
© 2018 by Carnegie Mellon University
"[Distribution Statement A] Approved for public release and unlimited distribution."

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Modeling System Architectures
using the Architecture Analysis
and Design Language (AADL)

Module 1 – Introduction
March 2018

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

2

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.
This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual
study.
Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other
manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.
Although the rights granted by contract do not require course attendance to use this material for U.S. Government
purposes, the SEI recommends attendance to ensure proper understanding.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM18-0221

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

3

Introductions

Who are we?

Who are you?

Why are you here?

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

4

Objectives for This Course

This course will provide you with:
• an understanding of the value of Architecture-centric Virtual Integration

Practice (ACVIP) for system development
• fundamental ACVIP concepts, specifically key principles and methods
• an understanding of software system architecture
• core elements of the Architecture Analysis and Design Language (AADL)

modeling language, syntax, semantics, and usage
• modeling and analysis of embedded software systems
• hands on exercises to document and model embedded software system

architectures and quantitatively evaluate their quality attributes

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

5

The Course Agenda – Days 1-3

Day 1:
• Session 1: Module 1 - AADL Standard & Model-Based Engineering
• Session 2: Module 2 - Conceptualizing a System
• Session 3: Hands-on exercise
• Session 4: Module 3: Modeling and Analyzing Flows

Day 2:
• Session 5: Hands-on exercise
• Session 6: Module 4 - Modeling Software Runtime Characteristics
• Session 7: Hands-on exercise
• Session 8: Module 5- Modeling Execution Platform Components and Devices

Day 3:
• Session 9: : Hands-on exercise
• Session 10: Module 6 - Modeling Logical Resources
• Session 11: Hands-on exercise
• Session 12: Module 8- Modeling Operational modes

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

6

The Course Agenda – Days 4-5

Day 4:
• Session 13: Module 8- Hands-on exercise
• Session 14: Module7 & 9- Data modeling, Subprograms, Abstract, Prototypes
• Session 15: Module 2S: Error Modeling and Hazard Analysis
• Session 16: Hands-on exercise

Day 5:
• Session 17: Module 10 - Modeling Guidelines
• Session 18: Modeling discussions/Q&A, topics of interest

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

7

Schedule: Day 1

8:30 – 10:15 Introduction and Overview of Modeling and AADL
10:15 – 10:30 BREAK
10:30 – 12:00 Conceptualizing a System
12:00 – 13:00 LUNCH
13:00 – 14:45 Hands-on Exercises
14:45 – 15:00 BREAK
15:00 – 16:30 Modeling and Analyzing Flows

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

8

Rules of Engagement

We will be very busy over the next five days. To
complete everything and get the most from the course,
we will need to follow some rules of engagement:
• Your participation is essential.
• Feel free to ask questions at any time.
• Discussion is good, but we might need to cut some discussions short in the

interest of time. (we are happy to discuss topics over lunch, etc.)
• Please try to limit side discussions during the lectures.
• Please turn off your cell phone ringers, refrain from texting.
• Let’s try to start on time.
• Participants must be present for all sessions in order to earn a course

completion certificate.

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

9

Session 1 Objectives

Provide an overview of modeling, software architecture

Introduce architecture-centric virtual integration concepts

Introduce the SAE AADL Standard

Provide a summary of AADL concepts

Introduce a tool strategy for AADL

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

10

Outline: AADL Standard & ACVIP

• Challenges in embedded software systems
• Modeling-driven engineering and Architecture-Centric Virtual

Integration Practice (ACVIP)
• Overview of SAE AADL Standard suite
• AADL Language Overview
• AADL Tools
• Summary

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

11

We Rely on Software for Safe Aircraft Operation

Embedded software systems
introduce a new class of problems

not addressed by traditional
system safety analysis

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

12

Software Problems
not just in Aircraft

How do you upgrade washing
machine software?

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

13

High Fault Leakage Drives Major Increase in Rework Cost

5x

Software
Architectural

Design

System
Design

Component
Software
Design

Code
Development

Unit
Test

System
Test

Integration
Test

Acceptance
Test

Requirements
Engineering

300-1000x

Where faults are introduced
Where faults are found
The estimated nominal cost for fault removal

20.5%

1x

20%, 16%

10%, 50.5%

0%, 9% 80x

70%, 3.5% 20x

Sources:

NIST Planning report 02-3, The Economic Impacts of Inadequate
Infrastructure for Software Testing, May 2002.

