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Abstract 

In this research, a time-series of multispectral images acquired by 

Landsat 8 and Sentinel-2 satellites during 2013-2017 was combined with 

in situ water quality measurements to examine and analyze the spatial 

pattern and temporal variation of lake and reservoir water quality in the 

Ohio/Kentucky/Indiana region within the Louisville District, United 

States Army Corps of Engineers. Reflectance values at the sampling sites 

for each lake were used with the in situ data collected within a 7-day time 

window of satellite overpass to construct empirical models to estimate 

water quality parameters, including turbidity, Secchi depth, and 

chlorophyll-a. The analysis indicated that Sentinel-2 outperformed 

Landsat 8 for retrieving water quality parameters, especially for 

chlorophyll-a. Due to the better spatial and temporal coverage of 

Landsat 8 for this tri-state region, the Secchi depth retrieved from the 

time-series Landsat 8 images was used to create lake trophic state index 

(TSI) maps in 2013, 2015, and 2017. It was observed that most lakes 

(~75%) in the study area were in mesotrophic or eutrophic classes in 

2017 based on the TSI. From 2013 to 2017, the TSI range and standard 

deviation of lakes in Indiana region largely increased while the average 

TSI in this tri-state area varied slightly (<1.6%). 
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1 Introduction 

1.1 Background 

Inland water bodies are sensitive and fragile environments, which are 

increasingly threatened by climate change, anthropogenic activities, and 

other natural stressors (Blondeau-Patissier et al. 2014). The need for 

sustainable water supplies for human consumption, agriculture, industry, 

and other economic activities necessitates the monitoring of inland water 

quality. For accurate assessment and effective management of inland 

lakes, it is important to have the spatial and temporal view of lake water 

quality, allowing managers to take into account not only differences 

among lakes, but also the changes of lakes through time (Kloiber et al. 

2002a). Conventional in situ sampling methods for collecting water 

quality parameters are time consuming, expensive, and limited in spatial 

coverage and sampling density. The synoptic view of water quality is thus 

not practical with traditional sampling methods (Kloiber et al. 2002b). 

Satellite-based remote sensing has been used as the most cost-effective 

and practical means of gathering information needed for regional water 

quality assessments because it is able to provide synoptic, frequent, and 

consistent observations on the water quality of lakes (Ritchie et al. 2003).  

Water clarity and trophic state are two related water quality characteristics 

that are measurable from remotely sensed imagery (Olmanson et al. 2011). 

Water clarity is commonly evaluated in terms of turbidity or Secchi depth. 

Turbidity as the surrogate for total suspended matter is a direct 

measurement of light scattering properties of water and is inversely 

related to water clarity (Dogliotti et al. 2015). Secchi depth is also widely 

used as the proxy variable for water clarity. It is measured by slowly 

lowering a standardized black and white disk (Secchi disk) into the water 

and finding the depth at which the disk ceases to be visible from the 

surface (Chen et al. 2007). Many studies suggest a strong power 

relationship between turbidity and Secchi depth (Effler 1988; Harrington 

et al. 1992).  

Trophic state is normally evaluated in terms of total phosphorus, 

chlorophyll-a (Chl-a), or Secchi depth. Trophic state index proposed by 

Carlson (1977) is frequently used to classify the water bodies into different 

trophic states such as oligotrophic, mesotrophic, eutrophic, 
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supereutrophic, or hypereutrophic, to rate the biological conditions of 

water. Oligotrophic lakes usually have deep clear water with low nutrients 

and low algae biomass (Dodds et al. 1998). Mesotrophic lakes have a 

medium amount of nutrients and have clear water with some algal blooms 

in the summer. Eutrophic lakes have high biological productivity due to 

high total nutrients. Frequent algal blooms occur in eutrophic lakes. 

Hypereutrophic lakes with excessive nutrients are characterized by severe 

nuisance algal blooms and low water clarity. Supereutrophic lakes have 

intermediate characteristics between eutrophic and hypereutrophic lakes. 

Except for total phosphorus, water quality parameters including Chl-a, 

turbidity, and Secchi depth can be inferred from satellite imagery because 

of their optical properties. The water quality parameters and derived 

trophic state index have been used by regulatory and resource 

management agencies to guide water management and public safety 

decisions (El-Serehy et al. 2018; Olmanson et al. 2015). 

Satellite imagery has been used for regional-scale measurements of lake 

water quality for the past few decades. Satellite sensors suitable for water 

quality assessments of lakes at a regional scale should have the 

appropriate spatial resolution (5-50 m), regular and frequent revisits 

(preferably at least weekly), appropriate spectral bands (sensitive spectral 

responses to water quality constituents), and should be inexpensive or 

freely available (Olmanson et al. 2015). Landsat sensors, including 

Landsat Multispectral Scanner, Landsat Thematic Mapper, Landsat 

Enhance Thematic Mapper Plus, and Landsat 8 have been extensively 

used for regional water clarity studies for the states of Minnesota, Maine, 

Michigan, and Wisconsin (Fuller et al. 2004; Fuller and Minnerick 2007; 

Kloiber et al. 2002a; Kloiber et al. 2002b; Martin et al. 1983; McCullough 

et al. 2012; Olmanson et al. 2008; Olmanson et al. 2016). To date, no 

regional study has addressed water quality issues for the 

Ohio/Kentucky/Indiana region. Landsat imagery is used primarily for 

terrestrial applications. The placement and bandwidth of their spectral 

bands may not be suitable for the accurate retrieval of Chl-a concentration 

(Olmanson et al. 2015). Recently launched European Space Agency 

Sentinel-2 satellites are expected to improve and expand the capabilities in 

regional assessment of water quality due to the improved spectral band 

configuration and enhanced spatial and temporal resolution. 
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1.2 Objective  

This study examines the spatial pattern and temporal variability of lake 

water quality in the Ohio/Kentucky/Indiana region within the Louisville 

District, United States Army Corps of Engineers (USACE), by combining 

the time-series satellite imagery from Landsat 8 and Sentinel-2, 

spanning 2013-2017. Historical in situ water quality data from multiple 

sources were used in the calibration of water quality remote sensing 

models. The water quality parameter retrieval models calibrated from 

Landsat 8 and Sentinel-2 data were evaluated and compared, and the 

trophic state was used as an indicator of water quality for the regional 

assessment. In the following sections, there is first an introduction of the 

case study area and a description of relevant data sets. Then, there is a 

presentation of the empirical algorithms for retrieving turbidity, Secchi 

depth, and Chl-a concentration in inland lakes from satellite imagery. 

