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Preface

Autonomous unmanned aerial vehicles (UAVs) are becoming increas-
ingly popular and have many potential applications. This analysis con-
siders autonomous UAVs for medical resupply missions, in particular a 
blood delivery case study. We develop a design optimization tool that 
allows users to quickly assess small UAV designs. We believe the frame-
work offered in this report will be most useful to acquisition program 
officials and Joint medical community stakeholders in understanding 
the requirements, capabilities, and cost drivers of small UAV delivery 
systems. Our approach is also readily applicable to other mission types.

This research was sponsored by the Office of the Secretary of 
Defense and conducted within the Acquisition and Technology Policy 
Center of the RAND National Defense Research Institute (NDRI), a 
federally funded research and development center (FFRDC) sponsored 
by the Office of the Secretary of Defense, the Joint Staff, the Uni-
fied Combatant Commands, the Navy, the Marine Corps, the defense 
agencies, and the defense Intelligence Community. For more informa-
tion on the Acquisition and Technology Policy Center, see www.rand 
.org/nsrd/ndri/centers/atp or contact the director (contact information 
is provided on the webpage). 
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Summary

Autonomous unmanned aerial vehicles (UAVs) are quickly proliferat-
ing in both commercial and military markets. In the coming decade, 
the number of potential applications is also expected to expand. These 
applications include environmental monitoring, autonomous delivery, 
data collection, and photography and video. The advantages of these 
systems are certainly attractive—they minimize risk to operators, pro-
vide on-demand capability, and allow increased flexibility for reaching 
denied areas. In particular, the Joint medical community is interested 
in how autonomous UAVs can provide improved medical care capabil-
ity, including medical resupply and unmanned casualty evacuation.

Despite their interest, the Joint medical community currently 
lacks a framework to assess the potential utility of autonomous UAVs 
for their missions. As such, this analysis aims to provide this analytic 
framework. We specifically focus on autonomous UAVs for blood deliv-
ery, a subset of the medical resupply mission space, for both logistical 
resupply of medical treatment facilities (MTFs) and emergency deliv-
ery to traumatically injured forward operators. Blood makes for an 
interesting UAV delivery case study because it has unique constraints 
regarding how it must be transported and stored and also has a finite 
shelf life. In short, blood could potentially benefit from a pairing with 
a delivery platform that allows for greater flexibility in its supply chain.

This analysis has three primary objectives: (1) Determine the 
required capability of a blood delivery UAV and define the corre-
sponding mission space; (2) generate a UAV design that delivers this 
capability; and (3) understand the mission parameters that drive this 
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design. To meet these objectives, we begin by first conducting a liter-
ature review and engaging Joint medical community stakeholders to 
define a notional blood delivery mission space (i.e., distances, payloads, 
and response times). With the mission space defined, we then develop 
a tool that optimizes small UAV designs based on a user-defined objec-
tive. The tool, which we call the Rapid UAV Design Optimization 
of Fixed-Wing Fleets (RUDOFF), generates globally optimal designs 
very quickly, making it ideal for conceptual design analyses and under-
standing high-level trade-offs that may be relevant to Joint medical 
stakeholders and acquisition program officials. We use RUDOFF to 
generate designs of blood delivery UAVs and to understand their most 
important design and cost drivers.

Table S.1 summarizes the notional mission space derived from 
a combination of literature review and stakeholder engagement. In 
particular, UAVs would ideally perform emergency deliveries within 
approximately 15 minutes, as transfusions for resuscitative care can 
improve survival outcomes if initiated within this time. Our literature 
review also yielded additional insights: (1) Several military research 
programs could make use of flexible and quickly composable logis-
tical platforms—for example, autonomous medical resupply UAVs 
could quickly redistribute blood in response to a mass-casualty event; 
(2) recent UAV blood delivery flight tests have shown limited impact 
on blood quality, implying delivery via UAV would not adversely affect 
quality of care; and (3) onboard temperature control systems, if nec-
essary during flight and post-delivery, should seek to maintain blood 
temperatures between 1°C and 6°C, the common standard for storage, 
not transport, of liquid blood products.

Table S.1
Notional Mission Space of a Blood Delivery, Autonomous UAV 
for Logistical Resupply and Emergency Delivery

Parameter Logistical Resupply Emergency Delivery

Range ~100 miles ~10 miles

Time 1 hour 15 minutes

Payload 10+ blood units 1 to 3 units
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Using the notional mission space from Table S.1, we then use 
RUDOFF to estimate the optimal small blood delivery UAV design. 
We define the objective function that the tool seeks to minimize as the 
estimated life-cycle cost of the platform. This cost includes develop-
ment, procurement, and sustainment costs for an assumed fleet size 
and system lifetime. We perform this analysis for two cases: (1) a single 
platform that flies both logistical and emergency missions and (2) two 
separate platforms that are mission-specific. Based on our definition 
of the UAV life-cycle cost, we find the single-platform solution to be 
the most cost-effective—that is, the cost of developing a second, addi-
tional platform outweighs the benefits of having two UAVs specifi-
cally tailored to each mission type. We note, however, that alternative 
definitions of the objective functions can potentially lead to different 
conclusions regarding fleet composition; for certain objective function 
definitions, the two mission-specific UAVs may be the optimal choice.

As the single platform performs both the logistical and emer-
gency missions, we refer to this design as the one-size-fits-all solution. 
Figure S.1 provides an illustration of this optimal configuration. Table 
S.2 provides context for our design and compares the dimensions and 
weight of the one-size-fits-all UAV to the AeroVironment RQ-11B, a 
military reconnaissance small UAV platform, and the Zipline Zip 1, 
a commercial blood delivery autonomous aircraft. We find that our 
platform is both larger and heavier than the existing military option 
and has more demanding payload requirements than the existing com-
mercial platform. 

RUDOFF also generates UAV design sensitivities—in this case, 
these quantities represent the percent change in cost given a percent 
change in mission or design parameter, as noted in the bottom panel 
of Figure S.1. We see that this one-size-fits-all platform is most sensi-
tive to the range requirement for the logistical resupply mission—that 
is, a 50-percent increase in the range constraint would increase total 
life-cycle costs by 70 percent. We also see that cost is less sensitive to 
the specified response times such that higher-speed UAVs would not 
cost as much as longer-range or larger-payload aircraft. We believe the 
framework offered in this analysis will be most useful to acquisition 
program officials and Joint medical community stakeholders who need 
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Figure S.1
Illustration of Optimal Design and Cost Sensitivities (Percent Change 
in Life-Cycle Cost for a 1-Percent Change in Mission Parameter) for the 
One-Size-Fits-All UAV
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to understand the requirements, capabilities, and cost drivers of small 
UAV delivery systems. 

Finally, we consider this analysis an initial assessment of a single 
medical resupply application that sits within a much larger mission 
space. Future RAND studies could use RUDOFF to assess other medi-
cal resupply missions, including assessing a single platform that serves a 
variety of purposes beyond the two assumed in this analysis. RUDOFF 
can also be more broadly applied to other mission types (e.g., intel-
ligence gathering, reconnaissance). Stakeholders and researchers can 
generate similar information for any application as presented in this 
report. 

Table S.2
Design Specifications of the AeroVironment RQ-11B Raven, Zipline Zip 1, 
and Our One-Size-Fits-All Platform

Platform Wingspan (m) Chord (m) Weight (kg) Payload (kg)

RQ-11B Raven 1.37 0.22 1.9 0.2

Zip 1 1.83 0.24 12–14 1.5a

One-Size-Fits-All 1.89 0.33 39.9 10

SOURCES: AeroVironment, 2017a; RUDOFF tool; Stewart, 2017.
a Authors’ estimate.
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CHAPTER ONE

Introduction

Use of unmanned aerial vehicles (UAVs) is predicted to grow in the 
coming years across a number of sectors. Commercial sales, for exam-
ple, are projected to grow 36 percent annually between 2018 and 
2022 because of a growing number of potential applications, includ-
ing environmental monitoring, aerial photography, and data collection 
(Business Wire, 2018b). The military UAV market is also expected to 
continue its historical growth at 4 percent per year between 2018 and 
2028, driven primarily by demand for unmanned combat aerial vehi-
cles and long-endurance platforms (Business Wire, 2018a). 

UAVs vary widely in size and capability and fly different sets 
of missions. To distinguish between platforms, the Department of 
Defense (DoD) classifies its systems into “groups” defined by maxi-
mum gross takeoff weight (MGTOW), operating altitude, and air-
speed, as reproduced in Table 1.1. As can be seen, military systems 
cover a wide spectrum, from the lighter, lower-flying, and slower 
Group 1 platforms, such as the RQ-11B Raven, to the heavier but 
longer-range and larger-payload Group 5 platforms, such as the 
MQ-9 Reaper (U.S. Air Force, 2019). These example platforms are 
shown in Figure 1.1. Separately, the Federal Aviation Administration 
(FAA) specifically distinguishes the “small” UAV as any platform 
that weighs less than 55 pounds, operates below 400 feet, and flies 
slower than 100 miles per hour (FAA, 2018)—that is, a Group 1 or 2 
system. The term micro-UAV has also recently become more popular 
with the advent of UAV “swarm” concepts, referring to small geomet-
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ric and aero dynamic scales on the order of tens of centimeters or less, 
of the corresponding platforms.1

More recently, commercial firms and the military have both rec-
ognized the potential of UAVs in autonomous delivery applications. 
Recent RAND work assessed the utility, deployment, and potential 
regulatory challenges of autonomous delivery drone fleets (Kuhn, 
2017; Lohn, 2017; Xu, 2017).2 Companies are also actively pursuing 
platforms, both large and small, for a variety of resupply missions.3 
Not surprisingly, autonomous delivery has drawn considerable inter-
est from the military—unmanned systems minimize risk to personnel 
and the autonomy offers a flexible capability in the face of chaotic or 
uncertain operating environments. Recent DARPA initiatives, such as 

1 The Air Force’s micro-UAV Perdix, for example, highlights the limitation of the group 
classifications, as it does not neatly fall into any of these categories, given its relatively slow 
speed but high-altitude mission envelope. See Tao and Hansman (2016) for a more detailed 
description of the Perdix.
2 Note that this set of RAND studies used the term “drones,” which is sometimes also 
interchangeably used with UAV. Popular usage, however, typically associates drones with 
quadcopters (e.g., the DJI Phantom), which are not the focus of this study.
3 See, for example, Elroy Air’s autonomous UAV, which has been designed for commercial 
cargo, disaster relief, and military resupply missions (Elroy Air, undated).

Table 1.1
DoD UAV Group Classifications with Examples

Group MGTOW Operating Altitude Airspeed Example

1 <20 lbs <1,200 ft AGL <100 knots RQ-11B Raven

2 <55 lbs <3,500 ft AGL <250 knots ScanEagle

3 <1,320 lbs <18,000 ft MSL <250 knots RQ-7B Shadow

4 >1,320 lbs <18,000 ft MSL Any MQ-1 Predator

5 >1,320 lbs >18,000 ft MSL Any MQ-9 Reaper

SOURCE: U.S. Army, 2010.

NOTES: AGL = above ground level; MSL = mean sea level.
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Figure 1.1
The Group 1 RQ-11B Raven (Top) and the Group 5 MQ-9 Reaper (Bottom)

SOURCES: U.S. Army/SFC Michael Guillory (top); U.S. Air Force Photo / Lt. Col. Leslie 
Pratt (bottom). 
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CASCADE,4 CONCERTO,5 SoSITE,6 and Mosaic,7 also emphasize 
the benefit of rapidly composing mission capability from a large pool of 
low-cost assets, with autonomous systems partly enabling those visions. 
In addition, there are several ongoing military autonomous resupply 
research and development programs. One example is the Office of 
Naval Research’s Autonomous Aerial Cargo/Utility System (AACUS) 
effort that is developing an on-demand, autonomous delivery helicop-
ter. AACUS, developed by Aurora Flight Sciences, recently conducted 
its first operational test flight (Kucinski, 2018).

The Joint medical community, more specifically, is greatly inter-
ested in the utility offered by autonomous, unmanned systems. UAVs 
could be useful for medical resupply, both in military and civilian 
applications.8 With regard to the military, autonomous UAVs could be 
used to quickly deliver emergency supplies on-demand during combat 
operations, such as in support of medical response to a mass- casualty 
event. With regard to civilian use, supplies could be flown into difficult- 
to-reach locations that may have been denied by a natural disaster or 
other catastrophic event. A more recent RAND study conducted by 
Thomas et al. (2018) specifically proposed the use of UAVs for alle-
viating logistical challenges within the Joint medical community’s 
blood product supply chain.

4 The Complex Adaptive System Composition and Design Environment (CASCADE) 
program seeks to “fundamentally change how systems are designed for real-time resilient 
response to dynamic, unexpected contingencies.” See Paschkewitz (2019) for a description of 
CASCADE. 
5 See Javorsek (2019) for a description of CONverged Collaborative Elements for RF Task 
Operations (CONCERTO).
6 See Jones (2019) for a description of System of Systems Integration Technology and 
Experimentation (SoSITE).
7 The Defense Advanced Research Projects Agency (DARPA) “mosaic warfare” concept 
aims to bring together inexpensive systems to “enable diverse, agile applications.” These 
systems are intended to be rapidly “tailored to accommodate available resources, adapt to 
dynamic threats, and be resilient to losses and attrition.” See DARPA (2017). 
8 The Joint medical community has also expressed interest in autonomous unmanned 
casualty evacuation platforms, although this is not without ethical concerns. This analysis 
only considers the medical resupply space, although future assessments could consider casu-
alty evacuation.
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Blood products, such as whole blood, plasma, red blood cells 
(RBCs), and platelets, make for an interesting UAV delivery case study.9 
Blood has unique constraints regarding how it must be transported 
and stored, and it has a finite shelf life—in short, blood could poten-
tially benefit from a pairing with a delivery platform that could allow 
greater flexibility in its supply chain. For example, these supplies could 
be collected, stored, and used all in different locations with less impact 
on immediate availability. In addition, the mission space is potentially 
multidimensional: A UAV could be tasked to resupply a medical treat-
ment facility (MTF) capable of properly storing blood, or perhaps that 
UAV could conduct emergency deliveries to forward operators to begin 
combat casualty resuscitative care as soon as possible. 

In the civilian blood delivery space, Zipline has been one of the 
more successful ventures. Currently operating in Rwanda with plans 
to  expand into nearby countries, Zipline has recently deployed the 
second version of its autonomous blood delivery fixed-wing10 UAV, the 
Zip 2, shown in Figure 1.2. This more advanced platform is  capable of 
delivering a 3.85-pound payload (i.e., sufficient for at least one unit of 
whole blood) at speeds nearing 80 miles per hour (Petrova and  Koldony, 
2018). Most important, however, Rwandan hospitals have made real 
use of these systems, allowing for blood storage centers to quickly dis-
tribute units to more remote medical facilities, bypassing slower and 
less reliable transportation infrastructure. 

