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1 Objectives

Imaging and communication with optical or infrared pulsed signals through obscuring
random media (e.g., atmospheric clouds, fog, dust, or aerosols) is a long-standing and
challenging problem, both experimentally and theoretically.

From the experimental and applications perspective, a coherently detected pulse
field preserves its time profile, but is strongly attenuated, at the rate proportional to
the total cross-section of the wave on an individual medium scatterer. The incoher-
ently detected field intensity, although attenuated at a lower rate (proportional to the
absorption cross-section), spreads in transverse directions and develops a long diffu-
sive temporal tail, which causes loss of resolution in imaging and loss of bandwidth
in communication.

The principal goal of our project was to develop a formulation for pulse forming,
detection, and processing methods which would enhance signal penetration through
obscuring media, without compromising the range resolution in imaging and/or the
bit rate in communication.

The main idea was to utilize incoherently detected pulses (through measurements
of their intensity). The underlying approach was based on analytic complex-contour
integration of numerically determined cut and pole singularities of the radiative trans-
port equation solution in the Fourier space. Such an approach allows to take advan-
tage of the reduced pulse attenuation and, at the same time, reduce the detrimental
effects of diffusion by means of processing of the received signal.

2 Summary of the results

We developed rigorous approach [1] based on analytic complex-contour integration of
numerically determined cut and pole singularities of the radiative transport equation
solution in the Fourier space. We found, in the context of simulations based on the
developed algorithm, that the intensity of an optical pulse propagating in a dilute ran-
dom medium composed of scatterers large compared to the pulse carrier wavelength
(a condition well-met in the atmospheric cloud propagation scenario) contains, in
addition to the coherent (“ballistic”) contribution and a long late-time diffusive tail,
a narrow, sharply rising early-time diffusive component which

- can be attributed to the small-angle diffractive part of the scattering cross-
section on individual medium particles,

- is attenuated proportionally to the non-diffractive rather than total cross-section,

- can be extracted (due to its sharp rise and therefore rich high frequency con-
tent) by high-pass filtering of the received pulse , i.e., without the necessity of
performing any of the time-gating procedures,

In what follows we describe the areas of our work and our main results.
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2.1 Enhancing the strength of the early-time diffusion signal
through beam collimation in pulse propagation in sparse
discrete random media.

Propagation of short infrared/optical pulses in dilute random media (e.g., atmospheric
clouds, fog, dust, or aerosols) consisting of large, compared to the wavelength, scat-
terers, was analyzed in the framework of the radiative transport equation (RTE).

An emphasis was put on investigating properties of the RTE eigenmodes. It was
found that, in addition to the modes characterized by smooth angular distributions
of the energy flux density and responsible for the conventional “late-time” diffusion,
there exists another class of modes, exhibiting collimated angular distributions and
giving rise to the previously identified early-time diffusion phenomenon – a sharply
rising structure in the time-resolved intensity, immediately following the coherent
signal, but attenuated at a lower rate.

It was shown that designing a source strongly coupled to the collimated modes
significantly enhances the early-time diffusion signal and thus increases its potential
usefulness in imaging and communication.

The approach is described in detail in [2]. The paper is attached to this report as
Appendix A.

2.2 Improving resolution in imaging through obscuring me-
dia with early-time diffusion signals

We extended the analysis of early-time diffusion (ETD) phenomenon to the descrip-
tion of an imaging scenario involving a two-way (from the source to the observed
object and back to the detector) propagation of a short pulse through a layer of an
obscuring random medium.

We carried out a detailed analysis of the angular distributions of the energy flux
in solutions of the time-dependent RTE, resulting in computation of the point-spread
function (PSF) based on the extracted ETD component of the image.

The obtained PSF and the corresponding modulation transfer function (MTF)
characterizes both the incoherent ETD contribution (i.e., lower Fourier components of
the PSF) and the quasi-coherent ETD contribution (the highest Fourier components),
as well as the important transition between the two regions. The computation, which
included very high angular momenta (l > 1000), was facilitated by development of a
novel analytic technique allowing efficient transformation between angular momenta
in the RTE solution and the Fourier components of the PSF.

We showed that the angular resolution implied by the computed PSF is controlled
by the behavior of the dominant RTE modes responsible for the ETD signal and is
comparable to the angular width of the scattering cross-section on an average medium
constituent.
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Subsequently, we developed a regularized-deconvolution technique which allowed
a further significant resolution improvement - typically by the factor of 3 or 4 for
propagation at the distance of about 20 mean free paths - by enhancing higher Fourier
components of the PSF, up to the highest % values for which the radiance is still
attenuated at a reduced rate.

Development a regularized-deconvolution technique is an important result which
may further enhance the prospects of application of the ETD phenomenon in imaging.

The approach and the results are described in detail

- in the paper entitled “Improving resolution in imaging through obscuring media
with early-time diffusion signals”; the paper was submitted for publication to
the Journal of the Optical Society of America A and is attached to this report
as Appendix B,

- in the invited conference contribution “Early-time diffusion in imaging through
obscuring random media - two-way propagation and deblurring”, ICEAA 2018,
attached here as Appendix C.

2.3 A novel and efficient procedure for the evaluation of ma-
trix elements of the tensor and vector Green functions
in volumetric and surface integral equations in electro-
magnetics

As a tool useful in numerical verification of some aspects the RTE, a novel procedure
was developed [3, 4] for the evaluation of matrix elements of the tensor Green function
with Rao-Wilton-Glisson basis functions (defined on triangular supports) appearing
in surface integral equations and Schaubert-Wilton-Glisson basis functions (defined
on tetrahedral supports) appearing in volume integral equations in electromagnetics.

The procedure is based on evaluating Galerkin matrix elements of electromagnetic
volume and surface integral equations with the help of suitably constructed Laplacian-
type representations of singular kernels (Green functions) in terms of non-singular
auxiliary functions.

The task of finding specific Laplacian representations of various kernels amounts
to solving appropriate ordinary or partial inhomogeneous differential equations. Sim-
ple solutions of resulting ordinary differential equations which pertain to volume and
planar surface geometries are obtained in terms of elementary functions. In the case of
basis functions supported on non-parallel surface elements, partial differential equa-
tions for the auxiliary functions are first solved in Fourier space and then transformed
to simple expressions in coordinate space by evaluating integrals similar to those used
in treating Feynman diagrams.

The properly chosen Laplacian representations allow us, by using the Gauss di-
vergence theorem, to convert volumetric and surface integrals representing matrix
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elements to respective surface or line integrals always involving only non-singular
integrands.

