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Verification of CPS

CPS Concerns
• Logic: correct value
• Timing: at the right time
• Scalability: for real-size systems
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Approach

Logical Verification
• Model Checking
• Source-Code Logical Verification: CBMC, FRAMA-C

Timing Verification
• Real-Time Scheduling
• Variety of Applications: Mixed-Criticality, Distributed Pipelines
• Complex Hardware: Multicore Processors

Scalable Combination
• Reduced Interleavings: In Rate-Monotonic Ignore lower-priority threads
• Verified Timing Guarantees of Scheduler Code: Time as ghost variables

Improved Scalability
• Domain Specific Language: constrained executable
• Distributed Shared-Variables Middleware: synchronous computation
• Statistical Model Checking:

– Montecarlo Simulations
– Important Sampling / Semantic Important Sampling
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Project 1: Distributed Adaptive Real-Time

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒1 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑘𝑘

Environment 
– network, 

sensors, 
atmosphere, 
ground etc.

Low-Critical 
Threads (LCTs)

High-Critical 
Threads (HCTs)

H
C
T

L
C
T

Software for guaranteed 
requirements, e.g., collision 

avoidance protocol must 
ensure absence of collisions

ZSRM Mixed-Criticality Scheduler
OS/Hardware

Sched
OS/HW

MADARA Middleware MADARA

Research Thrusts

• Proactive Self-Adaptation

• Statistical Model Checking

• Real-Time Schedulability

• Functional Verification

Validation Thrusts

• Model Problem

• Workbench

Software for probabilistic 
requirements, e.g., adaptive path-

planner to maximize area coverage 
within deadline
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DART Programming : AADL + DMPL

AADL : Architecture Analysis and Description Language
DMPL : DART Modeling and Programming Language

AADL : High level architecture + threads + real-time attributes
• Perform ZSRM schedulability via OSATE Plugin
• Generate appropriate DMPL annotations

DMPL : Behavior
• Roles : leader, protector
• Functions : mapped to real-time threads

• Period, priority, criticality (generated from AADL)
• Behavior : C-style syntax. Can call-out to arbitrary libraries.

• Functional properties (safety) : software model checking
• Probabilistic properties (expectation) : statistical model checking

Implemented as a 
DART Workbench. 
Happy to share.
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Real-Time Schedulability

LCT

HCT

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒1

LCT

HCT

𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒2

DSL 
Files

AADL with Links to DSL files

Code Generator

ZSRM Mixed-
Criticality 
Scheduler 

Implementation

Theory and 
Correctness Proof 
of Mixed-Criticality 

Scheduler

Code

Innovations:

1. Mixed-Criticality 
Scheduling under I/O

2. End-to-end Mixed-
Criticality Scheduling

Schedulability
Research
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Verification

Distributed 
Application

Safety 
Specification

Sequentialization

Single-Threaded
C Program

Software Model Checking 
(CBMC, BLAST etc.)

Failure Success

Program in Domain Specific Language

Automatic verification technique  for finite 
state concurrent systems.

• Developed independently by Clarke and 
Emerson and by Queille and Sifakis in 
early 1980’s.

• ACM Turing Award 2007

Specifications are written in propositional 
temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear 
Temporal Logic (LTL), …

Verification procedure is an intelligent 
exhaustive search of the state space of 
the design

Model Checking

Assume
Synchronous 

Model of 
Computation
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Code Generation

Distributed 
Application

Safety 
Specification

Add synchronizer protocol

C++/MADARA Program

Compile 
(g++,clang,MSVC, etc.)

Program in Domain Specific Language A database of facts: 𝐷𝐷𝐷𝐷 = 𝑉𝑉𝑉𝑉𝑉𝑉 ↦
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

Node 𝑖𝑖 has a local copy: 𝐷𝐷𝐵𝐵𝑖𝑖
• update 𝐷𝐷𝐵𝐵𝑖𝑖 arbitrarily

• publish new variable mappings

• Immediate or delayed

• Multiple variable mappings 
transmitted atomically

Implicit “receive” thread on each node

• Receives and processes variable 
updates from other nodes

• Updates ordered via Lamport
clocks

Portable to different OSes (Windows, 
Linux, Android etc.) and networking 
technology (TCP/IP, UDP, DDS etc.)

