
[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

CPS Research

Dionisio de Niz and Sagar Chaki

2

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other
documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM17-0337

3

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Verification of CPS

CPS Concerns
• Logic: correct value
• Timing: at the right time
• Scalability: for real-size systems

4

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Approach

Logical Verification
• Model Checking
• Source-Code Logical Verification: CBMC, FRAMA-C

Timing Verification
• Real-Time Scheduling
• Variety of Applications: Mixed-Criticality, Distributed Pipelines
• Complex Hardware: Multicore Processors

Scalable Combination
• Reduced Interleavings: In Rate-Monotonic Ignore lower-priority threads
• Verified Timing Guarantees of Scheduler Code: Time as ghost variables

Improved Scalability
• Domain Specific Language: constrained executable
• Distributed Shared-Variables Middleware: synchronous computation
• Statistical Model Checking:

– Montecarlo Simulations
– Important Sampling / Semantic Important Sampling

5

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Project 1: Distributed Adaptive Real-Time

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒1 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑘𝑘

Environment
– network,

sensors,
atmosphere,
ground etc.

Low-Critical
Threads (LCTs)

High-Critical
Threads (HCTs)

H
C
T

L
C
T

Software for guaranteed
requirements, e.g., collision

avoidance protocol must
ensure absence of collisions

ZSRM Mixed-Criticality Scheduler
OS/Hardware

Sched
OS/HW

MADARA Middleware MADARA

Research Thrusts

• Proactive Self-Adaptation

• Statistical Model Checking

• Real-Time Schedulability

• Functional Verification

Validation Thrusts

• Model Problem

• Workbench

Software for probabilistic
requirements, e.g., adaptive path-

planner to maximize area coverage
within deadline

6

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

DART Programming : AADL + DMPL

AADL : Architecture Analysis and Description Language
DMPL : DART Modeling and Programming Language

AADL : High level architecture + threads + real-time attributes
• Perform ZSRM schedulability via OSATE Plugin
• Generate appropriate DMPL annotations

DMPL : Behavior
• Roles : leader, protector
• Functions : mapped to real-time threads

• Period, priority, criticality (generated from AADL)
• Behavior : C-style syntax. Can call-out to arbitrary libraries.

• Functional properties (safety) : software model checking
• Probabilistic properties (expectation) : statistical model checking

Implemented as a
DART Workbench.
Happy to share.

7

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Real-Time Schedulability

LCT

HCT

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒1

LCT

HCT

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒2

DSL
Files

AADL with Links to DSL files

Code Generator

ZSRM Mixed-
Criticality
Scheduler

Implementation

Theory and
Correctness Proof
of Mixed-Criticality

Scheduler

Code

Innovations:

1. Mixed-Criticality
Scheduling under I/O

2. End-to-end Mixed-
Criticality Scheduling

Schedulability
Research

8

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Verification

Distributed
Application

Safety
Specification

Sequentialization

Single-Threaded
C Program

Software Model Checking
(CBMC, BLAST etc.)

Failure Success

Program in Domain Specific Language

Automatic verification technique for finite
state concurrent systems.

• Developed independently by Clarke and
Emerson and by Queille and Sifakis in
early 1980’s.

• ACM Turing Award 2007

Specifications are written in propositional
temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear
Temporal Logic (LTL), …

Verification procedure is an intelligent
exhaustive search of the state space of
the design

Model Checking

Assume
Synchronous

Model of
Computation

9

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Code Generation

Distributed
Application

Safety
Specification

Add synchronizer protocol

C++/MADARA Program

Compile
(g++,clang,MSVC, etc.)

Program in Domain Specific Language A database of facts: 𝐷𝐷𝐷𝐷 = 𝑉𝑉𝑉𝑉𝑉𝑉 ↦
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

Node 𝑖𝑖 has a local copy: 𝐷𝐷𝐵𝐵𝑖𝑖
• update 𝐷𝐷𝐵𝐵𝑖𝑖 arbitrarily

• publish new variable mappings

• Immediate or delayed

• Multiple variable mappings
transmitted atomically

Implicit “receive” thread on each node

• Receives and processes variable
updates from other nodes

• Updates ordered via Lamport
clocks

Portable to different OSes (Windows,
Linux, Android etc.) and networking
technology (TCP/IP, UDP, DDS etc.)

