CMU SEI Collaboration

Jeff Boleng

Chief Technology Officer (acting) and Deputy CTO

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Carnegie Mellon University Software Engineering Institute

CMU SEI Collaboration, April 9, 2018 © 2018 Carnegie Mellon University

The SEI is a DoD R&D Federally Funded Research and Development Center

Established in 1984 at Carnegie Mellon University

~615 employees (ft + pt), of which about 70% are engaged in technical work

Initiated CERT cybersecurity program in 1988

Offices in Pittsburgh and DC, with several operating locations near customer facilities

About \$150M in funding (~\$20M DoD Line)

Carnegie Mellon University Software Engineering Institute

CMU SEI Collaboration, April 9, 2018 © 2018 Carnegie Mellon University

DoD Technology Trends

Offset Strategy

"Asymmetrically compensating for a disadvantage"

- 1st Offset
 - 1950's nuclear deterrence to deter Warsaw Pact
 - Avoid large expenditures needed for conventional deterrence
- 2nd Offset
 - 1975-1989 technology superiority to offset quantitative gap
 - \$100B decline in defense spending, forces outnumbered 3-1
 - Intelligence, Surveillance and Reconnaissance (ISR) platforms
 - Low Observability (LO, aka stealth technology)
 - Precision Guided Munitions (PGM)
 - Night Vision

ISR, LO, & PGM

Technology combined with new strategy

- Effects based operations
- Revolutionary command and control
- Rapid decisive operations

Operating inside the adversary's decision cycle

Source: "Effects Based Operations: Change in the nature of warfare", Bgen David A. Deptula, Aerospace Education Foundation, 2001

3rd Offset - 2014

Announced by SecDef Chuck Hagel

- Key elements
 - Hypersonics
 - Autonomy and AI
 - Guided Munitions
 - Undersea Warfare
 - Resilient Space
 - Anti-access/Area Denial (A2/AD)
 - Cyber and Electronic Warfare (EW)
- \$18B over five year defense plan

Source: Avascent Infographics, <u>http://www.avascent.com/2016/06/war-rocks-publishes-josh-pavluk-august-cole-avascent-infographic-third-offset-strategy/</u>

Carnegie Mellon University Software Engineering Institute

CMU SEI Collaboration, April 9, 2018 © 2018 Carnegie Mellon University

Carnegie Mellon University Software Engineering Institute

Carnegie Mellon University Software Engineering Institute

Carnegie Mellon University

Carnegie Mellon University Software Engineering Institute

stage of development

Image Source: http://live.iop-pp01.agh.sleek.net/2014/10/27/navigating-the-valley-of-death/

SEI Funding

• Line Funding

- Approximately \$20M per year, congressionally allocated
- Line Funded Strategic Initiatives (75%)
 - 1-3 years in length
 - >\$1M per year
 - Intended to develop capability that can be transitioned to DoD
 - Primary output is proof of concept or prototype
- Line Funded Exploratory New Starts (25%)
 - 1 year in length
 - \$350-\$500k
 - Intended to demonstrate that an emerging technology may (or may not) have DoD applicability
 - Can become LSI

Project Work Plans

- Approximately \$130M per year, customer (DoD, DHS, Gov't Agency, commercial)
- Must be approved by DoD
- Very applied, must be US citizen, set deliverables and timeline

Fundamental Research (FR) Designation

- By default, "Distribution authorized to the Department of Defense and U.S. DoD contractors only. (i.e. Distribution D)"
- Fundamental Research Designation allows "Approved for public release. Distribution is unlimited. (i.e. Distribution A)"
- Most LENS work, and some portion of LSI can be designated as FR
- PWPs can be FR if required by customer and approved by DoD
- FR allows unrestricted collaborators and work location
- Non-FR requires US citizens and work only in SEI space on SEI network
- Approval process by DoD has been onerous, but is getting better

We work to address gaps with R&D in 7 technical areas

Software Engineering & Information Assurance Enable high quality, secure software-based systems in a predictable, affordable manner

Cyber Security

Develop improved systems, repeatable practices, and capable personnel to enable cyber missions

System Verification & Validation Enhance confidence in the systems engineering lifecycle with evidencebased methods and tools

Make software less costly and more resilient and mission capable by ruthlessly automating all aspects of design, development, integration, testing, deployment, operations, defense, and sustainment of software systems

Data Modeling & Analytics: Develop and apply mathematically rigorous data collection, analysis, and visualization techniques

C4ISR Mission Assurance: Enable reliable and predictable mission support by software and systems, which are resilient to adversary actions

