0D  ) from Eq.(11), it follows that: 
   

11 33

, ,

D D

CB CBf f  


 

D D
 and 

 ,
0

D

CB

m

f




D
, so the stresses at yielding of the porous material are such that the third-

invariant of the stress deviator  
3

3 11 33J 2 / 27      is negative , and the mean stress mΣ 0  .  

For all other loading scenarios, the analysis can be conducted in a similar way. Therefore, we 

obtain the following result: 

 

Theorem 2: The parametric representation of the yield surface of a damaged material with 

matrix described by the model depending on both invariants given by Eq. (1) is: 

a) For mΣ 0  and Σ
3J 0  and any value of m e2 D / Du  : 

 

       

   

2

1 1 1 1

2

1 1

2 3 1
/ / - / -

3 4

3 1
/  - / -  

4

m T

e T

u
H u f H u u H u f H u

B f

u
H u f H u

B f





   
      

   


 
    

 

  (12) 

where the prime symbol denoted the first derivative of the function  1H y  given by Eq.(6) 

b) For stress states such that mΣ 0  and Σ
3J 0  , the yield surface of the porous material is: 

 For u f : 

 

       

   

2

1 1 1 1

2

1 1

2 3 1
/   / - / -

3 4

3 1
/   - / -  

4

m T

e T

u
A u f A u u A u f A u

B f

u
A u f A u

B f





   
      

   


      
 

  (13) 

 For     1f u  : 
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     

     

   

2 12

1 1

2

1 2

7 4 3 4 3
/ - - - ln 3 -

27 27 92 3
/

3 4 4 3 1
3 ln 3 - / -

3 9

3 1
/  - / -  

4

m T

e T

A u f A u
u

B
u A u f A u

f

u
A u f A u

B f

 






   
     

   
   
        

   


        

  (14) 

 For 1u  : 

        

   

2

2 2 2 2

2

2 2

2 3
/  / - ( / ) /

3 4

3 1
/  - / -  

4

m T

e T

u
A u f A u u f A u f uA u

B

u
A u f A u

B f






    




        

  (15) 

where  1A y  and  2A y  denote the first derivatives of the functions  1A y  and  2A y  , 

respectively which are given by Eq.(8) and Eq.(9). For mΣ 0  and Σ
3J 0 , the parametric 

representation of the yield surface of the damaged material is obtained from Eq. (12) by 

arguments of centro-symmetry. 

c) Similarly, for loadings such mΣ 0  and Σ
3J 0 , the parametric representation of the 

yield surface of the porous solid is obtained from Eqs. (13)-(15). 

Remarks:  

It is important to note that in developing the SRP (see Theorem 1) and the yield criterion for the 

damaged material (see Theorem 2), no approximations were made when calculating the local 

plastic dissipation. Neglecting, the cross-term m 11D D  involved in the expression of  ψCB d  (for 

example, see Eq.(11)) would have resulted in erasing the specificities of the plastic deformation 

of the matrix, and as such the resulting yield criterion of the porous solid would have been 

independent of the third-invariant Σ
3J  or Lode parameter. For 0  , the Cazacu and Revil-

Baudard (2017) criterion reduces to the Cazacu et al. (2013) criterion for porous Mises material. 

Irrespective of the value of the parameter  , it is predicted that yielding of the porous material 

has the following properties: 

 The absolute value of the yield limit under hydrostatic tensile loadings is the same as the 

yield limit under purely hydrostatic compression loadings: 2 3 lnT f  . 
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 For purely deviatoric axisymmetric loadings, yielding occurs at  1e T f   , irrespective 

of the sign of Σ
3J .  

The above properties are a direct consequence of the plastic potential of the matrix being an even 

function (see Eq.(1)).  

2.1. Effect of the matrix sensitivity to both invariants on yielding  

On the basis of the analytic criterion for isotropic porous materials (see Theorem 2 and 

respective equations) it is possible to draw general conclusions pertaining to the role played by 

the matrix sensitivity to both invariants of plastic deformation. In the following analysis, we will 

take advantage of the fact that, irrespective of the value of the parameter   the yield surface of 

the porous solid is centro-symmetric. Therefore, we will represent and analyze only the quadrant 

of the yield surface defined by  ,e m   with 0m  . We recall that for axisymmetric loadings 

with 11 22   , the equivalent stress eΣ  reduces to 11 33  , the mean stress is: 

 m 11 332 / 3    , and the third-invariant of the stress deviator is:  
3

3 11 33J 2 / 27     .  

In Figure 1 are represented for the same level of porosity ( 5%f  ), the yield surfaces 

corresponding to materials with matrix characterized by 0.38  , 0, (von Mises matrix),  =-

0.15 and  =-0.35, respectively. It is very interesting to note that if the matrix is characterized 

by 0   i.e. its plastic potential is exterior or coincides with von Mises (see also Section 

6.1.1.3), the response of the porous material for loadings such that 11 22 33      ( i.e. at 

Σ
3J 0 ) is softer than that for loadings such that 11 22 33      ( i.e. at Σ

3J 0 ), the yield curve 

corresponding to Σ
3J 0  is below that corresponding to Σ

3J 0 . The stronger is the sensitivity of 

the matrix plastic deformation to the third-invariant (i.e. the larger the value of  in Eq.(1)) the 

strongeris the influenceof Σ
3J  on yielding of the porous material.  
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(c) (d) 

Figure 1. Effect of the third-invariant 
Σ
3J  on yielding of porous materials with matrix characterized by: (a) 

0.38  ; (b) 0   (von Mises matrix ); (c) 0.15   ; (d) 0.35   .Porosity 5%f   for all materials. 

 

It is also very interesting to note that for the material with matrix characterized by 0.15    

and porosity 5%f   there is practically no influence of Σ
3J  on the behavior (see Figure 1(c) 

showing that the yield curve corresponding to Σ
3J 0  almost coincides with the one that 

corresponds to Σ
3J 0 ). It means that although the matrix behavior depends on both invariants, 

the presence of voids practically erases the influence of Σ
3J  on yielding of the porous material. 

The same conclusion, i.e. practically no influence of Σ
3J  on the response applies to a material 

characterized by a porosity 1%f   and matrix with 0.15    (see Figure 2(b.It is to be 

noted that the particular value of  say *  for which the porous material has no influence on 

the third-invariant can be determined. 