The main advantage of the derived expressions is that they offer simplicity and
easily controllable accuracy achieved at a computational cost significantly lower than
that the for previously considered techniques, in particular the conventional singular-
ity subtraction method.

The invited 2017 EUCAP Symposium [5] and 2018 International Workshop on
Computing, Electromagnetics, and Machine Intelligence, CEMi’18 contributions ad-
dressing the above developments are attached as Appendices D and E.
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Solutions of the time-dependent radiative transfer equation
(RTE) are used to describe propagation of a pulsed collimated
beam through a random medium consisting of discrete scat-
terers of sizes large compared to the wavelengths—a situation
particularly relevant to free-space optical communication
through atmospheric obscurants. The RTE is solved in the
spherical-harmonics basis with no approximations other
than a truncation N in the angular momenta; the results
confirm convergence of the solution for a fixed beam width
and growingN . The obtained time-resolved radiance includes
both the usual “late-time diffusion” (LTD), responsible for
the well known reduction of the “coherence bandwidth”
and, thus, a serious limitation in the transfer rate, and the
more recently identified “early-time diffusion” (ETD) com-
ponent, attenuated at a rate significantly lower than for
the coherent (ballistic) signal and characterized by a very
short rise time, allowing a high-rate data transfer. The ratio
of the ETD to the LTD signal for the considered collimated
beams is much (orders of magnitude) higher than in the
previously examined problem of an omnidirectional source,
increasing its potential usefulness in communication and re-
lated imaging applications. © 2018 Optical Society of America

OCIS codes: (030.5620) Radiative transfer; (290.1090) Aerosol and

cloud effects; (290.1990) Diffusion; (290.2558) Forward scattering;

(070.2615) Frequency filtering.

https://doi.org/10.1364/OL.43.003762

In comparison with optical fiber and microwave communica-
tion, free-space optical (FSO) communication with short pulses
offers, potentially, multiple advantages—especially a low cost of
deployment and a high bit rate. Nevertheless, scattering in
atmospheric media (haze, fog, clouds, rain) remains a major prob-
lem, causing both losses and a reduction in the data rate [1]. The
latter difficulty is believed to be due to temporal spreading of
propagating pulses caused by scattering-induced diffusion [2–5],
as described by the radiative transfer equation (RTE) [6–9].

The commonly invoked physical picture is that a pulse
propagating in a scattering medium contains a short but
strongly attenuated coherent (ballistic) component and a slowly

decaying “late-time diffusion” (LTD) tail, whose length grows
with the propagation distance R as ΔtLTD ∼ R2∕�v0lt�, where
v0 ≈ c is the coherent wave propagation speed, and lt is the
mean-free-path in the medium (typically, several tens of meters
for an optical pulse traveling in an atmospheric cloud or fog).
The time Δt may easily exceed a microsecond scale, resulting in
the “coherence bandwidth” [2–4] of the order 1 MHz and the
correspondingly limited bit rate.

However, it has been noticed [10] that, if the scatterers in the
medium are sizable compared to the signal wavelength, 2πa ≫ λ0,
the time-dependent RTE solutions develop an additional “early-
time diffusion” (ETD) component immediately following the bal-
listic one. This component is due tomultiple small-angle scattering
within the forward-scattering peak of the medium constituent
differential cross-section and is characterized by a rise time

ΔtETD ≈
κ

�k0a�2
R2

v0lt

, (1)

where k0 � 2π∕λ0 is the pulse center wave number, a is the
scatterer radius, and, empirically, κ ≲ 0.1. Since in typical
atmospheric propagation scenarios k0a may be large (say, ∼50),
the time ΔtETD may be several orders of magnitude shorter
than the LTD time scale. Therefore, the rapidly rising ETD
signal, isolated by means of high-pass filtering, may be poten-
tially used in communication with a much higher data rate than
would be allowed by the LTD mechanism. Equally impor-
tantly, the EDT component is attenuated at a rate significantly
reduced compared to that of the coherent signal (about 0.65 for
visible light propagating in an atmospheric cloud or fog [10]).

The existence of the ETD phenomenon has been originally
established and discussed [10] in the case of an omnidirectional
source, which is relevant in describing light reflection from dif-
fusively scattering objects, but not adequate in the context of
communication (and many types of imaging) relying on nar-
rowly collimated beams. In this Letter, we address the behavior
of the ETD component in the latter problem and discuss its
specific features—not apparent in the previously described sol-
utions, but necessary in order to model propagation of narrow
beams—primarily, the angular distribution of the energy flux.

We note that, while previous treatments of RTE for colli-
mated scattering were based on small-angle, parabolic-type
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approximations, our approach is the first one, to the best of our
knowledge, in which the time-dependent RTE for large scatter-
ers is solved with no approximations other than a truncation
in the spherical-harmonics expansion; we show the convergence
of the results with the increasing truncation parameter. The
unique feature of our approach is that it correctly describes
the full range of angular momenta from low values responsible
for the LTD behavior to high values associated with the ETD, and
its transition to the coherent (ballistic) regime.

We model pulse propagation in an infinite random-scatterer
medium by means of the integro-differential scalar RTE,

�μt � v−10 ∂t � ŝ ·∇R�Γ�t,R; ŝ, ŝ 0� −
Z
d2 ŝ 0 0Σ�ŝ · ŝ 0 0�Γ�t,R; ŝ 0 0, ŝ 0�

� δ�t�δ3�R�δ2�ŝ − ŝ 0� (2)

for the Green function representing the probability density
of an infinitely short light pulse emitted in the direction ŝ 0
at the time 0 from a source at 0 to arrive in the direction ŝ
at the time t at the observation point R. The coherent attenu-
ation coefficient (the inverse of the mean-free-path) is
μt � 1∕lt � n0σt, where n0 is the medium number density,
and σt is the ensemble-averaged total cross-section on a single
scatterer; in the scattering kernel Σ�x� � n0σ�x�, σ�x� is the
corresponding differential cross-section ensemble-averaged over
scatterer sizes, shapes, orientations, dielectric properties, etc., and,
therefore, dependent only on x, the cosine of the scattering angle.