D. Galin, Software Quality Assurance: From Theory to
Implementation, Pearson/Addison-Wesley (2004)

B.W. Boehm, Software Engineering Economics, Prentice Hall (1981)

70% Requirements &
system interaction errors 80% late error

discovery at high
repair cost

80% late error
discovery at high

repair cost

80% late error
discovery at high

rework cost

Aircraft industry has reached limits of affordability
due to exponential growth in SW size and complexity.

Major cost savings through rework avoidance
by early discovery and correction

A $10k architecture phase correction saves $3M

Total System Cost
Boeing 777 $12B

F-35 $59B

Software as % of total system cost
1997: 45% → 2010: 66% → 2024: 88%

Post-unit test software rework cost
50% of total system cost and growing

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

14

Current Industry Practice in DO-178B Compliant
Requirements Capture

Tool

Notation

Industry Survey in 2009 FAA Requirements Engineering Study

Primarily textual “shall” requirement statements

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

15

Textual Requirement Quality Challenge

Browsable links/Coverage metrics

Requirements
error

%

Incomplete 21%

Missing 33%

Incorrect 24%

Ambiguous 6%

Inconsistent 5%

There is more to requirements quality than “shall”s and stakeholder traceability

IEEE 830-1998 Recommended Practice for SW Requirements Specification

System to SW requirements gap [Boehm 2006]

How do we verify low level SW requirements against system requirements?

When StartUpComplete is TRUE in both FADECs and
SlowStartupComplete is FALSE,
the FADECStartupSW shall set SlowStartupInComplete
to TRUE

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

16

Mismatched Assumptions in System Interactions
System Engineer Control Engineer

System
Under
Control

Control
System

Physical Plant
Characteristics
Lag, proximity

Operator Error
Automation &
human actions

Sy
st

em
 U

se
r/E

nv
iro

nm
en

t

Hazards
Impact of

system failures A
pplication D

eveloper

Compute
Platform

Runtime
Architecture

Application
Software

Embedded SW System Engineer

Data Stream
Characteristics

Latency jitter affects
control behavior

Potential event loss

Measurement Units, value range
Boolean/Integer abstraction

Air Canada, Ariane, 7500 Boolean
variable architecture

Concurrency
Communication

ITunes crashes on dual-cores

Distribution & Redundancy
Virtualization, load balancing,

mode confusion

Hardware
Engineer

Why do system level failures still occur despite fault
tolerance techniques being deployed in systems?

Software system as hazard contributor

Embedded software system
as major source of hazards

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

17

System Level Fault Root Causes
Violation of data stream assumptions

• Stream miss rates, Mismatched data representation, Latency jitter & age
Partitions as Isolation Regions

• Space, time, and bandwidth partitioning
• Isolation not guaranteed due to undocumented resource sharing
• fault containment, security levels, safety levels, distribution

Virtualization of time & resources
• Logical vs. physical redundancy
• Time stamping of data & asynchronous systems

Inconsistent System States & Interactions
• Modal systems with modal components
• Concurrency & redundancy management
• Application level interaction protocols

Performance impedance mismatches
• Processor, memory & network resources
• Compositional & replacement performance mismatches
• Unmanaged computer system resources

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

18

Model-based Engineering Pitfalls

The system

System models

System implementation

Inconsistency between
independently developed

analytical models

Confidence that model
reflects implementation

This aircraft industry experience has led to the System
Architecture Virtual Integration (SAVI) initiative

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

19

Outline: AADL Standard & ACVIP

• Challenges in embedded software systems
• Modeling-driven and architecture-centric engineering
• Overview of SAE AADL Standard suite
• AADL Language Overview
• AADL Tools
• Summary

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

20

What is Software Architecture?
The software architecture of a program or computing system is the
structure or structures of the system, which is:
• comprised of software components
• the externally visible properties of those components, and
• the relationships between them. 1

A software system architecture consists of a set of
• communicating tasks,
• mapped onto a hardware platform, and
• interfacing with a physical target system or operational environment.

“externally visible properties” refers to those assumptions other
components make of a component, such as a provided service,
performance characteristic, fault handling, etc.
To allow for analysis, these ‘externally visible properties’ are precisely
defined in the AADL.
Architecture serves as the basis for system analysis.