Emerging

Enduring

Autonomy & Counter-Autonomy: Develop evidence that indicates the trustworthiness, dependencies, & vulnerabilities of autonomous systems

Human-Machine Interactions: Invent, assess, improve comprehensible, safe, and trustworthy technologies for humans to use and team with machines

FY18 Line-funding investment overview by technical area

Enduring technical areas

Primary Technical Area	Project Title	Period	Tech Area \$	Tech Area %
	Automated Code Repair to Ensure Memory Safety: Source and Binary	FY18-20		
	Automated Repair of Incorrect Usage of Security APIs	FY17-18		
Software Engineering &	Predicting Security Flaws through Architectural Flaws	FY18		23.2%
Information Assurance	Rapid Construction of Accurate Automatic Alert Handling System: Model & Prototype	FY18-19	↓ \$4.53W	
	Rapid Software Composition by Assessing Untrusted Components	FY18		
	What to Fix? Automating Technical Debt Analysis through Software Analytics	FY17-18		
	Automated Executable Program Transformation	FY18-20		16.9%
	Cyber Integration with Kinetic Training	FY18]	
	Device Fingerprinting for Commercial Maritime Control Systems	FY18		
Cyber Security	Extracting Key Features of Expert Performance in Cyber Security Tasks	FY18	\$3.30M	
	Identifying Vulnerabilities Through Binary Software Composition Analysis	FY18		
	Modeling the Operations of the Vulnerability Ecosystem	FY18		
	Machine Learning Evaluation of Semantic Malware Feature Spaces	FY18]	
System Verification & Validation	Certifiable Distributed Runtime Assurance	FY17-18		
	Infrastructure as Code	FY18		
	Innovating Air Force Jet Engine System Reliability Test using Machine Learning Integrated with Causal Modeling	FY17-18	\$4.10M	21.0%
	Integrated Safety and Security Engineering for Mission-Critical Systems	FY18-20]	
	Timing Verification of Undocumented Multicore	FY18		

Carnegie Mellon University Software Engineering Institute

FY18 Line-funding investment overview by technical area

Emerging technical areas

Primary Technical Area	Project Title	Period	Tech Area \$	Tech Area %
Data Modeling & Analytics	An Integrated Causal Model for Software Cost Prediction & Control	FY18-20		
	Automated Code Generation for Future-Compatible High-Performance Graph Libraries	FY17-18	\$3.99M	20.4%
	Building a COTS Benchmark Baseline for Graph Analytics	FY18		
	Summarizing and Searching Video	FY18-20		
C4ISR Mission Assurance	High Assurance Software-Defined IoT Security	FY18-20	\$0.97M	5.0%
Autonomy & Counter-	A Series of Unlikely Events	FY18-20	¢4.05M	C 40/
Autonomy	What will the robot do next?	FY17-18	\$1.23W	0.4%
Human-Machine Interaction	A Novel Approach to Emotion Recognition from Voice	FY18-19	¢1 40M	7 29/
	Can Deep Learning Predict Security Defects in Synthetic Code?	FY18	\$1.40W	1.270

Line-Funding Investment by Technical Area, FY14-18

Carnegie Mellon University

Software Engineering Institute

CMU SEI Collaboration, April 9, 2018 © 2018 Carnegie Mellon University

CMU Charging SEI & SEI Charging CMU (CMU FY)

Carnegie Mellon University

Software Engineering Institute

CMU SEI Collaboration, April 9, 2018 © 2018 Carnegie Mellon University

Contribution from SEI Technical Work to CMU (SEI FY)

showing total funding and number of CMU faculty and graduate students

Carnegie Mellon University Software Engineering Institute

CMU SEI Collaboration, April 9, 2018 © 2018 Carnegie Mellon University

Contribution from SEI Technical Work to CMU (SEI FY)

showing total funding and number of projects

Carnegie Mellon University

Software Engineering Institute

CMU SEI Collaboration, April 9, 2018 © 2018 Carnegie Mellon University

FY19 LSI

Project Name: Untangling the Knot: Automated Component Refactoring Assistant

PI: Ipek Ozkaya (SSD/AP; 70%), James Ivers (SSD/AP; 60%) Team Members: Robert Nord (SSD/AP; 55%), Jay Marchetti (SSD/CTSD; 40%), Reed Little (SSD/AP; 25%), Rick Kazman (SSD/AP; 25%)

Collaborators: C. Le Goues (CMU ISR), C. Izurieta (Montana State), C. Guthrie (Army)