Next, the estimated water quality parameters were used to evaluate and 

classify the trophic state of lakes in the study area. Finally, there is a 

discussion of the spatial pattern and temporal variability of trophic state 

in lakes, followed by some conclusions. 

1.3 Approach 

The approach is addressed in Chapter 3, Methods. 
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2 Materials 

2.1 Study area 

The USACE Louisville District, established in 1886, consists of a five-state 

area of Illinois, Indiana, Kentucky, Ohio, and Tennessee 

(https://www.lrl.usace.army.mil/) (Figure 1). The civil works mission of Louisville 

District, with an area of responsibility of approximately 190,000 km2, aims 

to develop, protect, and restore the water and land resources in the 

defined region (https://www.lrl.usace.army.mil/Missions/Civil-Works/). Twenty flood-risk 

reduction lakes or reservoirs in this district constructed by the USACE are 

assessed annually by the Louisville District Water Quality Team for the 

monitoring and evaluation of water quality conditions.  

Figure 1. Landsat 8 paths and rows over the study area within the USACE 

Louisville District. 

 

https://www.lrl.usace.army.mil/
https://www.lrl.usace.army.mil/Missions/Civil-Works/
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The 20 lakes or reservoirs include 8 in Kentucky, 8 in Indiana, and 4 in 

Ohio. They provide flood control, water supply and water quality control, 

and recreational opportunities, including fishing and hunting, boating, 

and swimming. 

The study area is a tri-state region of Ohio, Kentucky, and Indiana within 

the USACE Louisville District, covered by Landsat 8 paths 20-21, rows 33-

34 (Figure 1) or Sentinel-2 tiles T16SEJ-T16SEF, T16SFJ-T16SFF, and 

T16SGJ-T16SGF (Figure 2).  

Figure 2. Sentinel-2 tiles over the study area. 
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Within the study area, lakes greater than 90,000 m2 were used for 

analysis. The selection of lakes was based on the lake and reservoir masks 

in the National Hydrography Dataset (https://www.usgs.gov/core-science-

systems/ngp/national-hydrography). Among the 845 studied lakes and reservoirs, 5 

lakes in Kentucky, 4 lakes in Indiana, and 3 lakes in Ohio (Table 1) are the 

12 USACE lakes located in the case study area (Figure 1). 

Table 1. Twelve USACE lakes 

in the study area. 

State Lakes 

KY 

Barren River Lake 

Green River Lake 

Nolin River Lake 

Rough River Lake 

Taylorsville Lake 

IN 

Brookville Lake 

Cagles Mill Lake 

Monroe Lake 

Patoka Lake 

OH 

Caesar Creek Lake 

West Fork Lake 

Harsha Lake 

2.2 Satellite data 

Remote sensing data used in this study include Landsat 8 and Sentinel-2 

multispectral images acquired during 2013-2017. Landsat 8, launched in 

2013, carries an Operational Land Imager (OLI) and a Thermal Infrared 

Sensor (TIRS). The OLI sensor has nine spectral bands in the visible and 

near infrared (VNIR) and shortwave infrared (SWIR) portions of the 

spectrum (Table 2). The two thermal bands (TIRS), measuring surface 

temperature, are not used in this study. Landsat 8 has a revisit cycle of 16 

days. Compared with previous Landsat sensors, Landsat 8 OLI has an 

improved radiometric resolution of 12 bits and better signal-to-noise ratio 

(SNR). Landsat 8 Level 1TP (L1TP) data products were obtained from 

United States Geological Survey, EarthExplorer (https://earthexplorer.usgs.gov/). 

The L1TP products are full scenes (170 km × 185 km) of top-of-atmosphere 

https://www.usgs.gov/core-science-systems/ngp/national-hydrography
https://www.usgs.gov/core-science-systems/ngp/national-hydrography
https://earthexplorer.usgs.gov/
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(TOA) digital numbers in Universal Transverse Mercator (UTM) map 

projection with reference to World Geodetic System 84 (WGS84) datum. 

Table 2. Band configurations and spatial resolutions of Landsat 8 OLI sensor. 

Band ID Description Wavelength (nm) Spatial Resolution (m) 

B1 Coastal aerosol 430-450 30 

B2 Blue 450-510 30 

B3 Green 530-590 30 

B4 Red 640-670 30 

B5 NIR 850-880 30 

B6 SWIR 1 1570-1650 30 

B7 SWIR 2 2100-2290 30 

B8 Panchromatic 500-680 15 

B9 Cirrus 1360-1380 30 

The Sentinel-2 remote sensing system consists of two identical satellites: 

Sentinel-2A launched in 2015 and Sentinel-2B launched in 2017. The 

constellation of the two satellites provides a revisit time of 5 days at the 

equator. Flying at an altitude of 786 km, Sentinel-2 has a ground swath of 

290 km. Sentinel-2 carries a multispectral instrument (MSI) with spectral 

bands summarized in Table 3 (Drusch et al. 2012). The sensor’s radiometric 

resolution is 12-bit. The unique combination of high spatial and temporal 

resolution, wide field of view, high radiometric sensitivity and SNR, and 

good spectral configuration makes Sentinel-2 MSI a valuable sensor for 

assessing and monitoring the water quality of inland lakes (Xu et al. 2018). 

Sentinel-2 Level 1C (L1C) products in Standard Archive Format for Europe 

format were obtained from the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/). The L1C products were 100 km tiles of TOA 

reflectance in UTM/WGS84 projection. Both Landsat 8 L1TP and 

Sentinel-2 L1C images were atmospherically corrected to the bottom-of-

atmosphere (BOA) reflectance to remove the atmospheric influence.  

https://scihub.copernicus.eu/
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Table 3. Band configurations and spatial resolutions of Sentinel-2 MSI sensor.  