1 Documenting Software Architectures, Addison Wesley, 2010

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

21

Why UML, SysML Are Not Sufficient
• System engineering

– Focus on system architecture and operational environment
– SysML developed to capture interactions with outside world, as a

standardized UML profile
– 4 pillars/diagrams: requirements, parameterics (added in SysML),

structure, behavior
• Conceptual architecture

– UML-based component model
– Architecture views (DoDAF, IEEE 1471)
– Platform Independent model (PIM)

• Embedded software system engineering
– SAE AADL with well-defined semantics for SW, runtime, computer,

physical system architectures
– OMG Modeling and Analysis of Real Time Embedded systems

(MARTE) as UML profile leveraging AADL semantic Meta model
– Multiple analysis perspectives in Model-Based Engineering
– xUML insufficient for PSM (Kennedy-Carter, NATO ALWI study)

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

22

What is the AADL?

SAE International Architecture Analysis and Design
Language (AADL) is
an industry standard* notation
for modeling embedded software system architectures
That supports architectural analysis of functional and operational quality
attributes, virtual system integration, and construction from verified
models
for the avionics, aerospace, automotive, and medical device domains.
AADL
• Is based on 15 Years of DARPA funded research technologies
• Was first published Nov 2004 and revised in Jan 2009 (V2) and Sept 2012

(V2.1)

* SAE International standard document AS 5506B (R)

http://www.sae.org/
http://www.sae.org/

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

23

SAE Architecture Analysis & Design
Language (AADL) for Embedded Systems

The Computer System

The System

Computer System
Hardware & OS

Physical platform
Aircraft

Control
Guidance

Deployed on
Utilizes

Physical interface
Platform component

AADL focuses on interaction between the three
major elements of a software-intensive system

based on architectural abstractions of each.

Embedded Application
Software

Flight control & Mission The Software

Software design &
runtime architecture

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

24

Cooperative Engineering of Systems

Key elements of physical system
are captured as component

abstractions & properties relevant
to embedded software system

analysis

Application Software
Runtime Architecture
(task & communication)

Computer Platform
Architecture
(processors &

networks)

Physical System
Architecture

(interface with embedded
SW/HW)

Hardware
Components

(circuits &
logic)
VHDL

Application Software
Components
(source code)

C, Ada, UML, Simulink

Physical Components
(mechanical , electrical,

heat)
Modelica

SysMLAADL

Operational
Environment
(People, Use
scenarios)

UML

Embedded System Engineering System Engineering

Control
Engineering

Mechanical
Engineering

Electrical
Engineering

Application
Software

Engineering

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

25

Reliability & Qualification Improvement Strategy

Model
RepositoryMission

Requirements
Function
Behavior

Performance

Survivability
Requirements

Reliability
Safety

Security

Architecture-led
Requirement
Specification

Architecture
Model

Component
Models

System
Implementation

2010 SEI Study for AMRDEC
Aviation Engineering Directorate

Four pillars for Improving Quality of Critical Software-reliant Systems

Architecture-centric
Virtual System

Integration

Resource,
Timing &

Performance
Analysis

Reliability,
Safety,

Security
Analysis

Operational
& failure
modes

Static Analysis &
Compositional

Verification

Incremental Assurance
Plans & Cases

throughout Life Cycle

System
configuration

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

26

Architecture-centric Virtual Integration Practice
(ACVIP)

Transformation and
code generation based
on verified architecture

specifications

Testing against
verified specifications

and models

Automated assurance
and argumentation

Model-based architecture
specifications & multi-

dimensional QA analysis

Iterative architecture
design, safety analysis, and
requirement decomposition

Stakeholder and
Quality Attribute (QA)

driven architecture-
centric requirement

specification

Architecture-centric virtual
integration and compositional

verification of requirements

BUSINESS
AND

MISSION GOALS
ARCHITECTURE SYSTEM

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

27

Ar
ch

ite
ct

ur
e

M
od

el
in

g
an

d
An

al
ys

is

System & SW
Architectural

Design

Component
Software
Design

Code
Development

Target
Build

Deployment
Build

Requirements
Engineering

Building the Assurance Case throughout the Life
Cycle

Acceptance
Test

System
Test

Integration
Test

Unit
Test Build the Assurance

Case

Build the System

Requirements
Validation

System & SW
Architecture

Validation

Design
Validation

Integration
Build

Code Coverage
Testing

Virtual Architecture
Integration & Analysis

Flight Test

System Integration
Lab Testing

Design Validation by
Virtual Integration

Architecture Led
Requirements Specification

Major cost savings through rework avoidance by early
discovery and incremental certification evidence