Project Name: Using all processor cores while being confident about timing

PI: Bjorn Andersson (SSD/CPSULS; 60%), Team Members: Dionisio de Niz (SSD/CPSULS; 25%), Mark Klein (SSD/CPSULS; 20%), Jeffery Hansen (SSD/CPSULS; 15%)

Collaborator(s): CMU/Stat: John Lehoczky; UCR: Hyoseung Kim; CMU/ECE: Ragunathan Rajkumar; AMRDEC: Alex Boydston

Project Name: Using all processor cores while being confident about timing

PI: Bjorn Andersson (SSD/CPSULS; 60%), Team Members: Dionisio de Niz (SSD/CPSULS; 25%), Mark Klein (SSD/CPSULS; 20%), Jeffery Hansen (SSD/CPSULS; 15%)

Collaborator(s): CMU/Stat: John Lehoczky; UCR: Hyoseung Kim; CMU/ECE: Ragunathan Rajkumar; AMRDEC: Alex Boydston

FY19 LENS Proposals

- Proposals in June/July, selection in August, work starts in October
- Encouraging campus collaboration
- Focus areas (Better, Faster, Cheaper, more Secure Software)
 - Development tool chain automation
 - Increased formal rigor and expressiveness
 - Automated generation of lifecycle phase artifacts
 - Automated verification of lifecycle phase artifacts
 - Automated integration of artifacts across lifecycle phases (up and down stream)
 - Autonomous cyber operations
 - Align cyber defense around mission
 - Prepare the cyber force
 - Hardware software co-design
 - Human machine teaming
 - Advanced uses of AI and ML

FY14 Projects with CMU Collaborators

SEI Project Name	Faculty
Acquisition Dynamics	Gonzalez
Automated Cyber Readiness Evaluator	Sheikh, Gordon
Autonomous Vehicle Health Monitoring (FY13-14)	Scerri
Avatar	Rudnicky
Concurrent Crowdsourcing of Requirements and Architectures for Socio-Technical Eco-system (STE) Infrastructure Improvement	
Context-Aware Network Analysis in Resource-Constrained Environments	Camara Moreno, Schmerl
Contract-Based Virtual Integration of CPS Analyses	Garlan, Schmerl
Cyber Security Expert Performance and Measurement	Young
Deep Focus: Increasing User Depth of Field to Improve Threat Detection	Maxion
Developing Coordinated Multi-UGV Reliability Analysis Techniques	
Edge-Enabled Tactical Systems (FY13-14)	Satyanarayanan
Efficacy of Agile Methods (FY13-14)	
Enhanced Vulnerability Discovery and Exploitation (FY13-14)	Brumley
ETC NSA R2	Camara Moreno, Garlan, Schmerl
Extracting Insider Threat Indicators from Large Data Sets	
High-Confidence Cyber-Physical Systems (FY13-14)	

SEI Project Name	Faculty
Improving Synthetic Data for Cyber Security (FY13-14)	Rudnicky
Insider Threat Mitigation	Carley
Malware Analysis	
Prioritizing Malware Analysis	
Real-Time Mobile Applications in Intermittently Connected Networks	Seshan
Secure and Assured Mobile Computing Components	
Secure Coding	Bauer, Jia
Self-governing Mobile Adhocs with Sensors and Handhelds	
Software Assurance Engineering	
Software Model Checking for Verifying Distributed Algorithms	
Verifying Evolving Software	
5-308J DHS S&T CMAS	
5-356H3 DARPA	
5-444C1 and C2 DIA	Frederking, Gershman
5-444E DIA	
5-555B2 CSEP CICPA	
5-555E3 CyberSec Eval PM	Maxion
5-555E4 SRAM ProgSup	Maxion

Carnegie Mellon University

Software Engineering Institute

CMU SEI Collaboration, April 9, 2018 © 2018 Carnegie Mellon University

FY14: Highlights

Edge-Enabled Tactical Systems

- Total: \$102K
- Algorithms for group autonomy of mobile systems
- Prototypes for information superiority at the edge technologies, analyzing date streams (e.g., social media), and tactical cloudlets

Automated Cyber-Readiness Evaluator

- Total: \$172K
- System to convert computer screen activities into human readable format
- Intelligent "tutor" to parse output from system into objective measures of skills for a defined skill set

Contract-Based Virtual Integration and Cyber-Physical System Analysis

- Total: \$96K
- Algorithm to discover conflicts between analyses based on their contracts
- Implementation in Open Source AADL Tool Environment