Motivation and Methods

Given the success of Zipline and the potential benefit to the Joint med-
ical community, this analysis assesses autonomous delivery of blood 

9 With the exception of specifically referenced blood components and other products made 
from whole blood, we will, from this point forward, refer to blood and blood products more 
simply as blood.
10 Fixed-wing is the conventional configuration of aircraft (e.g., commercial jets) and is 
distinct from tilt rotor or vertical takeoff and landing (VTOL) aircraft whose operation is 
similar to a helicopter. 
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by small,11 fixed-wing UAVs.12 In particular, we envision two possible 
operational concepts:

• For logistical resupply of MTFs, UAVs are flown continuously or 
on-demand from a central blood storage facility to more remote 
MTFs that lack organic refrigeration capability. Each UAV has 
sufficient payload capacity to resupply a significant fraction of the 
MTF stores (i.e., on the order of 10 units).

11 We use the term small f lexibly in this report. While the FAA definition sets a weight limit, 
we use this classification to mean that the size of the UAV is on the order of a few meters.
12 When we think of flight vehicles in the delivery context, existing proposed platforms 
(e.g., Google Wing and Amazon Prime Air) naturally conjure images of small-scale UAV 
systems with dimensions similar to the average human. This is not by accident, as the pro-
posed payloads and delivery ranges subsequently demand aircraft of this size. As will be seen 
in Chapter Four, the UAV design we ultimately generate is of this scale.

Figure 1.2
The Zipline Zip 2 Fixed-Wing UAV for Blood Delivery Missions in Rwanda 

SOURCE: Zipline International, used with permission.
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• For emergency delivery to critically injured forward operators, 
UAVs are kept at forward MTFs or rerouted from other logis-
tical functions and dispatched on-demand. Each vehicle carries 
enough blood for transfusion to one or two individuals (i.e., on 
the order of three units) and flies at sufficiently high speed to 
improve the survival outcome of the injured person. The design of 
this UAV is likely more sensitive to the trade-off between higher-
speed and larger-payload deliveries.

In both cases, the UAV offloads its payload via airdrop and then makes 
its return journey, having sufficient fuel for both the outbound and 
inbound legs. In addition, multiple UAVs from the same or different 
locations could be dispatched to a single location if multiple logistical 
resupplies or emergency deliveries are required and a single vehicle pay-
load is not sufficient. 

Discussions with RAND subject matter experts make clear that 
the Joint medical community, despite having interest, lacks a frame-
work in which to assess potential options to provide this capability, 
including what kind of flight vehicle they require and what mission 
parameters drive the design of such a UAV. As such, this analysis has 
three primary objectives: (1) Determine the required capability of a 
blood delivery UAV and define the corresponding mission space; (2) 
generate a UAV design that delivers this capability; and (3) understand 
the mission parameters that drive this design. Ultimately, we hope to 
provide relevant information that is useful to Joint medical stakehold-
ers and acquisition program officials when developing and setting the 
requirements for a small UAV program.

To meet these objectives, we begin by first conducting a litera-
ture review of relevant topics that further motivate the utility of a 
blood delivery UAV—that is, how they can help mitigate logistical 
challenges and why faster delivery of blood for forward resuscitative 
care can lead to better survival outcomes. We also consider issues spe-
cific to transporting blood by small UAV, such as the relevant storage 
standards and whether the associated accelerations and environmental 
conditions can significantly degrade blood quality. Finally, with the 
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help of Joint medical community subject matter experts, we define a 
notional blood delivery mission space (i.e., distances, payloads, and 
necessary delivery times) used later in the analysis to design a prospec-
tive UAV platform.

With the mission space defined, we then develop a design tool 
that is able to optimize the UAV based on a user-defined objective 
function. The tool, which we call the Rapid UAV Design Optimiza-
tion of Fixed-Wing Fleets (RUDOFF), generates optimal small UAV 
designs very quickly by exploiting the convexity of the design prob-
lem, discussed in more detail in Chapter Three. This makes RUDOFF 
ideal for conceptual design analyses and understanding high-level 
trade-offs that may be relevant to stakeholders or acquisition program 
officials. For a given solution, RUDOFF also outputs design sensitivi-
ties to the defined objective function, allowing users to understand the 
most important drivers of the UAV design. For example, if an analyst 
defines the objective function to be the total life-cycle cost of the UAV, 
as we do in Chapter Four, then the design sensitivities correspond to 
the most important cost drivers. Finally, RUDOFF also offers the capa-
bility to define multiple UAV platforms and solve the corresponding 
mission assignment problem. This allows users to determine if single 
or multiple UAV types best span the mission space. In summary, this 
tool provides a systematic framework to conduct aircraft conceptual 
design analysis and understand the primary design trade-offs relevant 
for developing small UAV acquisition programs.

Outline

The remainder of this report is organized as follows: Chapter Two con-
siders the technical details of transporting blood onboard small UAVs. 
It concludes by defining a notional blood delivery mission space to 
be applied in the remainder of the analysis. Chapter Three describes 
RUDOFF, the small UAV design optimization tool developed for this 
effort and includes a high-level overview of the model architecture and 
select model components. Chapter Four applies RUDOFF to design 
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and assess a blood delivery UAV for both logistical resupply and emer-
gency delivery missions. This assessment also provides cost sensitivities 
that allow stakeholders to understand how additional platform capa-
bility translates to additional program costs. Finally, Chapter Five con-
cludes this report and offers a discussion of potential future applica-
tions and tool improvements.
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CHAPTER TWO

Defining the Blood Delivery Mission Space

The mission space ultimately drives the design of any aircraft. This 
chapter describes how we define the blood delivery mission space 
and characterize potential constraints. We begin with a discussion of 
blood transport logistics and standards. We then consider the move-
ment of blood specifically by small UAV and discuss related advantages 
and potential challenges. Next, we motivate the use of small UAVs 
for emergency blood delivery to forward locations, given potential 
improvements in survival outcomes for injured personnel. Then, we 
briefly discuss how operations within a contested environment might 
constrain the operation of delivery platforms. Finally, we conclude by 
summarizing the mission space used to generate optimal UAV designs 
in Chapter Four.

For a more in-depth analysis and assessment of the current Joint 
blood network, we refer readers to Thomas et al. (2018).

Logistical Advantages of Autonomous Delivery

As summarized in Thomas et al. (2018), the military’s blood supply-
chain network is both large in spatial extent and complex in its design. 
Blood requires careful testing, careful handling during transport, and 
storage, often with consistent temperature management. Moreover, 
system logistics are further complicated by the limited shelf lives of 
blood and blood products. Figure 2.1 provides a simplified illustration 
of the blood logistics network that highlights sources and sinks struc-
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tured around the storage of both frozen and liquid products.1 These 
products typically come in four varieties: whole blood (i.e., blood col-
lected directly from donors) and the components that can be readily 
separated from whole blood—namely, red blood cells (RBCs), plasma, 
and platelets. Transfusions can include any or all of these products, 
where RBCs, plasma, and platelets can be combined in some ratio to 
approximate whole blood. Thomas et al. (2018) also highlight how 
fragile the blood supply chain could be in a future large-scale con-
flict. Such an event, for example, could stress the network with a large 
number of trauma casualties in need of blood, coupled with degraded 
access to transportation for resupply of blood at forward-operating 
locations. 

Given this issue, the Joint medical community has expressed 
interest in using autonomous UAVs to offer one flexible option to miti-
gate issues caused by supply-chain stressors. The specific advantages of 
autonomous systems are briefly summarized later in this chapter, but 
this potential capability is compelling for two reasons. First, autono-
mous UAVs offer a way to directly connect more remote blood collec-
tion or storage locations to MTFs. Second, such platforms could also 

1 Frozen product shelf lives are typically longer than their liquid counterparts.

Figure 2.1
A Qualitative Framework of Blood Supply-Chain Flows and Processes
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SOURCE: Adapted from Thomas et al., 2018.

Sources

Use of blood

Expiration of
blood

Sinks



Defining the Blood Delivery Mission Space    13

offer a means to quickly redistribute blood in theater in the event of 
some spike in local demand. Both of these advantages could make the 
blood supply network more resilient in future conflicts. The remainder 
of this section discusses the standards for blood product transport and 
storage, which are relevant when considering temperature controls on 
board a blood delivery UAV. 

Blood Product Storage and Transport Standards

To ensure its safe use during transfusion, blood must be transported 
and stored within particular temperature ranges as specified by the 
Standards for Blood Banks and Transfusion Services (AABB, 2018). Most 
relevant is Table Reference Standard 5.1.8A—Requirements for Stor-
age, Transportation, and Expiration, which defines acceptable temper-
ature ranges for a variety of blood products, including whole blood, 
RBCs, platelets, and plasma. For whole blood, nonfrozen RBCs, and 
thawed plasmas, the standards are consistently 1–6°C for storage and 
1–10°C for transport. Transport and storage of platelets require tem-
peratures between 20°C and 24°C, although platelets in storage also 
need continuous, gentle agitation to maintain product quality. 

As will be discussed later in this chapter, the current consensus 
within the Joint medical community is that whole blood is the pre-
ferred product for transfusions to trauma patients in need of blood. It 
is unclear, however, which standard, storage or transport, applies to the 
emergency delivery of whole blood to injured personnel in the field, 
particularly if the blood is not transfused immediately. Based on dis-
cussions with researchers at the Army Institute of Surgical Research,2 
we apply the standard for storage, which states that whole blood must 
be maintained between 1°C and 6°C at all times prior to its use, even 
while on board a delivery platform or after being delivered to a forward 
position. Chapter Three discusses the implementation of a passive tem-
perature control system (i.e., a cooler) that estimates the amount of 
insulation and coolant required to maintain blood within this 1–6°C 
temperature range during flight and post-delivery. Such systems, how-

2 Email communications with Joint medical community blood logisticians to understand 
blood transportation constraints, June 28–July 9, 2018.
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ever, are not absolutely necessary. Zipline, for example, has not previ-
ously used cooling packs because delivery times have been short enough 
and an insulated wrap has been sufficient. Operations in the context of 
this analysis, however, are less certain; therefore, we assume relatively 
long post-delivery times without refrigeration or use.

Moving Blood with an Autonomous, Fixed-Wing UAV

As has been stated previously, this analysis assesses autonomous, fixed-
wing UAVs for medical resupply. This section provides a brief overview 
of how we treat autonomy within this study and the inherent advan-
tages of a fixed-wing platform. Delivery of blood by UAV also raises 
a more specific concern—namely, whether the quality of the product 
can be maintained throughout the duration of the flight. To address 
that issue, we briefly summarize studies that have assessed the impact 
of small UAV flights on blood quality.

Benefits of Autonomy and Fixed-Wing Aircraft

In general, the benefits of autonomous delivery are evident. Autono-
mous delivery helps to reduce logistical strain, as missions can be com-
pleted with minimal operator intervention, and helps to reduce risk 
associated with pilot error either en route or during delivery offload, 
assuming sufficient system reliability. More specifically, small UAVs 
are not necessarily constrained to operate from airfields, and their size 
implies relatively low unit costs, meaning more platforms can be more 
flexibly distributed throughout the theater. Within the context of this 
analysis, we consider autonomy only in terms of how it impacts the 
weight of the UAV, since the vehicle carries the necessary equipment, 
like radio frequency (RF) receivers and sensors, that enable pilotless 
flight. In this case, the model developed for the fleet design optimiza-
tion analysis, discussed in Chapter Three, assumes that the total auton-
omous system electronics package is 0.2 kilogram.3 Additional benefits 

3 This weight estimate is based on the Embention Veronte family of autopilots. See Emben-
tion (undated). 
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or disadvantages of autonomous delivery systems are beyond the scope 
of this study. 

We also limit the scope of this analysis to strictly fixed-wing plat-
forms. The terms unmanned aircraft system (UAS) and drone typically 
include quadcopters, but fixed-wing aircraft are inherently more effi-
cient and typically capable of carrying larger payloads and traveling 
longer ranges. This fact can be observed from the range equation for a 
battery-powered, fixed-wing aircraft, 

R =ηo
L
D

EB

W
,

where R is the range, ηo is the overall efficiency of the vehicle, L/D is 
the lift-to-drag ratio (a measure of aerodynamic efficiency), Eb is the 
energy content of the battery, and W is the aircraft weight. For a fixed-
wing aircraft, the lift-to-drag ratio is typically on the order of 10, while 
for a helicopter or a quadcopter, L/D is typically smaller. In addition, 
for a fixed-wing vehicle, all power drawn from the battery goes toward 
the forward motion of the aircraft, whereas for a helicopter some of 
that power must be used to keep the vehicle in the air, thus reducing 
the available energy for forward flight.4

Thus, because both lift-to-drag and effective battery energy con-
tent are higher, fixed-wing aircraft for the same range can carry more 
payload and for the same weight can travel a longer distance than a 
comparable helicopter or quadcopter. As will be shown in our defini-
tion of the notional blood delivery mission space, blood may require 
rapid transport over tens of miles, and thus we assume a priori that 
fixed-wing platforms are the most logical choice. This choice of con-
figuration, however, does not rule out the future use of vertical take-
off and landing (VTOL) aircraft for similar missions if circumstances 

4 While we will focus the analysis presented here on fixed-wing UAVs, there are other mis-
sion considerations that may drive the employment of a small rotary-wing asset. For example, 
delivery within the built vertical infrastructure of an urban area may drive the need for the 
greater maneuverability of a rotary-wing delivery vehicle. While range of a fixed-wing asset 
helps to scope the analysis presented here, it should be clear that a number of other opera-
tional factors can come into play to help inform the selection of UAV delivery assets.
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were to require hover capability, either during takeoff, landing, or pay-
load delivery.

It is worth noting that our analysis here does not take into 
account any requirements for equipment or infrastructure to launch 
or recover fixed-wing platforms. For example, the Zipline Zip utilizes 
a rail system for launch and a net apparatus for recovery of the asset. 
Factors such as cost and deployability of these assets, as well as any risk 
factors in the deployed environment, will play a role in the ultimate 
selection of the UAV delivery platform.

Does Small UAV Transport Degrade Blood Quality?

In addition to exposure to conditions above or below the required stor-
age or transport temperature range, UAVs could also subject blood 
to accelerations and pressures that adversely affect its quality. Several 
studies have assessed the impact of low-altitude drone transport on the 
quality of whole blood (Amukele et al., 2015; Amukele et al., 2017). 
The authors of these studies tracked quality by comparing different 
indicators between a control (stationary samples) and samples that 
were flown on board fixed-wing platforms. Table 2.1 summarizes two 
flight tests performed by researchers at the Johns Hopkins University 
School of Medicine.