We solve the RTE in Eq. (2) by means of the standard
Green function expansion in plane waves in the variables t
and R and in spherical harmonics [7] or, more conveniently,
in rotated spherical harmonics [11–13] in the variables ŝ
and ŝ 0. After projecting on the same basis and truncating to
l , l 0 < N , one obtains for t > 0 the solution

Γ�t,R; ŝ, ŝ 0� � v0
X
m

X
j

Z
d3P
�2π�3 e

−iΩm
j �P�teiP ·R

×
X
l , l 0

wm
j,l �P�wm

j,l 0 �P�Y l ,m�ŝ; P̂�Y �
l 0,m�ŝ 0; P̂�, (3)

where Y l ,m�ŝ; P̂� is the rotated spherical harmonic defined rel-
ative to the direction P̂, and j � 1, 2,…, �N − jmj�2 labels
normalized (to wm

j �P�Twm
j �P� � 1) eigenvectors, obtained

by solving the eigenequation

Mm�P�wm
j �P� � iv−10 Ωm

j �P�wm
j �P�: (4)

Here, the complex symmetric �N − jmj� × �N − jmj� matrix
Mm�P� has elements Mm

l ,l 0 �P���μt −Σl �δl ,l 0 � iP�δl ,l 0�1bml �
δl 0, l�1bml 0 � with bml � ��l 2 − m2�∕�4l 2 − 1��1∕2 and the coeffi-
cients Σl � 2π

R
1
−1 dxPl �x�Σ�x�, proportional to projections

of the scattering cross-section on Legendre polynomials.
In the following, we consider an axisymmetric problem

with a spatially small source located at the origin, emitting a
pulsed beam in the z direction. For simplicity, we assume a
factorized source distribution S�t , ŝ� � A�t�BΘ�ẑ · ŝ� with
A�t� representing a short pulse (defined below) and with a
Gaussian-type beam shape

BΘ�ẑ · ŝ� �
1

2πΘ2 e
−�1−ẑ·ŝ�∕Θ2

(5)

of angular width Θ ≪ 1. The time-resolved intensity at an ob-
servation point R � Rẑ on the beam axis is then given by the
convolution of the Green function with the source temporal

and angular distribution S�t 0, ŝ 0�, integrated over all arriving
flux directions ŝ,

IΘ�t,R� �
Z

dt 0
Z

d2 ŝ
Z

d2 ŝ 0Γ�t − t 0,Rẑ; ŝ, ŝ 0�S�t 0, ŝ 0�:

(6)

With the Green function of Eq. (3), the intensity of Eq. (6)
takes the form

IΘ�t,R� �
X∞
l�0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2l � 1

p
Cl �Θ�Jl �t,R�: (7)

Here, the partial-wave intensities Jl are expressed in terms of
the eigenvectors wm

j �P� defined by Eq. (4):

Jl �t,R� �
v0
2π2

Z
dt 0

Z
∞

0

dPP2
X
j
e−iΩ

0
j �P��t−t 0�il jl �PR�

× w0
j,0�P�w0

j,l �P�A�t 0� (8)

(because of the axial symmetry, only m � 0 modes contribute
here), and {[14], Eq. (2.17.5.2)}

Cl �Θ� �
Z

d2 ŝPl �ẑ · ŝ�BΘ�ẑ · ŝ� �
2

Θ2 e
−1∕Θ2

il

�
1

Θ2

�
, (9)

where il �x� ≡ i
�1�
l �x� are modified spherical Bessel functions

{[15], Eq. (10.47.7)}. For Θ ≪ 1, the coefficients of Eq. (9)
are very accurately approximated by exp�−Θ2l 2∕2�.

As an example, we consider the RTE solution for an optical
pulse (center wavelength of λ0 � 0.633 μm ) propagating in an
atmospheric cloud or fog consisting of spherical water droplets
(relative permittivity ϵ � 1.77) of radii following the gamma
distribution with the conventional shape parameter ν � 10
and with the average radius a � 5 μm ≈ 7.9 λ0, hence,
k0a ≈ 50. Such droplets are characterized by a strongly
forward-peaked Mie-scattering differential cross-section. The
assumed number density n0 � 10−9 m−3 yields the attenuation
coefficient μt � 1∕lt ≈ �6 m�−1.

We also assume a Gaussian pulse A�t� � exp�−t2∕2T 2
p�∕

� ffiffiffiffiffi
2π

p
T p� of duration T p � 0.003lt∕v0 � 60 ps, less than

the ETD time scale of Eq. (1), which, in the present case and
for the considered propagation distances (up to R � 24lt), is
ΔtETD ≲ 0.010lt∕v0 � 200 ps. This finite pulse width intro-
duces an effective cutoff in the P integral of Eq. (8).

The RTE spectrum can be well characterized by considering
just the attenuation coefficients

μmj �P� � −ImΩm
j �P�∕v0, (10)

plotted in Fig. 1 for a particular truncation N � 800.
Obviously, for any finite truncation N , the spectrum is purely
discrete. However, the plots indicate that the spectrum can be,
approximately, split into the “quasi-continuum” and “truly dis-
crete” subsets:

(i) In the quasi-continuum spectrum, the attenuation coef-
ficient values form a densely populated band μ0j �P�∕μt ≈ 1,
i.e., at the level of the coherent wave attenuation. The corre-
sponding velocity eigenvalues vmj �P� � ReΩm

j �P�∕P are uni-
formly distributed over the interval �−v0, v0�.
(ii) The discrete frequency eigenvalues persist only up to a

certain critical P value [16] Pmax ∼ �k0a�2μt. Their “level den-
sity” is low for small μ0j �P�∕μt and increases on approaching the
quasi-continuum μ0j �P�∕μt ≈ 1.
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By comparing solutions for different N , one can see that as
N increases new modes are added to the quasi-continuum band
(whose width shrinks proportionally to 1∕N ), while the dis-
crete eigenvalues approach their asymptotic N � ∞ locations.
In the exact (not truncated) RTE, the continuum spectrum is
Ω ∈ �v0�−P − iμt�, v0�P − iμt�� and the discrete-spectrum
eigenvalues are contained in the region −v0P ≤ ReΩ ≤ v0P,
ImΩ ≤ 0, as can be deduced from the integral form of
the RTE.

In the previously considered [10] omnidirectional source
problem, the behavior of the time-resolved intensity could
be explained almost entirely in terms of the frequency eigen-
value distributions: the coefficient J0�t,R� involves only the
l � 0 components of the normalized eigenvectors w0

j , which
have relatively weak dependence on P and j. In this case,
the sum in Eq. (8) is dominated for every P by the “leading”
mode, i.e., that having the lowest attenuation coefficient of
Eq. (10). Those modes form a “leading trajectory” of eigenval-
ues, marked by a thick line in Fig. 1. Its low attenuation for
P∕μt ≲ 0.1 is characteristic of the usual LTD; with growing P,
its attenuation increases but, up to P � Pmax ≈ 1500μt,
remains lower than the coherent attenuation and gives rise
to the ETD signal. The corresponding velocities (not plotted)
are nearly zero and nearly v0 in the LTD and ETD regions.