Insider Threat

- 3 projects, Total:\$140K
- Develop insider threat mitigations that form an architectural foundation for next-generation DoD enterprise systems

FY15 Projects with CMU Collaborators

SEI Project Name	Faculty
Acquisition Dynamics (FY14-15)	Gonzalez
API Usability and Security	Myers, Sunshine
Automated Cyber Readiness Evaluator/Generalized Automated Cyber Readiness Evaluation (FY14-15)	Gencaga, Sheikh, Gordon
Edge-Enabled Tactical Systems (FY13-15)	
Extending AADL for Security Design Assurance of the Internet of Things (IoT)	Rosso-Llopart
Human-Computer Decision Systems for Cyber Security	
Insider Threat Mitigation (FY14-15)	
Line Plus up CSC AFSOR	Bass
Machine Learning to Support Big Data System Acquisition	Yang

SEI Project Name	Faculty
Malware Analysis (FY14-15)	
Secure Coding (FY14-15)	
Verifying Evolving Software	
5-356H3 DARPA	
5-444C1 and C2 DIA	Frederking, Gershman
5-555E4 and 6-555E1 SRAM ProgSup	Maxion
5-577A1 SOCOM TALOS	Atkeson
5-579A1 NTIA	Breaux, Gralan, Le Goues, Scherlis, Scmerl, Sicker

FY15: Highlights

Machine Learning to Support Big Data **Generalized Automated Cyber-Readiness** Acquisition Evaluation Total: \$165K Total: \$410K (and \$422K in FY15) Algorithm for building acquisition decision **Extends Automated Cyber-Readiness** ٠ knowledge bases Evaluator for additional job roles Automatically extensible knowledge base for Builds automated evaluations platform ٠ acquiring Big Data systems Identifies new criteria for cyber operational ۰ mission readiness **Technical Assessment: Frequency Records** Critical Infrastructure Resilience for DHS (PWP 5-555E4/6-555E1) Management System for the Department of Total: \$208K Commerce (PWP 5-579A1) Provide stakeholder risk assessment and ٠ Total: \$206K ۰ mitigation Verify SOA implementation ۲ Perform data analytics Analyze source code quality ٠ Update and maintain the supply chain risk Analyze software architecture for desired quality ٠ management toolset attributes Provide threat and resilience analysis

FY16 Projects with CMU Collaborators

SEI Project Name	Faculty	SEI Project Name	Faculty
Automated Code Repair	Kastner, Le Goues	Multi-Agent Decentralized Planning for Adversarial Robotic Team	
Big Learning Benchmark	Gibson, Xing	Quantifying Uncertainty for Early Lifecycle Cost	Nyberg
Critical Infrastructure Assurance Through Electronic		Estimation (QUELCE)	
Components Attribution		Real-time Extraction of Biometric Traits from Video	Kitani, Savvides
Data Validation for Large-Scale Analytics		Structural Multi-Task Transfer Learning for Improved	Carbonell
Edge-Enabled Tactical Systems (FY14-16)		Situational Awareness	
Effecting Large-scale Adaptive Swarms Through Intelligence Collaboration (ELASTIC Autonomy)		Supporting Software Engineering Best Practices in Additive Manufacturing	Hudson, Mankoff
Generalized Automated Cyber-Readiness Evaluation	Gencada	Tactical Analysis	Carbonell
(FY15-16)	Sheikh, Gordon	Verifying Distributed Adaptive Real-Time (DART)	Muellilng
Generalizing Supervised Latent Dirichlet Allocation	Xing	Systems	
(LDA) for Analyzing Open Source Data		Why did the robot do that?	
Human-Computer Decision Systems for Cyber Security		5-308N1 and 6-308N1 DHS S&T NON DOD	Garlan. Schmerl
(FY15-16)		5-577A1 SOCOM TALOS	Atkeson, Choset
Insider Threat Mitigation (FY14-16)		5-579A1 NTIA	
Machine Learning to Support Big Data System		5-579A2 SSD NTIA	Le Goues
Acquisition (FY15-16)		6-555E1 7.1 SRAM	Maxion

FY16: Highlights

Human-Computer Decision Systems for Cyber Security

- Total: \$124K
- Investigated methods using both supervised (active) and unsupervised learning to augment the abilities of analysts

Data Analytics for Situational Awareness

- 2 projects, Total: \$232,000
- Built prototypes to demonstrate new capabilities for script learning
- Delivered ML techniques that enable analysts to understand emerging situations quickly

Why did the Robot do That?

