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PROJECT SUMMARY PI: DMITRIY DRUSVYATSKIY

Exploiting Geometry and Degeneracy in Large Scale Structured
Optimization

Grant: FA9550-15-1-0237
Final Report: 6/01/2015 - 10/31/2018

Funding from the Air Force has played an instrumental role in my research. The
broad goals of the proposed work were two-fold: (1) “to develop ‘facial reduction algo-
rithms’ for large-scale highly structured problems” and (2) to “develop new algorithms
for nonsmooth and nonconvex problems, which converge rapidly under favorable condi-
tions.” In parallel, this project aimed to apply the techniques to pervasive large scale
problems in computational mathematics and the applied sciences. All objectives were
successfully met, as I explain below. The results of the research were summarized in over
20 publications in high calibre journals, including Math Prog., SIAM J. Optim., Math
of Oper. Res. and Found. Comput. Math. Support from the AFOSR has funded three
of my students, Kellie MacPhee, Scott Roy, and Courtney Paquette. The three students
participated in all aspects of the project, coauthoring papers and presenting at confer-
ences. Sections describe the research highlights of the project, organized by topic;
the names of the three students appear in blue in the bibliographic citations. The final
Section [0] lists the conferences and colloquia that the PI attended as an invited speaker
during the award period.

1 Facial Reduction: exploiting degeneracy in large-
scale optimization

The central thrust of this project was the realization that numerous large-scale compu-
tational tasks lead to optimization problems that are inherently degenerate. Degeneracy
is meant here in a precise mathematical sense; intuitively, it means that the computa-
tional task has much fewer degrees of freedom than the standard problem formulation
suggests, thereby leading to ill-conditioning. Typical examples include convex relaxations
of various NP-hard problems, such as sensor network localization, graph partitioning, and
quadratic assignment. Yet another rich class of example comes from sum-of-squares re-
laxation techniques. Rather than a nuisance, such degeneracy can be exploited leading to
smaller and more stable problem formulations. The formal procedure for exploiting such
degeneracies is called facial reduction. A large part of the project focused on exploring
the relationship between facial reduction and the convex geometry of the optimization
problem. For example, the paper [3| showed that facial reduction can complete in a single
step if and only if the data of the problem lies on a facially exposed face of a certain
convex cone. This shows that nonexposed faces form an obstruction to efficient use of fa-
cial reduction. In parallel, we developed efficient facial reduction procedures for concrete
problems. In particular, we developed a new robust algorithm for graph realization and



extensively tested it on sensor network localization problems. This line of work led to
the articles below, as well as the expository survey article [II The work [5 is another
example of exploiting degeneracy, although in a different sense. There, we considered a
wide class of optimization problems with PDE constraints. For this class of problems, it
appears very natural to apply the classical quadratic penalization technique of nonlinear
programming. The main difficulty is that quadratic penalization leads to problem formu-
lations with highly ill-conditioned Hessians. Remarkably, we showed that this degeneracy
can be eliminated entirely by implicitly and iteratively minimizing out the objective in
one set of the variables. We numerically validated the proposed algorithms on boundary
control and optimal transport problems.

1. D. Drusvyatskiy, H. Wolkowicz, ‘The many faces of degeneracy in conic optimization’,
Foundations and Trends in Optimization, Vol. 3, No. 2, pp 77-170, 2017.

2. D. Drusvyatskiy, N. Krislock, Y.-L. Voronin, and H. Wolkowicz, ‘Noisy Euclidean
distance realization: robust facial reduction and the Pareto frontier’, STAM J. Optim.,
27-4 (2017), 2301-2331.

3. D. Drusvyatskiy, G. Pataki, H. Wolkowicz, ‘Coordinate shadows of semidefinite and
Euclidean distance matrices’, SIAM J. Optim. 25 (2015), no. 2, 1160-1178.

4. D. Drusvyatskiy, G. Li, H. Wolkowicz, ‘A note on alternating projections for ill-
posed semidefinite feasibility problems’. Math. Program., 162 (2017), no. 1-2, Ser.
A, 537-548.

5. A.Y. Aravkin, D. Drusvyatskiy, T. van Leeuwen, ‘Efficient quadratic penalization
through the partial minimization technique’. [IEEE Trans. Automat. Contr., 63
(2018), no. 7, 2131-2138.