In the present problem of a collimated beam, high-l compo-
nents in Eq. (7) become essential, and the distribution of the
eigenvector components becomes as important as the behavior
of eigenvalues. In Fig. 2, we plot such distributions for four
high P values (P∕μt � 100, 200, 500, 1000) responsible for
the ETD phenomenon [for low P, all discrete-spectrum eigen-
vectors have a very narrow l distributions and contribute mostly
to the l � 0 term in Eq. (7)]. For each of the four P values, we
selected here the leading (least attenuated) discrete-spectrum
mode and one mode belonging to the quasi-continuum. [As
a rule, nonleading discrete-spectrum modes have narrow l dis-
tributions and thus a minor effect on the large-l behavior of the
partial-wave intensities in Eq. (7).] For the lowest considered
value of P � 100μt, the l distribution of the discrete-spectrum
eigenvector elements is similar to that of the cross-section co-
efficients Σl , also plotted for comparison. With increasing P,
the l distributions of the eigenvectors significantly widen, cor-
responding to narrowing of the angular distributions of the
eigenfunctions. In contrast, quasi-continuum eigenvectors have
for all P values very wide l distributions with comparable

components in the entire range 0 ≤ l < N . The solutions were
computed here with the truncation N � 1600, which is seen
to have an effect only for l fairly close to N , as confirmed by an
additional curve obtained with N � 1200.

The computed spectrum and eigenvectors constitute the
basis for evaluating the partial-wave intensities Jl �t,R� and
the observed intensity IΘ�t,R� of Eq. (7). In particular, distri-
butions of the eigenvectors’ components w0

j,l control, through
Eq. (8), the l dependence of the intensities Jl �t,R�.

To visualize the behavior of the terms in Eq. (7), we plot in
Fig. 3 the factors Cl �Θ� and time averages

hJl �·,R�i � �t2 − t1�−1
Z

t2

t1
dtJl �t ,R� (11)

of the partial-wave intensitites of Eq. (8) taken over the interval
defined by �v0t1 − R�∕lt � −0.01 and �v0t2 − R�∕lt � 0.05,
in which the ETD signal is concentrated (cf. Fig. 4). Here and
in Fig. 4, the time-resolved intensities are plotted in the units
of v0∕l3

t .
Since the factors Cl �Θ� decay very rapidly with l , only a

limited range of l values contributes for a given value of Θ,
and the RTE may be safely truncated at, say, N � 6∕Θ,
corresponding to Cl �Θ� < 10−7. Figure 3 shows perfect stabil-
ity of the averages hJl �·,R�i for fixed l and increasing N and

Fig. 1. Radiance attenuation coefficients of Eq. (10), relative to the
coherent attenuation coefficient μt. The thick solid line marks the
“leading trajectory” consisting of the least attenuated modes.

Fig. 2. l components of the eigenvector w0
j �P� dominant for a given

P for several values of P: P∕μt � 100, 200, 500, 1000 for N � 1600
(thick solid lines) and N � 1200 (thick dashed line). The thin lines
show components of typical quasi-continuum eigenvectors.

Fig. 3. Time-averages hJl �·,R�i of the partial-wave intensities for
two propagation distances and for several truncations N as functions
of l (solid curves). The dashed curves represent the factors Cl �Θ� for
the indicated beam widths Θ � 0.050, 0.020, 0.010, 0.005.
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provides a practical “numerical proof” of the convergence of
the solutions.

Figures 2 and 3 illustrate several important facts:

1. For large l , the coefficients hJl �·,R�i approach constant
values, resulting from the quasi-continuum modes of Fig. 2. It
can be shown that, in fact, those coefficients converge to the
values of the “coherent” contribution to the radiance, defined as
the solution of the RTE without the scattering kernel (Σ ≡ 0).

2. At smaller l, the enhancement of hJl �·,R�i above its “co-
herent” level is due to contributions of the discrete modes rep-
resented in Fig. 2. This enhancement is precisely the ETD
signal characterized by the l range ∼k0a (here about 50),
but decreasing with l rather slowly and still having a significant
effect even at l ∼ 300. Thus, Fig. 3 shows a gradual transition
between the incoherent ETD radiance behavior in the smaller l
region and its asymptotic “coherent” large-l limit.

3. As functions of R, the factors hJl �·,R�i decay at different
rates in various l ranges. In the high-l regime, their decay
∼ exp�−μtR� is controlled by the coherent wave attenuation,
while for low l, their attenuation rate is reduced to about
0.65μt, the factor 0.65 being the ratio of the “nondiffractive”
scattering cross-section (i.e., that outside the forward “diffrac-
tive” scattering peak) to the total cross-section [10].

Finally, the top plot in Fig. 4 depicts the early-time (first
8 ns) behavior of the time-resolved intensities IΘ�t,R�.
They are computed according to Eq. (6) for propagation dis-
tance R � 24lt (i.e., R ≈ 144 m in the considered atmos-
pheric cloud medium) and for several angular beam widths
Θ. The ETD signal persists over the time interval of approx-
imately 1 ns, while, as the time increases, formation of the
LTD signal becomes visible. The bottom plot in that figure

shows the same intensities after high-pass filtering, which iso-
lates the ETD component of the signal, characterized by a short
rise-time. We used here a Gaussian filter 1 − exp�−T 2

f Ω
2∕2�, as

described in Ref. [10], assuming the filter width T f �
0.010lt∕v0 � 200 ps, about three times wider than the
emitted pulse. The time-resolved intensities for the omnidirec-
tional source (multiplied by 100 and 300) are included for
comparison.

The curves in Fig. 4 demonstrate that the magnitude of the
ETD signal significantly increases with the decreasing angular
width of the source distribution Θ. In particular, as soon as Θ
becomes comparable to or smaller than Θσ (the width of the
forward-scattering peak of the angular cross-section on an aver-
age medium constituent, here ≈0.021 rad), the ETD signal
becomes at least three orders of magnitude stronger than that
due to the omnidirectional source. Physically, at this degree
of beam collimation, the source injects most of its energy into
the desired ETD eigenmodes (which have comparable angular
widths), whereas for an omnidirectional source only its small
fraction ∼Θ2

σ can be utilized.
Although we concentrated here on optical communication

applications, our results can be also directly utilized (with an
appropriate change of scales) in millimeter-wave pulse propa-
gation through precipitation. They can also be used in many
types of transmission (trans-illumination) imaging, including
biomedical imaging or combustion diagnostics. On the other
hand, reflection-type imaging applications, involving two-way
propagation, require a more extensive analysis, which will be
presented elsewhere.