For fixed values of the porosity f , ranging from 
510  to 0.15  , we obtain: 

*0.179 0.172    .

 



12 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

J3>0

Series1

New model J3<0

New model J3>0

|33-11|/T

m/T

= 0.38; f =0.01

J3<0

J3>0

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

J3>0

Series1

New model J3<0

New model J3>0

|33-11|/T

m/T

0.15;  f =0.01

J3<0

J3>0

 

(a) (b) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

J3>0

Series1

New model J3<0

New model J3>0

|33-11|/T

m/T

= 0.35;  f =0.01

J3>0

J3<0

 

(c) 

Figure 2. Effect of the third-invariant 
Σ
3J on yielding of porous materials with matrix characterized by: (a) 

0.38  ;(b) 0.15   ; (c) 0.35   . For all materials 1%f  . 

 

It is also worth comparing the yield surfaces of porous materials according to Cazacu and Revil-

Baudard (2017) with the yield surface of a porous Tresca material obtained using the Cazacu et 

al. (2014c) criterion. For axisymmetric loadings 11 22 33      (i.e. at Σ
3J 0  ) the respective 

surfaces for 5%f   are shown in Figure 3; for loadings corresponding to 11 22 33     ( i.e. at 

Σ
3J 0 ), the respective surfaces are shown in Figure 4. It is very interesting to note that 

irrespective of the imposed loading, if the matrix is characterized by 0  , the yield surface of 

the porous material lies between the yield surface of a porous von Mises material and the yield 

surface of a porous Tresca material. Specifically, for 0   the porous Tresca yield surface is a 

lower bound while the porous von Mises surface is an upper bound. Moreover, the stronger the 

deviation of the matrix behavior from von Mises (i.e. the larger the value of  in Eq.(1), the 

closer is the yield surface is to that of a porous Tresca material.  
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Figure 3. Comparison between the yield surfaces of a porous Mises material ( 0  ), a porous Tresca material 

according to the Cazacu et al. (2014c) criterion and those of porous materials with matrix characterized by 0.38   

, 0.15   , 0.35   , respectively, calculated with the Cazacu and Revil-Baudard (2017) criterion for 

axisymmetric loadings such that 
Σ

3
J 0  (

11 22 33
     ). 

 

On the other hand, the response of the porous material with von Mises matrix ( 0    is softer 

than that of a porous material with matrix characterized by 0  . The smaller the value of  , 

the more pronounced is the difference in response as compared to that of a porous von Mises 

material.  
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Figure 4. Comparison between the yield surfaces of a porous Mises material ( 0  ), a porous Tresca material 

according to the Cazacu et al. (2014c) criterion  and those of porous materials with matrix characterized by 

0.38   , 0.15   , 0.35   , respectively, calculated with the Cazacu and Revil-Baudard (2017) criterion for 

axisymmetric loadings such that 
Σ

3
J 0  (

11 22 33
     ) . 

As expected, the yield limit for purely deviatoric states and purely hydrostatic states is the same 

for all porous materials irrespective of the criterion governing the plastic deformation of the 

matrix (see also Theorem 2). 

2.2. Influence of the matrix sensitivity to both invariants on damage evolution 

We have shown that the value of the parameter  which describes the relative weighting of the 

invariants on the plastic deformation of the matrix strongly affects the rate of void evolution. As 

an example, in Figure 5 are compared the predictions of the void growth versus the overall 

equivalent plastic strain eE  corresponding to porous materials with a matrix characterized by 

 =0.38,  =-0.15, and  =-0.35 which were subjected to axisymmetric loadings at fixed stress 

triaxiality 1 5T .  with either 11 22 33      (i.e. at Σ
3J 0 ) or 11 22 33      (i.e. at Σ

3J 0 ). 

For all porous materials considered the initial porosity was 0 0.5%f  .  

It is very interesting to note that for the material characterized by a matrix with a value of 

0.15   close to *  the rate of void growth for loadings such that Σ
3J 0  and Σ

3J 0 , 

respectively are almost the same (see Figure 5(b)). This is consistent with the fact that for the 
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same material there ispractically no effect of Σ
3J  on yielding (see Figure 2(b)). On the other 

hand, if the matrix is characterized by *  , the rate of void growth is faster for loadings such 

that Σ
3J 0  than for loadings at Σ

3J 0 ; and the larger is the value of  , the stronger is the effect 

of Σ
3J  on void growth. On the contrary, if the matrix is characterized by *   the rate of void 

growth is faster for Σ
3J 0  than for Σ

3J 0  (see for example, Figure 5(c) which presents the void 

evolution for the material with matrix characterized by 0.35   .Since the criterion is centro-

symmetric, the following conclusions can be drawn concerning the effect of the matrix plastic 

deformation on void collapse (i.e. void evolution for compressive mean stress): 

 If the porous solid has the matrix characterized by *  the rate of void collapse is 

faster for loadings at Σ
3J 0  than for loadings at Σ

3J 0 ; 

 If the porous solid has the matrix characterized by  close to * there is practically 

noeffect of Σ
3J on void collapse; 

 If the porous solid has the matrix characterized by a value of the parameter *  the 

rate of void collapse is faster for loadings at Σ
3J 0  than for loadings at Σ

3J 0 . 
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Figure 5. Effect of the third-invariant 
3

J


 on the void volume fraction (
0

f f )  evolution with the overall 

equivalent plastic strain for axisymmetric loadings at fixed triaxiality 1.5T   predicted by the Cazacu and Revil-

Baudard (2017) criterion for porous materials characterized by matrix with (a) 0.38  ;(b) 0.15   ; (c) 

0.35   . For all materials the initial porosity is: 
0

0.5%f  . 

