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1. Introduction

The US Army Combat Capabilities Development Command Army Research
Laboratory (ARL) has been evaluating and designing efficient broadband high-
power amplifiers for use in sensors, communications, networking, and electronic
warfare. ARL submitted designs of Ka-band low-noise amplifiers (LNAs), power
amplifiers (PAs), and transmit-receive (T/R) switches, using Qorvo’s high-
performance 0.15-um gallium nitride (GaN) fabrication process. These amplifiers
were fabricated as one- and two-stage designs as well as integrated T/R modules
for bidirectional transceivers as part of a recent ARL Qorvo Prototype Wafer
Option (PWO), which yields many different designs from two full 4-inch GaN
wafers. Other technical reports will document other designs, while this one
concentrates on the Ka-band designs.

2. Full Reticle Plot

ARL contracted for Qorvo’s PWO, whose total cost exceeds a single smaller
Prototype Chip Option but is much less expensive per unit area, providing many
designs and additional control of the fabrication schedule. Qorvo’s PWO will yield
multiple copies of designs from a custom reticle replicated across two full
4-inch wafers. To meet multiple program requirements, including these Ka-band
designs, the PWO was used by the Electronics Branch III/V Design Team for
multiple designs across the 10- x 10-mm reticle shown in Fig. 1.
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Fig.1  ARL reticle layout for Qorve’s 0.15-pum GaN high-electron-mobility transistor
(HEMT) process (10 x 10 mm)

3. Ka-Band Low-Noise Amplifiers

Designs for a Ka-band transceiver were explored starting with key circuits that
would be needed, such as LNAs in GaN, which have the added advantages of high
dynamic range and robust survivability to high-power interference signals. A
requirement of a few gigahertz bandwidth around 28 GHz was assumed for all
designs. Devices with noise data in Qorvo’s 0.15-um GaN process design kit were
limited to a few sizes, including a 4- x 25-um and 6- x 25-um device at nominal
DC biases of 10 V and 100 mA/mm. Various matching topologies, stabilizing
approaches, and tradeoffs of gain versus noise figure were explored for the two
HEMT sizes. To achieve sufficient gain, a two-stage amplifier was desired with a
first stage matched for low noise and a second stage that could be designed to
emphasize gain. Overall, the noise figure is dominated by the first stage of the LNA.
Ideal matching elements were then converted to lossy monolithic microwave
integrated circuit (MMIC) elements, retuning those matching circuits to minimize



the impacts on the noise figure, as well as gain, bandwidth, stability, and size. Final
layouts were electromagnetic (EM) simulated for the most accurate predictions,
including physical interconnect, parasitic coupling, and DC connectivity. Electrical
design rules, such as current carrying limitations, are checked manually and were
discussed in the design reviews held at ARL.

Both the 4- x 25-um and 6- x 25-pm LNAs used source inductance to provide a
tradeoff between return loss, noise figure, and stability. Figure 2 shows a simulation
plot of the noise figure and gain circles, which are brought closer together due to
the source inductance. The two-stage 6- x 25-um LNA had good gain and
bandwidth around 28 GHz, while the two-stage 4- x 25-um LNA had an interstage
match that yielded a large gain bandwidth, but was a riskier approach with regard
to stability. Ideal noise figures of less than 1.4 dB increased slightly to 1.7 dB when
lossless matching elements were replaced with compact low-loss MMIC elements.
Larger, lower-loss matching circuits might improve the noise figure in future
designs, but the current tradeoff of size and performance yielded two promising
designs. The first stage of both two-stage LNAs was fabricated as well for
individual test and verification. Note that the input and output matches of these one-
stage LNAs were not retuned for optimal one-stage LNA performance, but were
the original matches designed for optimal performance as a two-stage LNA.
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Fig.2  Noise figure, stability, and gain circles for the 6- x 25-um HEMT (Lsrc=0.04 nH,
28 GHz)