Researchers in both studies flew blood samples in fixed-wing plat-
forms, cruising at 100 meters above ground level. Amukele et al. (2015) 
considered a relatively short flight of 30 minutes in a moderate ambient 
temperature of 25.3°C, with a UAV that was hand-launched. Amukele 
et al. (2017) assessed impacts from a longer three-hour flight in a hotter, 

Table 2.1
Mission Parameters for Studies at the Johns Hopkins University School of 
Medicine

Study
Ambient 

Temp. (°C)
Range  
(km)

Altitude  
(m)

Flight Time 
(hrs)

Amukele et al. (2015) 25.3 40 100 0.5

Amukele et al. (2017) 32 260 100 3

SOURCES: Amukele et al., 2015; Amukele et al., 2017.
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desert environment. This second study used a UAV capable of VTOL. 
For most blood quality indicators assessed, the two studies observed 
no statistically significant difference between the flown and control 
blood samples. The only exceptions were statistically significant differ-
ences in the potassium and glucose levels after the longer flight from 
Amukele et al. (2017). The research team hypothesized that this find-
ing was related to the difference in storage temperatures between the 
two sets of samples. In both studies, temperature of the whole blood 
was not tightly maintained between 1°C and 6°C throughout the trials, 
thus violating blood storage standards, which potentially explains why 
potassium and glucose did not “meet clinical and/or regulatory accept-
ability criteria” applied in the study (Amukele et al., 2017).

Given the results of these analyses, we assume that transport on 
board a small UAV will not adversely impact the use of the whole blood 
in transfusions at MTFs or the point of injury as long as proper tem-
perature controls are in place. These results, however, have not been 
proven robust under a variety of potential operating conditions and 
only extend to the combination of temperatures and accelerations 
assessed in the two flight tests, so we caution against the generalization 
of these results to other environmental and operational conditions. In 
addition, these results did not assess the impacts of reduced pressures 
on blood, as cruise altitudes were limited to 100 meters. At this alti-
tude, pressures are within 1 percent of ground level. Future assessments 
could consider transport at reduced pressures, as higher cruise altitudes 
can correspond to higher flight vehicle efficiencies and reduced heat 
transfer requirements given the colder ambient temperatures. Subject-
ing samples to more extreme accelerations, comparable to maneuvers 
or hard landings that may be required in contested environments, may 
also be worthwhile.

Blood Transfusions and Improving Survival Outcomes

Intuition tells us that the sooner an injured person receives medical 
care, the better the odds that individual survives the injury. On average, 
this is indeed the case, where the Joint medical community has devel-
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oped models, in particular the Joint Medical Planning Tool (JMPT),5 
to estimate these survival rates as a function of treatment timelines. 
JMPT survival curves then suggest that for traumatic injuries, where 
a person suffers substantial blood loss, starting blood transfusions and 
resuscitative care earlier (e.g., at the point of injury) can also potentially 
improve survival outcomes. 

The literature on blood transfusions generally supports this 
conclusion. In particular, recent studies have assessed the benefits of 
prehospital transfusions on patient survival rates.6 Shackelford et al. 
(2017) found that “blood product transfusion prehospital or within 
minutes of injury was associated with greater 24-hour and 30-day sur-
vival than delayed transfusion or no transfusion.” More specifically, 
they observed that patients receiving prehospital transfusions experi-
enced statistically significant reductions (approximately factor of three) 
in probability of death for both 24-hour and 30-day mortality. For the 
subset of patients who survived past 24 hours, however, the researchers 
did not observe a significant difference in outcomes. Within the subset 
of patients receiving transfusions, the researchers also observed statisti-
cally significant lower mortality rates for those receiving transfusions 
inside of 15 minutes than those receiving delayed transfusions.7 Anec-
dotal evidence gathered through discussions with Joint medical com-
munity experts also supports the idea that earlier transfusions lead to 
better outcomes8 and suggests a similar 15-minute ideal threshold from 
injury to start of transfusion. 

Finally, we also note that the transfusion literature is also con-
clusive in one area—a balance between plasma, RBCs, and platelets 
leads to better outcomes than relying primarily on crystalloids such as 

5 JMPT assumes that patients receive blood as needed and thus cannot determine expected 
differences in survival outcomes with or without transfusions. For an overview of the JMPT 
methodology, we refer readers to Teledyne Brown Engineering Inc. (2015).
6 See, for example, Malsby et al. (2013), who implemented a prehospital transfusion process 
improvement initiative to ensure quality of care on board evacuation helicopters.
7 The average time to transfusion after injury in Shackelford et al. (2017) was 36 minutes. 
8 Email communications with Joint medical community blood logisticians to understand 
blood transportation constraints, June 28–July 9, 2018.
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saline during resuscitative care. Holcomb (2010), for example, found 
that 1:1:1 plasma-RBCs-platelets ratios led to improved outcomes. The 
military transfusion literature further concludes that whole blood is 
the preferred blood product for transfusions.9 Specifying delivery of 
whole blood ultimately has little impact on this analysis because whole 
blood and blood components have similar storage temperature stan-
dards and mass densities (~1 gram/milliliter), the latter implying the 
weight and volume of the aircraft payload will not vary substantially 
with blood product type. This choice does, however, have broader 
logistical impacts that can determine what a UAV will carry on a given 
resupply or emergency delivery mission. We do not consider the precise 
logistical flows or demands of whole blood versus its components in 
this analysis.

Operating in a Contested or Denied Environment

Finally, the particular characteristics of a contested or denied environ-
ment have potentially significant consequences for the utility of auton-
omous UAVs. If an adversary denies RF transmissions, for example, 
then the system may not be able to receive GPS information. These 
data are sometimes used by the autopilot to correct errors that accumu-
late in inertial navigation systems on board unmanned aircraft. With-
out correction, these errors can lead to position drifts of hundreds or 
even thousands of meters over the course of a 10-mile or longer blood 
delivery mission.10 There are, however, means to limit error accumula-
tion even without GPS data. These methods include using predeter-
mined environmental features or landmarks as well as other onboard 

9 See, for example, Cap et al. (2018), who state that “whole blood is the preferred product 
for resuscitation of severe traumatic hemorrhage. It contains all the elements of blood that 
are necessary for oxygen delivery and hemostasis, in nearly physiologic ratios and concentra-
tions” (p. 44). 
10 Bryson and Sukkarieh (2004) give position errors for a small UAV assuming an uncor-
rected inertial navigation system. 
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sensors, like RADAR or LiDAR,11 to help manage error buildup. 
These methods could be used to help mitigate the risk of off-target 
deliveries, particularly in emergency situations where time spent find-
ing errant delivered payloads increases the risk to injured personnel in 
need of immediate medical attention. We do not consider the addi-
tional weight implications of these more capable navigation systems in 
this analysis.

Contested environments can also imply that systems are vulner-
able to adversary tracking and targeting. One way to counter this situ-
ation is to fly as low as possible to take advantage of sensor horizon 
limitations and to minimize the distance a UAV might be within 
visual range. We incorporate this operational countermeasure into this  
analysis by specifying that all missions must be flown at low alti-
tude—that is, we assume a mission pressure altitude, for vehicle sizing 
purposes, of zero meters.12 Another counter to adversary sensors is to 
minimize the sensing cross-section of the platform, which is in part a 
function of the geometry and size of the aircraft. In this analysis we 
do not assess how this dependence might impact UAV design, but a 
sensing cross section model could potentially be implemented in future 
versions of the UAV design tool described in Chapter Three.

Another aspect of a high-threat, contested environment is the pos-
sibility that an adversary could employ conventional attacks to target 
the logistics support to UAV operations.13 For example, should flight 
platforms require dedicated equipment such as rails and netting for 
their launch and recovery, an adversary may opt to target them with 
artillery or cruise missiles to degrade sortie generation capability at the 

11 See Kumar et al. (2017) for an example of a LiDAR/IMU navigation method for indoor 
UAVs. We also refer readers to the Simultaneous Localization and Mapping (SLAM) class of 
algorithms that researchers are developing specifically for GPS-denied environments.
12 This does not account for any terrain, trees, or other environmental objects that could 
prevent a ground-hugging mission profile. As such, we do not consider the sensor or control 
package required for terrain avoidance and assume an ideal case where there are few obstruc-
tions along the UAV flight path. Future assessments can consider more refined mission pro-
files that more precisely define cruise altitudes for a given mission segment.
13 For more on these threats to logistics support to flight operations, see Thomas et al., 2015.
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site. Consequently, the high risk of a conventional threat to flight oper-
ations may drive the need for smaller UAV platforms with a reduced 
logistical footprint. While we do not account for these factors in this 
analysis, it should be clear that the nature of the threat environment 
will play an important role in the ultimate selection of the UAV plat-
forms capable of accomplishing mission objectives.

The Blood Delivery Mission Space

We conclude this chapter by briefly outlining a notional mission space 
derived from the preceding discussion and which we use in Chapter 
Four to conduct the design optimization analysis. We define each mis-
sion within the space using three parameters: delivery range, the time 
in which the vehicle will need to make these deliveries, and the size of 
the single-trip payloads. All three of these parameters are a function 
of the type of mission, whether a logistical resupply or an emergency 
delivery. 

Table 2.2 summarizes these parameters for both mission types. 
In this case, we assume that MTFs will be within 100 miles of each 
other,14 while emergency deliveries will likely be to personnel operat-
ing approximately 10 miles away from the closest MTF (see Thomas 
et al., 2018, table 2.1). We assume delivery times for logistical resup-

14 Thomas et al. (2018) notes that theaterwide distribution of blood can exceed 100 miles, 
but we constrain the problem in this analysis to avoid excessively large vehicles.

Table 2.2
Summary of Mission Parameters for Logistical Resupply and 
Emergency Deliveries

Parameter Logistical Resupply Emergency Delivery

Range ~100 miles ~10 miles

Time 1 hour 15 minutes

Payload 10+ blood units 1 to 3 units
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ply missions to be on the order of one hour,15 while UAVs will need 
to make emergency runs on the order of 15 minutes, which is a time 
derived from the transfusion literature previously summarized. Finally, 
we assume that resupplies will deliver 10 or more units of blood to 
replenish the stores at a small MTF,16 while emergencies will require 
one to three units to treat one to three patients in the field.17 If more 
units are required in either case, we assume it would be feasible to con-
duct additional, simultaneous deliveries. Finally, we note that users can 
customize these distances, response times, and payloads, allowing for 
analyses to be refined as necessary.

15 We did not derive this quantity from the literature or expert elicitation, although it is 
loosely based on the Joint medical community’s concept of the “golden hour.”
16 Thomas et al. (2018) specifies that a typical small MTF has enough refrigeration capacity 
for 30 units. Thus, a platform capable of delivering on the order of 10 units can replenish a 
large fraction of the small MTF’s stores.
17 We sized the emergency payload to be similar to the delivery capability of the Zipline 
UAVs—that is, payloads of one to three units (Thomas et al., 2018)—given the funda-
mentally similar on-demand, emergency operating concept. This range also corresponds to 
current military and civilian practices. For example, Zielinski et al. (2017) notes that Nor-
wegian units typically carry two units of packed red blood cells (PRBCs) for emergency use. 
Also see McGinity et al. (2018) for an example of a civilian program in San Antonio that 
designates two units of whole blood for prehospital transfusion.
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CHAPTER THREE

Rapid UAV Design Optimization of Fixed-Wing 
Fleets (RUDOFF) Model

This chapter describes the RUDOFF tool that we developed to design 
autonomous UAVs for blood delivery missions and estimate corre-
sponding cost sensitivities.1 This development was necessary, as exist-
ing UAV design tools had excessive computation times, unnecessary 
fidelity, or lack of capability tailored to small UAV design. First, we 
present a brief overview of UAV design optimization. Second, we dis-
cuss the specific optimization formulation applied to this problem—
geometric programming (GP). Third, we summarize the primary com-
ponents of RUDOFF. Finally, we present two model validation cases 
before applying the tool to the blood delivery mission space outlined 
in Chapter Four. 

UAV Design Optimization

Design optimization of a UAV is similar to other optimization exer-
cises—the vehicle obeys some set of physical laws, the mission space 
defines some set of performance constraints, and the goal is to mini-
mize some quantity of interest relevant to the aircraft or mission.2 
Design of air vehicles can also present more specific challenges. First, 

1 The RUDOFF tool we describe in this chapter focuses solely on the design parameters of 
the air vehicle itself. RUDOFF does not currently incorporate any logistical support require-
ments, such as the need for a specialized launch or recovery apparatus.
2 Weight (i.e., cost) is a common aircraft design optimization objective function.
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they can be mixed-integer problems depending on the formulation 
(e.g., the wingspan can take a continuous value but there can only be 
an integer number of engines). Second, optimizers typically require 
reduced-order models to make problems computationally tractable, 
and thus some sacrifice in fidelity is commonly required. Developing 
these reduced-order models is also not always a trivial exercise.

Optimization techniques typically fall into two broad catego-
ries: (1) gradient-based approaches and (2) heuristics. Gradient-based 
methods rely on the calculation of either analytical or numerically esti-
mated derivatives to minimize an objective (e.g., in a gradient-descent 
algorithm). The primary advantage of these methods is that they typ-
ically have provable convergence properties—you know you sit at a 
local minimum or maximum if the solution converges. Gradient meth-
ods, however, can be difficult to implement, particularly if the design 
space is not completely continuous. In addition, the ideal goal is to 
obtain globally optimal solutions (i.e., the best possible design for a 
given aircraft objective function); yet global optima are generally not 
guaranteed even if a gradient method converges.3 As an example of a 
gradient-based tool, the Aircraft Concept Exploration System (ACES) 
developed here at RAND by Xu et al. (2016) uses sequential quadratic 
programming (SQP), an approximate gradient technique, to optimize 
aircraft designs.

The other set of approaches uses heuristics to move toward a 
design solution. These techniques are usually flexible (i.e., more easily 
implementable), can be used for mixed-integer problems, and do not 
require analytical or numerical estimates of gradients. The primary 
disadvantage, however, is that nothing can typically be said of the 
resulting “optimal” design other than it was the best conceived vehicle 
for a particular execution of the heuristic. Genetic algorithms (GAs) 
are popular in this space and have been used in a variety of aircraft 
conceptual design applications.4 We will revisit GAs in the context of 
the UAV fleet design problem later in this report. 