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

29

Outline: AADL Standard & ACVIP

• Challenges in embedded software systems
• Modeling-driven and architecture-centric engineering
• Overview of SAE AADL Standard suite
• AADL Language Overview
• AADL Tools
• Summary

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

30

The SAE AADL Standard Suite (AS-5506 series)
Core AADL language standard (V2.1-Sep 2012, V1-Nov 2004)

• Strongly typed language with well-defined semantics
• Textual and graphical notation
• Standardized XMI interchange format

Standardized AADL Extensions
Error Model language for safety, reliability, security analysis

ARINC653 extension for partitioned architectures
Behavior Specification Language for modes and interaction behavior

Data Modeling extension for interfacing with data models (UML, ASN.1, …)

AADL Extensions in Progress
Requirements Definition and Assurance Language

Synchronous System Specification Language
Hybrid System Specification Language

System Constraint Specification Language

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

31

AADL: The Language

Precise execution semantics for components
• Thread, process, data, subprogram, system, processor, memory, bus, device,

virtual processor, virtual bus

Continuous control & event response processing
• Data and event flow, call/return, shared access
• End-to-End flow specifications

Operational modes & fault tolerant configurations
• Modes & mode transition

Modeling of large-scale systems
• Component variants, layered system modeling, packaging, abstract, prototype,

parameterized templates, arrays of components, connection patterns

Accommodation of diverse analysis needs
• Extension mechanism, standardized extensions

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

32

System Level Fault Root Causes
Violation of data stream assumptions

• Stream miss rates, Mismatched data representation, Latency jitter & age
Partitions as Isolation Regions

• Space, time, and bandwidth partitioning
• Isolation not guaranteed due to undocumented resource sharing
• fault containment, security levels, safety levels, distribution

Virtualization of time & resources
• Logical vs. physical redundancy
• Time stamping of data & asynchronous systems

Inconsistent System States & Interactions
• Modal systems with modal components
• Concurrency & redundancy management
• Application level interaction protocols

Performance impedance mismatches
• Processor, memory & network resources
• Compositional & replacement performance mismatches
• Unmanaged computer system resources

Operational and failure modes
Interaction behavior specification

Dynamic reconfiguration
Fault detection, isolation, recovery

End-to-end latency analysis
Port connection consistency

Process and virtual processor to
model partitioned architectures

Resource allocation &
deployment configurations
Resource budget analysis

& scheduling analysis

Virtual processors & buses
Multiple time domains

Codified in Virtual Upgrade Validation method

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

33

Architecture Views and SAE AADL

Component View
• Model of system composition & hierarchy
• Software, execution platform, and physical components
• Well-defined component interfaces

Concurrency & Interaction View
• Time ordering of data, messages, and events
• Dynamic operational behavior
• Explicit interaction paths & protocols

Deployment view
• Execution platform as resources
• Binding of application software
• Specification & analysis of runtime properties, …

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

34

Change Impact Across Analysis Dimensions
Increased confidentiality

requirement
• change of encryption policy

Exchange frequency of key changes

Message size increases

• increases bandwidth utilization

• increases power consumption

Increased computational complexity

• increases WCET

• increases CPU utilization

• increases power consumption

• may increase latency

Single-Model, Multi-Dimensional Analysis

Auto-generated
analytical models,

code, configurations

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

35

Change Impact Across Analysis Dimensions

Security
•Intrusion
•Integrity
•Confidentiality

Safety
& Reliability

•MTBF
•FMEA

•Hazard
analysis

Real-time
Performance
•Execution time/
Deadline

•Deadlock/starvation

•Latency

Resource
Consumption
•Bandwidth
•CPU time
•Power
consumption

•Data precision/
accuracy

•Temporal
correctness

•Confidence

Data
Quality

AADL Architecture
Model

Single-source Annotated Architecture
Model Propagates Change Impact

Across Analytical Models

Auto-generated
analytical models,

code, configurations

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

36

Well-defined Execution Semantics

SAE AADL
Focus on Architecture Abstraction
•Thread execution
•Communication timing
•Operational modes & architecture
reconfiguration