2 Regularity and rapid convergence of algorithms

The second thrust of the proposal was to develop new algorithms for nonsmooth and
nonconvex problems, which converge rapidly under favorable conditions. The PI pur-
sued this agenda in a series of publications listed below. Roughly speaking, this work
applied to two different types of optimization problems: nonconvex feasibility and convex
composite minimization. The nonconvex feasibility problem is to find a point in the in-
tersection of two nonconvex sets—a ubiquitous task across computational mathematics.
A typical assumption one makes is that finding the nearest-point to each individual set is
computationally tractable. Under this assumption, the method of alternating projections
proceeds by iteratively finding the nearest point to the first set, then the second, then the
first, and so on. In the publication 5] the PI together with coauthors showed that a sim-
ple geometric condition, called transversality, guarantees the method converges linearly
to a point in the intersection. This is the sharpest currently available guarantee for the
method. In parallel, the PI investigated algorithms for minimizing composition of convex
functions with smooth maps. Such problems appear often in applied mathematics and
data science. The publications developed subgradient and Gauss-Newton methods
that provably converge linearly (or faster) under the mild regularity assumption that the



objective grows sharply away from the solution set. Moreover, the publications the-
oretically and numerically validated the approach on phase retrieval, quadratic sensing,
and blind deconvolution problems. Finally, the publication 4] investigated the nature of
regularity conditions more abstractly. This work showed that under mild assumptions on
the functional components of the problem (semi-algebraicity), regularity conditions that
enable rapid convergence of numerical methods hold generically in a precise mathematical
sense.

1. D. Drusvyatskiy, A.S. Lewis, ‘Error bounds, quadratic growth, and linear convergence
of proximal methods’. Math. Oper. Res., 43 (2018), no. 3, 919-948.

2. D. Davis, D. Drusvyatskiy, K.J. MacPhee, C. Paquette, ‘Subgradient methods for
sharp weakly convex functions’. J. Optim. Theory. Appl., 179 (2018), no. 3, 962-
982.

3. D. Davis, D. Drusvyatskiy, C. Paquette, ‘The nonsmooth landscape of phase re-
trieval’, To appear in IMA J. Numer. Anal., 2018.

4. D. Drusvyatskiy, A.D. loffe, A.S. Lewis, ‘Generic minimizing behavior in semialge-
braic optimization’. SIAM J. Optim. 26 (2016), no. 1, 513-534.

5. D. Drusvyatskiy, A.D. loffe, A.S. Lewis, ‘Transversality and alternating projections
for nonconvex sets’. Found. Comput. Math. 15 (2015), no. 6, 1637-1651.

3 Complexity of first-order algorithms

The contemporary need to extract meaningful conclusions from exascale data provides
formidable challenges for optimization specialists. In such circumstances, the high per-
iteration cost of algorithms using second-order information can render them prohibitively
expansive. Instead, first-order methods have dominated much of large-scale optimization
as of late. A mature complexity theory, beginning with Nemirovsky-Yudin ’82, is an
attractive feature of the subject. For specific problem classes, there are known lower
complexity bounds, which express limitations on the “efficiency” that any “algorithm”
can be guaranteed to have. Methods achieving such best possible convergence rates are
called optimal for the class. A large part the PI’s work aimed to develop new first-order
algorithms, with an emphasis on their complexity guarantees. In particular, the paper
developed a new optimal first-order method for smooth strongly convex minimization. In
contrast to existing work, the method is completely transparent geometrically and allows
to incorporate limited memory for improved performance. The two papers developed
efficient first-order algorithms for minimizing convex functions over regions with complex
geometries, such as those defined by a constraint on the size of the measured residuals.
The papers evaluated the performance of the proposed algorithms on statistical and signal
processing tasks. The paper [4] established the first complexity guarantees for first-order
methods on convex composite optimization problems. Moreover, this work proposed a
novel algorithm that automatically accelerates when the problem is nearly convex.

1. D. Drusvyatskiy, M. Fazel, S. Roy, ‘An optimal first order method based on optimal
quadratic averaging’. SIAM J. Optim., 28 (2018), no. 1, 251-271.



2. A.Y. Aravkin, J.V. Burke, D. Drusvyatskiy, M.P. Friedlander, and S. Roy, ‘Level-set
methods for convex optimization’, To appear in Math. Program. Ser. B, 2018.

3. A.Y. Aravkin, J.V. Burke, D. Drusvyatskiy, M.P. Friedlander, K. MacPhee, ‘Founda-
tions of gauge and perspective duality’. SIAM J. Optim., 28 (2018), no. 3, 2406-2434.

4. D. Drusvyatskiy, C. Paquette, ‘Efficiency of minimizing compositions of convex func-
tions and smooth maps’, To appear in Math. Program., 2018.

4 Stochastic algorithms beyond smoothness and con-
vexity

The stochastic subgradient method plays a central role in stochastic optimization and
its numerous applications in data science and engineering. Its popularity is in large
part due to its simplicity, ease of implementation, and well-documented success in large
scale applications. Indeed, the stochastic subgradient method forms a core numerical
subroutine for several widely used solvers, including Google’s TensorFlow and the open
source PyTorch library. Though variants of the method date back to Robbins-Monro’s
pioneering 1951 work, convergence guarantees in the nonsmooth and nonconvex setting
have remained elusive. In the two papers below, the PI with coauthors, developed the
first convergence guarantees for the stochastic subgradient, proximal point, and Gauss-
Newton methods on nonsmooth and nonconvex problems. Indeed, most of the results are
new even in deterministic settings.