3 If the optimization problem is convex, then convergence results in a globally optimal 
solution. 
4 See, for example, Antoine and Kroo (2005), who used genetic algorithms to explore air-
craft design trade-offs between cost and environmental impact.
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Geometric Programming

RUDOFF is a UAV design optimization tool built on the GP Python 
package, GPkit (Burnell and Hoburg, 2018). Consider the following 
general optimization statement as given by Hoburg and Abbeel (2014),

minimize f0(u)
subject  to  fj (u) ≤ 1,  i = 1, ..., m

hj(u) = 1,  i = 1, ..., me ,

where u is vector of free variables, f0 is the objective function to be 
minimized, fi are the inequality constraint functions, and hj are the 
equality constraint functions. In the case of a UAV design optimiza-
tion, u is the UAV design vector and functions fi and hj capture mission 
and vehicle constraints as well as the air vehicle physics. For an opti-
mization problem to be a GP formulation, the following must be true: 
(1) f0 and fi must be posynomial functions and (2) hj must be mono-
mial functions. Posynomials are defined as polynomials with strictly 
positive coefficients and real-value exponents—for example, 2 + x0.482 
y (–2) is a posynomial where x and y are variables in the optimization. 
Monomials are single-term posynomials—for example, x0.482 y (–2). As 
a counterexample, 1 – 2xy3 is neither a posynomial nor a monomial.

This formulation has two key advantages. First, given the defined 
functional forms, performing a logarithmic transformation creates a 
convex optimization problem.5 This is most easily observed for the 
monomial equality constraints—taking the log of both sides yields a 
linear relationship, which is a convex function. This means that a GP 
problem is guaranteed to yield a globally optimal solution. Second, 
convex problems are readily solved by current optimization packages, 
leading to fast solution times.6 

The disadvantage, however, is that this formulation is restric-
tive because all physical laws or reduced-order models need to be cast 

5 As proof of function convexity, we refer the reader to Boyd et al. (2007). 
6 The optimizer, Mosek, implemented within GPkit uses an interior-point method for non-
linear convex optimization problems.
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as GP-compatible functions (i.e., posynomials and monomials). This 
then begs the question: Can we solve useful problems using geomet-
ric programming? GP formulations were first proposed for conceptual 
aircraft design by Hoburg and Abbeel (2014), who showed that indeed 
aircraft design first principles sufficient for early conceptual design 
analysis could be captured with these types of functions. The next sec-
tion describes how we improve on and extend the Hoburg and Abbeel 
(2014) model to optimize small UAVs for delivery missions.

RUDOFF Overview

RUDOFF builds off the work of Hoburg and Abbeel (2014)7 and 
incorporates elements specific to small UAV design and blood delivery 
missions. It has two primary components: (1) an inner model built on 
the Python library GPkit and (2) an outer model that searches for the 
optimal fleet design, given a specified number of desired platforms. 
Here we describe both the inner and outer model in greater detail and 
how they are integrated. We also provide brief overviews of the blood 
payload and UAV cost models as these may be of interest to readers. 
Finally, we also developed a corresponding visualization tool that is 
described in Appendix C.

Inner Model: GPkit Optimization

The inner model, which we will interchangeably refer to as the “GP 
model,” is an extension of the work in Hoburg and Abbeel (2014) and 
performs the UAV design optimization that is ultimately used by the 
outer model to select the design of the single-platform or multiplatform 
fleet. Figure 3.1 shows the components of the inner model, which we 
built with an object-oriented structure. As shown, the model is com-
posed of two primary objects: Aircraft and Mission Flier. These two 
objects take a set of user-defined inputs that determine certain char-
acteristics of the UAV (e.g., electric- or gas-powered) and the mission 
space (e.g., range, payload) for which the UAV design is optimized.

7 Note that a “model” in this sense is defined by a set of GP-compatible inequality and/or 
equality constraints that capture the physics or relationships of interest.
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The Aircraft object defines the physical UAV that consists of the 
power system, airframe, and payload. The power system is defined 
by the thrust-generating mechanism and the energy source. In this 
analysis, the thrust generator is always assumed to be a single propel-
ler powered by either an internal-combustion engine or electric motor. 
The energy source is then either a hydrocarbon fuel or lithium-ion 
batteries, respectively. The airframe is composed of the fuselage, tail, 
and wing, with the corresponding models capturing the shape and 
weight of each component. The weight of the payload is either user-
defined or, in the case of blood delivery, estimated from the number of 
blood units and the corresponding amount of coolant and insulation 
needed to keep the blood within the whole blood standard tempera-
ture range of 1°C to 6°C, as discussed previously in Chapter Two.

The Mission Flier object, as implied by the name, flies the Aircraft 
on the user-defined set of missions. Mission Flier has two primary ele-

Figure 3.1
Structure and Components of the Inner (GP) Model
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ments. First, a mission model tracks the different flight states (speed, 
altitude, etc.) of the UAV as it executes its mission. Second, several 
performance models ensure that the UAV obeys physical laws. These 
include constraints requiring flight equilibrium and sufficient struc-
tural strength as well as sets of functions that define the aerodynamic 
performance of the wing and tail and the efficiency of the engine and 
propeller, among others.

As will be discussed in more detail when we explain the outer 
model, multiple missions can be assigned to a single Aircraft object, 
although a Mission Flier object captures only a single mission. Thus, 
the number of Mission Flier objects that are created reflect the number 
of missions a user assigns to a given UAV. The user then specifies an 
objective function of interest, which can be a function of the variables 
defined within an Aircraft object or any number of the relevant Mission 
Flier objects. When the optimization solver is called, two outcomes are 
possible: (1) a feasible UAV design that reflects the global minimum 
value of the objective function or (2) an infeasible solution (i.e., a UAV 
design does not exist that satisfies all of the specified constraints). We 
discuss the consequences of an infeasible solution as it pertains to the 
fleet design problem below.

The GP model has been specifically developed for small UAV 
design analysis and, as shown later in this section, has only been vali-
dated against this class of air vehicles.8 As discussed in Chapter One, 
small UAVs correspond to DoD Groups 1 and 2 (U.S. Army, 2010). 
Small UAV performance is distinctly different from the performance 
of larger aircraft as the aerodynamics, in some ways, are more chal-
lenging. We built the aerodynamics models to specifically account for 
the flight regimes more commonly associated with smaller aircraft.9 In 
addition, the weight model is likely only valid for small UAVs given the 
assumed empirical scaling with geometry. 

8 Hoburg and Abbeel (2014) do not explicitly address to which scale their model most read-
ily applies, although their example is for a Group 4/5-sized aircraft. 
9 These are typically referred to as low Reynolds number f light regimes. The airfoil assumed 
in this analysis is not optimized for this kind of flight. 
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Appendix A discusses more of the technical details of the inner 
model, but we highlight two of the submodels in greater detail in 
the next two subsections. Appendix B provides a summary of user- 
definable inputs for a given analysis.

Blood Payload Model

As summarized in Chapter Two, blood must be stored within a cer-
tain temperature range. Discussion with Army blood logisticians sug-
gested that these standards would not be relaxed for blood transport on 
small UAVs during emergency deliveries or logistical shipments or while 
blood is being carried in the field post-delivery.10 Thus the onboard 
payload must also include the weight of the temperature control system.

For simplicity, we assume that a cooler provides passive temper-
ature control and has two components: (1) insulation and (2) a phase 
change material (PCM). Insulation restricts heat flow across the 
boundary of the cooler while the PCM stores or releases energy based 
on the difference between the internal and external temperatures.11 We 
estimate the weight of these two components within the blood payload 
model using heat transfer first principles. The weight of the insula-
tion is a function of the difference in temperature between the mission 
environment and the optimal temperature range for blood—this sets 
the heat flux into or out of the cooler and the volume required to store 
the blood. The weight of the PCM is a function of how much energy 
storage capacity is required. This in turn is a function of the heat flux 
into or out of the box, the PCM heat of fusion (i.e., melting point), and 
the PCM’s specific heat capacity. The total payload weight is then the 
sum of the blood product, insulation, and PCM weights.

We validate the blood payload model by comparing the estimated 
weight to the weight of the Golden Hour Medic Series 4 from Pelican 
BioThermal.12 The Medic Series 4 reports for “optimal conditions,” 

10 Email communications with Joint medical community blood logisticians to understand 
blood transportation constraints, June 28–July 9, 2018.
11 During blood transport, wet ice is the most common PCM for liquid products and dry 
ice for frozen products. Other commercially produced PCMs are available for specialized 
temperature ranges specific to cold chain management (Thomas et al., 2018).
12 See Pelican BioThermal (2017) for cooling performance data sheets.
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assumed here to correspond to a 15°C temperature difference between 
the ambient environment and the cooler, that blood can be stored 
between 2°C and 8°C for 72 hours. Using those parameters in the 
RUDOFF blood payload, we estimate that a cooler that meets these 
specifications would weigh approximately 7.5 pounds, where reported 
Medic Series 4 weights are between seven and 10 pounds.

UAV Unit-Cost Model

We estimate UAV unit cost using the model developed by Valerdi 
(2005), who proposed two cost-estimating relationships (CERs) for 
UAVs. The first is a linear relationship given by

 C = $400 per Newton × Wew , (1)

where C is the unit cost and Wew is the empty weight13 of the UAV in 
Newtons.14 The second relates unit cost to the payload weight times 
vehicle endurance. For the aircraft sizes considered in this analysis, 
the two CERs produce similar cost estimates; thus, for the sake of 
simplicity, we use Equation (1) in our model. We note that these 
results are based on a relatively small number of data points and may 
not reflect current achievable UAV unit costs. In addition, this CER 
is likely only valid for projecting future costs of similar UAVs (i.e., 
those with similar materials, propulsions systems, and flight control 
packages). Future work should look to improve these UAV CERs by, 
for example, adding corrections for advanced materials or other next-
generation technologies.

Outer Model: Fleet Design Search

The outer model interacts with the inner model to generate an opti-
mized fleet design for a given application. We formulate the fleet design 
search as a combinatorial optimization problem, as illustrated in Figure 

13 Empty weight is defined as the aircraft weight without fuel or cargo.
14 Note that this estimate underestimates the actual reported unit cost of the RQ-11B, while 
other RAND UAV CERs overestimate this unit cost. Both approaches, however, use aircraft 
empty weight as the independent variable.
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3.2. A user defines N missions and would like K aircraft to fly all or, if 
not feasible, a subset of those missions. The goal of the outer model is 
then to optimally assign as many of those N missions to the K aircraft 
based on a fleet objective function (FOF) set by the user.15

We define the FOF, in general, to have two elements. The first 
reflects some aspect of the UAV design that the user wishes to opti-
mize (which can also serve as the objective for the GP model call). For 
example, this could be to minimize the life-cycle cost of a given plat-
form. The second is some measure of how much the K UAVs span the 
defined mission space. An example FOF could be

 
FOF = α ii=1

K∑ Ci( )–1 + β jj=1

N∑ x j , (2)

where the first term represents a weighted fleet cost and the second 
is a weighted term that captures the number of missions assigned to 
the UAVs with xj taking values of 0 or 1.16 Note that the first term is 
inversely proportional to cost such that the FOF places more value on 
lower cost platforms (i.e., the FOF decreases with increasing cost).17 
We also note that in the following applications of this objective func-
tion, we implement the second FOF term such that a given mission 
can only be assigned to a single UAV, as reflected in Figure 3.2. This 
is also likely the lowest-cost case because redundant capability across 
multiple platforms can only increase total life-cycle costs. More gener-
ally, however, some redundancy may be desired. For example, a critical 
mission may exist that all platforms in the fleet must be able to execute. 

15 Because the fleet optimization problem only calls the GP model, the FOF does not need 
to be GP-compatible. 
16 Not all missions can or will be assigned. For example, if the addition of a particular mis-
sion generates an infeasible result when the inner model is called, then the FOF would be 
passed a large negative value, making it effectively impossible for that mission allocation to 
be selected.
17 It is also common practice to normalize all quantities in the FOF so as to avoid issues with 
conflicting scales and units. This normalization is inherent in the analysis presented later in 
this report.
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For simplicity, we do not consider this particular case in Chapter Four, 
but we note that the FOF in RUDOFF could be defined to require 
such redundancy. The fleet design search then seeks to maximize this 
example FOF by simultaneously minimizing cost and maximizing the 
mission space coverage.18

The cost function can also be broken down into multiple compo-
nents. In this analysis, we assume that aircraft cost includes the one-
time cost to develop the system, the cost of procurement (i.e., number 
of procured units times unit cost), and recurring sustainment costs 
over the course of the system’s lifetime. We can then write the cost of 
aircraft i as

 Ci =Ci ,D + nunits ⋅Ci ,U + nm ⋅nunits⋅Ci ,m , (3)

where Ci,D is the development cost, nunits is the total number of acquired 
units, Ci,U is the unit cost, nm is the number of missions flown over the 
course of the system lifetime per unit, and Ci,m is the cost per flown 
mission. The cost per flown mission can include costs directly related 
to the mission (e.g., fuel) and required maintenance. In the validation 
case presented in Appendix A, as well as the simple fleet optimization 
for a blood delivery UAV fleet in Chapter Four, we assume that Ci,m 

18 Conversely, a FOF could be defined such that the search algorithm would seek to mini-
mize its value. 

Figure 3.2
Illustration of the Fleet Search Problem for N = 4, K = 2 

NOTE: In this case, Mission 1 and Mission 4 have been assigned to UAV 1, 
while Mission 2 and Mission 3 have been assigned to UAV 2.

UAV 1 UAV 2

Mission 1 Mission 2 Mission 3 Mission 4
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only captures mission-related costs that are proportional to the energy 
consumed during execution of the mission.

Figure 3.3 illustrates how the outer model is structured around 
the GP model. For a given mission space, the fleet design search iterates 
through possible mission allocations to the specified number of UAVs, 
and we refer to a given mission allocation as a mission subset. Within 
each mission subset, the inner model is called K times to calculate the 
corresponding UAV-specific element of the FOF. Then, once the inner 
model function calls are complete, the routine updates the FOF with 
the mission-spanning factor—that is, the second term in Equation (2) 
for the given mission subset. These iterations are carried out until a 
specified stopping criterion is met.

An exhaustive search of all possible mission subsets, in general, is 
not feasible. For instance, there can be billions of unique mission assign-
ment combinations for reasonably sized problems (e.g., four aircraft 
and 20 missions). For the cases considered in this analysis, a genetic 
algorithm is used to select the “optimal” mission subset. Appendix A 
provides more detail of the specific implementation of the GA. 