OMG MARTE

AADL Execution &
Communication Model

Synchronous
Languages

RavenScar
Computational

Model

Clocks&
Timers

OMG MARTE
Focus on implementation
• Timers to trigger task execution
• Send/receive operations
• Behavioral states and transitions

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

37

Partitioned Run-Time Architecture

Strong Partitioning
• Timing Protection
• OS Call Restrictions
• Memory Protection

Interoperability/Portability
• Tailored Runtime Executive
• Standard RTOS API
• Application Components

Real-Time Operating System

Application
Software

Component

Embedded Hardware Target

AADL Runtime System

Application
Software

Component

Application
Software

Component

Application
Software

Component

AADL Model

Auto-generated task &
communication code

from AADL model

Application SW inserted
into runtime system

Runtime system performs
communication for app

Runtime system
dispatches app code

A successful embedded systems is a layered runtime architecture
that supports partitioning

Runtime exec is generated against a common RTOS and communication API

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

38

AADL-based Virtual System Integration Technology Approach

SAE AADL Standard & Tool Support: Research Transition Platform

2004 2008 2010 2012 2014 2016 2020

Army and other Government Shadow Projects

Common
Avionics

Architecture
System

Apache
Block III
ATAM CH47F

Health
Monitor

JPL
Mission Data

System

DARPA
MetaH
ACME

AADLV1
Error Model

US & European Research Initiatives

European
Commission
SLIM/FIACRE

DARPA
META

DARPA
HACMS
Security

Other Standards and Regulatory Guidance

OMG
MARTE

Embedded
Systems

ARINC653
Partitions

Regulatory Guidance
NRC, FDA, UL

Avionics Network
Standards

System Safety
Practice Standards

System Architecture Virtual Integration (SAVI) Software & Systems Engineering

AADLV1
Timing

Software & System
Co-engineering

Requirements
Assurance

Multi-team
Safety

JMR TD: ACVIP Shadow Projects

Future Vertical Lift

Virtual System
Integration System Assurance

Architecture-centric
Acquisition

Evolution, Maturation and Transition

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

39

International R&D Programs Leveraging SAE AADL

ITEA SPICES
Model-Driven Embedded

Systems Engineering
15 partners €16M 2006-2009

TOPCASED
Open Source Embedded
Systems Tool Framework

28 partners €20+M 2005-2009

ESA TASTE
System & SW

Validation & Generation
2010-current

EC ASSERT
Proof-based Satellite

Architectures
ESA + 30 partners
€15M 2004-2007

IST ARTIST2
Embedded Systems
Center of Excellence

2007-2012

OpenGroup
Real-Time Forum
EU + US partners

2008-current

AVSI SAVI
Analysis-based System Validation
12 partners $20M 2008-current

DARPA META, HACMS
Complex System

Engineering, Security
2010-current

ESA COMPASS
System SW Co-engineering

2008-current

PARSEC
Safety/security focus

2010-2013

Flex-eWare
Auto Code Generation

2007-2010

PROARTIS
Partitioned RT systems

2010-2013 € 1.8M

RAMSES
Auto Code Generation

2012-current

MASIW
Avionics Workbench

2011-current
$2M per year

P Project
Auto Code Gen

2011-2014

D-MILS
Design of Secure Systems

2013 - $4.9M

Integrated Clinical
Environment

Device Certification
FDA KSU

2011-current

OPEES
Formal analysis

2011-2014

Compositional
Timing Framework

OSD, 500K, 2014

NASA CVFCS
AF SwPI

RC formal methods

http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.uib.no/bot/bilder/eu-flag.gif&imgrefurl=http://www.uib.no/bot/mcts/index.htm&h=349&w=519&sz=4&hl=en&start=1&tbnid=hVHHnfoBEKOrbM:&tbnh=88&tbnw=131&prev=/images?q=European+Union+flag&gbv=2&svnum=10&hl=en&sa=G
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.united-states-map.org/images/american-flag.gif&imgrefurl=http://www.united-states-map.org/american-flag.htm&h=352&w=560&sz=37&hl=en&start=1&tbnid=Ej2l_hUHOf-YOM:&tbnh=84&tbnw=133&prev=/images?q=american+flag&gbv=2&svnum=10&hl=en