Binary

MADARA Middleware

Guarantee
Synchronous

Model of
Computation

10

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Project 2: Certifiable Distributed Runtime Assurance

moveTo(x,y)

at(x,y)
Ctrl at(x,y)+

move()<d

d Time Enforced:
[STOP-UAS]

s

s > minD

Timing Enforcer(Scheduler)

Logical Enf 2 Logical Enf 1

Response time < d/speed

11

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Sense Actuation Loop + Logical Enforcer

Plant

Unverified
Controller

𝑠𝑠

�𝛼𝛼

Sensed
state

Logical Enforcer:
Verified Safe

Controller

𝑠𝑠

𝛼𝛼
Logically-

vetted
actuation

�𝛼𝛼

12

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Fixed-Priority Scheduling + Rate Monotonic

Scheduler

Icons credit: http://www.doublejdesign.co.uk

High Priority

Med. Priority

Low Priority

𝛼𝛼 𝛼𝛼 𝛼𝛼

𝛼𝛼

𝛼𝛼

𝑠𝑠 𝑠𝑠 𝑠𝑠

𝑠𝑠

𝑠𝑠

Preempted by
higher priority task

Does not run until
higher priority

tasks finish

Preempted by
higher priority task

http://www.doublejdesign.co.uk/

13

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Overload => old sensed data + late actuation

Scheduler

Icons credit: http://www.doublejdesign.co.uk

High Priority

Med. Priority

Low Priority

𝛼𝛼 𝛼𝛼

𝛼𝛼

𝛼𝛼

𝑠𝑠 𝑠𝑠

𝑠𝑠

𝑠𝑠

Old sensing,
late

actuation
Old sensing,

late
actuation

late
actuation

Missed deadlinesMissed deadlinesMissed deadlines

overlo
ad

http://www.doublejdesign.co.uk/

14

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution: Enforce timing budgets (timing
enforcement)

Scheduler

Icons credit: http://www.doublejdesign.co.uk

Only executed in
given periodic time

budget

Only executed in
given periodic time

budget

Only executed in
given periodic time

budget

Only executed in
given periodic time

budget

http://www.doublejdesign.co.uk/

15

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution step 1: enforce timing budgets (timing
enforcement)

Scheduler

Icons credit: http://www.doublejdesign.co.uk

Only executed in
given periodic time

budget

Only executed in
given periodic time

budget

Only executed in
given periodic time

budget

Only executed in
given periodic time

budget

𝑠𝑠 𝛼𝛼 𝛼𝛼𝑠𝑠 𝑠𝑠 𝛼𝛼
STILL: Old

sensing, late
actuation if

overload
Prevented from
delaying other

tasks if
overload

http://www.doublejdesign.co.uk/

16

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution step 2: fast actuation on timing enforcement

Scheduler

Icons credit: http://www.doublejdesign.co.uk

Only executed in
given periodic time

budget

Only executed in
given periodic time

budget

Only executed in
given periodic time

budget

Only executed in
given periodic time

budget

𝑠𝑠 𝛼𝛼 𝛼𝛼𝑠𝑠 𝑠𝑠 𝛼𝛼 Decide if
calculated 𝛼𝛼 used

too old 𝑠𝑠 or not
Prevented from
delaying other

tasks if
overload

𝛼𝛼∗

Calculate a default
safe fast actuation

executed “just
before” timing budget

expires: kernel
informs task

http://www.doublejdesign.co.uk/

17

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

CDRA: Approach (1)

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (𝑪𝑪𝟏𝟏)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 (𝑬𝑬𝟏𝟏)

Prove 𝑬𝑬𝟏𝟏 ≼ 𝑷𝑷𝟏𝟏 and
𝑬𝑬𝟐𝟐 ≼ 𝑷𝑷𝟐𝟐 using

software verification

{𝜶𝜶? ,𝜷𝜷!} {𝜸𝜸? ,𝜹𝜹!}

�𝜶𝜶?

𝜶𝜶!