Figure 3.3
How the Outer Model Interacts with the Inner (GP) Model 
to Update the FOF and Ultimately Generate an “Optimal” 
Fleet Design

Total mission space

Mission subset

FOF mission
span update

“Optimal” solution

GP model call

FOF UAV-speci�c
update

× K



34    Autonomous Unmanned Aerial Vehicles for Blood Delivery

Model Validation

We present two validation cases for the GP model. The first is the 
AeroVironment RQ-11B Raven, used for short-range intelligence gath-
ering. The second is the Zipline Zip 1, which has been used for blood 
delivery between medical facilities in Rwanda. The purpose of these 
validation cases is to show that RUDOFF, including its underlying 
simplifications, generates accurate results for small UAVs and can be 
confidently applied to similar but novel problems. As will be seen 
for the RQ-11B, deviations between model outputs and actual UAV 
parameters are small but are unavoidable given RUDOFF’s low fidelity 
and our approximately defined mission sets based on publicly reported 
capability. Appendix A also offers a validation of the outer fleet optimi-
zation model using a randomly generated mission space.

Validation Case 1: AeroVironment RQ-11B Raven

Figure 3.4 shows the AeroVironment RQ-11B Raven, an autonomous, 
battery-powered, low-altitude intelligence, surveillance, and reconnais-
sance (ISR) UAV for military applications. From the Raven data sheet, 
the mission space is defined by a range of 10 kilometers (km), an endur-
ance between 60 and 90 minutes, operating speeds between 8.9 and 
22.5 meters/second (m/s), and operating altitudes between 30 and 152 
meters above ground level (AGL) (AeroVironment, 2017b). From these 
specifications, we defined the RQ-11B mission space to include three 
missions for which we optimize the vehicle design:

• Mission 1: fly out 10 km at 22.5 m/s, loiter for 1 hour at 15 m/s, 
fly back 10 km at 22.5 m/s.

• Mission 2: fly out 10 km at 14 m/s, loiter for 1.5 hours at 10 m/s, 
fly back 10 km at 14 m/s.

• Mission 3: fly out 10 km at 8.9 m/s, fly back 10 km at 8.9 m/s.

We selected these missions to both span the defined performance 
bounds and pose realistic operational scenarios. For example, the first 
two profiles might be longer-endurance surveillance missions while the 
third might be a tracking mission.
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We define the objective function in this case to be a trade-off 
between two vehicle characteristics: battery weight and wing aspect 
ratio. Minimizing battery weight is similar to the objective of mini-
mizing aircraft weight and thus cost—the lighter the vehicle, the less 
required power for flight. We select battery weight instead, however, 
because it also has logistical implications—the less battery on board, the 
lower the recharge time and the quicker the vehicle turnaround. Wing 
aspect ratio, which is defined as the square of the wingspan divided by 
the wing planform area, can be thought of as a geometric complexity 
factor. A higher aspect ratio corresponds to a larger wingspan, which 
complicates manufacturing and increases the physical footprint of the 
vehicle, making it harder to transport and safely store. A lower aspect 
ratio, however, corresponds to reduced aerodynamic efficiency, leading 
to more power required for flight for a given aircraft weight. Thus, the 
two factors create a natural trade-off. 

Figure 3.4
AeroVironment RQ-11B Raven: An Autonomous, Low-Altitude ISR UAV

4.5 ft

3.0 ft

SOURCE: AeroVironment, 2017a, used with permission.
NOTE: ISR = intelligence, surveillance, and reconnaissance.
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With both the objective function and mission set defined, the 
GP model generates a set of globally optimal designs based on differ-
ent weightings of the battery weight and wing aspect ratio terms. For 
the nominal weighting case (e.g., the two terms are weighted approxi-
mately equally), Figure 3.5 plots the comparison between the model 
output and the actual RQ-11B. We can see that the RUDOFF output 
achieves good agreement with the physical dimensions of the RQ-11B. 
Table 3.1 compares the actual RQ-11B specifications to those gener-

Table 3.1
Comparison of RUDOFF Outputs and RQ-11B Actuals for the 
RQ-11B Validation Case

Wingspan (m) Chord (m) Weight (kg)

Actual 1.37 0.22 1.9

RUDOFF 1.31 0.25 1.9

Figure 3.5
Visual Comparison Between RUDOFF Output and RQ-11

SOURCES: AeroVironment, 2017a, used with permission; RUDOFF tool.
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ated by the GP model for this nominal case, where we can see that 
model outputs are within approximately 5 to 20 percent of the actuals 
for the three presented parameters. 

Figure 3.6 shows the resulting Pareto front when considering 
trade-offs between wing aspect ratio and battery weight, where we pro-
vide visualizations for the two bounding cases. Not surprisingly, as the 

Figure 3.6
Pareto Trade-Off Between Battery Weight and Wing Aspect Ratio
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SOURCE: RUDOFF tool.
NOTE: We do not plot units on the Pareto chart. However, observe the direction of 
increasing aspect ratio and battery weight.
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aspect ratio term is weighted more heavily, the shorter and stubbier the 
wings become. Figure 3.6 also highlights the usefulness of performing 
such a trade space analysis. Any one of the designs indicated along the 
curve can perform the set of defined missions (i.e., RUDOFF con-
verged for each unique definition of the objective function coupled 
with the model and mission constraints). Depending on what stake-
holders more highly value, however, this curve also shows that the cur-
rent RQ-11B design (marked “Unweighted” on the curve) is perhaps 
not the optimal design when considering battery weight or aspect ratio; 
that is, the RQ-11B could be more optimally redesigned along either 
of these dimensions and still operate within our defined mission space. 
Each design point, however, will have a different associated cost, allow-
ing analysts to visualize relevant design trade-offs and their impact on 
program cost.

Validation Case 2: Zipline Zip 1

We also performed a validation case comparing GP model outputs to 
the Zipline Zip 1, the first-generation autonomous, battery-powered 
UAV deployed by Zipline for blood delivery in Rwanda.19 We assume 
a similar objective function as for the RQ-11, weighting the battery 
mass and wing aspect ratio terms approximately equally, and define 
a single mission based on stated Zip 1 mission capability—fly out 80 
kilometers at 70 kilometers/hour (km/h) or 19.4 m/s, deliver payload, 
fly back 80 km at 70 km/h (Stewart, 2017). This case differs from the 
RQ-11B case as the UAV is now lighter on the return leg of its flight 
after payload delivery. 

Table 3.2 compares the GP model outputs and the Zip 1 actuals. 
The GP model outputs are not consistent with the Zip 1 specifications, 
as the GP-model-generated UAV is both lighter and smaller. Given the 
similarity between the RQ-11B and Zip 1 in both payload, capable 
cruise speed, and total ground distance covered (i.e., when the dis-
tance covered during loiter is accounted for with the Raven), the Zip 1 
is still approximately six times heavier than the Raven. This suggests 
three possible explanations for the discrepancies between the model 

19 For an overview of the Zipline platform and business model, see Zipline (undated). 
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and actual specifications for the Zipline UAV: (1) It is overengineered 
relative to constraints in the model, thus increasing vehicle weight;20 
(2) it is more capable than the missions it flies, perhaps having the 
ability to fly longer-range missions or carry more payload; (3) there 
are more components on board than captured in this model. If, for 
example, we artificially force the model to match the weight of the 
actual Zip 1 (see GP Model–Matched in Table 3.2), the model more 
accurately reproduces the dimensions of the UAV. Future model devel-
opment should prioritize improving the UAV weight and structural 
models within RUDOFF.21 

Comparing Computational Performance with ACES

Finally, we also compare the computational performance of RUDOFF 
to RAND’s current aircraft conceptual design tool, ACES, to highlight 
the benefits of a GP approach. For a 200 variable problem, RUDOFF 
computes the optimal UAV design in approximately 1 second—about 
0.9 second to initialize the model run and 0.1 second for the GPkit 
model to solve. ACES, by comparison, takes approximately 5 minutes 

20 This is certainly feasible given that the UAV has to withstand the end of the mission cap-
ture system, a hook that decelerates and catches the aircraft. The GP model structural model 
does not account for these stresses on the airframe, thus likely underestimating the structural 
weight. 
21 As stated in Chapter One, Zipline has since deployed the Zip 2, a larger and more capable 
platform with a reported 80-miles-per-hour (mph) cruise speed that can deliver a 1.75 kg 
payload (Petrova and Koldony, 2018). The GP model similarly underestimates the vehicle 
weight and dimensions of the Zip 2.

Table 3.2
Comparison of GP Model Outputs with Actuals for the Zipline Zip 1 
UAV Validation Case

Wingspan (m) Chord (m) Weight (kg)

Actual 1.83 0.24 12–14

GP Model 1.67 0.29 8.7

GP Model–Matched 1.89 0.28 12.7

SOURCES: RUDOFF tool; Stewart, 2017.
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to solve a similarly sized problem, which is a difference of two orders 
of magnitude. We note, however, that ACES is a higher-fidelity model 
that allows for more general aircraft design optimization and thus in 
many cases warrants the longer computation times (Xu et al., 2016). 
RUDOFF is specifically designed for small UAV analyses and makes 
several assumptions regarding aircraft configuration to simplify the 
model implementation. RUDOFF should be viewed as a preliminary 
design tool whose optimized design outputs can then be refined by 
ACES.
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CHAPTER FOUR

Design of an Autonomous UAV Fleet for 
Blood Delivery

The previous chapters outlined the utility of an autonomous delivery 
UAV for blood resupply and defined the mission space in which the 
vehicle may operate. We specify two primary functions: (1) to resup-
ply MTFs with blood to provide additional logistical flexibility and 
(2) to perform emergency delivery of whole blood to injured personnel 
at forward- operating locations. This chapter uses RUDOFF, described 
and validated in Chapter Three, to optimize the design of a blood 
delivery UAV given the defined mission space. First, we assess a one-
size-fits-all solution—that is, we design a single platform that serves 
both functions. We then perform a sensitivity analysis to understand 
the most important UAV design drivers. Second, we consider a fleet 
consisting of multiple platforms. As will be seen, this exercise amounts 
to optimizing two aircraft designs, one for each function. We then 
compare these designs to the one-size-fits-all solution. Finally, we con-
clude with a brief discussion of the acquisition implications of a single-
platform versus multiplatform fleet.

Optimizing a One-Size-Fits-All Small UAV

This section optimizes the design of a one-size-fits-all UAV that resup-
plies MTFs and delivers emergency whole blood to forward operators. 
Based on the notional mission space (defined at the end of Chapter 
Two), Table 4.1 gives the precise range, speed, and payload parameters 
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applied in the optimization. In addition, Table 4.2 lists the parameters 
we used to design the blood cooler to meet storage standards. The 
assumed temperature difference is meant to approximately reflect a 
standard atmosphere at ground.

We define the objective function to be the estimated life-cycle cost 
of the aircraft as described in Equation (3) in Chapter Three, similar to 
the objective used in the fleet optimization validation case in Appen-
dix A. To estimate this cost, we assume a 10-unit fleet in which each 
unit will ultimately fly a total of 1,000 logistical resupply missions and 
make 100 emergency deliveries over the course of the fleet lifetime.1 
We estimate unit costs using Equation (1). Multiplying this value by 
the fleet size gives the total procurement costs.2 Development costs are 

1 We arbitrarily selected the fleet size and mission frequencies; these parameters are easily 
modified to reflect actual program requirements.
2 CERs can include adjustments for different aircraft lot sizes and cumulative learning 
curve effects. The more aircraft manufactured in a given year and overall typically cor-
responds to lower average unit costs. See, for example, Younossi et al. (2001). We do not 
account for these and other learning effects, although they can be incorporated in the future 
with GP-compatible objective functions.

Table 4.1
Precise Range, Time, and Payload Parameter Definitions 
for the One-Size-Fits-All UAV Optimization

Parameter Logistical Resupply Emergency Delivery

Range 100 miles 25 miles

Time 1.5 hours 15 minutes

Payload 10 blood units 2 units

Table 4.2
Heat Transfer Parameters to Size Blood Payload

Parameter Logistical Resupply Emergency Delivery

Storage time 3 hours 72 hours

Temperature difference 15°C 15°C
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then assumed to be 100 times the unit cost.3 Finally, we estimate mis-
sion energy costs assuming $0.20 per kilowatt-hour (kWh), which is 
close to the global average cost of electricity per kilowatt-hour.4 

Figure 4.1 also gives the resulting optimized design of the one-
size-fits-all UAV. The aircraft has a wingspan of 1.92 meters with a 
battery weight of 25.3 kilograms and a total takeoff weight of 51.5 
kg. The total energy costs to fly each mission using the single plat-
form are 4.2 kWh and 1.1 kWh for the logistical resupply and emer-
gency delivery missions, respectively. As mentioned previously, we have 
assumed that this small UAV will be battery-powered, as similar-sized 
aircraft such as the Zip 1 and RQ-11B are powered by electric propul-
sion systems. Using RUDOFF, however, we can also consider a gas-
powered UAV. Given the higher specific energy of hydrocarbon fuels, 
an optimized gas-powered design is, not surprisingly, lighter, with a 
total takeoff weight of 16.5 kg. The mission energy costs, however, 
are now 5.7 kWh and 1.4 kWh, respectively, given the less efficient 
combustion engines. The difference in life-cycle costs between sim-
ilarly sized gas-powered and electric UAVs, however, are less certain 
and will be a function of maintenance requirements: While electric 
aircraft may be cheaper to maintain compared to internal combustion 
engines,5 finite battery lifetimes may ultimately limit these benefits. 
Future work should perform more detailed assessments of differences 
in life-cycle costs for gas- versus electric-powered small UAVs. 

Assessing Design Sensitivities of the One-Size-Fits-All UAV

RUDOFF also generates sensitivity information—that is, the percent-
age change in the objective function given a percentage change in one 

3 We derived this estimate from aircraft selected acquisition reports (SARs), where total 
program development costs were typically two orders of magnitude greater than the average 
unit cost. 
4 Average electricity costs in the United States are approximately $0.12/kWh (EIA, 2018). 
We round up to $0.20/kWh assuming that it will be inherently more expensive to generate 
electricity at operational locations.
5 Electric motors are simpler than their mechanical counterparts. Lower maintenance costs 
have been cited as one of the potential benefits of electric aviation. See, for example, Bye 
(2017).
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of the design or mission input parameters. This information is avail-
able for all model parameters, as GPkit uses them to solve the UAV 
design optimization problem. These data are useful for users to under-
stand how sensitive, for example, life-cycle costs might be to different 
assumptions regarding the mission space. 