Figure 3 shows the simulation of the initial ideal design of a one-stage 6- x 25-um
LNA with an about 8-dB small-signal gain. The ideal two-stage design 6- x 25-um
LNA increases the gain above 16 dB with only a 0.2-dB increase in the noise figure,
as shown in Fig. 4. Once the ideal elements are replaced with lossy MMIC
elements, the gain drops to about 15 dB and the noise figure increases to about
1.9 dB for the two-stage 6- x 25-um LNA. Figure 5 shows the final EM simulation
(thick lines) of the final layout of the 6- x 25-pum LNA, which is adjusted to nearly
match the original linear MMIC models (thin lines).
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Figure 6 shows the simulation of the initial ideal design of a one-stage 4- x 25-um
LNA with an about 8-dB small-signal gain. The ideal two-stage design 4- x 25-pm
LNA increases the gain above 18 dB with only a 0.2-dB increase in the noise figure
and with excellent gain bandwidth, as shown in Fig. 7. Once the ideal elements are
replaced with lossy MMIC elements, the gain drops to about 16 dB, the gain
bandwidth is reduced slightly, and the noise figure increases to about 1.8 dB for the
two-stage 4- x 25-um LNA. Figure 8 shows the EM simulation (thick lines) of the
final layout of the 4- x 25-um LNA, which is adjusted to nearly match the original
linear MMIC models (thin lines).
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Layouts of the compact 6- x 25-um one- and two-stage LNAs are shown in Figs. 9
and 10. Gate bias pads and drain bias pads are used on chip metal-insulator—metal
(MIM) decoupling shunt capacitors, with additional resistors on the gates, to isolate
the DC connections from the RF match. Similarly, the layouts of the compact
4- x 25-um one- and two-stage LNAs are shown in Figs. 11 and 12.

Fig.9  Layout of the one-stage LNA (6 x 25 pm)

10



Fig. 10 Layout of the two-stage LNA (6 X 25 pm)

Layout of the one-stage LNA (4 x 25 pm)

Fig. 11

11



Fig. 12 Layout of the two-stage LNA (4 x 25 pm)

4. Ka-band Power Amplifiers

Designs for a Ka-Band transceiver included efficient PAs in GaN. Estimating
output power based on watts per millimeter of HEMT periphery, and also keeping
the HEMT size appropriate for the 28-GHz design frequency, an output power goal
near 1 W resulted in two single-stage HEMT PAs. One PA is based on a
4- x 50-um device and the other is based on an 8- x 50-um device, both at nominal
DC biases of 28 V and 100 mA/mm. Various matching topologies, stabilizing
approaches, and tradeoffs of output power and power-added efficiency (PAE) were
explored for the two HEMT sizes. To achieve sufficient gain, a two-stage amplifier
was desired with an output stage matched for power and efficiency and a first stage
that could be designed to emphasize gain. Overall, power and efficiency are
dominated by the output stage of the PA. Ideal matching elements were then
converted to lossy MMIC elements, retuning those matching circuits to minimize
the impacts on power performance, as well as gain, bandwidth, stability, and size.
Final layouts were EM simulated for the most accurate simulations to include
physical interconnect, parasitic coupling, and DC connections. Electrical design
rules, such as current carrying limitations, are checked manually and were
discussed in the design reviews held at ARL.

Figure 13 shows a power performance simulation of the 4- x 50-um HEMT with
ideal lossless matching circuits, achieving 0.83 W and 44% PAE at 3-dB gain
compression. Nearly twice the power and similar efficiencies for the larger

12



8- x 50-um ideal lossless single-stage PA are shown in comparison to the
4- x 50-pm PA (Fig. 14). The ideal 8- x 50-um HEMT PA should yield 1.6 W and
43% PAE. Gain for the ideal one-stage 4- x 50-um PA was above 10 dB (Fig. 15),
and the 8- x 50-um PA gain was similar but slightly lower (Fig. 16). After
converting to lossy MMIC matching circuits and EM simulating the final PA
layouts, the single-stage 4- x 50-um PA predicts 0.75 W of output power and 38%
PAE as shown in Fig. 17. Figure 18 shows the 8- x 50-um PA EM simulations
predicting a respectable 39% PAE and 1.4 W of output power.