 

 

It is also worth comparing the void growth rates and collapse with that of a porous Tresca 

material. Let us first consider a porous material with matrix characterized by 0.15    (close to 

* 0.175   ). Note that the void growth and void closure rates in this porous material are slower 

than in both a porous von Mises material and a porous Tresca material, respectively (see Figure 6 

and Figure 7). In contrast to both Tresca and von Mises porous materials, for this porous material 

there is practically no effect of Σ
3J  on void evolution. 
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Figure 6. Comparison between the evolution of the void volume fraction with the overall equivalent plastic strain 

e
E  for axisymmetric loadings at fixed stress-triaxiality 1.5T   for a porous von Mises material (according to 

Cazacu et al. (2013)), a porous Tresca material (using Cazacu et al. (2014c)) and for porous solids with matrix 

characterized by 0.15    according to the Cazacu and Revil-Baudard (2017) criterion: (a) axisymmetric loadings 

such that 
Σ

3
J 0  and (b) axisymmetric loadings such that 

Σ

3
J 0 . For the porous material with 0.15    there is 

practically no influence of 
Σ

3
J  on void growth. 
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Figure 7. Comparison between the evolution of the void volume fraction with the overall equivalent plastic strain 

e
E  for compressive axisymmetric loadings at fixed stress triaxiality 1.5T   for a porous von Mises material 

(according to Cazacu et al. (2013)), a porous Tresca material (using Cazacu et al. (2014c)) and for a porous material 

with matrix characterized by  0.15    (a) axisymmetric loadings such that 
Σ

3
J 0   and (b) axisymmetric 

loadings such that 
Σ

3
J 0 ; Initial porosity 

0
0.05f   . For the porous material with 0.15    there is practically 

no influence of 
Σ

3
J  on void collapse. 

 

On the other hand, if the matrix is characterized by *0   , the relative weight of the 

invariants on the matrix behavior is such that irrespective of the type of loading (i.e. sign of Σ
3J ), 

the rate of void growth is faster than in a porous von Mises material ( 0  and lower than in a 

porous Tresca material. As an example, in Figure 8 and Figure 9 is presented the evolution of the 

void volume fraction 0f f  with  the overall effective plastic strain for a porous material with 

matrix characterized by 0.38   subjected toaxisymmetric loading histories corresponding to 

either ( Σ
3J 0 ) or ( Σ

3J 0 ) and fixed positive stress triaxiality 1.5T  . The initial void volume 
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fraction is 0 0.5%f  . For example, for axisymmetric loadings such that Σ
3J 0 , at an equivalent 

plastic strain of 0.3eE  , the void volume fraction is 07.82f f  in the porous Mises material, 

09.41 f  in the material with matrix characterized by 0.38  , against 011.29 f  in the porous 

Tresca material.  

While for all porous materials the rate of void growth is faster for axisymmetric loadings such 

that Σ
3J 0  (see Figure 8(b)) than for axisymmetric loadings such that Σ

3J 0  (see Figure 8(a)), 

the maximum influence of Σ
3J  on void evolution is displayed by the material characterized by 

0.38  . For example at 0.3eE  , in this material the difference between the porosity attained 

in loadings with Σ
3J 0  and Σ

3J 0  is of 13% while for the porous Tresca material the 

difference is of 8%, and for the porous Mises material there is 5% difference. The same 

conclusions can be drawn from the analysis of the void evolution in a porous material with 

matrix characterized by 0.2  . However, the influence of Σ
3J  on void growth is less 

pronounced. As an example, at 0.3eE  , the difference between the porosity attained in loadings 

corresponding to Σ
3J 0  and Σ

3J 0  is of 13% for the material with matrix characterized by 

0.38   against 9.5% for the one corresponding to a matrix with 0.2  and only 5% for a 

material with matrix characterized by 0   von Mises matrix). In general, for *   the 

influence of Σ
3J  on void growth is less pronounced as the value of the parameter  decreases. 

Since both the Cazacu and Revil-Baudard (2017) criterion and the Cazacu et al. (2014c) criterion 

for a porous Tresca material display centro-symmetry, the same effects of the relative weighting 

of the invariants in the matrix (i.e. of  on the rate of void collapse should occur. Comparisons 

between the predictions of void collapse as a function of the overall effective strain for 

axisymmetric loadings at fixed compressive triaxiality 1.5T     corresponding to either Σ
3J 0  

or Σ
3J 0  are shown in Figure 9. The initial porosity was considered higher ( 0 5%f  ) such as to 

allow a larger range of plastic strain to develop prior to void closure. Irrespective of the sign of 

the third invariant, the rate of void closure in the material with matrix characterized by 0.38   

is much faster than in the porous Mises material, and only slightly slower than the rate of void 
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closure in the porous material with Tresca matrix (see Figure 9(a) for 3 0J    and Figure 9(b) 

for Σ
3J 0 ). While for all porous materials the rate of void closure is faster for axisymmetric 

loadings such that Σ
3J 0  than for axisymmetric loadings such that Σ

3J 0 , the influence of Σ
3J  

on the rate of void collapse is more pronounced for the material with matrix characterized by 

0.38   (18% difference between Σ
3J 0  and Σ

3J 0  at 0.3eE  ) than for the porous Tresca 

material (13 % difference at 0.3eE  ) and the porous Mises material (8 % difference at 

0.3eE  ). The same conclusions can be drawn by analyzing the rate of void closure in a porous 

material with matrix characterized by 0.2   as compared to that in the porous von Mises and 

porous Tresca material, respectively. However, the influence of Σ
3J  on the rate of void collapse is 

less pronounced than in the case when the matrix is characterized by 0.38  . As an example, 

at  0.3eE  , the difference between the porosity corresponding to loadings at Σ
3J 0  and Σ

3J 0  

is of 18% for the material with matrix characterized by 0.38  against1for the material 

characterized by 0.2  and 8for the material with 0  porous Mises solid. As already 

mentioned, if the matrix is characterized by *   the influence of Σ
3J  on void evolution 

decreases as the value of the parameter   decreases. 
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Figure 8. Comparison between the evolution of the void volume fraction with equivalent plastic strain 
e

E  for 

axisymmetric loadings at fixed stress triaxiality 1.5T   for a porous von Mises material according to Cazacu et al. 