Binary

MADARA Middleware

Guarantee
Synchronous 

Model of 
Computation
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Project 2: Certifiable Distributed Runtime Assurance

moveTo(x,y)

at(x,y)
Ctrl at(x,y)+

move()<d

d Time Enforced:
[STOP-UAS]

s

s > minD

Timing Enforcer(Scheduler)

Logical Enf 2 Logical Enf 1

Response time < d/speed
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Sense Actuation Loop + Logical Enforcer

Plant

Unverified 
Controller

𝑠𝑠

�𝛼𝛼

Sensed 
state

Logical Enforcer:
Verified Safe 

Controller

𝑠𝑠

𝛼𝛼
Logically-

vetted 
actuation

�𝛼𝛼
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Fixed-Priority Scheduling + Rate Monotonic

Scheduler

Icons credit: http://www.doublejdesign.co.uk

High Priority

Med. Priority

Low Priority

𝛼𝛼 𝛼𝛼 𝛼𝛼

𝛼𝛼

𝛼𝛼

𝑠𝑠 𝑠𝑠 𝑠𝑠

𝑠𝑠

𝑠𝑠

Preempted by 
higher priority task

Does not run until 
higher priority 

tasks finish

Preempted by 
higher priority task

http://www.doublejdesign.co.uk/
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Overload => old sensed data + late actuation

Scheduler

Icons credit: http://www.doublejdesign.co.uk

High Priority

Med. Priority

Low Priority

𝛼𝛼 𝛼𝛼

𝛼𝛼

𝛼𝛼

𝑠𝑠 𝑠𝑠

𝑠𝑠

𝑠𝑠

Old sensing, 
late 

actuation
Old sensing, 

late 
actuation

late 
actuation

Missed deadlinesMissed deadlinesMissed deadlines

overlo
ad

http://www.doublejdesign.co.uk/
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Solution: Enforce timing budgets (timing 
enforcement)

Scheduler

Icons credit: http://www.doublejdesign.co.uk

Only executed in 
given periodic time 

budget

Only executed in 
given periodic time 

budget

Only executed in 
given periodic time 

budget

Only executed in 
given periodic time 

budget

http://www.doublejdesign.co.uk/
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Solution step 1: enforce timing budgets (timing 
enforcement)

Scheduler

Icons credit: http://www.doublejdesign.co.uk

Only executed in 
given periodic time 

budget

Only executed in 
given periodic time 

budget

Only executed in 
given periodic time 

budget

Only executed in 
given periodic time 

budget

𝑠𝑠 𝛼𝛼 𝛼𝛼𝑠𝑠 𝑠𝑠 𝛼𝛼
STILL: Old 

sensing, late 
actuation if 

overload
Prevented from 
delaying other 

tasks if 
overload

http://www.doublejdesign.co.uk/


16

[Distribution Statement A] Approved for public release and unlimited distribution Copyright 2017 Carnegie Mellon University. All Rights Reserved.

Solution step 2: fast actuation on timing enforcement

Scheduler

Icons credit: http://www.doublejdesign.co.uk

Only executed in 
given periodic time 

budget

Only executed in 
given periodic time 

budget

Only executed in 
given periodic time 

budget

Only executed in 
given periodic time 

budget

𝑠𝑠 𝛼𝛼 𝛼𝛼𝑠𝑠 𝑠𝑠 𝛼𝛼 Decide if 
calculated 𝛼𝛼 used 

too old 𝑠𝑠 or not
Prevented from 
delaying other 

tasks if 
overload

𝛼𝛼∗

Calculate a default 
safe fast actuation 

executed “just 
before” timing budget 

expires: kernel 
informs task

http://www.doublejdesign.co.uk/
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CDRA: Approach (1)

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (𝑪𝑪𝟏𝟏)

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 (𝑬𝑬𝟏𝟏)

Prove 𝑬𝑬𝟏𝟏 ≼ 𝑷𝑷𝟏𝟏 and 
𝑬𝑬𝟐𝟐 ≼ 𝑷𝑷𝟐𝟐 using 

software verification

{𝜶𝜶? ,𝜷𝜷!} {𝜸𝜸? ,𝜹𝜹!}

�𝜶𝜶?

𝜶𝜶!

< 𝟓𝟓𝟓𝟓 → 𝜷𝜷?

�𝜷𝜷!

𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜷𝜷!

�𝜶𝜶?

< 𝟐𝟐𝟐𝟐 → �𝜷𝜷!

�𝜹𝜹?

�𝜸𝜸?

𝜸𝜸!

< 𝟐𝟐𝟐𝟐 → 𝜹𝜹?

�𝜹𝜹!

𝟐𝟐𝟐𝟐 → �𝜹𝜹!