< 𝟓𝟓𝟓𝟓 → 𝜷𝜷?

�𝜷𝜷!

𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜷𝜷!

�𝜶𝜶?

< 𝟐𝟐𝟐𝟐 → �𝜷𝜷!

�𝜹𝜹?

�𝜸𝜸?

𝜸𝜸!

< 𝟐𝟐𝟐𝟐 → 𝜹𝜹?

�𝜹𝜹!

𝟐𝟐𝟐𝟐 → �𝜹𝜹!

�𝜸𝜸?

< 𝟐𝟐𝟐𝟐 → �𝜹𝜹!

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 (𝑬𝑬𝟐𝟐)

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷

≼ ≼

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (𝑪𝑪𝟐𝟐)

18

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

CDRA: Approach (2)

�𝜶𝜶?

𝜶𝜶!

< 𝟓𝟓𝟓𝟓 → 𝜷𝜷?

�𝜷𝜷!

𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜷𝜷!

�𝜶𝜶?

< 𝟐𝟐𝟐𝟐 → �𝜷𝜷!

�𝜹𝜹?

�𝜸𝜸?

𝜸𝜸!

< 𝟐𝟐𝟐𝟐 → 𝜹𝜹?

�𝜹𝜹!

𝟐𝟐𝟐𝟐 → �𝜹𝜹!

�𝜸𝜸?

< 𝟐𝟐𝟐𝟐 → �𝜹𝜹!

𝑷𝑷𝑵𝑵

�𝜶𝜶?

< 𝟏𝟏𝟏𝟏 → �𝜷𝜷!

�𝜶𝜶?

< 𝟓𝟓𝟓𝟓 → �𝜷𝜷!
𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜹𝜹?
�𝜸𝜸?

< 𝟓𝟓𝟓𝟓 → �𝜹𝜹!

�𝜷𝜷!

𝑷𝑷𝟏𝟏 ≼ 𝑨𝑨𝟏𝟏 𝑷𝑷𝟐𝟐 ≼ 𝑨𝑨𝟐𝟐 𝑨𝑨𝟏𝟏 ∥ 𝑨𝑨𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵

Verify 𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
using assume-guarantee

Scale: (i) assumptions are
simpler; (ii) abstract away
unnecessary components;
(iii) prove hierarchically.

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐

Controller
Assumption

≼ ≼

≼

∥

19

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

CDRA: Approach (3)

�𝜶𝜶?

𝜶𝜶!

< 𝟓𝟓𝟓𝟓 → 𝜷𝜷?

�𝜷𝜷!

𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜷𝜷!

�𝜶𝜶?

< 𝟐𝟐𝟐𝟐 → �𝜷𝜷!

�𝜹𝜹?

�𝜸𝜸?

𝜸𝜸!

< 𝟑𝟑𝟑𝟑 → 𝜹𝜹?

�𝜹𝜹!

𝟑𝟑𝟑𝟑 → �𝜹𝜹!

�𝜸𝜸?

< 𝟐𝟐𝟐𝟐 → �𝜹𝜹!

�𝜶𝜶?

< 𝟓𝟓𝟓𝟓 → �𝜷𝜷!
𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜹𝜹?
�𝜸𝜸?

< 𝟓𝟓𝟓𝟓 → �𝜹𝜹!

�𝜷𝜷!

Verify 𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
using assume-guarantee

Scale: minimal system
re-verification needed
when a policy or
enforcer is modified

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐

Controller
Assumption

Change

Re-verification

≼ ≼

≼

∥

𝑷𝑷𝟏𝟏 ≼ 𝑨𝑨𝟏𝟏 𝑷𝑷𝟐𝟐 ≼ 𝑨𝑨𝟐𝟐 𝑨𝑨𝟏𝟏 ∥ 𝑨𝑨𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵 𝑷𝑷𝑵𝑵

�𝜶𝜶?

< 𝟏𝟏𝟏𝟏 → �𝜷𝜷!

20

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

CDRA: Approach (4) Verify 𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
using assume-guarantee

(i) Other (circular) rules
exist; (ii) Challenges –
(a) proving rule
soundness; (b) finding
right assumption.

�𝜶𝜶?