Band ID Description 

Central Wavelength (nm) 

Spatial Resolution (m) Sentinel-2A Sentinel-2B 

B1 Coastal aerosol 442.7 442.2 60 

B2 Blue 492.4 492.1 10 

B3 Green 559.8 559.0 10 

B4 Red 664.6 664.9 10 

B5 Vegetation Red Edge 704.1 703.8 20 

B6 Vegetation Red Edge 740.5 739.1 20 

B7 Vegetation Red Edge 782.8 779.7 20 

B8 NIR 832.8 832.9 10 

B8a Narrow NIR 864.7 864.0 20 

B9 Water vapor 945.1 943.2 60 

B10 SWIR – Cirrus 1373.5 1376.9 60 

B11 SWIR 1613.7 1610.4 20 

B12 SWIR 2202.4 2185.7 20 

Landsat 8 and Sentinel-2 images taken during 2013-2017 that presented 

cloud cover less than 10% were identified. Among these satellite images, 

the ones containing lakes that were sampled within a 7-day time window 

of the satellite overpasses were selected. Field sampling data collected in 

such a time window have proven to be usable in previous studies 

(McCullough et al. 2012; Olmanson et al. 2008). The remotely sensed 

images after atmospheric correction and normalization were combined 

with in situ Global Positioning System stamped water quality sampling 

data to develop and assess the algorithms for retrieving turbidity, Secchi 

depth, and Chl-a concentration in the lakes. 

Table 4 lists Landsat 8 and Sentinel-2 images used in this study for remote 

retrieval of lake water quality parameters. Those include 24 Landsat 8 

L1TP images and 11 Sentinel-2 L1C products. Considering the cloud 

coverage constraint and availability of in situ water quality data, suitable 

images for the analysis span the period from May 1, 2013 to November 20, 

2017, with most images acquired in August and September.  
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Table 4. Satellite images and lakes sampled within 7 days of satellite overpass. 

(a) Landsat 8 

Path Row Acquisition date Lakes 

21 34 9/17/2017 Barren River  

21 34 8/27/2015 Barren River, Nolin River 

21 34 8/5/2013 Barren River, Nolin River 

21 34 10/19/2017 Nolin River 

21 34 3/9/2017 Nolin River 

21 34 8/29/2016 Nolin, Rough River 

21 34 9/22/2013 Rough River 

21 33 8/5/2013 Jericho 

21 33 5/1/2013 Jericho 

21 33 10/8/2013 Cagles Mill 

21 33 8/29/2016 Patoka 

21 33 11/20/2017 Brookville 

20 33 9/26/2017 Brookville 

20 33 9/10/2017 Brookville 

20 33 8/9/2017 Brookville 

20 33 6/6/2017 Brookville, Caesar Creek, Harsha, West Fork 

20 33 10/9/2016 Caesar Creek 

20 33 9/7/2016 Harsha, West Fork 

20 33 9/18/2014 Harsha, West Fork 

20 33 9/21/2015 Waynoka 

20 34 11/21/2014 Herrington  

20 34 10/9/2016 Green River 

20 34 9/7/2016 Green River 

20 34 9/23/2016 Taylorsville 
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Table 4. Continued. 

(b) Sentinel-2 

Tile Acquisition date Lakes 

T16SFJ 8/3/2017 Brookville 

T16SFJ 7/7/2017 Brookville 

T16SFJ 5/15/2017 Brookville 

T16SFJ 5/8/2017 Brookville 

T16SEG 5/8/2017 Nolin River 

T16SEG 3/9/2017 Nolin River 

T16SEF 9/25/2017 Barren River  

T16SEF 10/6/2015 Barren River  

T16SGJ 10/7/2016 Caesar Creek 

T16SEJ 9/5/2017 Cagles Mill 

T16SFG 8/28/2016 Green River 

2.3 Water truth data 

This research uses in situ water quality data collected by the USACE 

Louisville District Water Quality Team (https://www.lrl.usace.army.mil/Missions/Civil-

Works/Water-Information/Water-Quality/) and water quality data retrieved from the 

United States Environmental Protection Agency (USEPA) Water Quality 

Portal (https://www.epa.gov/waterdata/water-quality-data-wqx). The USACE Louisville 

District Water Quality Team is responsible for the monitoring and 

assessment of biological, physical, and chemical properties of the 20 

USACE lakes mentioned previously. The USEPA Water Quality Portal is 

currently the nation’s largest source for sharing water quality data from 

approximately 400 federal, state, tribal, and other agencies and groups. 

Both data sets provide in situ measurements of water quality parameters, 

including water temperature (℃), dissolved oxygen (milligrams per liter), 

pH, turbidity (nephelometric turbidity units [NTU]), Secchi depth (meter), 

and chlorophyll concentration (micrograms per liter), which are used as 

the water truth data for the development and validation of water quality 

parameter retrieval models in the present study. 

The water quality data for lakes in the study region that were sampled 

within 7 days of satellite overpasses were targeted and organized. After 

examining the satellite imagery, water quality data collected at locations 

near land features (e.g., shorelines and bridges) or in clouds or shadows 

https://www.lrl.usace.army.mil/Missions/Civil-Works/Water-Information/Water-Quality/
https://www.lrl.usace.army.mil/Missions/Civil-Works/Water-Information/Water-Quality/
https://www.epa.gov/waterdata/water-quality-data-wqx
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were discarded to avoid mixed pixels. This pre-processing step resulted in 

123 water quality records of 14 lakes for Landsat 8 and 36 water quality 

records of 6 lakes for Sentinel-2. 

Based on the water truth data, the Secchi depth measurements of lakes in 

this study area ranged from 0.15 to 2.18 m with an average depth of 0.97 m. 

The minimum, maximum, and mean values of turbidity are respectively 0.5, 

54.0, and 8.6 NTU, respectively. As expected, there is a strong relationship 

between the measured turbidity and Secchi depth: y=2.0777x-0.489, with R2 = 

0.68 (Figure 3). The Chl-a concentrations varied from 2.5 to 63.1 μg/L, and 

the average concentration was 12.6 μg/L. 