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

40

Benefits of Architecture-centric Engineering

Reduce risks
• Analyze system early and throughout life cycle
• Understand system wide impact
• Validate assumptions across system

Increase confidence
• Validate models to complement integration testing
• Validate model assumptions in operational system
• Evolve system models in increasing fidelity

Reduce cost
• Fewer system integration problems
• Fewer validation steps through use of validated generators

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

41

Transition to Architecture Centric Virtual
Integration
Build on architecture tradeoff analysis (e.g., SEI ATAM)
• Provides focused evaluation method
• MBE/AADL provides quantitative analysis & starter models to build on

Project reviews & root cause analysis
• Identify systemic risks in problem systems & in technology migration
• AADL provides semantic framework to identify issues and potential mitigation

strategies

Architecture documentation of existing systems
• Leverage existing design data bases
• Challenge: abstract away from design details (“what” instead of “how”)
System and software assurance
• Provides structured approach to safety/dependability assurance
• MBE/AADL provides evidence based on validated models

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

42

Outline: AADL Standard & ACVIP

• Challenges in embedded software systems
• Modeling-driven and architecture-centric engineering
• Overview of SAE AADL Standard suite
• AADL Language Overview
• AADL Tools
• Summary

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

43

AADL Language Elements

AADL

Language

Elements

engineering
support

infrastructure

core modeling

Abstractions
Organization
Extensions

Components
Interactions
Properties

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

44

Component-Based Representation

Specifies a well-formed interface
Component type allows for multiple implementations with extensions
All external interaction points defined as features
Data and event flows through component, across multiple components
Properties to specify component characteristics
Components organized into system hierarchy
Component interaction declarations must follow system hierarchy

System my_system
Features
Flows
Properties

End my_system;
System implementation my_system2
End my_system2;

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

45

AADL: Components and Connections

Component type
• component category
• extends
• features (is)
• subcomponents (requires)

Component type
identifier

• component category
• prototype
• extends {component_type}
• features
• flow specification
• properties

Package
public
component classifier

private
component classifier

features
• port
• port group
• parameter
• access
• subprogram

more details

Component implementation
identifier
• extends {component implementation}
• refines type
• subcomponents
• connections
• call sequences
• modes
• flow implementation & end-to-end flows
• properties

implements
type

Connections
• data
• event
• event data
• port group
• access

is one of
Properties
• standard
• user defined

Property set
property types
property definitions
property values

application

platform

composite

Component Category
• data
• subprogram (group)
• thread
• thread group
• process
• memory
• device
• (virtual) processor
• (virtual) bus
• system
• abstract

modes
mode transitions
mode configurations

referenceVersion 2

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

46

Application Software Components

System – hierarchical organization of components

Process – protected address space

Thread – a schedulable unit of concurrent execution

Thread group – logical organization of threads

Data – potentially sharable data

Subprogram – callable unit of sequential code

Process

Thread

Data

Subprogram

Thread group

System

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

47

Execution Platform Components and Devices

Processor / Virtual Processor – Provides thread scheduling and
execution services

Memory – provides storage for data and source code

Bus / Virtual Bus – provides physical/logical connectivity between
execution platform components

Device – interface to external environment

Processor

Device

Bus

Memory

Virtual
Processor

Virtual Bus

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

48

Component – an entity representing an abstraction of hardware,
software, or a system.
Type – A declaration that specifies the functional interfaces of a
component.

• All components must have a type declaration
• Types allow the specification of component for syntax checking

A ‘type’ can be thought of as a template for a modeled component
Types declarations may be empty or incomplete
One component type may extend another component type
Typical uses of component types
• Generic specification of a modeling component (an empty type)
• Base representation for components with optional/incomplete features, e.g. a

family of components with a common set of interfaces.
system engine_monitor

features
engine_RPM: in data port;
engine_overspeed: out data port;

end engine_monitor;

AADL Language Concepts 1

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

49

Implementation – Is the realization of the associated component type. It
is compliant with its corresponding type declared interfaces.