𝜶𝜶!

< 𝟓𝟓𝟓𝟓 → 𝜷𝜷?

�𝜷𝜷!

𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜷𝜷!

�𝜶𝜶?

< 𝟐𝟐𝟐𝟐 → �𝜷𝜷!

�𝜹𝜹?

�𝜸𝜸?

𝜸𝜸!

< 𝟐𝟐𝟐𝟐 → 𝜹𝜹?

�𝜹𝜹!

𝟐𝟐𝟐𝟐 → �𝜹𝜹!

�𝜸𝜸?

< 𝟐𝟐𝟐𝟐 → �𝜹𝜹!

𝑷𝑷𝑵𝑵

�𝜶𝜶?

< 𝟏𝟏𝟏𝟏 → �𝜷𝜷!

�𝜶𝜶?

< 𝟓𝟓𝟓𝟓 → �𝜷𝜷!
𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜹𝜹?
�𝜸𝜸?

< 𝟓𝟓𝟓𝟓 → �𝜹𝜹!

�𝜷𝜷!

𝑷𝑷𝟏𝟏 ≼ 𝑨𝑨𝟏𝟏 𝑷𝑷𝟐𝟐 ≼ 𝑨𝑨𝟐𝟐 𝑨𝑨𝟏𝟏 ∥ 𝑨𝑨𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐

Controller
Assumption

≼ ≼

≼

∥

21

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

CDRA: Approach (5) 1: Verify 𝑬𝑬𝒊𝒊 ≼ 𝑷𝑷𝒊𝒊
2: Verify 𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵𝑵𝑵
3: Verify 𝑷𝑷𝟑𝟑 ∥ 𝑷𝑷𝟒𝟒 ≼ 𝑷𝑷𝑵𝑵𝟐𝟐
4: Verify 𝑷𝑷𝑵𝑵𝑵𝑵 ∥ 𝑷𝑷𝑵𝑵𝑵𝑵 ≼ 𝑷𝑷𝒔𝒔

𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟏𝟏

𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐

𝑷𝑷𝑵𝑵𝑵𝑵

𝑷𝑷𝑺𝑺

𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐

𝑷𝑷𝑵𝑵𝑵𝑵

System-level
Policy

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑪𝑪𝟑𝟑 𝑪𝑪𝟒𝟒

𝑷𝑷𝟑𝟑 𝑷𝑷𝟒𝟒

Change

Re-verificationRe-verification

22

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Project 3: Real-Time Scheduling for Multicore

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

L1/L2
Core N…

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 2

DRAM
Bank B…

23

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Shared Hardware: Multicore Memory System

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

L1/L2
Core N…

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 2

DRAM
Bank B…

Cache

Mem
Bus

24

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Shared Hardware: Multicore Memory System

L1/L2
Core 1

L1/L2
Core 2

DRAM
Bank 0

DRAM
Bank 1

Cache

Mem
Bus

25

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

How Bad?

2.98 5.1 6

14 15

103

0

20

40

60

80

100

120

Pelli10 Nowo12 Sha16 Kim14 Nowo14 Yun15

Slowdown

26

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Different for Applications (PARSEC Benchmark)

• 1 attacker  Max 5.5x increase
• 2 attackers  Max 8.4x increase
• 3 attackers  Max 12x increase

0

200

400

600

800

1000

1200

N
or

m
. e

xe
cu

tio
n

tim
e

(%
)

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264

We should predict, bound and
reduce the memory interference

delay!

12x increase
observed

27

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 1: Partitioning

L1/L2
Core 1

L1/L2
Core 2

DRAM
Bank 0

DRAM
Bank 1

Cache
set 1

Mem
Bus

Cache
set 2

28

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solutions 1: Virtual Memory “Coloring”

Task 1

Task 2

Vi
rt

ua
l M

em
or

y
Vi

rt
ua

l M
em

or
y

Physical Memory

Color: set that do not interfere:
- Different cache set
- Different memory bank

DRAM
Bank 0

DRAM
Bank 1

29

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 1: Challenge – Conflicting Partitions