Figure 3. Power relationship between turbidity (NTU) and Secchi depth (m). 
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3 Methods 

3.1 Preprocessing of multispectral satellite images 

As a considerable amount of the radiation received by a satellite sensor is 

originated from the atmosphere rather than the water surface, 

atmospheric correction is critical for accurate retrieval of water quality 

parameters from satellite imagery (Vidot and Santer 2005). Removing 

atmospheric effects is especially important when time series images are 

involved. Atmospheric correction converts TOA signal (Landsat 8 L1TP 

products or Sentinel-2 L1C images) to BOA reflectance (surface 

reflectance) with the atmospheric influence removed.  

In this study, radiometric calibration, atmospheric correction, and 

between-image normalization were performed on both Landsat 8 and 

Sentinel-2 images. Landsat 8 L1TP images were calibrated to TOA 

radiance in units of µW/(cm2 * sr * nm) in Environment for Visualizing 

Images (ENVI) 5.3 using the Radiometric Calibration function. Since the 

spatial resolutions of Sentinel-2 bands are different, the L1C products were 

resampled to 10 m pixel size using the nearest neighbor resampling 

method in the Sentinel Application Platform (SNAP) 6.0. The Reflectance 

to Radiance processor in SNAP was used to convert resampled L1C images 

from TOA reflectance to TOA radiance, and then Band Math function in 

ENVI 5.3 was used to scale the TOA radiance in units of µW/(cm2 * sr * 

nm). Next, the processed Sentinel-2 images were converted to band-

interleaved-by-line  format based on the Convert Interleave module in 

ENVI 5.3.  

The above procedures make Landsat 8 and Sentinel-2 images meet the 

input requirements for Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH)  atmospheric correction method (Adler-Golden et 

al. 1998). Atmospheric correction of satellite images using the FLAASH 

software package in ENVI 5.3 was performed. This method has been 

widely applied to remove the atmospheric effect from remotely sensed 

imagery for estimating in-water constituents (Beck et al. 2016; Kutser et 

al. 2005; Watanabe et al. 2017; Xu et al. 2019). After atmospheric 

correction, some pseudo invariant features (e.g., large buildings and 

airport tarmacs) on the clearest image for each path or tile were used as 

the reference for normalizing the other images on the same path or tile. To 
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reduce noise, the satellite images after normalization were processed using 

a median filter with a 3 × 3 moving window in ENVI 5.3. 

3.2 Water quality parameter retrieval models 

Empirical algorithms that apply statistical regression techniques to 

determine the best-fit model between satellite bands (or band 

combinations) and water truth data have provided accurate and reliable 

retrieval of water quality parameters from remotely sensed imagery 

(Olmanson et al. 2011). Stepwise regression procedures have been widely 

used to model the empirical relationship (Olmanson et al. 2011; Olmanson 

et al. 2016). In this study, forward stepwise regression to develop the 

models to retrieve turbidity, Secchi depth, and Chl-a concentration from 

satellite images was utilized. Raw and log-transformed values of each 

water quality parameter as the dependent variables were adopted. Single 

bands, non-reciprocal band ratios, and band differences were used as the 

independent variables. Instead of employing preconceived notions 

concerning the best bands or band combinations for modeling the 

parameter of interest, all of them were entered and the stepwise regression 

method was  used to identify the best ones by performing regression a 

number of times, each time adding the most correlated variable. To make 

the models accurate and compact, the models that had a good regression 

fit and included two independent variables were selected. The selected 

multiple regression model can be expressed as follows: 

 𝑊𝑄𝑃 𝑜𝑟 𝑙𝑜𝑔10(𝑊𝑄𝑃)= 𝑎 + 𝑏 ∗ 𝐵𝐶1 + 𝑐 ∗ 𝐵𝐶2 (1) 

where  

 𝑊𝑄𝑃 = water quality parameter of interest 

 𝐵𝐶1, 𝐵𝐶2 = selected explanatory variables  

 𝑎, 𝑏, 𝑐  = regression coefficients. 

3.3 Trophic state index (TSI) calculation 

The Carlson’s TSI (Carlson 1977) is commonly used to classify the lakes’ 

trophic status to rate the biological conditions of lakes. Three variables, 

including total phosphorus, Chl-a, or Secchi depth, can be used to 

calculate the Carlson TSI. In this study, TSI as an indicator of lake water 

quality was used. Based on the TSI values, the lakes in the study area were 

classified into different trophic states, and their spatial pattern and 
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temporal variability were analyzed. The equations to calculate TSI from 

Secchi depth or Chl-a are expressed as follows: 

 TSI = 60 – 14.41*ln(Secchi depth) (2) 

 TSI = 9.81*ln(Chl-a) + 30.6 (3) 
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4 Results 

For each sampling site, the corresponding pixel on the atmospherically 

corrected and normalized satellite image was identified, and its band 

values were used to generate the band combinations (band differences or 

ratios). Such calculated band combinations and single bands together with 

the associated in situ measurement of a given water quality parameter 

form a match-up pair. For all match-up pairs, three quarters of them are 

used as the training set for calibrating the water quality parameter 

retrieval models. The remaining match-up pairs were used as the 

independent testing set for model accuracy assessment. Table 5 lists the 

total number of match-up pairs for each water quality parameter with 

respect to each satellite image source. The corresponding sizes of training 

and testing data set are also listed in Table 5. 

Table 5. Total number of match-up pairs and size of training and testing sets for 

retrieving turbidity (NTU), Secchi depth (m), and Chl-a (μg/L) from Landsat 8 or 

Sentinel-2 image data. 

Satellite Water Quality Parameter Training Size Testing Size Total Match-Up Pairs 

Landsat 8 Turbidity 77 25 102 

Landsat 8 Secchi depth 70 23 93 

Landsat 8 Chl-a 73 24 97 

Sentinel-2 Turbidity 25 9 34 

Sentinel-2 Secchi depth 23 7 30 

Sentinel-2 Chl-a 27 8 35 

4.1 Results from Landsat 8 data 

From Band 1 to Band 7 of the preprocessed Landsat 8 images, 21 band 

differences and 21 band ratios were calculated. In addition to the seven 

single bands, 49 independent variables were generated. The forward 

stepwise regression tested the addition of each variable and added the one 

that yields the most significant improvement of the fit. This process is 

repeated until no statistically significant improvement can be achieved by 

inclusion of any variable. The stepwise regression results output best-fit 

regression models that include an increasing number of independent 

variables. Among them, the best multiple regression model that includes 

two independent variables was chosen. For each water quality parameter, 

raw and log-transformed values were separately used as the dependent 
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variable, giving rise to two best compact models. Both models in terms of 

coefficient of determination (R2) were compared, and the one that had 

greater R2 value was selected.  