Funding. Air Force Office of Scientific Research (AFOSR)
(FA 9550-16-C-0014).
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A short pulse propagating through a medium consisting of randomly distributed scatterers, large com-
pared to the wavelength, is expected to develop an “early-time diffusion” (ETD) behavior: a sharply
rising structure in the time-resolved intensity, immediately following the coherent (ballistic) component.
Since the ETD signal is attenuated at a rate substantially lower than the coherent wave, it offers a pos-
sibility of application in imaging through scattering media (e.g., atmospheric obscurants). We describe
here imaging scenarios utilizing the ETD phenomenon, examine image formation techniques, and evalu-
ate, by using the radiative transport theory, the resulting point-spread function (PSF) characterizing the
image resolution. A directly formed image is shown to have an angular resolution comparable to the
width of the forward peak in the scattering cross-section of the medium constituents. This resolution can
be significantly improved by enhancing higher Fourier components of the PSF by means of regularized
deconvolution techniques. © 2019 Optical Society of America

OCIS codes: (030.5620) Radiative transfer, (290.1090) Aerosol and cloud effects, (290.1990) Diffusion, (290.2558) Forward scattering,

(290.4210) Multiple scattering, (110.4100) Modulation transfer function, (100.1830) Deconvolution.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

We previously described [1] a potentially significant and
useful behavior of solutions of the time-dependent radia-
tive transport equation (RTE) describing propagation of
short pulses in a discrete-scatterer medium: if scatterers
are large compared to the wavelength, the time-resolved
intensity develops a sharply rising structure immediately
following the coherent (ballistic) signal but attenuated at a
significantly lower rate. This “early-time diffusion” (ETD)
phenomenon can be understood in terms of the persistent
random walk interpretation of the RTE: it is associated
with those random-walk paths in which relative direc-
tions of the consecutive steps remain within the forward
peak of the differential cross-section for scattering on an
average medium constituent. In contrast, the ordinary
“late-time diffusion” (LTD), responsible for the long tail of
the observed signal, is associated with scattering at larger
angles.

It follows, in particular, that the attenuation of the ETD
signal is proportional not to the total cross-section (as for
the coherent component), but only to the sum of the ab-
sorption cross-section (usually small in the optical range)
and the cross-section for scattering at angles outside the
narrow forward-scattering peak.

The original analysis identifying the ETD phenomenon
[1] was done in the context of an omnidirectional source
and the observed time-resolved intensity integrated over
the energy flux angles, hence it did not directly involve
angular flux distributions. Subsequently [2], we analyzed
properties of the early-time diffusion signal for strongly
collimated sources (narrow beams); such a scenario per-
tains to optical communication applications. We found
that in this case the ratio of the ETD signal to the LTD
contribution may be much (orders of magnitude) higher
than for a wide beam. This fact can be explained in terms
of the eigenmodes of the RTE: the modes contributing to

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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the early-time part of the signal have also narrow angular
energy flux distributions and thus couple more strongly
to a narrow than to a wide transmitted beam.

Here we extend the analysis to reflection-type imaging
through an obscuring scattering medium, involving a two-
way signal propagation – from the source to the observed
object and back to the detector; the image is formed by
isolating the ETD component of the propagating pulse.
The main envisaged application is imaging through par-
ticulate obscuring atmospheric media, such as clouds, fog,
mist, and aerosols.

Our main result is development a regularized-
deconvolution technique which allows a significant resolu-
tion improvement by enhancing higher Fourier components
of the PSF, based on the theoretically predicted point-
spread function (PSF) associated with scattering in the
medium.

The content of the paper is as follows:
Estimates of the angular and temporal spreads of

pulses, based on the persistent random-walk model, are
discussed in Section 2. Imaging scenarios, in which the
image is formed by isolating the ETD component of the ob-
served intensity are described in Section 3. Computation
of the point-spread function (PSF) describing broadening
of the angular energy flux distribution caused by scatter-
ing of the pulse in the medium constitutes an important
element of our analysis (Section 4). High-accuracy solu-
tions of the RTE enable us to reliably evaluate high Fourier
components of the PSFs, including the incoherent ETD
contributions and a transition to the region dominated
by the coherent (ballistic) scattering. We find that the
angular resolution of the directly formed ETD-based im-
ages is comparable to the width of the forward-scattering
cross-section on the medium constituents. However, the
directly formed images do not utilize the full range of
Fourier components associated with the ETD signal (char-
acterized by attenuation lower than for the coherent sig-
nal). Those components can be augmented by regularized
deconvolution techniques (Section 5), leading to a signif-
icant resolution improvement, typically by the factor of
3 or 4 for propagation at the distance of about 20 mean
free paths. Our main findings, including a simulation of
the directly formed ETD-based image and its deblurred
counterpart, are summarized in Section 6.

2. PROPERTIES OF THE ETD SIGNAL
The main features of the ETD phenomenon can be qual-
itatively explained by means of the persistent random
walk on the sphere of flux directions (or, to a good ap-
proximation, on the plane of transverse directions). 1 We
consider propagation of a beam, originally along the z
axis, at the distance R; we denote the mean-free path 2

1 Such a description is related to the Fokker-Planck approximation to
the RTE, discussed already in [3] and followed by many later develop-
ments, e.g., [4–6].

2 This quantity is given by `t = 1/(n0 σt), where n0 is the medium
number density and σt the ensemble-averaged total cross-section on a

in the medium by `t and assume the differential scatter-
ing cross-section on an average medium constituent has a
narrow forward-scattering peak of the width θ0.