13
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S-parameter simulation for an ideally matched one-stage PA (4 x 50 pm)
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A two-stage PA using the 8- x 50-um device as the output stage and a 4- x 50-um

device for a driver stage results in a 20-dB small-signal gain over several gigahertz.

Figure 19 shows the small-signal gain of the two-stage PA versus the single

8- x 50-um PA. A second two-stage PA used the 4- X 50-um as both the driver and
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output power stages resulting in about 1-dB more gain. Figure 20 shows the small-
signal gain of the two-stage PA with 4- x 50-um driver and output HEMTs versus
the two-stage PA with a 4- x 50-um driver and an 8- x 50-pum output HEMT.

VgE(IZS(M)g(LL
- PA 26 30G_s2p_8x50 33 Sb!-'gB vgﬁ;}?g@i
' TR ey
20 TR U evso
ORI Oy o4
15 OMEUD 0 o
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10 9.949 dB OB B 24
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0 3.1
-5 2.33
-10 1.56
15 I [ ¥ 0.778
-20 0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Frequency (GHz)
Fig. 19 EM simulation of the one- and two-stage PA layouts (8 x 50 pm)
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Fig. 20 EM simulation of both two-stage PAs (4 x 50 and 8 x 50 pm)
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Layouts of the compact one-stage 4- x 50-um PA and two-stage 4- x 50-um/
4- x 50-um PA are shown in Figs. 21 and 22. Gate bias pads and drain bias pads
are used on chip MIM decoupling shunt capacitors, with additional resistors on the
gates to isolate the DC connections from the RF match. Similarly, the layouts of
the compact one-stage 8- x 50-um PA and two-stage 4- X 50-um/8- x 50-um PA
are shown in Figs. 23 and 24.

Fig.21 Layout of the one-stage PA (4 X 50 pm)

n

0

NS
S

Fig. 22 Layout of the two-stage PA (4 x 50 pm, 4 x 50 pm)
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Fig. 23 Layout of the one-stage PA (8 X 50 pm)

SSSNE ANNNN
N

Fig. 24 Layout of the two-stage PA (4 x 50 pm, 8 x 50 pm)

5. Single-Pull Double-Throw Switches

Designs for a Ka-band transceiver required T/R switches. An earlier T/R switch in
0.25-um GaN was designed to operate up to 18 GHz, but would not be sufficient
for Ka-band. Compensating the parasitic capacitance of the switch HEMTs by
adding parallel MMIC inductors worked well for the required several gigahertz
bandwidth around 28 GHz. The first single-pull double-throw (SPDT) switch used
shunt (0.2 mm) and series (0.35 mm) HEMTs with parallel MMIC inductors
resulting in a 1.25-dB insertion loss with good return loss at 28 GHz. Figure 25
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shows the simulated small-signal performance for this switch design, where the
nonlinear model estimated about 0.3-dB more insertion loss. The linear switch
models are more accurate than the nonlinear models and predict lower losses. For
the second SPDT switch design, shunt (0.2 mm) HEMTs were used with 1/4 wave
50-Q microstrip lines. To compact the layout further, the 1/4 wave microstrip lines
were reduced in length by narrowing their width while compensating the resulting
higher impedance lines with shunt capacitance to ground at each end of these
shorter lines. Figure 26 shows the simulated small-signal performance for the
shunt-only HEMT switch design, where the nonlinear model estimated about
0.6-dB more insertion loss. Nonlinear simulations, shown in Fig. 27, verify that
both designs have reasonable loss at the maximum 32-dBm (1.6-W) output power
of the 8- x 50-um PAs. The compact layout of the series/shunt SPDT Ka-band
switch is shown in Fig. 28, and the shunt-only SPDT switch is shown in Fig. 29.