• Indentified by the reserved word ‘implementation’
A ‘implementation’ can be though of as the realization of the component
type
Implementation may be empty e.g. directly implement the type
There may be many implementations based on various subsets of
component types, the connections among them, and various properties
of the implementation.
Uses of component implementations
• Directly implement a component type
• Represent an analysis model based on the composition of component types.
system implementation engine_monitor.impl
-- a simple implementation
end engine_monitor.impl;

AADL Language Concepts 2

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

50

AADL Representation Forms

XML
<ownedThreadType name="data_processing">

<ownedDataPort name="raw_speed_in"/>
<ownedDataPort name="speed_out" direction="out"/>
<ownedPropertyAssociation property="Period"

<ownedValue xsi:type="aadl2:IntegerLiteral"
value="20" unit="ms"

</ownedValue>
</ownedPropertyAssociation>

</ownedThreadType>

thread data_processing
features

raw_speed_in: in data port;
speed_out: out data port;

properties
Period => 20 ms;

end data_processing;

Graphical

data_processing

AADL Text
20 ms

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

51

Outline: AADL Standard & ACVIP

• Challenges in embedded software systems
• Modeling-driven and architecture-centric engineering
• Overview of SAE AADL Standard suite
• AADL Language Overview
• AADL Tools
• Summary

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

52

AADL Tool Support

Open Source AADL Tool Environment (OSATE) by SEI
• Eclipse-based IDE for AADL and Annexes, Multiple analysis plugins
• Reference implementation for core AADL and annexes
• Vehicle for in-house prototyping and for architecture research

EllisDiss
• STOOD for AADL (http://www.ellidiss.com/products/stood/)

– A development environment/tool chain that is supported by AADL, UML 2.0,
HRT-HOOD, Requirements Analysis, and Software Method Prototyping

– Features support for requirements capture/traceability, architectural design,
and detailed design.

• AADL Inspector (http://www.ellidiss.com/products/aadl-inspector/)
– Applies static syntax & legality rule checker, schedualibility analysis –

turnkey integration to current version of CHEDDAR
MASIW (ISPRAS)
• https://forge.ispras.ru/projects/masiw-oss
• an open source Eclipse-based IDE for development and analysis of AADL

models

http://www.ellidiss.com/products/stood/
http://www.ellidiss.com/products/aadl-inspector/
https://forge.ispras.ru/projects/masiw-oss

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

53

XML-Based Tool Integration Strategy

Textual
AADL

Scheduling
Analysis

Reliability
Analysis

Safety
Analysis

AADL Runtime
Generator

Graphical
AADL

Semantic
Checking

AADL Front-end

Research prototype

Commercial Tool
Project-Specific

In-House
Project-Specific

In-House

Declarative AADL Model

AADL Instance Model

Graphical
Layout
Model

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

54

Open Source AADL Tool Environment - OSATE

File view of workspace

Navigate active editor
through outline

Information viewers for
current selection

Double click to navigate
to problem location

Stacking and tiling of editors

AADL specific help on
AADL & OSATE

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

55

AADL-based Requirement Specification

Basis for assurance plans
and assurance cases

ACVIP and Project
Specific Properties

AADL Model Acts as
Requirement Specification

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

56

Open Source AADL Analysis Tools - 1

ASSERT/TASTE: European Space Agency, tools dedicated to the
development of embedded, real-time systems
http://taste.tuxfamily.org/wiki/index.php?title=Overview

COMPASS: Correctness, Modeling and Performance
Of Aerospace Systems http://www.compass-toolset.org/

Cheddar: A resource scheduling analysis tool
http://beru.univ-brest.fr/~singhoff/cheddar/

AADL Inspector: by Ellidiss Software www.ellidiss.com

ASIIST: real-time analysis Cyber Physical Systems Integration Lab
Ocarina: ENST. An AADL-based code generation tool suite available at
http://aadl.enst.fr/ocarina/ & http://libre.adacore.com/tools/ocarina/

AADL & BIP: plug-in to interface AADL models with the Behavior
Interaction theory (BIP) language http://www-verimag.imag.fr/Tools

http://taste.tuxfamily.org/wiki/index.php?title=Overview
http://www.compass-toolset.org/
http://beru.univ-brest.fr/%7Esinghoff/cheddar/
http://www.ellidiss.com/
http://aadl.enst.fr/ocarina/
http://libre.adacore.com/tools/ocarina/
http://www-verimag.imag.fr/Tools