Then, with small-angle approximations, the transverse
(or angular) distance traveled in n steps of the random
walk will be

θn ≈
√

n θ0 . (1)

Assuming a propagation distance R in the medium, there
will be N ∼ R/`t steps in the random walk, hence the
total scattering angle will be

∆θ ∼
√

R
`t

θ0 . (2)

At the same time, the z distance traveled in the n-th step
is only

zn = `t cos θn ≈ `t
(
1− 1

2 θ2
n
)

(3)

rather than `t. Therefore, the total defect in the distance
traveled in the z direction (compared to the straight-line)
is

∆z ≈ `t
2

N

∑
n=1

θ2
n ≈

`t θ2
0

2

N

∑
n=1

n ≈ `t θ2
0 N2

4
∼ R2

4 `t
θ2

0 , (4)

and the time delay is given by ∆t = ∆z/v0, where v0 ≈ c
is the coherent-wave propagation speed in the medium.
The width of the forward-scattering peak can be, further,
estimated as θ0 ∼ 1/(k0a), where a is the scatterer radius
and k0 = 2π/λ0 is the center wave number of the pulse.
The estimates (2) and (4) are in a qualitative agreement
with the parameters derived from actual RTE solutions, 3

∆θETD(R) ≈ κθ

√
R
`t

1
k0a

(5)

and

∆tETD(R) ≈ κ2
θ

R2

v0 `t

1
(k0a)2 , (6)

with a numerical coefficient κθ . 0.3 (see [1]).
In the calculations reported in this paper we assume

parameters typical of optical propagation through an at-
mospheric cloud, fog, or mist: λ0 = 0.633 µm, a = 5 µm ≈
8 λ0, hence k0 a ≈ 50. The assumed number density of wa-
ter droplets will be n0 = 109 m−3, resulting in a relatively
short mean free path `t ≈ 7 m.

With the above parameters, the estimated angular and
temporal widths of the ETD signal for a distance R = 16 `t
are

∆θETD(R) ≈ 0.024 rad , ∆tETD(R) ≈ 0.2 ns . (7)

single medium constituent. Further details are given in Appendix A.
3 The value of ∆θETD(R) represents the width of the point-spread

function and depends on the procedure of its extraction from the RTE
computation (Section 4), hence it cannot be directly identified with the
estimate (2) based on a simple model.
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For comparison, the time scale of the ordinary, late-
time diffusion (LTD) is `t/v0 ≈ 20 ns. Accordingly, we
will consider transmitted pulses shorter than the ETD time
scale, typically of duration Tt . 0.1 ns, and in isolating
the ETD signal (as described below), we will use filters
of temporal width Tf somewhat larger than the ETD time
scale and much smaller than the LTD time scale.

3. THE IMAGING SCENARIO

We concentrate here on a “photographic” (non-scanning)
imaging scenario, where the scene is illuminated by a
relatively wide (pulsed) beam and the image is taken
by a camera – almost literally, except that each pixel in
the camera sensor records intensity as a function of time.
In an alternative, scanning, imaging scheme, a narrow
pulsed beam moves across the scene, illuminates indi-
vidual patches, and the reflected light is registered by a
“single-pixel camera”, i.e., an optical sensor which has
no angular resolution. Because of reciprocity, the two
imaging methods yield the same angular resolution; we
consider here the first, which appears conceptually (if not
technically) simpler.

For definiteness, we consider a flat scene covered by
a layer of an obscuring medium (such as fog, smoke, or
other aerosol) of thickness L. In the assumed active optical
imaging scenario (Fig. 1) the pulsed beam source and the
detector (the camera) is located at the height H directly
above the objects(s) of interest. 4 A large area of the scene
(much larger than the expected resolution) is illuminated
by a divergent beam of angular width Θ (Fig. 1(a)) and the
reflected light is observed by a camera collocated with the
beam source (Fig. 1(b)). The pixels of the camera have the
ability of recording the time dependence of the detected
intensity, hence the camera provides measures a time- and
angle-resolved light intensity.

It should be stressed that, although the above imag-
ing scheme is described in the language of atmospheric
remote sensing, a closely analogous procedure could be
applied to, e.g., medical imaging through a layer of a
biological tissue.

4The above assumptions are made for simplicity only; the treatment
can be generalized to a medium layer located above the scene and to a
slanted-view geometry. Although in that case evaluation of the PSF is
more involved, the results remain, qualitatively, unchanged.

(a) (b)

Fig. 1. A schematic representation of the considered
imaging scenario. (a): A pulsed beam of width Θ illu-
minates the scene; the light enters the medium layer
and, from each entry point R, travels a distance |R| ≈ L,
undergoing multiple scattering. (b): A camera located
above the medium slab and looking at the scene detects
light reflected from a diffusively scattering object lo-
cated at R = 0 on the scene; the reflected pulse again
undergoes multiple scattering in the medium until it
emerges from the medium at a point R, |R| ≈ L. Devi-
ations of the light propagation path from straight lines
are greatly exaggerated (the actual angles are of the or-
der of several hundredths of a radian).

In the above scenario the illuminating short pulse is
assumed to have a certain time profile A(t) and a certain
angular width Θ. On its way to the scene, the beam passes
through the layer and undergoes scattering, which causes
its spread in time, 5 such that its evolved time dependence
becomes AR(t).

In the optical domain, most objects of interest are dif-
fuse scatterers; therefore, reflecting points on the scene
can be considered secondary intensity sources, practically
omnidirectional, emitting pulses of time profiles AR(t).

The reflected pulse due to a scatterer located at the
origin (Fig. 1(a)) propagates through the medium layer
and undergoes further scattering, until it emerges from
the upper boundary of the layer and then travels along
a straight line through the camera lens to form an image
on the camera’s focal plane. More precisely, each pulse is
registered as a time-dependent intensity distribution at
pixel locations uniquely related to the angles at which the
light enters the camera aperture.

In the configuration of Fig. 1(b) and in the absence the
medium, the light reflected from the object would travel
to the detector along the z axis, i.e., the angle θd at which
the light enters the camera aperture woudl always be zero.
Scattering in the medium causes deviations from straight-
line propagation, hence the light leaving the medium at
some point R (Fig. 1(b)) may travel at an angle θ relative
to the straight-line path. Since we will isolate the early-
time component of the pulse, we may assume that the

5 The scattering-induced angular spread is small compared to the
assumed already wide beam, and practically does not affect scene illu-
mination.
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relevant angles are small (the estimates (2) and (5)). In this
small-angle approximation, the scattering angle θ and the
arrival angle θd are related by

θd ≈
L
H

θ . (8)

The relation Eq. (8) means that the width of the distribu-
tion of the arrival angle θd (which determines the image
angular resolution) is proportional (with the coefficient
L/H ≤ 1) to the width of the distribution of the angle θ at
which the light is scatterered in the medium.

This fact allows us to simplify the geometry of the
problem by placing the camera at the top of the medium
layer (Fig. 2(b)) and characterizing the image resolution
in terms of the distribution of the energy flux direction
(a unit vector ŝ and the related angle θ) at the detection
point R.

By comparing Figs. 1(a) and 2(a) we can also simplify
the the description of the bem propagation from the source
to the scene: In Fig. 1(a) the pulse emitted by the source
travels, before entering the medium, without changing its
time dependence or tranverse flux distribution. Therefore,
the source can be, as well, placed on top of the medium
layer, as in 2(a), without changing the time dependence of
the intensity illuminating the scene.