Figure 4.1 also provides a tornado plot of the expected percentage 
change in the previously defined life-cycle cost given a percent change 
in the corresponding mission space parameter. As we can see, the life-
cycle cost is most sensitive to the minimum range6 defined for the logis-
tical resupply mission. In this case, we would expect that an aircraft 
that is capable of flying at least 150 miles (i.e., a 50-percent increase) 
would increase total life-cycle costs by 70 percent. Costs are also sensi-
tive to the size of the logistical resupply payload, where one additional 
payload unit (i.e., a 10-percent increase in payload size) would increase 
total life-cycle costs by approximately 6 percent, given aircraft weight, 
and thus mission energy costs increase. In both of these examples, 
cost is less sensitive to the minimum range and number of units in the 
payload for the emergency delivery mission, indicating that the logis-
tical resupply mission is the primary cost driver of the one-size-fits-all 
platform. Finally, we note that costs are less sensitive to the specified 
response time for each mission. In fact, costs are nearly insensitive to 
the logistical resupply response time while a 10-percent decrease in the 
emergency response time corresponds to a 0.8-percent increase in life-
cycle costs. Note that the sensitivities are negative, since a decrease in 
response time implies a higher minimum cruise velocity, thus requir-
ing more power delivered to the aircraft. 

With these sensitivities, program officials can estimate the cost 
of additional capability, as highlighted above. In the increased range 
example, a 150-mile-capable UAV would cost approximately $5.5 mil-
lion more over the course of the lifetime of the single-platform fleet 
using our previously defined total life-cycle cost. Note, however, that 

6 Note that the mission range constraint is applied as a “minimum.” That is, the UAV must 
fly at least the distance specified in Table 2.2, but could fly farther if so specified by the 
optimization. For minimum cost configurations, however, a UAV typically did not fly any 
farther than specified by the mission constraints.
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Figure 4.1
Illustration of Optimal Design and Cost Sensitivities (Percent Change 
in Life-Cycle Cost for a 1-Percent Change in Mission Parameter) for the 
“One-Size-Fits-All” UAV
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such an increase in range may ultimately yield an infeasible optimi-
zation problem (i.e., no aircraft can be designed that meets this set 
of mission requirements). Issues regarding feasible designs cannot be 
observed from the sensitivities. Instead, RUDOFF would have to be 
executed again with the new mission added to the mission space to 
be sure a capable UAV exists.

Visualizing Objective Function Trade-Offs 

The optimal design generated in the previous section did not include a 
design complexity factor (e.g., the aspect ratio term from the RQ-11B 
validation case). We can, however, still consider different weightings of 
the terms in the estimated life-cycle cost objective function. For exam-
ple, if operators anticipate flying these UAVs in relatively austere envi-
ronments where they may be limited in their ability to recharge the vehi-
cle batteries, then designs with lower energy costs may be more highly 
valued. Alternatively, acquisition officials may prioritize a cheaper devel-
opment phase and lower unit procurement cost while being less con-
cerned with higher mission costs.

Figure 4.2 shows the optimal Pareto curve that considers trade-
offs between normalized unit and development versus mission energy 
costs. Three points are plotted; moving from the upper left to lower 
right corresponds to increasing emphasis on lower development and 
unit costs at the expense of higher mission energy. The two visualiza-
tions, moving from top to bottom, show the corresponding optimal 
UAV designs at the two indicated bounding points. As energy costs 
are less heavily weighted relative to development and unit costs, the 
corresponding changes in aircraft geometry follow from fundamen-
tal aircraft design principles. For example, larger wingspans are typ-
ically associated with lower (induced) drag and slower missions and 
thus lower energy use. Given how we defined life-cycle cost, however, 
this corresponds to a heavier aircraft, and thus higher development7 
and unit costs. Moving down and to the right on the curve, however, 
leads to smaller wingspan aircraft, corresponding to lower develop-
ment/unit costs but higher energy costs as the UAV must now fly more 
quickly and/or operate at a higher lift coefficient. For the plotted cases, 

7 We refer to this as research, development, test, and evaluation (RDT&E) in Figure 4.2.
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a 25-percent reduction in total unit and development costs leads to a 
30-percent increase in total lifetime mission energy costs. 

Finally, we note that the mission energy costs are small (on the 
order of 1 percent) compared with the development and total pro-
curement cost. Real acquisition programs, however, have expensive 
sustainment phases, and capturing additional costs such as mainte-
nance cycles and part replacement can change the trade-offs along this 
Pareto front and lead to different optimal designs for a given weighting 
between the two cost terms. Future analyses should develop and imple-
ment more detailed cost functions to capture all relevant small UAV 
program elements. 

Figure 4.2
Pareto Trade-Off Between RDT&E + Unit Costs Versus Mission Energy 
Costs, Including Visualizations for Each Plotted Point
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Comparing the One-Size-Fits-All Platform to Existing UAVs

We conclude our analysis of the one-size-fits-all solution by compar-
ing its design to existing UAV platforms. Table 4.3 provides the high-
level design specifications for the one-size-fits-all blood delivery UAV, 
RQ-11B Raven, and Zipline Zip 1. As we can see, the one-size-fits-all 
platform is distinct from both the RQ-11B and Zip 1. With regard 
to the Raven, our optimized blood delivery UAV is both larger and 
heavier, driven by the two orders of magnitude greater payload require-
ment, greater range and endurance requirement of the logistical resup-
ply mission, and the power requirements of the faster emergency deliv-
ery mission. With regard to the Zip 1, the overall physical dimensions 
are similar, but the payload requirements are different, leading to an 
almost twice as heavy optimized design. This result highlights the fact 
that not all UAVs are equally capable and different mission sets may 
require wholly different platforms. Specifically, for blood delivery mis-
sions, this comparison suggests that the RQ-11B may be inadequate 
to serve Joint medical community needs, particularly for longer-range 
logistical resupply tasks, given the Raven’s mission radius.8

8 In a more extreme example, this result also implies that the larger-class UAVs, such as the 
MQ-9 Reaper, are larger and faster than what is necessary for blood delivery missions. This 
highlights the other end of the spectrum—namely, the minimum capability that is required 
that offers the necessary mission flexibility constrained by the fact that larger systems typi-
cally cost more. 

Table 4.3
High-Level Design Specifications of the RQ-11B Raven, Zipline Zip 1, 
the One-Size-Fits-All Platform, and the Two Mission-Specific Platforms

Platform Wingspan (m) Chord (m) Weight (kg) Payload (kg)

RQ-11B Raven 1.37 0.22 1.9 0.2

Zip 1 1.83 0.24 12–14 1.5a

One-Size-Fits-All 1.89 0.33 39.9 10

Logistical 1.86 0.32 37.0 10

Emergency 1.07 0.23 17.7 9.1

SOURCES: AeroVironment, 2017b; RUDOFF tool; Stewart, 2017.
a Authors’ estimate.
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This is not to say that existing platforms cannot serve other pur-
poses. Future RUDOFF development could focus on a mission set 
feasibility analyzer; that is, given the characteristics of an existing 
platform, the model would fly a set of user-defined missions to deter-
mine if the existing platform can provide that mission capability. This 
would allow stakeholders and acquisition program officials of existing 
systems to understand how they can better use current fleets.

Mission-Specific UAV Platforms

The previous sections assessed the one-size-fits-all solution (i.e., a fleet 
with multiple units of a single UAV platform flying both mission 
types). In this section, we now turn our attention to a multiplatform 
fleet. Consider, for example, that operators have elected to use a unique 
platform for each mission type, whereby one UAV type flies the logis-
tical resupply missions while a second platform makes the emergency 
deliveries. In this case, the objective is then to minimize the life-cycle 
costs of both platforms for their respective mission space. 

Figure 4.3 gives the optimized design for each mission. We see 
that the logistical resupply UAV is similar in size to the one-size-fits-

Figure 4.3
Visualizations of the Mission-Specific Platforms: Logistical Resupply UAV 
(Left); Emergency Delivery UAV (Right)
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all solution while the emergency delivery aircraft is about 40 percent 
smaller, as reported in Table 4.3. This result follows, given that in both 
missions the payloads are actually of similar size and weight but the 
range requirements of the logistical mission demands a larger aircraft 
capable of carrying a larger battery for its longer mission. The mission-
specific UAVs also expend different amounts of energy when compared 
with the one-size-fits-all solution—namely, 4.4 kWh and 0.6 kWh for 
the logistical resupply and emergency delivery missions, respectively. 
We see that the logistical UAV expends more energy for the same mis-
sion, although it has a slightly lighter airframe, leading to an approxi-
mately 1 percent lower life-cycle cost. A larger difference, however, is 
observed for the emergency delivery UAV, where per-mission energy 
usage has decreased approximately 45 percent. This highlights the 
advantage of the mission-specific platform for this application—the 
smaller UAV expends less energy and is thus potentially more cost-
effective, given the shorter mission.

Figure 4.4 gives the corresponding cost sensitivities. As was the 
case for the one-size-fits-all UAV, the logistical UAV is most sensitive 
to the minimum range constraint, followed by the payload size. The 
emergency UAV cost, however, is driven by the operating environ-
ment that sets the necessary heat transfer characteristics of the cooling 
system. For example, life-cycle cost is most sensitive to the assumed 
difference between the ambient temperature and the blood storage 
temperature as well as the assumed storage time. A 10-percent increase 
in either, which leads to an increase in payload weight, would yield 
an approximate 4-percent increase in program cost. Interestingly, the 
emergency UAV cost is less sensitive to the number of blood units in 
the payload. Finally, for the logistical UAV, we observe a similar sensi-
tivity to response time as was seen for the one-size-fits all solution (i.e., 
an approximately 0.1-percent increase in cost for a 10-percent decrease 
in response time). However, the cost of the emergency delivery vehicle 
is an order of magnitude more sensitive to its corresponding response 
time (i.e., a 10-percent decrease yields an expected 1-percent increase 
in cost).

We draw two conclusions from this analysis. First, the logistical 
resupply mission drives the design of the one-size-fits-all UAV, given 
the similarity between it and the corresponding mission-specific plat-
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form. Second, life-cycle costs of the two mission-specific platforms are 
most sensitive to different mission parameters. Range constraints drive 
the design of the logistical resupply aircraft while payload requirements 
drive the cost of the emergency delivery UAV. The latter platform, 
however, is not insensitive to the minimum mission range. This result 
illustrates that acquiring additional capability for different mission sets 
has different cost implications. RUDOFF allows program analysts to 
understand and visualize these potential trade-offs. 

Using RUDOFF to Select the Optimal Platform-Mission Assignment

Previously, we assumed that the “optimal” assignment of missions to 
platforms was one-to-one. In general, however, this is not necessarily 

Figure 4.4
Cost Sensitivities (Percent Change in Life-Cycle Cost for a 1-Percent 
Change in Mission Parameter) for the Two Mission-Specific UAVs
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the case. For example, the “optimal” choice could be the one-size-fits-
all solution. Alternatively, there is no reason why multiple platforms 
could not be used for the same mission space—that is, one UAV for 
one subset of logistical resupply missions and a second for the remain-
ing. Ideally, we would then like a tool that can make that optimal selec-
tion for us. 

Using RUDOFF’s outer fleet optimization model, previously 
described in Chapter Three, we can estimate the optimal platform/
mission combination.9 In this case, we assume that both the inner and 
outer model objective functions are identical (i.e., the fleet objective 
function is also the total life-cycle cost of all platforms). Table 4.4 gives 
the resulting normalized fleet objective function values as a function of 
the number of platforms.10 In the two examples where mission-specific 
platforms are assumed, we consider two separate cases: (1) The mis-
sion space requires a total of 10 aircraft—eight for logistical missions 
and two for emergency missions, and (2) the mission space requires a 
total of 12 aircraft—eight for logistical missions and four for emer-

9 Note that because the mission assignment problem is solved using a heuristic approach, 
global or local optimality cannot be guaranteed. Future model improvements will focus on 
refining solution methods. 
10 Because we have only defined two missions in the mission space, the mission assignment 
problem assuming three UAV platforms is not well posed; thus, we only compare the one-
size-fits-all and mission-specific examples. 

Table 4.4
RUDOFF Fleet Objective Function Results for the Mission 
Assignment Example

Number of Platforms Number of Units Normalized FOF

1 10 1.25

2 8/2 1.01

2 8/4 1.00

SOURCE: RUDOFF tool.

NOTE: For the two-platform cases, the “Number of Units” column 
corresponds to the number of logistical resupply/emergency 
delivery UAVs, respectively.
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gency missions. The second case is meant to represent the fact that 
using a fleet with mission-specific platforms will likely create substitu-
tion issues. Whereas in the one-size-fits-all case, that UAV could fly 
either mission, demand could be further constrained if the mission- 
appropriate platform is not currently on-station, even if the same total 
number of platforms is the same. In other words, 10 mission-specific 
platforms are not necessarily equivalent to 10 one-size-fits-all UAVs 
when attempting to meet total mission demand. A more detailed 
assessment of substitutability and its impact on fleet composition is 
currently outside the scope of this analysis, but future analyses could 
incorporate expected mission demands when sizing fleets of mission-
specific or multi- mission UAV platforms.

As these results show, RUDOFF estimates the optimal mission 
assignment to be the one-size-fits-all platform (larger normalized FOFs 
are better), because the additional cost to develop and procure two 
mission- specific platforms outweigh the mission-specific advantages. 
Note that different definitions of the fleet objective function (i.e., 
including other sustainment costs) can certainly change the outcome. 
In this case, mission energy costs are small compared with the develop-
ment and unit costs, biasing the fleet optimization solution toward a 
fewer number of platforms, even though there are clear inefficiencies 
associated with flying a larger aircraft in the emergency delivery role. 

Finally, we note that the mission assignment example explored 
in this analysis is trivial—there exists only one possible assignment 
for each case. Future analyses can use RUDOFF to assess a larger set 
of possible missions, where the assignment problem becomes more 
complex, yielding insights that are potentially less intuitive. Also, as 
mentioned in Chapter Three, the FOF we used in this example did 
not consider redundancy in mission assignments to platforms. Future 
discussions with the Joint medical community should focus on which 
medical resupply missions should be redundant across platforms to 
ensure sufficient risk mitigation.





55

CHAPTER FIVE

Conclusions and Future Work

This analysis has assessed the utility of small UAVs for blood delivery 
missions. We began by describing the use of autonomous UAVs, noting 
their growing popularity, increasing availability, and the high level of 
interest in their use from the Joint medical community. We then sur-
veyed relevant topics pertaining to the use of small UAVs for delivering 
blood. These topics included whether transport on small UAVs signifi-
cantly degrades blood quality, the benefits of using air vehicles for alle-
viating logistical strain in the blood supply network, and the improve-
ment in survival outcomes associated with starting blood transfusions 
as soon as possible after traumatic injury. Based on this topic survey, 
we presented a notional blood delivery mission space consisting of two 
missions: (1) logistical resupply of 10 blood units over a distance of 
approximately 100 miles and (2) emergency delivery of two blood units 
within 15 miles of an MTF. 