(2013) criterion, a porous Tresca material according to Cazacu et al. (2014c) and a porous material with matrix 

characterized by 0.38   (a) axisymmetric loadings such that 
Σ

3
J 0  and (b) axisymmetric loadings such that 

Σ

3
J 0 ; Initial porosity 

0
0.5%f  . 
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Figure 9. Comparison between the evolution of the void volume fraction with equivalent plastic strain 
e

E  for 

axisymmetric loadings at fixed stress triaxiality 1.5T    for a porous von Mises material according to the Cazacu 

et al. (2013) criterion, a porous Tresca material according to the Cazacu et al. (2014c) and a porous material with 

matrix characterized by 0.38   (a) axisymmetric loadings such that 
Σ

3
J 0  and (b) axisymmetric loadings such 

that 
Σ

3
J 0 ; Initial porosity 

0
5%f   

 

In summary, for stress triaxialities T  different from zero or infinity the response of the porous 

Tresca material is softer than that of the porous von Mises material which in turn is softer than 

that of a porous material with matrix characterized by 0   (see also Figure 3 and Figure 4). As 

a consequence, in porous materials with 0  the rate of void growth and the rate of void 

closure will be slower than the rate of void evolution in a porous Mises material and a porous 

Tresca material, respectively. As an example, let us examine Figure 10(a) which shows the void 

growth evolution with the overall effective strain eE  in a porous material with matrix 

characterized by 0.35    subjected to axisymmetric tensile loadings at a fixed stress 



23 

 

triaxiality 1.5T  . Note that for axisymmetric loadings such that Σ
3J 0 , at 0.3eE   in the 

porous material with 0.35   , the void volume fraction is 06.30f f , against 011.3f f  in 

the porous Tresca material, and 07.82f f  in the porous Mises material ( 0  ). It is also worth 

noting that while for the porous Mises and porous Tresca materials, the void growth rate is faster 

for loadings at Σ
3J 0  than for loadings at Σ

3J 0 , for the material with matrix characterized by 

0.35   , the reverse occurs i.e. the void growth rate is slower for loadings at Σ
3J 0  than for 

loadings at Σ
3J 0 . Due to the centro-symmetry of all criteria, it follows that the void closure 

rate will also be slower than in a porous von Mises material. The same conclusions, i.e. that the 

void closure rate will be faster for Σ
3J 0  than for Σ

3J 0  can be drawn for any porous material 

with matrix characterized by *   (see Figure 11). 
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Figure 10. Comparison between the evolution of the void volume fraction with equivalent plastic strain 
e

E  for 

axisymmetric loadings at fixed stress triaxiality 1 5T .  for a porous von Mises material (according to Cazacu et al. 

(2013)), a porous Tresca material (using Cazacu et al. (2014c)) and a porous material with matrix characterized by 

0.35   : (a) axisymmetric loadings such that 
Σ

3
J 0  and (b) axisymmetric loadings such that 

Σ

3
J 0 ; Initial 

porosity 
0

0.5%f   
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Figure 11. Comparison between the evolution of the void volume fraction with equivalent plastic strain 
e

E  under 

compressive axisymmetric loadings at fixed stress triaxiality 1.5T    for a porous von Mises material according to 

Cazacu et al. (2013) criterion, a porous Tresca material (according to Cazacu et al. (2014c)) and a porous material 

with matrix characterized by  0.35   : (a) axisymmetric loadings such that 
Σ

3
J 0  and (b) axisymmetric 

loadings such that 
Σ

3
J 0 ; Initial porosity 

0
5%f   

 

In summary, it was established that: 

 A porous material with matrix governed by Tresca criterion has the fastest rate of void 

growth or collapse.  

 However, depending on the specific dependence of the matrix plastic deformation to the 

invariants of the stress deviator, the rate of void growth or collapse in a porous material 

can be either faster or slower than that of a porous Mises material. Specifically,  

 If the matrix is characterized by 0   the void growth rate is faster than in a porous 

Mises material; the larger is the value of  , the faster is the rate of void evolution, which 

approaches the one in a porous Tresca material.  
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 If the matrix is characterized by 0  the rate of void growth and the rate of void 

closure are slower than in a porous Mises material. The smaller is the value of  , the 

slower is the rate of void growth as compared to a von Mises porous material.  

 

3. Influence of the yielding characteristics on the size of the plastic zone near a crack 

in a thin sheet loaded in tension  

 

3.1. Statement of the problem and determination of the elastic stress field  

Let us consider a thin plate having a center crack of length 2a and subjected to uniaxial tension. 

Let Oxy a Cartesian system with the origin at the center of the plate, the x-axis (or xe ) directed 

along the crack and the y-axis (or ye ) along the loading direction. The boundary of the crack is 

traction free. Since in practice, the crack length is much smaller than any in-plane linear 

dimension, the boundary conditions of the problem are: 

0xx xy    at x a  and 0y  ; 

    

yy S   and 0xx xy    at infinity.    (16) 

 

For an applied load S sufficiently small, the material response is elastic obeying the classic 

Hooke's law. In the elastic regime, finding the solution to the problem reduces to determination 

of the Airy stress function   satisfying the biharmonic equation: 

 
4 0.   (17) 

The stress components are given by:  
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  (18) 

Westergaard (1939) derived the following complex potential that satisfies the biharmonic 

equation (Eq. (17)) :  

 
2 2

Sz
z

z a
 


,      (19) 

with z x iy  , and z  its complex conjugate. This is the potential that is generally used to 

obtain the near crack-tip solution of the elastic stress field (e.g. see the monograph by Sun and 

Jin (2012)). Namely, substitution of Eq.(19) into Eq.(18) leads to the following elastic stress 

field: 

    xx yy   and 0xy                      at y = 0,   (20) 

and the near crack-tip solution: 

                          
2

xx yy

S a

r


 


  ,    0xy  ,                (21) 

 with r being the distance to the crack tip. As pointed out by Westergaard (1939), this stress field 

is axisymmetric, therefore it does not satisfy the boundary conditions of the problem. If the 

applied load is sufficiently large, plastic strains will develop at some location near the crack tip 

where the yield condition is first satisfied. Since the elastic stress field given by Eq.(21) is 

axisymmetric, all isotropic yield criteria predict the same critical level of the applied load and the 

same extent of the plastic zone near the crack tip.  

As mentioned, as part of the project we obtained the exact elastic solution to the biharmonic 

equation with boundary conditions given by Eq.(16) (see Revil-Baudard et al., 2018). For this 

purpose, we solved the associated problem of determining the state of stress around an elliptic 
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hole of semi-axes a and b (see Fig. 12). Note that when b is very small the corresponding ellipse 

is very slender, and in the limit b   0, it becomes a crack. For the purpose of understanding the 

key differences between this solution and the classic stress field of Westergaard (1939)  that is 

customarily used in the literature, in the following we present the approach, and the main steps in 

the derivation of the exact solution. For the detailed proof the reader is referred to Revil-Baudard 

and Cazacu (2018). 