(a) (b)

Fig. 2. A simplified imaging scenario with the source
and detector located just above the medium layer.

To summarize, the angular resolution of the image seen
by the camera in Fig. 1(b) can be obtained by consider-
ing the simplified scenario of Fig. 2, evaluating the point
spread function (PSF) for that problem, and then reducing
the angle spread by the factor L/H of Eq. Eq. (8).

4. COMPUTATION OF THE PSF
We describe here the procedure of using solutions of the
RTE to evaluate the PSF expected to arise in the imaging
scenario discussed in the previous Section, first on the
conceptual (Subsections A and B) and then computational
(Subsections C and D) levels.

A. The received radiance
As discussed in the previous Section, the radiance ob-
served by the camera in the simplified imaging scenario
can be described as resulting from two consecutive pro-
cesses:

I: Downward propagation (Fig. 2(a)). The scene is illu-
minated by a source located at the point R = (0, 0, R)
on the upper boundary of the medium slab, emitting a
pulsed beam of a certain initial intensity time profile A(t)
of width Tp and an angular distribution B(cos θ) of some
width Θ� 1. For definiteness, we assume here Gaussians,

A(t) =
e−t2/2T2

p

√
2π Tp

, (9a)

B(cos θ) =
e− (1−cos θ)/Θ2

2π Θ2 ≈ e− θ2/2Θ2

2π Θ2 , (9b)

normalized to
∫ ∞
−∞dt A(t) = 1,

∫ 1
−1d cos θ B(cos θ) ≈ 1.

As a result of propagation to the reflecting point on the
scene, the pulse time-dependence becomes a stretched
profile AR(t), dependent on the propagation distance R
and the initial beam width Θ.

Since we are only concerned with the ETD signal, we
can replace the medium slab with an infinite medium,
since any propagation paths extending outside the in-
terval 0 ≤ z ≤ L will be too long to contribute to the
observed intensity within the ETD time range.

Now, the intensity profile AR(t) arising in the process I
is the convolution of the Green function Γ with the initial
pulse temporal and angular distributions, integrated over
the final flux directions (since the object is assumed to
reflect light independently of the incidence angle). There-
fore,

AR(t) =
∫

dt′
∫

d cos θ I(t− t′, R, cos θ) A(t′) B(cos θ) ,

(10)

with the radiance

I(t, R, cos θ) ≡ I(t, |R|, R̂ · ŝ) =
∫

d2 ŝ′ Γ(t, R; ŝ, ŝ′) , (11)

given by the Green function of the RTE (Appendix A)
integrated over the final energy flux direction, hence a
function of only the propagation time and distance, as
well as the cosine of the angle θ between the propagation
and the initial flux direction.
II: Upward propagation (Fig. 2(b)). The point object
on the scene reflects, diffusively (omnidirectionally), the
pulse AR(t) and the evolved pulse is detected by the cam-
era collocated with the source. The camera is assumed to
register the light intensity as function of time t and of the
arrival angle θ.

As a result of the process II, the received radiance, say
IA, is the convolution of the time profile of the reflected
pulse and the same as before radiance (11),

IA(t, R, cos θ) =
∫

dt′ I(t− t′, R, cos θ) AR(t′) , (12)

where now θ is the angle between the propagation and
the received energy flux directions (Fig. 2(b)).
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B. Image formation and the PSF
The image of the considered point object, represented by
the radiance Eq. (12), can be now identified with the point-
spread function which, in turn, will provide an estimatede
of the image resolution.

The radiance (12) contains both the early- and the late-
time diffusion contributions, the latter having a very wide
angular flux distribution and thus of no use in imaging.
In order to isolate the first, ETD, component, we apply to
IA(t, R, cos θ) an appropriate high-pass filter Φ and obtain
[1, 2] the convolution

IΦ,A(t, R, cos θ) ≡
(
Φ(·) ◦ IA(·, R, cos θ)

)
(t)

:=
∫

dt′ Φ(t− t′) IA(t
′, R, cos θ) ; (13)

the latter quantity, still time-dependent, will be significant
only in a short interval containing the ETD signal.

The actual image will be formed based on intensities
measured by pixels on the focal plane located at points q
relative to the optical axis of the camera. With no loss of
generality we can express the distances q = |q| in units
of the focal length, which implies that the arriving energy
flux direction can be approximated (for small angles) by
ŝ = (q, 1− q2/2) or, equivalently, by setting cos θ = 1−
q2/2, 0 ≤ q ≤ 2.

The filtered intensity Eq. (13) – still time-dependent –
is not, in general, positive definite. Therefore, we propose
that the actual “intensity image” (in the present case, the
point-spread function) is formed defined by taking the
absolute value of the filtered intensity (13) and integrating
it over a time interval containing its peak. The postulated
expression for the PSF is thus

Λ(R; q) =
∫ t2

t1

dt
∣∣IΦ,A

(
t, R, 1− 1

2 q2)∣∣ (14)

where the integration limits t1 and t2 can be automatically
determined on the basis of the shape of the filtered signal,
without any a-priori knowledge of the arrival time of the
pulse.

For an arbitrary scene, our prescription for image for-
mation is

F(R; q) =
∫ t2

t1

dt
∣∣Φ(·) ◦ I

(
·, R, q, 1− 1

2 q2)∣∣ , (15)

where I(t, R, ŝ) is the radiance measured by the camera.

C. Implementation
The PSF (14) is defined in terms of the received radiance
(12) and, ultimately, in terms of the basic radiance (11).
The latter quantity, as discussed in Appendix A, is given
as the partial-wave expansion (46) with the coefficients
(47) computed directly from the solution of the RTE.

Our experience has shown that one should avoid di-
rectly storing and operating on rapidly varying functions
of θ, such as the radiances and the resulting PSF, tabulated
at uniformly distributed θ points. It is more economical
to use Gauss-Legendre quadrature points or, alternatively,

store the function in its partial-wave (l) representations.
Therefore, we operate as much as possible in the “l-space”
and only at the end of the computation synthesize the
appropriate Fourier-Legendre series, such as (46) and,
eventually, construct the PSF (14).

Computation of the radiances. The first stage of the com-
putation is to obtain the solution of the time-dependent
RTE, as described in Appendix A. The time- and angle-
resolved radiance (11) is represented by Eq. (46) in terms
of its partial-wave components Il which, in turn, are given
by Eq. (47), in terms of the eigenvalues and eigenfunctions
of the RTE operator; their properties – especially those
pertaining to the early-time behavior of the solution – are
also discussed in the Appendix.