1. D. Davis, D. Drusvyatskiy, S. Kakade, J.D. Lee, ‘Stochastic subgradient method
converges on tame functions’, To appear in Found. Comput. Math., 2018.

2. D. Davis, D. Drusvyatskiy, ‘Stochastic model-based minimization of weakly convex
functions’, SIAM J. Optim., 29 (2019), no. 1, 207-239.

5 Spectral variational analysis

Another recent line of work is geared towards eigenvalue optimization problems. Central
objects of interest are functions of symmetric matrices that depend on the matrix only
through its eigenvalues. A rudimentary example is the nuclear norm of a symmetric
matrix, which is simply the /;-norm of its eigenvalues. Though such spectral functions are
typically nonsmooth, the way in which the nonsmoothness arises is highly structured. The
general philosophy (called the transfer principle) is that many “variational properties” of
the spectral function and that of its restriction to the subspace of diagonal matrices (¢;-
norm in the example above) are in one-to-one correspondence. Convexity and smoothness
are early examples of such properties.

A central result in this line of research is a formula established by Lewis relating
“generalized derivatives” of the spectral function to those of its diagonal restriction. In
the paper [I] the PI with his student C. Paquette derived a new, short, and entirely
transparent proof of this foundational result, in contrast to the largely opaque original
proof.



In a parallel work [2] the PI with coauthors showed that the so-called Euclidean dis-
tance degree satisfies the transfer principle. The Euclidean distance degree, introduced
by Draisma-Horobet-Ottaviani- Sturmfels-Thomas, is an important invariant measuring
the complexity of distance minimization problems to algebraic varieties.

1. D. Drusvyatskiy, C. Paquette, ‘Variational analysis of spectral functions simplified’.
J. Conv. Anal. 25 (2018), No. 1, 119-134.

2. D. Drusvyatskiy, H.-L.. Lee, G. Ottaviani, R.R. Thomas, ‘The Euclidean distance
degree of orthogonally invariant matrix varieties’. Israel J. Math. 221 (2017), no. 1,
291-316.

6 Invited conference and seminar presentations

Support from the AFOSR has enabled the PI to travel to the following conferences and
colloquia as an invited speaker. The travel resulted in a number of new collaborations
that developed during the award period.

1. Oct. 2018: ‘Convergence Rates of Stochastic Algorithms in Nonsmooth Nonconvex
Optimization’, Computational and Applied Mathematics Colloquium, U. Chicago,
IL.

2. Aug. 2018: ‘Stochastic methods for nonsmooth nonconvex optimization’, Variational
Analysis and Applications, Erice, Sicily.

3. Jul. 2018: ‘Convergence rates of stochastic algorithms for nonsmooth nonconvex
problems’, Modern Trends in Nonconvex Optimization for Machine Learning, I[CML
2018 Workshop, Stockholm, Sweden.

4. Jul. 2018: ‘Stochastic methods for nonsmooth nonconvex optimization’, Nonconvex
Formulations and Algorithms in Data Sciences, U. Wisconsin Madison, WI.

5. Jul. 2018: ‘Stochastic subgradient method converges on tame functions’, Interna-
tional Symposium on Mathematical Programming (ISMP), Bordeaux, France.

6. Jan. 2018: ‘Slope and geometry in variational mathematics’, CNA Seminar, Carnegie
Mellon University, Pittsburgh, PA.

7. Dec. 2017: ‘Algorithms for minimizing compositions of convex functions and smooth
maps’, CS Theory Seminar, University of Washington, Seattle, WA.

8. Nov. 2017: ‘Structure, complexity, and conditioning in nonsmooth optimization’,
Mathematics colloquium, UCSD, San Diego, CA.

9. Nov. 2017: ‘Composite nonlinear models at scale’, ORIE colloquium, Cornell, Ithaca.

10. Jul. 2017: ‘Efficiency of minimizing compositions of convex functions and smooth
maps’, Foundations of Computational Mathematics (FoCM), Barcelona, Spain.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

May 2017: ‘Accelerated first-order methods beyond convexity’, Workshop on nons-
mooth optimization and its applications, Hausdorff center for mathematics, Bonn,
Germany.

May 2017: ‘Taylor-like models in nonsmooth optimization’, SIAM Conference on
Optimization, University of British Columbia (UBC), Vancouver, USA.

Apr. 2017: ‘Accelerated first-order methods beyond convexity’, Workshop on opti-
mization and statistical learning, Les Houches, France.