2a

2b

S

ey

ex

S
 

Figure 12: Description of the problem of a thin plate having a center crack of length 2a subjected to uniaxial tension 

S.  

Given the geometry of the problem, it is advantageous to consider the elliptical coordinates 

 ,   (see Figure 13) such that: 

   

   

cosh cos

sinh sin

x c

y c

 

 






.    (22) 

Thus, 
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  cosh with   z x iy c i         and 
2 2c a b  .   (23) 
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e
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e
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Figure 13: Definition of the curvilinear elliptical coordinates  ,  . 

Note that the boundary of the hole corresponds to:  

0   and  0,2  , with  0tanh /b a   .    (24) 

The state of stress is specified by  , the normal stress component on a curve  =constant,   

the normal stress component on a curve  =constant, and   the shear stress component on 

both curves (see Fig. 24). Using the Cauchy-Riemann equations, it can be shown that the 

solution to the biharmonic equation (17) is expressible as:  

        , Rez z z z z    .      (25) 

Therefore, finding the solution reduces to the determination of the functions  z  and  z . 

Once these functions are known, further use of Eq.(18) leads to:  
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  

 

 
   

4Re

sinh
2 2 .

sinh

z

i z z z

 

  

  


    



  



       


  (26) 

Given the geometry of the problem, Stevenson (1945) proposed that the potentials  z and 

 z  should be taken of the general form: 

     

     2

cosh sinh

cosh 2 sinh 2 ,

c A B

c D E

   

    

   

    

    (27) 

with A, B, C, D, E being real numbers. By imposing the boundary conditions (see Eq.(24)),  

the following solution for the elastic stresses around an elliptic hole in a plate subject to uniaxial 

tension S in a direction at right angle to the major axis is obtained: 

   

  
   

   

 

0

0

2

02

2

0 0

1 sinh 2
1 (cosh 2 cosh 2 2cos 2 )

cosh 2 cos 2

2
cosh 2 2 cos 2 cosh 2

 
cosh 2 cos 2

e

Se








  

 



   

 

 
    
 
 
 
 

  
 
  

  (28) 

   

 

0

0

2

2
1 sinh 2

1
cosh 2 cos 2

e
Se




 


 

 

 
     

 
 

      (29) 

   

  
        0 002 2

0 02

sin 2 sinh
1 sinh cosh 2 cos 2 cosh

cosh 2 cos 2
Se e

 


  
      

 


      
 


 

            (30) 

It can be easily verified that this solution fulfills the boundary conditions, i.e.: 

 yy S   and 0xx xy     (uniaxial tension) at large distances from the hole (  ) 

  =  = 0 on the elliptical boundary of the hole, i.e. for 0   and  0,2  . 
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It is worth noting that the axial stress at the crack tip in the crack plane is: 

    
0, 0 , 0yy x a y         .  

According to Eq.(28), the stress   at the boundary of the hole (i.e. 0   , see also Fig. 23) 

is: 

 
   

 

0

0

0

2

2

0

1 sinh 2
1

cosh 2 cos 2

e
Se




  




 





 
   
 
 

,    (31) 

Thus,  
0

  



 attains its maximum value at the tip of the hole, i.e. for 0  , and the axial 

stress at the crack tip in the crack plane is given by: 

 
0, 0 , 0 1 2yy x a y

a
S

b
       

 
   

 
 . (32) 

Note that it becomes extremely large in the case of a very slender crack (i.e. b   0).  

It is also worth examining the predicted stress distribution along the crack extended line i.e. (y = 

0) in the crack plane. Since on the positive x-axis, 0  , and the shear stress   is proportional 

to  sin 2  (see Eq.(30)), it follows that: xy  = 0, and yy  , xx   (see also the 

definition of the elliptical coordinates given by Eq. (22)). As mentioned, for a location far from 

the crack tip (x =a, y=0), the axial stress yy  is equal to the applied load S while the lateral stress 

xx  becomes null, as it should be. 

It is also worth comparing the elastic stress distribution given by Eq.(28)-(30) with the 

Westergaard elastic stress field (see Eq.(19)). As an example, in Fig. 24-25 are shown the 

evolution of the normalized axial stress yy S , and lateral stress xx S  in the plane of the crack 

(i.e. y = 0) as a function of the distance from the crack tip (which corresponds to x = a) for an 

elliptical crack characterized by a = 4 mm and b=0.5 mm. The variation of the stresses 

corresponding to a distance from the crack tip less than 25% of the crack semi-length, a, are also 

shown. While according to either solution the axial stresses yy  have a similar variation and are 
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very close, the lateral stresses xx  are completely different, since according to the exact solution 

xx  is no longer equal to yy (see Eq.(28)-(29)). As expected the most difference between the 

two analytical solutions is in the region very near the crack tip (x =a) (see the zooms in Fig. 14-

15). As it is well known, at the crack tip the classical solution predicts an infinite value for both 

xx  and yy  while according to the solution derived by Revil-Baudard and Cazacu (2018) the 

axial stress, yy , has an extremely large but finite value (see Eq. (32)) while 0xx   because it 

satisfies the boundary conditions (the crack surface is traction free).  
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Figure 14. Evolution of the elastic axial stress yy S  in the plane of the crack (y = 0) for an elliptical crack 

characterized by a = 4mm and b = 0.5mm. Comparison between the exact solution given by Eq. (28)-(30) and the 

solution of Westergaard (1939), respectively. The zoom shows the near-tip stress distribution. 
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Figure 15: Evolution of the elastic lateral stress xx S  in the plane of the crack (y=0) for an elliptical crack 

characterized by a=4mm and b=0.5mm. Comparison between the exact solution given by Eq. (28)-(30) and the 

solution of Westergaard (1939), respectively. The zoom shows the near-tip stress distribution. 