28 GHz
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Fig. 25 SPDT Ka-band series/shunt switch simulation (linear/nonlinear)
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Fig. 26 SPDT Ka-band shunt 1/4 wave line switch simulation (linear/nonlinear)
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6. Ka Band T/R Modules

6.1 Ka-band T/R Module 1, SPDT T/R Switch, PA, and LNA

A complete Ka-band T/R front end combines the two-stage 8- x 50-um PA, the
two-stage LNA, and one shunt/series SPDT switch, as shown in the layout plot of
Fig. 30. This layout has a common “antenna” connection, an input for the LNA
path, and an output for the PA path. The series shunt SPDT design has better
isolation than the shunt-only SPDT switch, but in operation it would be desirable
to turn off the PA (DC bias off) in the receive mode and turn off the LNA (DC bias
off) in the transmit mode. EM simulations of the layouts for the T/R module verify
that the amplifiers work as expected after factoring in the 1 dB or so of switch loss.
Small-signal simulations of the LNA path versus the standalone LNA show similar
gain and return loss over the operating band (Fig. 31). Likewise, small-signal
simulations of the PA path versus the standalone PA show similar gain and return
loss over the operating band (Fig. 32).

Fig.30 Layout of the T/R Module 1, SPDT, PA, and LNA
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6.2 Ka-band T/R Module 2, SPDT T/R Switch, PA, and LNA

A second Ka-band T/R front end combined the two-stage 8- x 50-um PA, the
two-stage LNA, and two shunt-only SPDT switches, as shown in the layout plot of
Fig. 33. This layout has two common connections, which change the signal flow
direction, right to left for the LNA path and left to right for the PA path, as shown.
The shunt-only SPDT switch requires that the PA is off (DC bias off) in the receive
mode and the LNA is off (DC bias off) in the transmit mode. EM simulations of
the layouts for the T/R module verify that the amplifiers work as expected after
factoring in the 2 dB or so of switch loss. Small-signal simulations of the LNA path
versus the standalone LNA show similar gain and return loss over the operating
band (Fig. 34). Likewise, small-signal simulations of the PA path versus the
standalone PA show similar gain and return loss over the operating band (Fig. 35).

Fig. 33 Layout of the T/R Module 2, SPDT, PA, and LNA
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6.3 Ka-band T/R Module 3, SPDT T/R Switch, PA, and LNA

A third complete Ka-band T/R front end combined the two-stage 8- x 50-um PA,
the two-stage LNA, and two shunt/series SPDT switches as shown in the layout
plot of Fig. 36. This layout has two common connections, which change the signal
flow direction, right to left for the LNA path and left to right for the PA path, as
shown. The series shunt SPDT has better isolation than the shunt-only SPDT
switch, but in operation it would be good to turn off the PA (DC bias off) in the
receive mode and turn off the LNA (DC bias off) in the transmit mode. EM
simulations of the layouts for the T/R module verify that the amplifiers work as
expected after factoring in the 2 dB or so of switch loss. Small-signal simulations
of the LNA path versus the standalone LNA show similar gain and return loss over
the operating band (Fig. 37). Likewise, small-signal simulations of the PA path
versus the standalone PA show similar gain and return loss over the operating band
(Fig. 38).

Fig. 36 Layout of the T/R Module 3, SPDT, PA, and LNA
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6.4 Ka-band T/R Modules, Broadband Power Amplifiers (CKT6)

Ka-band (28 GHz) PA, LNA, and T/R switch were designed for use in network
communications. Two variations are included on this die—the top T/R circuit has
common RF connections on the left and right with a shunt switch arrangement to
choose a PA flowing left to right as a transmitter or an LNA flowing from right to
left as a receiver. For the lower T/R circuit, there are separate RF connections on
the left for the PA and the LNA with a shunt/series switch arrangement to provide
directional connections to a common “antenna” RF connection on the right. There
are also two versions of Dr Sami Hawasli’s broadband PA included on this die.
This circuit can be subdiced to 2 x 2 mm using a pseudo saw street that leaves a
gap in the backside metal (see the die plot of Fig. 39).