Apr. 2017: ‘Accelerated first-order methods beyond convexity’, AMS Spring Western
Sectional Meeting, Washington State University, Pullman, WA.

Jul. 2016: ‘Expanding the reach of optimal methods’, STAM Annual meeting, Boston,
Massachusetts, USA.

May 2016: ‘Error bounds, quadratic growth, and linear convergence of proximal
methods’, CORS Annual conference (session organizer), Banff, Alberta, Canada.

May 2016: ‘Expanding the reach of optimal methods’, West Coast Optimization
Meeting (WCOM 2016) (conference organizer), University of Washington, Seattle,
WA.

Apr. 2016: * Geometry of orthogonally invariant matrix varieties’, Algebra & Discrete
Math. seminar, UC Davis, CA, USA.

Aug. 2015: ‘Tame variational analysis’, Workshop on Variational Analysis and Ap-
plications, Erice, Sicily.

Jul. 2015: ‘Slope and variational geometry in optimization’, A.W. Tucker prize ses-
sion, International Symposium on Mathematical Programming (ISMP 2015), Pitts-
burgh, USA.

Jul. 2015: ‘Singularity degree in semi-definite programming’, International Sympo-
sium on Mathematical Programming (ISMP 2015), Pittsburgh, USA.



	DTIC Title Page - 
	FA9550-15-1-0237_SF_298
	amazonaws.com
	https://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/249-5d908d476de1e7bb3299e850d06491bd_SF_298.pdf


	FA9550-15-1-0237_final_report_revised
	Facial Reduction: exploiting degeneracy in large-scale optimization
	Regularity and rapid convergence of algorithms
	Complexity of first-order algorithms
	Stochastic algorithms beyond smoothness and convexity
	Spectral variational analysis
	Invited conference and seminar presentations


	Date[0]: 02/27/2019
	REPORTTYPE[0]: final
	DATESCOVEREDFromTo[0]: 6/01/2015-10/31/2018
	TITLEANDSUBTITLE[0]: Exploiting Geometry and Degeneracy in Large Scale Structured Optimization
	AUTHORS[0]: Drusvyatskiy, Dmitriy
	PERFORMINGORGANIZATIONNAMESANDADDRESSES[0]: University of Washington, Office of Sponsored Programs, 4333 Brooklyn Ave NE, Seattle, WA 98195-0001
	PERFORMINGORGANIZATIONREPORTNO[0]: 
	SPONSORINGMONITORINGAGENCYNAMESANDADDRESSES[0]: AFOSR/PK3, USAF, AFRL DUNS 143574726, AF OFFICE of SCIENTIFIC RESEARCH, 875 NORTH RANDOLPH STREET, RM 3112, ARLINGTON, VA 22203-1954
	CONTRACTNUMBER[0]: 
	GRANTNUMBER[0]: FA9550-15-1-0237
	PROGRAMELEMENTNUMBER[0]: 
	PROJECTNUMBER[0]: 
	TASKNUMBER[0]: 
	WORKUNITNUMBER[0]: 
	SPONSORMONITORSACRONYMS[0]: 
	SPONSORMONITORSREPORTNUMBERS[0]: 
	statement[0]: DISTRIBUTION A
	SUPPLEMENTARYNOTES[0]: 
	SUBJECTTERMS[0]: 
	REPORT[0]: Unclassified
	ABSTRACT[0]: Funding from the Air Force has played an instrumental role in my research. The broad goals of the proposed work were two-fold: (1) ``to develop `facial reduction algorithms' for large-scale highly structured problems'' and (2) to ``develop new algorithms for nonsmooth and nonconvex problems, which converge rapidly under favorable conditiones.'' In parallel this work aimed to apply the techniques to pervasive large scale problems in computational mathematics and the applied sciences. All the objectives were successfully met. Some highlights of the research include a new robust algorithm for graph realization, the sharpest currently available guarantees for alternating projects and Gauss-Newton methods, a new geometrically transparent first-order method with best possible convergence guarantees, and the first sample complexity guarantees for stochastic approximation algorithms on nonsmooth and nonconvex problems. The techniques were applied to a variety of large-scale problems, including sensor network localization, phase retrieval, blind deconvolution, robust PCA, etc. The results of the research are summarized in  21 publications in high calibre journals, including Math Prog., SIAM J. Optim., Math of Oper. Res. and Found. Comput. Math. Support from the AFOSR has funded three of my students, Kellie MacPhee, Scott Roy, and Courtney Paquette. The three students participated in all aspects of the work, coauthoring papers and presenting at conferences. 
	THISPAGE[0]: Unclassified
	LIMITATIONOFABSTRACT[0]: Unclassified
	NUMBEROFPAGES[0]: 
	NAMEOFRESPONSIBLEPERSON[0]: 
	TELEPHONENUMBERIncludeareacode[0]: 