16 15 14 13 12
Address bits

Cache Color Index

6

Cache sets

One page

19 18 17

Bank Color Index

XOR

20

XOR
XOR

30

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 2: Coordinated Approaches

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

180%

PS
.c

an
ne

al

PS
.s

tre
am

-
cl

us
te

r

PS
.fe

rre
t

PS
.fl

ui
d-

an
im

at
e

PS
.fa

ce
si

m

PS
.fr

eq
m

in
e

PS
.x

26
4

SP
EC

.le
sl

ie
3d

SP
EC

.m
cf

SP
EC

.m
ilc

SP
EC

.s
ph

in
x3

Cache coloring only

Our coordinated approach

Challenge: Small Number of Partitions

31

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 3: Predictable Sharing of Partitions
Bank 1

Columns

R
ow

s

Row Buffer

L1/L2
Core 2

L1/L2
Core 1

Memory Controller

Bank 2
Columns

R
ow

s

Row Buffer

Request Queue Bank 1

Request Queue Bank 2

I use CPU
Others use CPU

My Mem Reqs. Others Mem Reqs.

Challenge: Need Processor Documentation (not always public)

32

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Shared hardware in the memory system

33

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at
different times ⇒ no slowdown

34

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Shared hardware in the memory system

The blue and red tasks execute at
the same time ⇒ slowdown ⇒ increased execution time of blue and red.

35

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at
the same time ⇒ slowdown ⇒ increased execution time of all tasks.

36

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at
the same time ⇒ slowdown ⇒ increased execution time of all tasks.

Co-runner
set

Speed

{} 1

{red} 0.5

{green} 0.45

{red,green} 0.25

Cblue=4

37

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at
the same time ⇒ slowdown ⇒ increased execution time of all tasks.

Co-runner
set

Speed Exec
time

{} 1 4

{red} 0.5 8

{green} 0.45 8.88

{red,green} 0.25 16

Cblue=4

38

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

Schedulability
analysis

{yes,no}
Obtain taskset

Parameter
(e.g., through

measurements)

Taskset
parameters

39

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution 4: Black Box Analysis

Schedulability
analysis

{yes,no}
Obtain taskset

Parameter
(e.g., through

measurements)

Able to offer real-time guarantee even for h/w that is not
documented (assuming that task parameters are OK)

Taskset
parameters

40

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Summary

CPS Verification Involves Multiple Domains
• Logic
• Timing

Addressing Scalability
• Restrict Behavior

– Domain Specific Language + Restricted Communication (middleware)
– Enforcers

• Scalable Verification
– Statistical Model Checking: Semantic Important Sampling

Evolving Hardware
• Multicore Scheduling

	CPS Research
	Slide Number 2
	Verification of CPS
	Approach
	Project 1: Distributed Adaptive Real-Time
	DART Programming : AADL + DMPL
	Real-Time Schedulability
	Verification
	Code Generation
	Project 2: Certifiable Distributed Runtime Assurance
	Sense Actuation Loop + Logical Enforcer
	Fixed-Priority Scheduling + Rate Monotonic
	Overload => old sensed data + late actuation
	Solution: Enforce timing budgets (timing enforcement)
	Solution step 1: enforce timing budgets (timing enforcement)
	Solution step 2: fast actuation on timing enforcement
	CDRA: Approach (1)
	CDRA: Approach (2)
	CDRA: Approach (3)
	CDRA: Approach (4)
	CDRA: Approach (5)
	Project 3: Real-Time Scheduling for Multicore
	Shared Hardware: Multicore Memory System
	Shared Hardware: Multicore Memory System
	How Bad?
	Different for Applications (PARSEC Benchmark)
	Solution 1: Partitioning
	Solutions 1: Virtual Memory “Coloring”
	Solution 1: Challenge – Conflicting Partitions
	Solution 2: Coordinated Approaches
	Solution 3: Predictable Sharing of Partitions
	Solution 4: Black Box Analysis
	Solution 4: Black Box Analysis
	Solution 4: Black Box Analysis
	Solution 4: Black Box Analysis
	Solution 4: Black Box Analysis
	Solution 4: Black Box Analysis
	Solution 4: Black Box Analysis
	Solution 4: Black Box Analysis
	Summary