Fig. 39 Plot of the Ka-band T/R modules, broadband PAs—CKT6 (4 X 2 mm)
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7. Ka-band T/R Circuits, Broadband Amplifiers (CKT7)

The one- and two-stage versions of the Ka-band (28 GHz +) PAs, LNAs, and the
shunt/series T/R switch for use in network communications are included as probe-
testable standalone circuits on this die. Additional designs include a broadband
nonuniform low-noise distributed amplifier and a few other broadband amplifiers
and test circuits. A test 8- x 50-um HEMT and a test 4- x 50-um HEMT are
included on this die layout. These test HEMTs can be DC and RF tested at ARL to
analyze and verify circuit performance. The layout of the 4- X 4-mm die is shown
in Fig. 40.

Fig. 40 Plot of the Ka-band T/R modules, broadband PAs—CKT?7 (4 X 4 mm)
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8. Shunt SPDT T/R Switch and Other Design Circuits (CKT8)

Frequency multipliers, broadband amplifiers, a few test circuits, and the shunt-only
T/R switch for use in network communications are included as probe testable
standalone circuits on this die. A test 4- x 50-um HEMT is included on this die
layout (bottom middle). This test HEMT can be DC and RF tested at ARL to
analyze and verify circuit performance. The layout of the 4- x 4-mm die is shown
in Fig. 41.
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sl
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Fig. 41 Plot of the Ka-band T/R modules, broadband PAs—CKTS8 (4 X 4 mm)
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9. Ka-band T/R Module, Broadband S/X Power Amplifiers
(CKT9)

We designed a Ka-band (28 GHz +) PA, LNA, and T/R switch for use in network
communications. This third T/R module variation has common RF connections on
the left and right with a series/shunt switch arrangement to choose a PA flowing
left to right as a transmitter or an LNA flowing from right to left as a receiver. One
of Dr Hawasli’s broadband PAs is included in the middle this die. At the top of the
die is a parallel combined S- to X-band power amplifier by John Penn using two
parallel combined 10- x 150-um HEMTs. This circuit can be subdiced to
2- x 2.3-mm top and 2- x 1.7-mm bottom using a pseudo saw street that leaves a
gap in the backside metal (see the die plot of Fig. 42).
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Fig. 42 Plot of the Ka-band T/R Module 3, broadband PAs—CKT?9 (4 x 2 mm)
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10. Summary and Conclusion

GaN MMIC technology has superior performance in PA applications as well as for
LNAs with high dynamic range and the ability to survive large potentially
damaging input power levels without the need for additional limiters at the system
level. This technology works well for high-power solid-state switches as well. All
of these benefits were utilized in developing T/R modules for use in Ka-band
(28 GHz +) applications, particularly transceiver arrays. PAs, LNAs, and T/R
switches for use in network communications were designed and submitted to Qorvo
for fabrication. When the designs return, they will be tested and documented in
subsequent reports. Future transceiver designs could build on this effort by adding
functionality, integrating new features in a single GaN MMIC, or using 3-D
packaging to utilize the best integrated circuit technology for the particular function
to create compact systems in a package.
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List of Symbols, Abbreviations, and Acronyms

3-D
ARL
DC
EM
GaN
HEMT
LNA
MIM
MMIC
PA
PAE
PWO

SPDT
T/R

three-dimensional

Army Research Laboratory
direct current

electromagnetic

gallium nitride
high-electron-mobility transistor
low-noise amplifier
metal-insulator—metal
monolithic microwave integrated circuit
power amplifier

power-added efficiency
Prototype Wafer Option

radio frequency

single-pull double-throw

transmit-receive
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