�𝜸𝜸?

< 𝟐𝟐𝟐𝟐 → �𝜹𝜹!

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 (𝑬𝑬𝟐𝟐)

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷

≼ ≼

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (𝑪𝑪𝟐𝟐)
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CDRA: Approach (2)

�𝜶𝜶?

𝜶𝜶!

< 𝟓𝟓𝟓𝟓 → 𝜷𝜷?

�𝜷𝜷!

𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜷𝜷!

�𝜶𝜶?

< 𝟐𝟐𝟐𝟐 → �𝜷𝜷!

�𝜹𝜹?

�𝜸𝜸?

𝜸𝜸!

< 𝟐𝟐𝟐𝟐 → 𝜹𝜹?

�𝜹𝜹!

𝟐𝟐𝟐𝟐 → �𝜹𝜹!

�𝜸𝜸?

< 𝟐𝟐𝟐𝟐 → �𝜹𝜹!

𝑷𝑷𝑵𝑵

�𝜶𝜶?

< 𝟏𝟏𝟏𝟏 → �𝜷𝜷!

�𝜶𝜶?

< 𝟓𝟓𝟓𝟓 → �𝜷𝜷!
𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜹𝜹?
�𝜸𝜸?

< 𝟓𝟓𝟓𝟓 → �𝜹𝜹!

�𝜷𝜷!

𝑷𝑷𝟏𝟏 ≼ 𝑨𝑨𝟏𝟏 𝑷𝑷𝟐𝟐 ≼ 𝑨𝑨𝟐𝟐 𝑨𝑨𝟏𝟏 ∥ 𝑨𝑨𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵

Verify 𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
using assume-guarantee

Scale: (i) assumptions are 
simpler; (ii) abstract away 
unnecessary components; 
(iii) prove hierarchically.

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐

Controller 
Assumption

≼ ≼

≼

∥
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CDRA: Approach (3)

�𝜶𝜶?

𝜶𝜶!

< 𝟓𝟓𝟓𝟓 → 𝜷𝜷?

�𝜷𝜷!

𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜷𝜷!

�𝜶𝜶?

< 𝟐𝟐𝟐𝟐 → �𝜷𝜷!

�𝜹𝜹?

�𝜸𝜸?

𝜸𝜸!

< 𝟑𝟑𝟑𝟑 → 𝜹𝜹?

�𝜹𝜹!

𝟑𝟑𝟑𝟑 → �𝜹𝜹!

�𝜸𝜸?

< 𝟐𝟐𝟐𝟐 → �𝜹𝜹!

�𝜶𝜶?

< 𝟓𝟓𝟓𝟓 → �𝜷𝜷!
𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜹𝜹?
�𝜸𝜸?

< 𝟓𝟓𝟓𝟓 → �𝜹𝜹!

�𝜷𝜷!

Verify 𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
using assume-guarantee

Scale: minimal system 
re-verification needed 
when a policy or 
enforcer is modified

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐

Controller 
Assumption

Change

Re-verification

≼ ≼

≼

∥

𝑷𝑷𝟏𝟏 ≼ 𝑨𝑨𝟏𝟏 𝑷𝑷𝟐𝟐 ≼ 𝑨𝑨𝟐𝟐 𝑨𝑨𝟏𝟏 ∥ 𝑨𝑨𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵 𝑷𝑷𝑵𝑵

�𝜶𝜶?

< 𝟏𝟏𝟏𝟏 → �𝜷𝜷!
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CDRA: Approach (4) Verify 𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
using assume-guarantee

(i) Other (circular) rules 
exist; (ii) Challenges –
(a) proving rule 
soundness; (b) finding 
right assumption.

�𝜶𝜶?

𝜶𝜶!

< 𝟓𝟓𝟓𝟓 → 𝜷𝜷?

�𝜷𝜷!

𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜷𝜷!

�𝜶𝜶?

< 𝟐𝟐𝟐𝟐 → �𝜷𝜷!

�𝜹𝜹?

�𝜸𝜸?

𝜸𝜸!

< 𝟐𝟐𝟐𝟐 → 𝜹𝜹?

�𝜹𝜹!

𝟐𝟐𝟐𝟐 → �𝜹𝜹!

�𝜸𝜸?

< 𝟐𝟐𝟐𝟐 → �𝜹𝜹!

𝑷𝑷𝑵𝑵

�𝜶𝜶?

< 𝟏𝟏𝟏𝟏 → �𝜷𝜷!

�𝜶𝜶?