Based on their respective training data sets, the calibrated retrieval models 

for each water quality parameter are shown below: 

 Turbidity = (B4-B2)* 0.236 + (B2/B4)*45.308 - 38.860 (4) 

 𝑙𝑜𝑔10(Secchi depth) = (B4-B2)*(-0.002) + B1*(-0.0004) + 0.1236 (5) 

 𝑙𝑜𝑔10(Chl-a) = (B3/B4)*(-0.659) + (B1-B2)*0.011 + (B3-B1)*0.003 + 1.027 (6) 

It was identified that the optimal band combinations for turbidity retrieval 

are the difference and ratio between red band (B4) and blue band (B2) 

with R2 = 0.643. Band difference B4-B2 and ultra-blue band B1 explained 

the most variation of log-transformed Secchi depth (R2 = 0.524). With 

respect to Chl-a retrieval, none gave satisfactory results (R2 ≤ 0.5) when 

including only two independent variables. Therefore, it was decided to 

expand the Chl-a retrieval model to include three explanatory variables. 

Green-red band ratio (B3/B4), green-blue band difference (B3-B1), and 

difference between two blue bands (B1-B2) are significantly correlated to 

log-transformed Chl-a concentrations with R2 = 0.501.  

It was also found that bands or band combinations were correlated with 

Secchi depth or Chl-a in a weaker relationship in comparison with the 

correlation to turbidity given the same model size of two independent 

variables. 

The independent testing sets were used to validate the calibrated water 

quality parameter retrieval models. The statistical metrics used were 

Pearson’s correlation coefficient (Pearson’s r) and root mean square error 

(RMSE) defined in the following equations: 

 r = 
𝑛 ∑ 𝑊𝑄𝑃𝑝𝑟𝑒𝑑

𝑖 𝑊𝑃𝐶𝑜𝑏𝑠
𝑖 −∑ 𝑊𝑄𝑃𝑝𝑟𝑒𝑑

𝑖 ∑ 𝑊𝑃𝐶𝑜𝑏𝑠
𝑖𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1

√𝑛 ∑ (𝑊𝑄𝑃𝑝𝑟𝑒𝑑
𝑖 )2−(∑ 𝑊𝑄𝑃𝑝𝑟𝑒𝑑

𝑖 )2𝑛
𝑖=1

𝑛
𝑖=1

√𝑛 ∑ (𝑊𝑃𝐶𝑜𝑏𝑠
𝑖 )2−(∑ 𝑊𝑃𝐶𝑜𝑏𝑠

𝑖 )2𝑛
𝑖=1

𝑛
𝑖=1

  (7) 

 RMSE = √
∑ (𝑊𝑄𝑃𝑝𝑟𝑒𝑑

𝑖 −𝑊𝑃𝐶𝑜𝑏𝑠
𝑖 )

2
𝑛
𝑖=1

𝑛
  (8) 
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where  

     𝑖 = ID of the sampling point in the test set 

     𝑛 = size of the testing set  

 𝑊𝑄𝑃𝑝𝑟𝑒𝑑
𝑖  = predicted value of the concerned water quality   

 parameter for sampling point 𝑖  

 𝑊𝑃𝐶𝑜𝑏𝑠
𝑖  = actual measurement of the concerned water 

 quality parameter for sampling point 𝑖. 

Figure 4 shows the scatterplots of estimates versus in situ measurements 

of each water quality parameter using the Landsat 8 testing data set. The 

Pearson’s r between estimated and actual turbidity is 0.797, and the RMSE 

is 3.82 NTU. For Secchi depth, the Pearson’s r between estimates and 

actual measurements is 0.709, and the prediction RMSE is 0.26 m. As 

shown in Figure 4(a) and Figure 4(b), sampling points in the testing set 

generally fall around the diagonal line. Contrarily, the estimated Chl-a 

concentrations were not well correlated with actual Chl-a measurements 

with a moderate Pearson’s r of 0.553. In Figure 4(c), testing points are 

scattered far away from the diagonal line, and the predicted RMSE is as 

large as 6.17 μg/L. Chl-a values are heavily overestimated when actual 

Chl-a concentrations are lower than 15 μg/L and they are underestimated 

when actual Chl-a concentrations are high (>15 μg/L). The 

underestimation is also evident in Figure 4(a) when in situ measured 

turbidity is higher than 10 NTU. Equivalently, Secchi depths were 

overestimated when field Secchi depth measurements are shallower than 

0.8 m as shown in Figure 4(b). Both the turbidity and Secchi depth 

retrieval models tend to underestimate the water clarity when turbidity is 

high (>10 NTU) or Secchi depth is low (< 0.8 m). 
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Figure 4. Estimated turbidity (NTU), Secchi depth (m), and Chl-a (μg/L) 

from Landsat 8 data compared with in situ measurements using the 

testing data set. 

 

 

(a) 

(b) 
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Figure 4. Continued. 

 

4.2 Results from Sentinel-2 data 

The nine atmospherically corrected Sentinel-2 bands (Band 1- Band 8a), 

their band difference, and band ratio combinations constitute 81 

independent variables. By performing forward stepwise linear regression 

on the training data sets, three water quality parameter retrieval models 

were separately determined: 

 Turbidity = (B5)*0.033 + (B8/B8A)*8.327– 9.845 (9) 

 𝑙𝑜𝑔10(Secchi depth) = (B5)*(-0.001) + (B5/B8A)*(-0.088) + 0.276 (10) 

 Chl-a = (B2-B5)*0.051 + (B5/B6)*(-1.189) + 11.018 (11) 

The R2 of turbidity, Secchi depth, and Chl-a retrieval models are 0.832, 

0.812, and 0.836, respectively. Sentinel-2 red-edge band B5 and the ratio 

of near infrared (NIR) bands B8 to B8A largely explained the variation of 

actual turbidity measurements (R2 = 0.832). B5 also acted as an important 

explanatory variable for log-transformed Secchi depth, only with negative 

coefficients. Inclusion of B5 and B5/B8A explained 81.2% variation of log-

transformed Secchi depth. The variation of Chl-a concentration measured 

in situ was very well modeled by two band combinations which are B2-B5, 

(c) 
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difference between blue and red edge band, and B5/B6, ratio of two red 

edge bands. The three retrieval models have similarly good performances 

with R2 greater than 0.80. The prediction accuracies of calibrated models 

for retrieving turbidity, Secchi depth, and Chl-a were analyzed using the 

separate testing data sets in terms of Pearson's r and RMSE (Figure 5).  