• Total: \$207K

Project aims to build trust of robots by human teammates

Explainable AI: algorithms to explain robot behavior automatically and incorporate explanations into robot user interfaces

Reference Implementation for Unified Moving Target Defense (MTD) (PWP 5-308N1/6-308N1)

- Total: \$323K
- Developed a fully IT-managed MTD platform
- Performed research to further software architecture concepts for self-adaptive systems

Carnegie Mellon University Software Engineering Institute

FY17 Projects with CMU Collaborators

SEI Project Name	Faculty	SEI Project Name	Faculty
Automated Code Generation for Future-Compatible High-Performance Graph Libraries	Franchetti, Low	Modeling the decision making of expert incident coordinators/responders for use by non-experts	
Automated Code Repair (FY16-17)		Multi-Agent Decentralized Planning for Adversarial	
Big Learning Benchmark (FY16-17)	Gibson	Robotic Team	
Certifiable Distributed Runtime Assurance (CDRA)	Datta	Ongoing, Dynamic Design Analysis of Configurable	Garlan, Schmerl
Critical Infrastructure Assurance Through Electronic Components Attribution		Real-time Extraction of Biometric Traits from Video	Savvides
Data Validation for Large-Scale Analytics (FY16-17)		(FT10-17)	Carbonall
Developing static analysis techniques for blockchain	Aldrich, Sunshine	Structural Multi-Task Transfer Learning for Improved Situational Awareness (FY16-17)	
		Summarizing and Learning Latent Structure in Video	Liang
Events, Relationships, and Script Learning for	Carbonell	 Supporting Software Engineering Best Practices in Additive Manufacturing (FY16-17) 	
		 Verifying DART Systems (FY15-17) 	Oh
Generalized Automated Cyber-Readiness Evaluation (FY15-17)	Sheikh	What will the robot do next?	
Generalizing Supervised Latent Dirichlet Allocation		Why did the robot do that? (FY16-17)	
(LDA) for Analyzing Open Source Data		Why does software cost so much? Towards a Causal	Danks, Zhang
Human-Computer Decision Systems for Cyber Security		Model	
(FY15-17)		5-308N1 and 6-308N1 DHS S&T NON DOD	
Innovating Air Force Jet Engine System Reliability Test	Danks	6-555E1 7.1 SRAM	Maxion
using Machine Learning integrated with Causal Modeling		6-599B2 JIDA	Savvides
Micro-expressions - More than meets the eve	Savvides	_	

Carnegie Mellon University

Software Engineering Institute

CMU SEI Collaboration, April 9, 2018 © 2018 Carnegie Mellon University

FY17: Highlights

Micro-Expressions (ME): More than Meets the Eye

- Total: \$197K
- ME expose genuine emotions
- Building a prototype that outperforms humans in spotting and recognizing facial microexpressions in near real time

Automated Code Generation for Future-Compatible High-Performance Graph Libraries

- Total: \$323K
- Also, funded \$250K supercomputer, still in use by team
- advances state-of-the-art in code
- generation by introducing concepts to capture graph algorithm primitives

Big Learning Benchmark

• Total: \$397K

Building a workbench to measure and report performance of large-scale ML platforms designed to operate on Big Data workloads

Video Search Web Application for the Joint Improvised Threat-Defeat Agency (PWP 6-599B2)

- Total: \$175K
- Engage CyLab Biometrics Center in achieving best classification accuracy on types of videos of interest
- Develop and test a video search web application

FY18 Projects with CMU Collaborators

SEI Project Name	Faculty	SEI Project Name	Faculty
Automated Code Generation for Future-Compatible High-Performance Graph Libraries (FY17-18)	Franchetti, Low	Integrated Causal Model for Software Cost Prediction & Control	Danks
Automated Code Repair to Ensure Memory Safety for Source and Binary	Le Goues, Claire Jia, Limin	A Novel Approach to Emotion Recognition from	Singh ; Stern
Building a COTS Benchmark Baseline for Graph Analytics	Tze Meng Low Franz Franchetti James Hoe	Rapid Construction of Accurate Automatic Alert Handling System: Model & Prototype	Le Goues, Claire
Certifiable Distributed Runtime Assurance (CDRA) (FY17-18)	Datta	A Series of Unlikely Events (using Inverse	Dey, Anind
High-Assurance Software-Defined IoT Security	Sekar, Vyas Vasudevan, Amit	Summarizing and Searching Video	Xing; Liang
Innovating Air Force Jet Engine System Reliability Test using Machine Learning integrated with Causal Modeling (FY17-18)	Danks	Timing Verification of Undocumented Multicore	Lehoczky

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM18-0457