 

It is also worth examining the predicted elastic stress distribution in the plane normal to the crack 

i.e. (x = 0) according to the exact elastic solution given by Eq. (28)-(30) and the classical elastic 

solution of Westergaard (1939). For the same crack geometry, the results are shown in Fig. 16-

17. While the two solutions for the axial stress 
0yy x




 are very close, and show the same type of 

evolution with the distance from the crack tip (which in this plane corresponds to x = 0, y=b)  the 

lateral stresses 
0xx x




are completely different, the Westergaard (1939)  solution largely 

overpredicting the exact values. Indeed, for x = 0, we have  cos 0   (see Eq. (22)), so: 
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xx  , yy  , and xy = 0. Thus, according to the exact solution (see Eq.(28)-(29)) at the 

crack tip xx S   , and 0yy  , whereas according to Westergaard's solution xx  0. 
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Figure 16: Evolution of the elastic axial stress yy S  in the plane normal to the crack (x = 0) for an elliptical 

crack characterized by a = 4 mm and b = 0.5mm. Comparison between the exact solution given by Eq. (28)-(29) and 

the solution of Westergaard (1939), respectively.  
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Figure 17: Evolution of the elastic axial stress xx S  in the plane normal to the crack (x = 0) for an elliptical 

crack characterized by a = 4 mm and b = 0.5mm. Comparison between the exact solution given by Eq.(28)-(30), and 

the solution of Westergaard (1939), respectively.  

 

3.2. Plastic zone in front of a crack 

For a sufficiently large applied load S, the material enters the plastic regime. The onset of 

yielding, according to any isotropic yield criterion can be easily calculated using the elastic stress 

distribution. Let d denote the extent of the plastic zone measured from the crack tip in the crack 

plane. If d is calculated using the classical near-tip elastic stress field given by Eq.(21), all the 

isotropic yield criteria predict: 

 

2
1

with
2

I
I

T

K
d K S a

 

 
  

 
 , (33) 
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(see for example, Sun and Jin (2012)). As already mentioned, the exact elastic stress field given 

by Eq. (28)-(30) is not axisymmetric. Therefore, the onset of yielding and the extent of the 

plastic zone in the vicinity of the crack depend on the yielding characteristics of the given 

isotropic material. As an example, in Fig.18 are shown the plastic zones in front of the crack 

corresponding to an external loading S = 2T  that were obtained using Eq. (28)-(30) in 

conjunction with Tresca, von Mises, and Drucker (1949) yield criterion corresponding to c = 2.2 

and c =-3.3, respectively. Let us denote as Trescad , Misesd , and Druckerd the extent of the plastic 

zone corresponding to the respective yield criteria. It is worth noting that if yielding is described 

by Tresca's criterion the extent of the plastic zone is the largest. Also, note the strong sensitivity 

of Druckerd  to the value of the parameter c, which is related to the ratio between the yield stresses 

in uniaxial tension and pure shear. Specifically, for c = 2.2 the plastic zone is larger than for c = 

0 (which corresponds to von Mises), which in turn is larger than the plastic zone for a material 

characterized by c  = -3.3. Moreover, the difference between the extent of the plastic zone size of 

a material with yielding described by Tresca and von Mises is significant, for example for S = 

2T :   /Tresca Mises Misesd d d  = 39%.  

These conclusions hold true irrespective of the applied loading (see Revil-Baudard and Cazacu 

(2018)). Specifically, irrespective of the applied load S, for materials with yielding described by 

Drucker (1949) criterion: Druckerd < Trescad ; for materials with yielding behavior corresponding to 

c > 0 the plastic zone size is larger than for a Von Mises material (c = 0) while the reverse holds 

true for materials with c < 0. As discussed in Revil-Baudard et al., 2018 for a material with c > 

0:  3 2T Y/ ,   , and its yield surface is interior to the von Mises yield surface; for a material 

with c < 0: 3T Y/   , and the corresponding yield surface is exterior to that according to von 

Mises yield criterion. Thus, these results lead to more general conclusions. Namely, if the 

yielding behavior is best described with a criterion represented by an even yield function, the 

extent of the plastic zone is always smaller than Trescad . As pointed out in Revil-Baudard and 

Cazacu (2018), the greater is the ratio T Y/   of a material, the larger the size of the plastic zone 

is.  
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Figure 18: Predicted extent of the plastic zone at the crack tip (a=4mm. b=0.1mm) for uniaxial loading at 

/ 0.5TS   . Influence of the ratio between the yield stresses in uniaxial tension and pure shear on the size of the 

plastic zone. (a) Comparison between a von Mises material, a Tresca material and a Drucker (1949) material 

characterized by c=2.2, i.e. 3 2T Y/   ); (b) Comparison between a von Mises material, a Tresca material 

and a Drucker (1949)  material characterized by c= -3.3, i.e. 3T Y/   ). 
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3.2.1. Analytical expression for the size of the plastic zone for material with yielding 

described by Tresca yield criterion 

We also showed that if yielding is described by Tresca's or von Mises yield criterion, it is 

possible to obtain explicit relations for the extent of the plastic zone in the crack plane. The proof 

is summarized in the following. The exact solution for the elastic stresses in the plane of the 

crack (y =0) is given by Eq. (28)-(30) with 0  . Therefore,  =0, and the principal stresses 

are:  >  ≥0. Consequently, Tresca yield criterion writes: 

 T  .  (34) 

Finding the extent of the plastic zone, measured from the crack tip, i.e. Trescad = coshc a  , 

reduces to solving an algebraic equation for tanhw   which is given by: 

  3 2 0w w       ,   (35) 

The coefficients   and   involved in Eq.(35) depend only on the crack dimensions, namely, 

 022

0sinh 1 e
  

   ,      (36) 

02

01 sinhe
 

   ,       (37) 

while the coefficient   depends on the applied loading /T S  and the crack geometry 

(  0tanh /b a  ), and is given by: 

  01 cosh 2 2 /T S     .      (38) 

Since b is much smaller than a, the only non-trivial positive solution of Eq. (35) is:   

       /w          (39) 

Further, using Eq. (22), we obtain that: 

 
1

0

0 0

cosh tanh cosh( )
cosh( ) 1 cosh 2 2 /

Tresca

T

a
d

S

 


  


   
           

 . (40) 
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Note that the extent of the plastic zone depends of the applied loading /T S  and the crack 

geometry through 0 . 