< 𝟓𝟓𝟓𝟓 → �𝜷𝜷!
𝟓𝟓𝟓𝟓 → �𝜸𝜸!

�𝜹𝜹?
�𝜸𝜸?

< 𝟓𝟓𝟓𝟓 → �𝜹𝜹!

�𝜷𝜷!

𝑷𝑷𝟏𝟏 ≼ 𝑨𝑨𝟏𝟏 𝑷𝑷𝟐𝟐 ≼ 𝑨𝑨𝟐𝟐 𝑨𝑨𝟏𝟏 ∥ 𝑨𝑨𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵
𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐

Controller 
Assumption

≼ ≼

≼

∥
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CDRA: Approach (5) 1: Verify 𝑬𝑬𝒊𝒊 ≼ 𝑷𝑷𝒊𝒊
2: Verify 𝑷𝑷𝟏𝟏 ∥ 𝑷𝑷𝟐𝟐 ≼ 𝑷𝑷𝑵𝑵𝑵𝑵
3: Verify 𝑷𝑷𝟑𝟑 ∥ 𝑷𝑷𝟒𝟒 ≼ 𝑷𝑷𝑵𝑵𝟐𝟐
4: Verify 𝑷𝑷𝑵𝑵𝑵𝑵 ∥ 𝑷𝑷𝑵𝑵𝑵𝑵 ≼ 𝑷𝑷𝒔𝒔

𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟏𝟏

𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐

𝑷𝑷𝑵𝑵𝑵𝑵

𝑷𝑷𝑺𝑺

𝑵𝑵𝑵𝑵𝑵𝑵𝒆𝒆𝟐𝟐

𝑷𝑷𝑵𝑵𝑵𝑵

System-level 
Policy

𝑷𝑷𝟏𝟏 𝑷𝑷𝟐𝟐

𝑪𝑪𝟑𝟑 𝑪𝑪𝟒𝟒

𝑷𝑷𝟑𝟑 𝑷𝑷𝟒𝟒

Change

Re-verificationRe-verification
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Project 3: Real-Time Scheduling for Multicore
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Shared Hardware: Multicore Memory System
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Shared Hardware: Multicore Memory System
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How Bad?
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Different for Applications (PARSEC Benchmark)

• 1 attacker   Max 5.5x increase
• 2 attackers  Max 8.4x increase
• 3 attackers  Max 12x increase
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Solution 1:  Partitioning 
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Solutions 1:  Virtual Memory “Coloring”
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Solution 1: Challenge – Conflicting Partitions
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Solution 2: Coordinated Approaches
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Solution 3: Predictable Sharing of Partitions
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Challenge: Need Processor Documentation (not always public)
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Solution 4: Black Box Analysis
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Solution 4: Black Box Analysis
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The blue, red, and green tasks execute at
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Solution 4: Black Box Analysis

L1/L2
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Shared hardware in the memory system

The blue and red tasks execute at
the same time ⇒ slowdown ⇒ increased execution time of blue and red.
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Solution 4: Black Box Analysis

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at
the same time ⇒ slowdown ⇒ increased execution time of all tasks.
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Solution 4: Black Box Analysis

L1/L2
Core 1

L1/L2
Core 2
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Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at
the same time ⇒ slowdown ⇒ increased execution time of all tasks.

Co-runner 
set

Speed

{} 1

{red} 0.5

{green} 0.45

{red,green} 0.25

Cblue=4
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Solution 4: Black Box Analysis

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Shared hardware in the memory system

The blue, red, and green tasks execute at
the same time ⇒ slowdown ⇒ increased execution time of all tasks.

Co-runner 
set

Speed Exec
time

{} 1 4

{red} 0.5 8

{green} 0.45 8.88

{red,green} 0.25 16

Cblue=4
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Solution 4: Black Box Analysis

Schedulability
analysis

{yes,no}
Obtain taskset

Parameter
(e.g., through

measurements)

Taskset
parameters
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Solution 4: Black Box Analysis

Schedulability
analysis

{yes,no}
Obtain taskset

Parameter
(e.g., through

measurements)

Able to offer real-time guarantee even for h/w that is not 
documented (assuming that task parameters are OK)

Taskset
parameters
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Summary

CPS Verification Involves Multiple Domains
• Logic
• Timing

Addressing Scalability
• Restrict Behavior

– Domain Specific Language + Restricted Communication (middleware)
– Enforcers

• Scalable Verification
– Statistical Model Checking: Semantic Important Sampling

Evolving Hardware
• Multicore Scheduling
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