We then described the design optimization tool, RUDOFF, 
developed to inform issues of importance and relevance to medical 
community and UAV program stakeholders. These issues include how 
large a blood delivery platform should be, the approximate life-cycle 
cost of a cost-minimized design, and how sensitive that cost is to the 
mission space parameters. We performed a case study using RUDOFF 
to optimize the design of a blood delivery UAV that flies both logistical 
resupply and emergency delivery missions and found that the one-size-
fits-all solution’s life-cycle cost (which in this case includes estimates of 
platform development, unit procurement, and mission energy costs) is 
most sensitive to the minimum delivery range of the logistical resupply 
mission. 
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We also performed several sensitivity studies, including an energy-
efficiency and cost comparison between the baseline battery-powered 
UAV and a gas-powered aircraft that flies the same missions. While the 
overall efficiency (i.e., the useful power supplied to the aircraft divided 
the power pulled from the battery) of the electric UAV is higher, the 
gas-powered platform is lighter, which implies a lower unit cost. We 
also assessed the benefit of mission-specific UAV platforms (i.e., a 
flight vehicle designed specifically for each of the two mission types). 
Our findings are that the one-size-fits-all UAV is similar in design to 
the logistical resupply UAV and that the emergency UAV is more effi-
cient than the one-size-fits-all for the emergency delivery mission, a 
result that follows from aircraft performance first principles. The one-
size-fits-all UAV is larger and heavier than the emergency UAV and 
thus requires more energy to fly the same distance and carry the same 
payload. We also found that the logistical UAV is sensitive to the same 
mission parameters as the one-size-fits-all solution, given the similar-
ity of the vehicles, whereas the life-cycle cost of the emergency delivery 
platform is most sensitive to the heat transfer parameters that in part 
set the weight of the payload. 

RUDOFF also has the ability to select optimal assignment of 
missions to UAV platforms that minimizes a fleet objective function. 
We concluded this analysis by presenting a simple fleet design example, 
based on the previously defined life-cycle cost objective function, and 
using it as our fleet objective function, we estimate the optimal number 
of unique platforms in the blood delivery fleet. We found the one-size-
fits-all solution to be the better (i.e., lowest cost) option, even though 
an emergency-specific UAV would achieve lower mission energy costs. 
We note, however, that different fleet objective functions may yield 
different results; therefore, care should be taken to define FOFs that 
accurately reflect stakeholder priorities. 

Finally, there are certainly limitations to our analysis given the 
simplifying assumptions made throughout. Most notably, we recog-
nize that fleet sustainment costs have a variety of components, both 
in terms of labor and replacements parts, that are not treated explic-
itly in this study. We also did not consider issues related to mission 
redundancy across platforms within a UAV fleet, a requirement that 
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could be specified within a given fleet objective function. This analy-
sis, while focused on blood delivery, is also relatively narrow in scope 
because it considers one concept of operations in our selected two mis-
sion spaces. Additional sensitivity studies could, for example, consider 
more extreme temperature conditions (e.g., both very hot and very cold 
environments), more heavily loaded vehicles (e.g., additional delivered 
units), or faster deliveries (e.g., lower emergency delivery thresholds 
than the 15-minute delivery time used here). Continuing engagements 
with the Joint medical community will help to improve and validate 
blood delivery mission sets to maximize medical utility.

Improving RUDOFF

RUDOFF should be considered a conceptual design tool most useful 
for initial trade space analyses. As discussed in Chapter Three, GP for-
mulations are also inherently restrictive, and certain levels of fidelity 
may simply not be possible. That being said, there are several ways in 
which future users and developers of RUDOFF can improve it. First, 
different payload models that reflect other mission types can be read-
ily added, given the model’s object-oriented structure. Second, some 
of the underlying physics models should be revisited, in particular the 
structural and weight models, which we tuned to be most applicable 
to small UAV design problems. Improving the built-in physics could 
make RUDOFF generalizable to other design problems (e.g., optimiz-
ing Class 3–5 UAVs). 

Finally, the outer model that performs the fleet design optimiza-
tion currently struggles with high-dimensional problem spaces, such 
as a large number of missions in the mission set. To make these large 
problems more computationally tractable, development should focus 
on taking advantage of any underlying objective function structure 
to make use of faster combinatorial optimization solution methods. If 
such structure does not exist, future developers should consider alter-
native formulations of the mission assignment problem or other heu-
ristic approaches. 
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Integrating RUDOFF with Existing RAND Tools

RUDOFF is only one of many design optimization tools, including 
RAND’s ACES, and researchers should understand that it is most 
appropriately applied in the conceptual design phase and initial scop-
ing exercises, such as the analysis performed here. As highlighted in 
this report, we believe this tool is most useful to stakeholders at the 
beginning of potential acquisition programs to understand high-level 
trends (e.g., as minimum mission range increases by X percent, cost 
increases by Y percent) and to obtain these trends very quickly. If 
researchers require higher-fidelity results—for example, more accurate 
aerodynamic performance, weight estimates, or aircraft form factors—
then they are best served using more detailed (but likely more compu-
tationally expensive) models. That does not, however, rule out the use 
of RUDOFF in these higher-fidelity studies. For example, RUDOFF 
could be used to generate designs that downstream modelers use to 
initialize solutions for more complex models.

Future Applications

We consider this analysis an initial assessment of a single medical 
resupply application that sits within a much larger mission space. A 
logical extension of this work is to perform similar assessments of other 
medical resupply missions, including developing a single platform that 
serves a variety of purposes beyond the two assumed in this analy-
sis. RUDOFF can also be more broadly used for other mission types 
(e.g., intelligence gathering, reconnaissance, other logistical support), 
and stakeholders and researchers can generate similar information for 
any application as presented in this report. Assessments of multipur-
pose UAVs are also possible, such that the mission space could include 
both reconnaissance and delivery missions. Finally, although we did 
not include this capability in the current version of the model, it would 
also be useful to compare optimized designs with existing UAV plat-
forms to determine if new acquisition programs are even necessary. 
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APPENDIX A

RUDOFF Model Description

This appendix gives more technical details of RUDOFF, including 
descriptions of the Aircraft and Mission Flier objects as well as the 
implementation of the fleet optimization (outer) model. A more com-
plete and detailed technical manual is planned for the future. 

Aircraft Object

The Aircraft object contains all of the relevant information regarding 
the physical UAV, including its dimensions, geometry, and weight. The 
two primary sub-objects are the Airframe and Power System. 

Airframe

The Airframe captures the dimensions of each of the primary compo-
nents of the UAV. In this case, these components are the wing, fuse-
lage, and empennage. The empennage is further composed of the ver-
tical and horizontal tails. The wing is defined by its airfoil thickness, 
span, and taper ratio. The thickness is in part set by the necessary aero-
dynamic performance of the UAV as well as the structural constraints. 
The fuselage is assumed to be rectangular, with a corresponding width, 
height, and length. The fuselage also has a skin-thickness variable that 
is set according to the bending moment induced by the weight of the 
aircraft. The user sets the geometry of the horizontal (h) and vertical (v) 
tails using typical values of the corresponding tail volume coefficients, 
which are defined as
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Vh =
Shlh
Sc

Vv =
Svlv
Sb

,

respectively, where S is the platform area of the corresponding com-
ponent (no subscript denotes the wing), c is the average wing chord, 
l is the corresponding moment arm for each tail surface, and b is the 
wingspan. Typical values for Vh and Vv are 0.45 and 0.035, respectively 
(Drela, 2014). 

Total weight of the airframe is estimated by summing the esti-
mated weight of each of the components as follows: 

Wairframe =Wwing +Wempennage +Wfuselage .

The weight of the wing is estimated using a bottom-up approach by 
calculating the weight of the wing spar and skin. The latter is scaled 
using estimated skin weights from comparably sized small UAVs. The 
weight of the horizontal and vertical tails is scaled from the wing by 
planform area. Finally, the fuselage weight is partly specified by the user 
and also estimated based on the computed fuselage bending moment 
with a scaling factor. 

Power System

The Power System is composed of the energy source (hydrocarbon fuel 
or battery), the engine or electric motor, and the propeller. Engine 
weight is estimated using the same empirical relation to maximum 
required power as in Hoburg and Abbeel (2014), although other rela-
tionships are possible.1 Propeller performance is derived from actuator 
disk theory, presented as 

η p =
2

1+ 2T
Au0ρ

+1
⎛
⎝⎜

⎞
⎠⎟

0.5 ,

1 See, for example, Raymer (1999).
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where T is the thrust generated by the propeller, u0 is the flight speed 
of the UAV, A is the propeller area,  is the density of the surrounding 
atmosphere, and p is the propulsive efficiency of the propeller. As in 
Hoburg and Abbeel (2014), a viscous penalty is applied to this ideal 
propeller efficiency. The total power system is then sized based on the 
required power for flight. The weight of the power system is similarly 
estimated from the weights of its components as follows: 

WPS =Wengine +WES .

Mission Flier Object

The Mission Flier object interacts with the Aircraft object to fly the 
missions defined by the user. Its primary components include the Mis-
sion model, which tracks the vehicle state along each defined leg of the 
mission; and a set of performance models to capture the aerodynamic, 
structural, and overall flight performance of the vehicle. Each is dis-
cussed in greater detail in the following sections.

Mission Model

The Mission model tracks the state of the UAV as it traverses each leg 
of each user-defined mission in the mission space. This model imposes 
mission constraints: minimum/maximum cruise velocity, minimum/
maximum operating altitudes, minimum endurance, and minimum 
range. For the blood delivery case, this model also imposes the neces-
sary response and blood storage times. In addition, it tracks the vehi-
cle state defined by its velocity and overall efficiency and applies the 
fundamental flight equations for steady-level flight (i.e., thrust = drag 
and lift = weight). Finally, it creates all related performance objects 
that ultimately determine the design and necessary performance of the 
vehicle—namely, the aerodynamic, structural, flight performance, and 
engine models. Each of these performance models is described in more 
detail in the next section.



62    Autonomous Unmanned Aerial Vehicles for Blood Delivery

Performance Models
Aerodynamic Performance Model

The aerodynamic performance model is similar to that of Hoburg and 
Abbeel (2014), although we expand it to ensure it captures small UAV 
flight regimes (i.e., low Reynolds number flight). Profile drag of the 
wing and tail surfaces are estimated from GP-compatible regressions 
of XFOIL2 outputs that give drag coefficient as a function of span-
averaged Reynolds number (Re), lift coefficient, airfoil thickness, and 
user-specified National Advisory Committee for Aeronautics (NACA) 
airfoil family. Note that wing sweep is not currently implemented in 
RUDOFF. Induced drag is estimated using lifting-line theory using 
the formula

CD ,i =
CL

2

eπA
,

where CD,i is the induced drag coefficient, A is the wing aspect ratio, 
and e is the span efficiency factor. e can be formulated as a function of 
A and the wing taper ratio, which we account for using a GP- compatible 
regression derived from Drela (2014). We estimate drag on the horizon-
tal and vertical tail using similar regressions of XFOIL data, where 
NACA 0010 airfoils are assumed for both surfaces. Tail configura-
tion drag penalties are also applied and are taken from Raymer (1999). 
RUDOFF currently assumes a “conventional” figuration (e.g., that of a 
Boeing 737). Finally, we estimate the fuselage skin friction coefficient 
using Prandtl’s empirical relation for turbulent flow over a flat plate, or

C f , f =
7
6
⋅ 0.027
Ref

1
7

,

where Cf,f is the skin friction coefficient of the fuselage and Ref is the 
fuselage Reynolds number. Multiplying Cf,f by the fuselage cross- 

2 XFOIL is a two-dimensional airfoil performance model. See Drela (1989) for more 
details.
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sectional area yields the fuselage drag coefficient, CD,f  . Total vehicle 
drag is then summed across all components.

Structural Performance Model

The structural performance model estimates three quantities: (1) the 
wing bending moment, (2) the wing shear stress, and (3) the fuselage 
bending moment. The model then constrains these quantities such that 
they do not exceed material limits with an applied safety margin. The 
model is currently similar to Hoburg and Abbeel (2014)—that is, the 
spar has a box configuration whose horizontal struts take the majority 
of the bending forces, and the vertical struts take the majority of shear 
forces. It also assumes the spar is made of aluminum, although this can 
be easily changed to other materials such as steel or carbon composites. 
The fuselage bending moment is similarly constrained to not exceed 
material limits, assuming the fuselage is made of a composite material. 

Flight Performance Model

The flight performance model estimates fuel burn as a function of 
distance flown for a given mission segment. For UAVs with internal- 
combustion engines, the linearized Breguet Range equation as derived 
by Hoburg and Abbeel (2014) is applied. For the electric system, how-
ever, range and endurance are modeled as functions of battery discharge 
times; that is, UAV endurance is equal to the battery discharge time, 
and range is equal to the discharge time multiplied by the flight speed. 

Engine Performance Model

The engine performance model estimates the amount of fuel burn or 
necessary battery weight as a function of distance flown in each mis-
sion segment. RUDOFF estimates these quantities based on the total 
power consumption of the UAV, which is the power delivered to the 
aircraft divided by the estimated overall efficiency, as follows:

Ptotal =
Tu0
ηo

.

It also applies volume constraints to ensure that there is room to carry 
the fuel or batteries within the fuselage. Finally, it constrains the allow-
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able propeller tip speed to be lower than the speed of sound (i.e., Mach 
1), the typical performance limit for such systems. The engine model 
does not currently calculate optimal engine/motor operating points, 
where the user specifies the motor revolutions per minute (rpm). For 
the internal combustion case, fuel parameters are based on aviation 
gasoline. For the electric motor case, battery parameters are based on 
lithium-ion cells. The engine performance model does not currently 
model battery performance as a function of drawn power, as effective 
cell capacity decreases with increasing power requirements. 

Fleet Optimization

This section briefly describes the (outer) fleet optimization model in 
greater detail. First, we describe how we formulated the fleet design 
search as a combinatorial optimization problem—more specifically, an 
assignment problem. Then, we describe two implemented methods to 
solve the corresponding problem: (1) an exhaustive search and (2) a 
heuristic search using a genetic algorithm. Finally, we present a valida-
tion case of the outer model.