3.2.2. Analytic expression for the size of the plastic zone for a material with yielding 

described by von Mises yield criterion 

As mentioned, the exact elastic solution in the crack plane is such that  =0. Therefore, finding 

the extent of the plastic zone measured from the crack tip in the crack plane for a material with 

yielding described by von Mises yield criterion, reduces to solving a sixth-order algebraic 

equation for tanhw   obtained by substituting   and   given by Eq. (28)-(29) with 0   

into the expression of the von Mises yield condition for 2-D loadings, i.e., 

      
2 2 23 4 T            , 

Since b is much smaller than a, this sixth-order equation for w has a unique positive solution. 

Further using the relation between the Cartesian and elliptical coordinates (see Eq.(22)), we 

obtain that: 

 1 2

1 1 1 1 0

0 1

3
cosh tanh 4 / 3 cosh( )

cosh( ) 2
Mises

a
d B B AC

A





   

       
   

  .                      (41) 

In the above relation, 

     042

1 01 cosh 2 4 /TA e S
 

   ,      (42) 

depends on the crack geometry through 0 , on the applied loading S, and on T , while B1 and C1 

depend only on the crack geometry: 

                        02

1 0 0

2
1 3cosh 2 sinh 2

3
B e

                                                          (43) 

    0
2 22

1 0

1
1 3 sinh 2

3
C e

      
  

     (44) 

with   given by Eq. (36). 
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In summary, using the explicit formulas given by Eq. (40) and Eq.(41), it is possible to obtain an 

estimate of the plastic zone of any given isotropic material that displays the same yielding 

response in tension and compression. Specifically, the extent of its plastic zone, d, is always less 

than Trescad ; if the material is characterized by 3T Y/   , then d > Misesd  while the reverse 

holds true if 3T Y/   .   

4. Cazacu (2018) plastic potential for orthotropic materials Cazacu (2018) 

The influence of plastic anisotropy of materials on fatigue life remains a major concern. Key in 

advancing the understanding is an appropriate representation of the material symmetries induced 

by the fabrication process (e.g. transverse isotropy induced by extrusion; orthotropy induced by 

rolling). A new anisotropic plastic potential was developed in the framework of the theory of 

representation of tensor functions (Cazacu, 2018). This potential and its predictive capabilities 

are summarized in the following. 

Cazacu (2018) orthotropic criterion is expressed as: 

          
4 2

0 0 0 0 0

2 3 2 2 3,F J J J J J      (45) 

In Eq.(45),   is a parameter, and 0 0

2 3,J J  are the orthotropic invariants of the stress deviator,  , 

their expressions relative to the coordinate system associated with the (x, y, z) orthotropy axes of 

the material being given by: 

      
2 2 2 2 2 231 2

2 4 5 6
6 6 6

o

xx yy yy zz xx zz xy xz yz

aa a
J a a a                         ,    (46) 

and 
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(47) 

with ia  ( 1...6i  ) and kb  ( 1...11k  ) being constants. Note that 2

oJ  is a homogenous 

polynomial of degree two in its arguments, insensitive to hydrostatic pressure, which satisfies the 

symmetry restrictions associated with orthotropy. When all the coefficients ai =1, 2

oJ  reduces to 

the classic isotropic invariant 2J . On the other hand, 
3

oJ  is a homogenous third-order polynomial 

in stresses that reduces to the isotropic invariant 3J  if all kb =1, it is insensitive to hydrostatic 

pressure, and satisfies the orthotropic symmetries. For more details concerning the derivation of 

these orthotropic invariants, see the monograph of Cazacu et al. (2019). The effective stress,   

associated to the Cazacu (2018) criterion is given by: 

        
4

1/8
2

2 2 3

o o oJ J Jm  
 




,    (48) 

with m being a constant defined such that for uniaxial tension in the x- direction the effective 

stress reduces to the yield stress, i.e.  

 

      
1/8

3 2

1 3 1 2 1 327 8

3

3 3
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a a b b a a
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     (49) 

For general 3-D stress conditions Cazacu (2018) orthotropic criterion involves 17 anisotropy 

coefficients (for proof of this statement see Cazacu (2018)).  
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In the plane of the sheet (RD, TD), this orthotropic criterion predicts the following dependence 

of the normalized uniaxial flow stress    / 0    on the angle : 
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  (50) 

Assuming associated flow rule, the Lankford coefficients  r   are calculated using equation: 
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 2 2sin sin 2 cosyy xx xy yy

zz xx yy

d d d d
r

d d d

      


  

  
  

 
 

with the components of the plastic strain increment as d  being calculated assuming associated 

flow rule, i.e. 

    d d



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
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
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,        (51) 

where 0d   denotes the plastic multiplier. The specific expressions for 
ij








 i, j =1...3 given 

by  
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   (52) 

It is also worth noting that if in the Cazacu (2018) orthotropic criterion the coefficient   is set 

equal to zero, Hill's orthotropic criterion is recovered. Let us recall that in the coordinate system 

Oxyz associated with the axes of orthotropy of the material Hill (1948) yield criterion is 

expressed as:  
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where F, G, H, L, M, N are anisotropy coefficients of the material. 

Note also that according to Cazacu (2018) model yielding under equibiaxial tension in the plane 

 ,x y  occurs when 
T

xx yy b     with 
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  (54) 

Yielding under pure shear in the (x,y) plane (or  (RD, TD) for a rolled sheet, with RD denoting 

the rolling direction, and TD the transverse direction)  is equal to: 

                                   0

4

RD TD
B a


   .    (55) 

In summary, for description of plastic properties in the plane  ,x y  or (RD-TD) the criterion 

involves ten anisotropy coefficients 1 2 3 4 1 2 3 4 5 10, , , , , , , , ,a a a a b b b b b b  and the parameter  . These 

parameters can be determined by minimizing an error function of the form: 
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In the above equation, “n” and “m” represent the number of experimental yield stresses and r-

values, respectively corresponding to different orientations   that are available, the superscript 

indicates whether the respective value is experimental or it is calculated using the above 

expressions for theoretical r-values and yield stresses while i , j  and   are weight factors. As 

an example, in Figure (a)-(b) are shown the predicted variation of the yield stresses and r-values 

in the plane of the plate or sheet (i.e.  ,x y  or (RD, TD) ) according to the Cazacu (2018) and 

Hill (1948) criterion, respectively, in comparison with the measured yield stresses for an Al 

6022-T4 Al sheet (data after Barlat et al. (1997)). The stresses are normalized by the uniaxial 

tensile yield stress in the rolling direction. The numerical values of the coefficients involved in 
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the criterion that were determined from the experimental yield stresses and r-values for   = 0 , 

30 , 45 , 60 , 90  and the tensile equibiaxial yield stress 
T

b  are: 1a  =0.709, 2a =1.36; 3a  

=1.18, 4a =0.96, 1b  =0.2, 2b =-1.334, 3b  = -1.53, 4b =0.94, 5b =1.18, 10b  =0.988, and   =1.5. 