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

57

Open Source AADL Analysis Tools - 2
Resolute: architectural assurance cases, integrated into OSATE
Rockwell Collins
Agree: behavioral model checking, integrated into OSATE, Rockwell
Collins
SysML to AADL Translator: integrated into OSATE, Rockwell Collins
Power Consumption Analysis Toolbox: integrated into OSATE, Lab-
STICC developed under the SPICES project
EDICT Tool Suite: dependability analysis, WW Technology Group
Requirements Modeling Tool for AADL: by UBS/Lab-STICC. Available
via Open-PEOPLE Open Power and Energy Optimization Platform and
Estimator.

Additional information is available through the AADL Public Wiki

www.aadl.info/wiki

http://www.aadl.info/wiki

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

58

Large-Scale Development

Component evolution
• Component templates & refinement
• System families
• Component variants
• Components as extensions of other components
• Model configuration by property values

Large models & team development
• Components organized into AADL packages
• Public & private package sections
• Independently developed packages
• Version management of AADL packages
• Model integration

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

59

Outline: AADL Standard & ACVIP

• Challenges in embedded software systems
• Modeling-driven and architecture-centric engineering
• Overview of SAE AADL Standard suite
• AADL Language Overview
• AADL Tools
• Summary

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

60

Benefits

Model-based embedded system engineering benefits

Benefits of AADL as SAE standard

Analyzable models drive development
Prediction of runtime characteristics at different fidelity

Bridge between control & software engineer
Prediction early and throughout lifecycle
Reduced integration & maintenance effort

Common modeling notation across organizations
Single architecture model augmented with properties

Interchange & integration of architecture models
Tool interoperability & integrated engineering environments

© 2018 Carnegie Mellon University
"[Distribution Statement A] Approved for

public release and unlimited distribution."

Modeling System Architectures Using AADL | Module 1

61

END OF MODULE 1

	Modeling System Architectures using the Architecture Analysis and Design Language (AADL)
	Slide Number 2
	Introductions
	Objectives for This Course
	The Course Agenda – Days 1-3
	The Course Agenda – Days 4-5
	Schedule: Day 1
	Rules of Engagement
	Session 1 Objectives
	Outline: AADL Standard & ACVIP
	We Rely on Software for Safe Aircraft Operation
	Software Problems not just in Aircraft
	High Fault Leakage Drives Major Increase in Rework Cost
	Current Industry Practice in DO-178B Compliant Requirements Capture
	Textual Requirement Quality Challenge
	Mismatched Assumptions in System Interactions
	System Level Fault Root Causes
	Model-based Engineering Pitfalls
	Outline: AADL Standard & ACVIP
	What is Software Architecture?
	Why UML, SysML Are Not Sufficient
	What is the AADL?
	SAE Architecture Analysis & Design Language (AADL) for Embedded Systems
	Cooperative Engineering of Systems
	Reliability & Qualification Improvement Strategy
	Architecture-centric Virtual Integration Practice (ACVIP)
	Slide Number 27
	Outline: AADL Standard & ACVIP
	The SAE AADL Standard Suite (AS-5506 series)�
	AADL: The Language
	System Level Fault Root Causes
	Architecture Views and SAE AADL
	Change Impact Across Analysis Dimensions
	Change Impact Across Analysis Dimensions
	Well-defined Execution Semantics
	Partitioned Run-Time Architecture
	Slide Number 38
	International R&D Programs Leveraging SAE AADL
	Benefits of Architecture-centric Engineering
	Transition to Architecture Centric Virtual Integration
	Outline: AADL Standard & ACVIP
	AADL Language Elements
	Component-Based Representation
	AADL: Components and Connections
	Application Software Components
	Execution Platform Components and Devices
	AADL Language Concepts 1
	AADL Language Concepts 2
	AADL Representation Forms
	Outline: AADL Standard & ACVIP
	AADL Tool Support
	XML-Based Tool Integration Strategy
	Open Source AADL Tool Environment - OSATE
	AADL-based Requirement Specification
	Open Source AADL Analysis Tools - 1
	Open Source AADL Analysis Tools - 2
	Large-Scale Development
	Outline: AADL Standard & ACVIP
	Benefits
	End of Module 1