Formulating Fleet Design as an Assignment Problem

As outlined in Chapter Three, we cast fleet design as a mission assign-
ment problem: For a given number of unique platforms, we want to 
know which subset of missions should be assigned to each vehicle. 
The goal is to assign all missions in the user-defined mission space, 
but this is not necessarily feasible. Figure A.1 gives a more general-
ized description of the mission assignment problem than is given in 

Figure A.1
Generalized Visualization of the Mission Assignment Problem

UAV jUAV 1 UAV K

Mission 1 Mission 2 …

… …

…Mission i Mission N–1 Mission N
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Figure 3.2. More specifically, the objective is to assign as many of the 
N missions to K UAVs to maximize a user-defined objective func-
tion, previously referred to as the fleet objective function, or FOF. As 
indicated in the Figure A.1, every UAV must have at least one mission 
assigned to it, otherwise there would be no reason not to consider K 
– 1 platforms instead. Also, not all missions need to be assigned to a 
UAV because that could generate infeasible designs. FOFs, however, 
can be defined to penalize those sets of assignments that do not span 
the entire mission space. 

Typically, solution algorithms attempt to take advantage of some 
problem structure to more efficiently solve combinatorial optimization 
problems. Currently, RUDOFF does not exploit any problem structure 
using more sophisticated algorithms. Given this constraint, we have 
so far implemented two solution routines: (1) an exhaustive search and 
(2) a heuristic search using a genetic algorithm. Each approach needs 
to be explained in more detail. 

Regarding the exhaustive search, the simplest case is assigning a 
given number of missions to a single platform. The optimal solution 
is to assign all missions to the vehicle.3 If this is not feasible, then the 
algorithm considers all possible combinations of sets of N  –  1 mis-
sions.4 If RUDOFF finds no feasible set of assignments, then combina-
tions of N – 2 missions are considered and so on. Considering multiple 
UAV platforms complicates the problem as the possible combinations 
of missions must then be divided into K subsets. This latter set of com-
binations is known as a Stirling number of the second kind, which 
quickly encounters dimensionality issues. For example, there are more 
than 45 billion ways to assign 20 missions to four UAVs. Regardless, 
the exhaustive search looks through all possible combinations to locate 
the optimal assignment. A way to reduce the number of combinations 
that RUDOFF considers is to start with the largest set of possible mis-
sions and work backward—the search ends once a feasible solution is 

3 Note that this statement may not be strictly true, as it depends on how much the user 
values span the entire mission space versus the cost of the corresponding UAV. There could 
be instances where a mission could be omitted if it generates enough cost-savings. 
4 In combinatorics parlance, this would be “N choose N – 1” combinations.
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found—but this does not necessarily guarantee that the global opti-
mum has been located.

To avoid dimensionality issues inherent to the exhaustive search, 
we also implement a heuristic search using a genetic algorithm. GAs 
use concepts from evolutionary biology to “evolve” populations toward 
an approximately optimal solution. Populations, in this case, refer to 
UAV designs. The evolutionary process includes steps to “mate” better-
performing solutions and stochastically mutate designs to move toward 
better-performing sets of populations while also avoiding local opti-
mums. We implement a GA search in RUDOFF using the Distributed 
Evolutionary Algorithms in Python (DEAP) library. The validation 
case in the next section uses the GA search. 

Validating the Outer Fleet Optimization Model

We also conducted a validation of the outer model using a highly strati-
fied mission space—that is, a group of short, fast missions and a group 
of long, slow missions—and compared results when assuming mission 
allocations to one, two, and three different UAV platforms. The fleet 
objective function for this validation follows from Equations (2) and 
(3) in Chapter Three. We use the weight of the UAVs as a proxy for 
unit cost and the energy consumption for a given UAV-mission pairing 
as a proxy for mission lifetime cost, and then approximate the develop-
ment cost to be some fixed multiple of the unit cost. Table A.1 outlines 
the assumptions within the FOF for this validation case. Note that for 
the unit cost, we assume that 10 UAVs are required for each mission, 
setting the number of procured units. For operational costs, we assume 

Table A.1
Assumptions Embedded Within the FOF UAV Cost Function (First Term) 
for the Fleet Optimization Validation Case

Unit Development Operational

~ UAV empty weight = 100 × unit cost ~ Mission energy 
consumption

10 UAVs per mission N/A Missions 1–5: 100 times; 
Missions 6–10: 10 times
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that missions 1–5 are flown 100 times over the course of the fleet life-
time while missions 6–10 are flown only 10 times.

The UAV fleet is optimized over 10 randomly generated mis-
sions; Table A.2 gives the mission parameters. As stated above, the mis-
sion space is stratified into two clusters: One group contains shorter 
but faster missions while the second contains longer, higher-endurance 
missions.5 The payloads between the two clusters are comparable. We 
would then expect that the optimal allocation would either be all mis-
sions assigned to a single platform or each mission strata assigned to a 
specific platform, while allocation to three platforms would ultimately 
be suboptimal. 

Figure A.2 shows the results from the validation case. The top 
panel in the figure gives the values of the objective function assum-

5 “Faster” and “slower” in this case refer to the minimum imposed cruise velocity con-
straint on the inbound and outbound legs, not necessarily the speed at which a given mission 
will be executed.

Table A.2
Parameters of 10 Randomly Generated Missions Used in 
Outer Model Validation

Mission Range (km)
Minimum Cruise 

Speed (m/s) Payload (kg)

1 248 0 4

2 241 0 5

3 245 0 8

4 243 0 10.5

5 202 0 4

6 23.7 55 7.5

7 24.8 55 9

8 23.3 55 12.5

9 20.7 55 2

10 21.6 55 8
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ing allocation to one, two, and three platforms, and the bottom panel 
shows the optimal allocation of missions to two UAV platforms. In 
this particular case, and as expected, the optimal solution is to assign 
each strata to a single UAV, implying that the FOF is structured such 
that the reduction of total energy cost over the lifetime of the sys-
tems outweighs the additional development cost of an additional UAV 
platform. Modifying the relative weights of each cost component (i.e., 
assuming larger development costs for a given unit cost) could shift the 
optimal fleet design to a single platform.

Figure A.2
Values of the Defined FOF for Mission Allocations to One, Two, and Three 
UAV Platforms (Top); Visualization of Mission Allocation from Outer Model 
Validation Case (Bottom)

SOURCE: RUDOFF tool.
NOTE: The faster, shorter missions are assigned to UAV 1 (blue); the longer, slower 
missions are assigned to UAV 2 (green).
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APPENDIX B

User-Defined Inputs for RUDOFF

To execute RUDOFF, the user must provide a set of inputs to properly 
define the optimization problem. These inputs consist of two compo-
nents: (1) the mission definition file and (2) the aircraft definition file. 
The next sections describe each in greater detail.

Mission Definition File

The mission definition file contains the full set of missions defined within 
the mission space for a given analysis. Each mission is defined separately 
and has two corresponding categories of parameters: operational and pay-
load. Table B.1 provides a description of these two sets of inputs.

Operational inputs define the number of mission segments and 
each segment’s associated minimum and maximum cruise velocity and 
a minimum loiter time. As an example, consider a three-segment recon-
naissance mission where the user imposes a minimum cruise velocity 
on the outbound leg, a maximum cruise velocity and minimum loiter 
time for the middle reconnaissance leg, and a minimum cruise velocity 
for the return leg. The user also specifies a minimum-range constraint 
that applies to each mission segment. Finally, the user must a priori set 
the mission altitude and associated atmospheric conditions, (i.e., den-
sity, pressure, and ambient temperature). 

Payload inputs are a function of the selected payload model to 
be specified in the aircraft definition file. If the simple payload model 
is selected, then RUDOFF takes a user-specified payload mass. If the 
blood payload model is selected, then RUDOFF estimates the payload 
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mass from the corresponding heat transfer model. In addition, the 
minimum cruise velocity for the outbound leg is superseded by the 
velocity determined from the mission range divided by the required 
response time. Table B.2 gives the mission definition file for the emer-
gency delivery UAV from Chapter Four. 

Aircraft Definition File

The aircraft definition file specifies physical constants and some geo-
metric specifications of the aircraft. For multiplatform analyses, each 
aircraft is defined separately within the file. Table B.3 provides a 
description of these inputs.

Table B.1
Mission Definition File Parameters and Descriptions

Category Parameter Units Description

Operational n — Number of mission segments

z m Mission altitude

Rmin m Minimum operating range

Vmin m/s Minimum allowable cruise velocity per 
flight segment. [n × 1 vector]

Vmax m/s Maximum allowable cruise velocity per 
mission segment. [n × 1 vector]

tl,min) s Minimum allowable loiter time per flight 
mission segment. [n × 1 vector]

Payload mpay kg Mass of payload for simple payload model

tstore,min s Minimum storage time of blood for blood 
payload model

∆T K Temperature difference between 
environment and blood cooler for blood 
payload model

tresponse s Delivery response time for blood payload 
model

nunits — Number of whole blood units for blood 
payload model



User-Defined Inputs for RUDOFF    71

Table B.2
Mission Definition File for the Emergency Delivery UAV 
from Chapter Four

Category Parameter Units Value

Operational n — 2

z m 100

Rmin m 40000

Vmin m/s [—,0.001]

Vmax m/s [1000,1000]

tl,min s 0.001

Payload mpay kg —

tstore,min s 259200

∆T K 15

tresponse s 900

nunits — 2

NOTE: Because this is an example of the mission-specific 
platform, only a single mission is contained in the file.

Table B.3
Aircraft Definition File Parameters and Descriptions

Category Parameter Units Description

Constants g m/s2 Gravitational constant

ρES J/m3 Energy source energy density

SES J/kg Energy source specific energy

UAV-Engine eng_opt — Engine option variable, either electric or ic

ηeng — Engine efficiency

UAV-Wing CL,max — Wing maximum lift coefficient

σ N/m2 Wing maximum shear stress

airfoil_opt — Wing airfoil option variable, either N24XX 
or N230XX

UAV-Payload payload_opt — Payload option variable, either simple or 
blood
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The energy source parameters are either those of a hydrocarbon 
base fuel for the ic (i.e., internal combustion, engine option parameter) 
or a lithium-ion battery for the electric option. The user also defines 
the corresponding engine efficiency. For the wing, the user specifies a 
maximum lift coefficient that is set external to the aerodynamic per-
formance model, a maximum allowable wing shear stress parameter, 
and a wing airfoil option, where N24XX and N230XX correspond to 
the NACA four- and five-digit families with variable thickness. Finally, 
the user also set the payload model as described in the mission defini-
tion file above. Table B.4 gives the aircraft definition file for the emer-
gency delivery UAV from Chapter Four. 

Table B.4
Aircraft Definition File for the Emergency Delivery UAV 
from Chapter Four

Category Parameter Units Value

Constants g m/s2 9.81

ρES J/m3 1750

SES J/kg 720000

UAV-Engine eng_opt — electric

ηeng — 0.9

UAV-Wing CL,max — 1.3

σ N/m2 250 × 106

airfoil_opt — N24XX

UAV-Payload payload_opt — blood

NOTE: Because this is a single platform example, only one 
aircraft is defined.
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APPENDIX C

UAV Fleet Visualization Tool User Manual

RUDOFF includes a fleet visualization tool, which we describe here 
in detail, including tool layout, input options, and interactive features. 
The tool is not currently hosted on an internal server. Please contact 
the authors for access.

Outline

Description: an interactive tool for fast UAV design optimization with 
user-defined missions and fleet assignment.

Tab 1: Missions

UAV Visualization

The tool automatically runs the algorithm with a fleet of three UAVs 
and a 2 kg payload for each UAV. The design of each UAV is repre-
sented using three measurements:

1. Wingspan
2. Tailspan
3. Fuselage length

Sensitivities Tornado Plot

The top sensitivities in the positive and negative direction are displayed 
in each tornado plot. Each plot is recalculated with each change to the 
payload.
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Changing the Payload Weight

• Options: [1 through 20]
• Default: 2

At any time the user may change the payload weight (measured 
in kilograms) for a given UAV using a slider bar positioned directly 
above each UAV. This change will immediately trigger the algorithm 
to redesign that UAV and display the new wingspan, tailspan, and 
fuselage length.

The size of the payload is represented by the black box at the 
center of each UAV.

Changing the Number of UAVs in the Fleet

• Options: [1, 2, 3]
• Default: 3

The user may also determine how many UAVs are in the fleet 
using the slider bar at the top left. User must select from one to three 
UAVs. There is a known bug here; the page must be resized after chang-
ing this option because the reactive elements on the page are updated 
inaccurately.

Must Loiter?

• Options: [‘yes’, ‘no’]
• Default: ‘yes’

This option allows the user to select if the mission requires the 
UAV to loiter during the mission. If user selects ‘no,’ a dropdown will 
disappear from the page.

How Long to Loiter?

• Options: [2400, 3600, 4800]
• Default: 4800

Measured in seconds. This is the amount of time required to 
loiter for the mission.
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How Far Must You Go?

• Options: [10000 through 100000]
• Default: 4800

This is the total round-trip distance (measured in meters) the 
UAV must be able to travel during the mission.

Minimum Flight Velocity

• Options: [0.001 through 0.01]
• Default: 0.001

This is the minimum velocity (measured in meters per second) 
the UAV must be able to travel during the mission.

Maximum Flight Velocity

• Options: [65 through 100]
• Default: 70

This is the maximum velocity (measured in meters per second) 
the UAV must be able to travel during the mission.

Submit: Mission 1 Button

Click to submit all selected options to Mission 1 of the mission space.

Refresh Page Button

Refreshes the page.

Tab 2: Demo

The Demo tab shows the difference between the optimization output 
and the actual RQ-11 UAV.

Right Panel in Blue

This panel displays the actual measurements of the RQ-11 UAV’s 
wingspan, tailspan, and fuselage length. These numbers can be com-
pared to the values displayed in red at the bottom of the Demo tab.
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Middle Panel

This is similar to the panels in the Missions tab; however, here we see 
two UAV visualizations, one in red and one in black:

• Red: This UAV is the one outputted by the optimization proce-
dure. 

• Black: This is the RQ-11 UAV.

Hovering over the Pareto front in the left panel will alter the dimen-
sions of the red UAV.

Left Panel—Pareto Front

This panel is interactive. When hovering your mouse over the points 
on the graph,

• x-axis: fuel weight 
• y-axis: aspect ratio.

Accordingly,

A = b2

S
,

where A is the aspect ratio, b is the wingspan, and S is the wing area. 
Each point on the graph represents how changing the aspect ratio and 
the fuel weight affects the dimensions of the UAV optimization.

Bottom Panels

Each number in red represents the output of the optimization depend-
ing on the data point the user hovers over in the left panel.

Tab 3: Assignment

Left Panel—Mission Space

The mission space is represented in three dimensions represented by 
the payload weight, speed, and distance. Click a data point in the mis-
sion space to reveal the three panels to the right.
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Right Panel

Each line graph represents one dimension of the mission space. The 
purpose is to view the relative size of each dimension for each point in 
the mission space. There is one orange point that represents the point 
the user selected in the mission space; the remaining points are dis-
played in light gray.
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