The numerical values of the Hill (1948) coefficients for this material, calculated based on the 

experimental r-values at   = 0 , 45 , 90  are: F=0.706, G=0.587, H= 0.413, and N=1.27. 

Note that only the Cazacu (2018) criterion describes with accuracy both the anisotropy in 

yielding and r-values for this Al sheet (see Fig. 19). The projection in the  ,xx yy   plane of the 

yield surface corresponding to xy  = 0, according to Cazacu (2018) criterion and Hill (1948) 

criterion, respectively are shown in Fig. 20. Note that in contrast to the Hill (1948) criterion, the 

Cazacu (2018) criterion captures with accuracy both the anisotropy in yield stresses and r-values. 

Moreover, Hill (1948) criterion underpredicts the experimental equibiaxial yield stress. 
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Figure 19. Predicted anisotropy according to the Cazacu (2018) orthotropic criterion (interrupted line) and Hill 

(1948) criterion for an Al alloy AA 6022-T4. (a) Uniaxial yield stress variation; (b) Lankford coefficients. Data 
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(symbols) from Barlat et al. (1997). Stresses are normalized by the uniaxial yield stress in tension in the rolling 

direction. 
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Figure 20. Projection of the yield surface in the plane  ,
xx yy

   (with 0
xy

  ) for AA 6022-T4 as predicted by the 

orthotropic Cazacu (2018) yield criterion and Hill (1948) criterion.   

5. Conclusions  

Fatigue failure is a continuous concern for a large variety of military and civilian applications. 

The current approach to fatigue is based on empirical data. Prediction of failure due to fatigue 

will substantially reduce operational burdens due to logistics services while enabling equipment 

readiness. As part of this research project, new findings that enable physical understanding of the 

phenomenon were obtained. 

 It was demonstrated that in an isotropic material the extent of the plastic zone that 

develops near a crack depends significantly on the ratio T Y/  between the yield stresses 

in uniaxial tension and in pure shear. 

 This finding was established based on a new solution for the elastic stresses in the 

vicinity of a central crack in a plate subject to uniaxial tension. In contrast to the classical 

solution based on Westergaard potential, this new solution satisfies the boundary 

conditions (shear stress and normal stress are zero along the crack surface) and as such it 

is not axisymmetric along the crack line. 

 Using this new elastic stress field solution, the effect of the particularities of yielding on 

the plastic zone was put into evidence. 
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 It was demonstrated that irrespective of the applied far-field loading, if yielding is 

described by Tresca criterion the plastic zone that develops near a crack is larger than in 

the case when yielding is governed by the von Mises criterion. For example, for an 

applied load S=0.75 T  the extent of  plastic zone for a Tresca material is 58% larger 

than that for a material with yielding described by the von Mises yield criterion. 

 In general, irrespective of the external loading the larger is the ratio between the yield 

stresses in uniaxial tension and pure shear of a material the larger is the extent of the 

plastic zone. The upper bound for the size of the plastic zone is obtained for a Tresca type 

material ( T Y/  =2). 

 A new isotropic strain-rate potential for isotropic pressure-insensitive metallic materials 

with the same response in tension and compression was also developed. The new 

potential depends on both invariants of the strain-rate deviator. The relative weight of the 

two invariants is described by a material parameter . Depending on the sign of the 

parameter , the new plastic potential is either interior to the von Mises strain-rate 

potential ( <0), coincides with it (=0) or it is exterior to it. The range of variation of 

this parameter such as to ensure convexity of the potential was analytically determined.  

 In general, for tensile loadings the larger is the ratio between the yield stresses in 

uniaxial tension and pure shear of a material the slowest is the rate of damage growth. 

The fastest rate of damage growth is obtained for a Tresca type material. For compressive 

loading, the reverse holds true. Namely, the fastest rate of void collapse correspond to 

Tresca type material. 

 A new plastic potential accounting for orthotropy was developed. Its improved predictive 

capabilities with respect to classic formulations were demonstrated. 

 

The research presented opens new avenues for advancing our understanding of the influence of 

the plastic deformation on every aspect of the fatigue crack propagation. Moreover, the models 

developed are to assist in the development of enhanced new materials for which the rate of crack 

propagation is substantially decreased.   

 



47 
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Monograph:  
O. Cazacu, B. Revil-Baudard, N. Chandola [2019] Plasticity-Damage Couplings: From Single 

Crystal to Polycrystalline Materials, Springer, 2019; 518 pp., https://doi.org/10.1017/978-3-319-

92922-4 , ISBN 978-3-319-92921-7 (https://www.springer.com/gb/book/9783319929217 

 

Book Chapter: 

J.L. Alves and O. Cazacu [2017] Effect of the third-invariant of the stress deviator on the 

response of porous solids with pressure-insensitive matrix, Chapter 5 in: From microstructure 

investigations to multiscale modeling : bridging the gap”, Wiley-ISTE, 2017,  Eds: S. Bouvier, 

D.Brancherie, P. Feisel, A. Ibrahimegovic Wiley-ISTE, 2017, ISBN:978-1-78630-259-5. 

 

Refereed Journal Publications 

1. O. Cazacu and B. Revil-Baudard [2016] New analytic criterion for porous solids with 
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2. O. Cazacu [2018]. New yield criteria for isotropic and textured metallic 

materials.International Journal of Solids and Structures,139, 200-210.  

3. B. Revil-Baudard, O. Cazacu, N. Chandola [2018]  Effect of the ratio between the yield 

stresses in uniaxial tension and pure shear on the shape and size of the plastic zone near a 

crack , Int. J. Plasticity, 102, 101-117. 

4. D. Savage, N. Chandola, O. Cazacu, Brandon A. McWilliams, Marko Knezevic [2018] 

Validation of recent analytical dilatational models for porous polycrystals using crystal 

plasticity finite element models with Schmid and non-Schmid activation laws (2018), 
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