Figure 5. Estimated turbidity (NTU), Secchi depth (m), and Chl-a 

(μg/L) from Sentinel-2 data compared with in situ 

measurements using the testing data set. 

 

 

(a) 

(b) 
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Figure 5. Continued. 

 

As shown in Figure 5, Pearson’s r between estimated turbidity and actual 

turbidity measurements is 0.869, and the prediction RMSE is 1.37 NTU. 

For Secchi depth, the Pearson’s r is 0.882 between estimates and actual 

values, and the RMSE is 0.198 m. Estimated Chl-a concentrations 

displayed a strong correlation relationship with actual Chl-a 

measurements with Pearson’s r = 0.831 and RMSE = 3.17 μg/L. Testing 

points in Figure 5 located close to the diagonal line showed the excellent 

agreement between estimated water quality parameters and their actual 

in situ measurements. 

4.3 Spatial pattern of lakes’ trophic state 

Landsat 8 launched 2 years earlier than Sentinel-2 offered better coverage 

of the study area in the space and time domain. In this research, Secchi 

depth derived from time-series Landsat 8 images is used to calculate the 

TSI based on which the trophic state of lakes were determined and the 

spatial pattern and temporal variability of lakes’ trophic state were 

analyzed. The TSI of lakes were calculated from derived log10(Secchi 

depth) using the equation below: 

 TSI = 60 – 14.41*(𝑙𝑜𝑔10(Secchi depth)/0.434) (12) 

Using Landsat 8 images free of clouds, the average TSI of every studied 

lake in the Ohio/Indiana/Kentucky region in 2017 was classified and 

(c) 
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mapped in Figure 6, following the trophic classification systems in the 

literature (Crossetti and Bicudo 2008; Kratzer and Brezonik 1981). Water 

quality conditions are relatively stable in late summer (McCullough et al. 

2012), so it was decided to use images acquired in the month of September 

to calculate and map the lakes’ trophic state index. As shown in Figure 6, 

each lake or reservoir is represented by a circle, and the filled color 

represents the average trophic state of that lake. 

Figure 6. TSI of lakes in September 2017. 

 

The 845 lakes in the study area were grouped into five classes, which are 

oligotrophic, mesotrophic, eutrophic, supereutrophic, and hypereutrophic. 

The classification scheme, the total number of lakes, and the percentage of 

lakes in each class are listed in Table 6. According to Table 6, only a tiny 

fraction of lakes (0.4%) in the study area have TSI less than 50, and all of 

the three oligotrophic lakes are located in southwest Ohio (Figure 6). 

Approximately, 75.2% of the lakes are classified as mesotrophic (40.1%) or 

eutrophic state (35.1%) whereas the remaining 24.4% of the lakes were 

identified to be supereutrophic (12.0%) or hypereutrophic (12.4%). There 

is no apparent spatial correlation in terms of lakes’ TSI, but lakes in 

southern Kentucky tend to have lower TSI values compared with lakes in 

the north part of Kentucky. It can be seen in Figure 6 that mesotrophic 

lakes (light blue) in Kentucky are clustered in the south, and most of the 

lakes in northern Kentucky were in the eutrophic state (yellow).  
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Table 6. Trophic state classification of 845 lakes in the study area. 

TSI Classification Number of lakes Percentage (%) 

< 50 Oligotrophic 3 0.4 

50-60 Mesotrophic 339 40.1 

60-65 Eutrophic 297 35.1 

65-70 Supereutrophic 101 12.0 

>70 Hypereutrophic 105 12.4 

The statistics of TSI for this tri-state region in September 2017 were 

reported in Table 7. Based on Table 7, lakes in the Ohio region have the 

lowest mean TSI of 60.9, and they also exhibited less variation 

demonstrated by the smaller standard deviation (STD) compared with the 

lakes in the Indiana area. TSI of lakes in the Indiana region varies 

significantly, and it can reach as high as 153.4. Referring to Table 6, the 

average trophic state in this tri-state area was eutrophic.  

Table 7. Summary of lakes’ TSI in September 2017. 

Region 

TSI 

Min Max Mean STD 

KY 51.2 122.5 63.4 7.7 

IN 51.2 153.4 63.8 9.6 

OH 47.6 101.1 60.9 8.2 

The average TSI and classification results of 12 USACE-monitored lakes in 

the study area are listed in Table 8. 

Table 8. TSI and classification of 12 USACE lakes 

in September 2017. 

State 
Year 2017 

Lakes TSI Classification 

KY 

Barren River Lake 56.9 Mesotrophic 

Green River Lake 60.1 Eutrophic 

Nolin River Lake 55.9 Mesotrophic 

Rough River Lake 60.3 Eutrophic 

Taylorsville Lake 61.5 Eutrophic 
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Table 8. Continued. 

State 
Year 2017 

Lakes TSI Classification 

IN 

Brookville Lake 56.4 Mesotrophic 

Cagles Mill Lake 60.0 Eutrophic 

Monroe Lake 64.6 Eutrophic 

Patoka Lake 55.9 Mesotrophic 

OH 

Caesar Creek Lake 58.0 Mesotrophic 

West Fork Lake 67.5 Supereutrophic 

Harsha Lake 60.9 Eutrophic 

4.4 Temporal variability of lakes’ trophic state 

To analyze the temporal variability of lakes’ trophic state, the TSI of lakes 

in September 2013 was also mapped (Figure 7).  

Figure 7. TSI of lakes in September 2013. 
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Note that there are no cloud-free images for Path 20 (Row 33 and 34) in 

September 2013 or September 2014.  To map the TSI of lakes in Path 20, 

Landsat 8 images acquired in September 2015 (Figure 8) were used. The 

temporal variability of lakes’ TSI in the tri-state region are listed in Table 

9. From 2013 to 2017, the minimum, maximum, and STD of TSI in 

Indiana lakes largely increased. For lakes in southwest Ohio, there was no 

obvious change except that the maximum TSI increased from 2015 to 

2017. The minimum TSI of lakes in Kentucky increased from 2013 to 2017 

while the maximum TSI slightly reduced. On average, despite the strong 

temporal variation in terms of the TSI range (~45.5%) and STD (~22.7%), 

the mean TSI displayed no significant change (<1.6%). The mean trophic 

state remain the same (eutrophic) from 2013 to 2017 or from 2015 to 2017.  

Figure 8. TSI of lakes in September 2015. 
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Table 9. Summary of lakes’ TSI from different years. 

Region 

TSI in September TSI in September 2017 

Year Min Max Mean STD Min Max Mean STD 

IN (Path 21) 2013 46.9 112.8 62.8 7.3 51.2 153.4 63.8 9.6 

KY (Path 21) 2013 45.8 100.1 62.8 6.6 52.4 91.2 61.8 5.6 

KY (Path 20) 2015 52.2 122.4 62.1 7.7 51.2 97.2 62.4 5.5 

OH (Path 20) 2015 46.1 78.1 60.8 7.1 47.6 101.1 60.9 8.2 

The September TSI of USACE lakes in the study area from different years 

is listed in Table 10. Most of the USACE-monitored lakes remained the 

same trophic state or had slightly decreased trophic state index values 

from 2013 to 2017 except that Green River Lake and West Fork Lake had 

higher TSI in 2017 compared with that in 2015.  

Table 10. TSI and classification of 12 USACE lakes from different years. 

State Lakes Year 
September September 2017 

TSI Classification TSI Classification 

KY 

Barren River Lake 2013 60.8 Eutrophic 59.3 Mesotrophic 

Green River Lake 2015 58.5 Mesotrophic 60.1 Eutrophic 

Nolin River Lake 2013 58.7 Mesotrophic 58.4 Mesotrophic 

Rough River Lake 2013 60.1 Eutrophic 61.4 Eutrophic 

Taylorsville Lake 2015 62.1 Eutrophic 61.5 Eutrophic 

IN 

Brookville Lake 2013 58.6 Mesotrophic 57.5 Mesotrophic 

Cagles Mill Lake 2013 60.7 Eutrophic 60.0 Eutrophic 

Monroe Lake 2013 64.9 Eutrophic 64.6 Eutrophic 

Patoka Lake 2013 58.2 Mesotrophic 58.8 Mesotrophic 

OH 

Caesar Creek Lake 2015 61.1 Eutrophic 58.0 Mesotrophic 

West Fork Lake 2015 64.1 Eutrophic 67.5 Supereutrophic 

Harsha Lake 2015 60.3 Eutrophic 60.9 Eutrophic 

4.5 TSI in individual lakes 

Among the 12 USACE lakes, Brookville Lake, Nolin River Lake, and Barren 

River Lake are situated in the overlapping area of Path 20 and Path 21, so 

they have TSI maps in all the 3 years. The TSI maps of the three lakes, 
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respectively, in September 2013, September 2015, and September 2017 are 

shown in Figure 9.  

It is clear that the main stream, together with the upper reaches of the 

small feeder creeks, often have much higher TSI values than the lake water 

near the dam (downstream). Lake water in the upstream basin also tends 

to have greater TSI values compared with lake water in the downstream 

basin. Brookville Lake exhibited less temporal variability in terms of the 

TSI values compared with Nolin River Lake and Barren River Lake. From 

2013 to 2015, the average TSI of Nolin River Lake reduced to 56.4, and in 

2017, it increased to 58.4, very close to the average TSI value in 2013, 

which is 58.7. Overall, the three lakes’ average TSI varied slightly (< 2.5%) 

from 2013 to 2017. 

Figure 9. TSI of Brookville Lake, Rough River Lake, and Barren 

River Lake in September 2013, September 2015, and 

September 2017 (mean TSI shown in the right bottom corner). 
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5 Discussion  

Examining the stepwise regression results from Landsat 8 and Sentinel-2 

images, it is found that red band (B4 of Landsat 8 OLI or B5 of Sentinel-2 

MSI) plays an important role for estimating turbidity and Secchi depth 

from remotely sensed imagery. It is also found that turbidity and Secchi 

depth retrieval models commonly share one independent variable that has 

a positive coefficient in one model and a negative coefficient in the other 

model. This makes sense because turbidity is strongly and inversely 

related to Secchi depth. Turbidity, in comparison with Chl-a, can be 

readily derived from satellite imagery due to the strong backscattering of 

suspended solids in the red and NIR regions.  

Landsat 8 imagery has limited performance for estimating Chl-a 

concentration mainly because of its band configuration. Chl-a exhibits a 

unique spectral signature with strong absorptions in the blue (~433 nm) 

and red (~686 nm) wavelengths and high reflectance in the green (~550 

nm) and NIR (~715 nm) spectral regions. Chl-a in inland waters does not 

co-vary with total suspended solids or colored dissolved organic matter. 

Empirical algorithms utilizing red and NIR bands for Chl-a retrieval often 

outperform green and blue band based empirical algorithms resulting 

from the overlapping and uncorrelated absorption by other water quality 

parameters in the blue-green spectral region. Landsat 8 has only one NIR 

band (B5, 850-880 nm), and this band does not correspond to the 

signature band of Chl-a. In addition, the spectral information of Chl-a may 

be masked due to the wide widths of Landsat 8 OLI VNIR bands. Thus, it 

is not surprising to find the unsatisfactory performance of Chl-a retrieval 

algorithms calibrated from Landsat 8 training data set, especially when 

Chl-a are highly concentrated. 

Sentinel-2, conversely, has more appropriate placement of spectral bands 

for the retrieval of water quality parameters. It has three narrow red edge 

bands B5, B6, and B7, with central wavelengths of ~704, ~740, and 

~780 nm, respectively, that are appropriate for Chl-a estimation. Two NIR 

bands (B8 and B8a) also enhanced its potential for turbidity retrieval. 

Consequently, water quality parameter retrieval models based on the 

Sentinel-2 data have much better prediction accuracy compared with 

those calibrated from Landsat 8 data. Comparing turbidity estimation 

accuracy between Sentinel-2 and Landsat 8, the Pearson’s r was 0.869 

versus 0.797, and RMSE was 1.37 NTU versus 3.82 NTU. The Pearson’s r 
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was improved from 0.709 (Landsat 8) to 0.882 (Sentinel-2), and RMSE 

was reduced from 0.264 m (Landsat 8) to 0.198 m (Sentinel-2) for Secchi 

depth retrieval. In terms of Chl-a prediction, the Sentinel-2 based retrieval 

model yielded a much higher Pearson’s r of 0.831 compared to 0.553 from 

the Landsat 8 based retrieval model. The RMSE was largely reduced from 

6.17 μg/L to 3.17 μg/L. However, because Sentinel-2 is relatively new, the 

available number of training points is much smaller compared with 

Landsat 8.  

Landsat 8 has better spatial and temporal coverage for the study area due 

to the longer operation period. Therefore, Landsat 8-based Secchi depth 

estimates were used to derive and map trophic state of lakes in this region. 

To make the TSI from different lakes or from different years comparable, 

images acquired in the same month (September) were used to calculate 

the TSI. Based on the analysis, most lakes (~75%) in the study area were 

mesotrophic or eutrophic, and the average trophic state was eutrophic in 

2017. Lakes in the south of Kentucky tend to have smaller TSI values than 

lakes in northern Kentucky. Temporally, TSI of lakes in Indiana region 

experienced an increase in terms of the minimum, maximum, and STD 

values. For lakes in Kentucky, the minimum TSI increased and the 

maximum TSI reduced since 2013. Lakes in southwest Ohio area had no 

significant change in TSI statistics. Despite the strong temporal variability 

in TSI range and STD, the average TSI in this tri-state area displayed no 

significant change (<1.6%). The average trophic state of each sub-region 

remained eutrophic from 2013 to 2017.  

For the 12 USACE lakes in the study area, most of them had the same 

trophic state or slightly decreased trophic state index from 2013 to 2017, 

except Green River Lake and West Fork Lake. USACE lakes including 

Brookville Lake, Nolin River Lake, and Barren River Lake have TSI maps  in 

2013, 2015, and 2017, respectively. When zooming into the three individual 

lakes, it is found that lake water in the upstream basin was more eutrophic 

than water in the downstream basin and that the main stream and 

tributaries often had large TSI values. This may be explained by the fact that 

inflows usually come with a high load of nutrients and sediments, which is 

preferable for biological activity (e.g., algae growth) in the water. After 

examining the average TSI of each lake in the 3 years, a slight variation (< 

2.5%) in average TSI from 2013 to 2017 was identified. For Barren River 

Lake and Nolin River Lake, the average TSI decreased from 2013 to 2015 

and then increased in 2017 to a value close to that in 2013. 
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Derived Secchi depth was used to calculate the TSI because the Chl-a 

retrieval model calibrated for Landsat 8 did not perform reasonably well. 

In future research, Sentinel-2 data and the corresponding Chl-a retrieval 

model will be used to map and analyze the trophic state of lakes in this 

region. The results will also be compared or cross validated with those 

obtained from Landsat 8 data. 
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6 Conclusion 

This research evaluated Landsat 8 and Sentinel-2 imagery for regional 

lake water quality assessment and analyzed the spatial pattern and 

temporal variability of lakes’ trophic state in the Ohio/Kentucky/Indiana 

region. Combining atmospherically corrected satellite images with 

coincident water quality data from the USACE Louisville District Water 

Quality Team and the USEPA Water Quality Portal, stepwise linear 

regression was used to calibrate empirical models for retrieval of water 

quality parameters, including turbidity, Secchi depth, and Chl-a. 

Landsat 8 multispectral imagery is well suited for regional assessment of 

turbidity and Secchi depth, but the low spectral resolution and the lack of 

appropriate red-edge bands limits its capability in assessing Chl-a 

concentration. The spatial resolution of Landsat 8 allows lakes larger than 

90,000 m2 to be assessed. Using time-series Landsat 8 images and a 

predefined Secchi depth retrieval model, the TSI of lakes in the tri-state 

region in 2013, 2015, and 2017 was computed. Approximately 75% of the 

lakes in the study area were identified as mesotrophic to eutrophic in 2017, 

and there was only a very small number of lakes situated in southwest Ohio 

with TSI values less than 50 (oligotrophic). From 2013 to 2017, the average 

TSI in this tri-state area displayed no significant change (retaining an 

average eutrophic state); however, the TSI range and STD of lakes in 

Indiana region largely increased. In an individual lake, water in the 

downstream basin had less TSI values than water in the upstream basin, 

and area where a river of stream flowing into the lake had high TSI values. 

The positions and widths of Sentinel-2 spectral bands allow the accurate 

retrieval of turbidity, Secchi depth, and Chl-a concentration. Furthermore, 

taking into account the more frequent revisits and finer spatial resolution, 

Sentinel-2 MSI is a more appropriate sensor for monitoring inland water 

quality at a regional scale when sufficient training points are available and 

the desired spatial and temporal coverage can be satisfied.  
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Acronyms and Abbreviations 

 

Chl-a chlorophyll-a 

BOA bottom-of-atmosphere  

ENVI Environment for Visualizing Images 

FLAASH Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 

MSI multispectral instrument  

NIR near infrared 

NTU nephelometric turbidity units  

OLI Operational Land Imager  

RMSE root mean square error  

SNAP Sentinel Application Platform  

SNR signal-to-noise ratio  

STD standard deviation 

SWIR shortwave infrared  

TIRS Thermal Infrared Sensor 

TOA top-of-atmosphere  

TSI trophic state index  

USACE United States Army Corps of Engineers 

USEPA United States Environmental Protection Agency 

UTM Universal Transverse Mercator 

VNIR visible and near infrared 

WGS84 World Geodetic System 84 
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