Next, the partial-wave radiance components Il(t, R)
are used to evaluate the quantities (10) and (12) associ-
ated with downward (I) and upward (II) propagation are
expressed in terms of the RTE solutions:
I: With the angular source distribution (9b) and the expan-
sion (46), the evolved pulse profile AR(t) is given by

AR(t)

=
∞

∑
l=0

∫
dt′ Il(t− t′, R) A(t′)

∫
d cos θ Pl(cos θ

)
B(cos θ)

=
∞

∑
l=0

Cl(Θ)
∫

dt′ Il(t− t′, R) A(t′) (16)

with the coefficients ([7], Eq. (2.17.5.2))

Cl(Θ) =
2

Θ2 e− 1/Θ2
il

(
1

Θ2

)
(17)

Θ�l� 1− l (l + 1)
2

Θ2 +
l (l + 1) [2 l (l + 1) + 1]

16
Θ4 + · · ·

given in terms of modified spherical Bessel functions
i l(x) ≡ i(1)l (x) ([8], Eq. (10.47.7)). 6 In practice, for Θ� 1,
Cl(Θ) is very well approximated by exp(−Θ2 l2/2) [2].
II: The radiance distribution (12) observed by the detector
can be also represented, as in Eq. (46), in terms of its
partial-wave projections, given by

IA, l(t, R) =
∫

dt′ Il(t− t′, R) AR(t′) . (18)

Computation of the PSF. Further, high-pass time filtering
(Eq. (13)) isolates the ETD components of the received
partial-wave intensities,

IΦ,A, l(t, R) =
∫

dt′ Φ(t− t′) IA l(t
′, R) , (19)

Finally, the last partial-wave representation is converted
to the filtered radiance (13),

IΦ,A(t, R, 1− q2/2) (20)

=
∞

∑
l=0

√
2l + 1 Pl

(
1− 1

2 q2) IΦ,A, l(t, R) ,

6 The last expansion in Eq. (17) is useful, because typical implemen-
tations (such as the gsl package) may fail in the region of moderate l
(. 150) and small Θ (. 10−3).
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which is integrated to obtain the PSF (14), as a function of
the image coordinates q = |q|.

In view of the deblurring procedure, to be discussed
in Sec. 5, we also evaluate the two dimensional Fourier
transform (Hankel transform) of the PSF, as a function of
the spatial frequency $ = |$|,

Λ̃(R, $) =
∫

d2q e− i $·q Λ(R, q)

= 2π
∫ 2

0
dq q J0($ q)Λ(R, q) . (21)

In particular, the above quantity, normalized to unity at
zero frequency,

M̃(R, $) =
Λ̃(R, $)

Λ̃(R, 0)
, (22)

is the conventional modulation transfer function (MTF).

D. Results for the PSF
The following describes the actual computational proce-
dure, with the order of operations (sums, integrals, filter-
ing, etc.) designed to optimize its efficiency.

The RTE theory predicts that the temporal width of
the ETD signal should be proportional to the propagation
distances squared; hence, with increasing the distance
from R/`t = 16 to R/`t = 24, the filter width Tf should
increase by the factor (24/16)2 = 2.25. Correspondingly,
for R/`t = 16 we use a filter of width Tf = 0.010 `t/v0
and for R/`t = 16 a filter of width Tf = 0.020 `t/v0.

Computations of the PSF have been carried out for a
high angular-momentum truncation l < N, N = 1600, us-
ing the procedure discussed above, and the RTE solutions
obtained as described in Appendix A. Dependence of the
solutions on the truncation and the character of its con-
vergence for N → ∞ is further discussed in Ref. [2]. The
results obtained for the MFT (22) are plotted in Fig. 3. The
MFT provides, essentially, the same information as con-
tained in its Fourier transform, the PSF; in particular, the
inverse of the width of the MTF determines the angular
resolution of the PSF (,easured in radians).

For comparison, we also plot in this Figure the Hankel
transform of the ensemble-averaged differential scattering
cross-section σ(cos θ) on a medium consitituent,

σ̃($) := 2π
∫ 2

0
dq q J0($ q) σ

(
1− 1

2 q2) . (23)

The presence of relatively high-$ components in the trans-
form σ̃($) is indicative of a sharp forward-scattering
(θ ≈ 0) peak in the cross-section. However, σ̃($) decays
faster than exponentially and becomes negligibly small for
$ & 200. In contrast, the plotted MTF, after an initial ex-
ponential decay, flattens out, and remains nearly constant
up to the maximum $ value, which is the truncation value
N = 1600. The presence of such large Fourier components
in the PSF suggests a potential possibility of recovering

those components by means of regularized deconvolu-
tion and thus achieving a substantial improvement in the
image angular resolution.

Fig. 4 shows the unnormalized Fourier transform
Λ̃(R; $) of the PSFs for the two considered propagation
distances. It is evident that, with the increasing distance,
the distribution at relatively small $ ($ . 200) decays at
a lower rate than the large-$ components. This behavior
indicates that the lower $ contributions are due to the
early-time diffusion, while the highest $ components of
the PSF can be, essentially, attributed to coherent (ballistic)
propagation.

In the smaller $ range the ratio of the MTFs is

Λ̃(24 `t; $)

Λ̃(16 `t; $)
≈ e−0.64·(24−16) , (24)

in agreement with the prediction that the attenuation
of the ETD signal should be about 65 % of the coher-
ent signal attenuation [1]. At the same time, the large-$
($ & 400 rad−1) part of the MTF decays at nearly the same
rate as coherent scattering, the ratio in Fig. 4 being close
to e− (24−16) ≈ 3.4 · 10−4; accordingly, we refer to these
contributions as “quasi-coherent”.
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Fig. 3. Normalized MTFs computed with R-dependent
high-pass filter widths.

1e-14

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

0 200 400 600 800 1000 1200 1400 1600

R/ℓt = 16

R/ℓt = 24

Λ̃(R, ̺)

∼ σ̂(̺)

∼ σ̂(̺)

̺ (rad−1)

Fig. 4. Unnormalized MTFs computed with R-
dependent high-pass filter widths.
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5. DEBLURRING BY REGULARIZED DECON-
VOLUTION

A widely used approach to improving resolution of im-
ages is based on deconvolution with Tikhonov-type regu-
larization (e.g., [9, 10]).

In the considered imaging scenario, linearity of the mea-
sured image intensity in the objects’ reflectivity implies
that the observed image is given by the convolution

F(q) =
(
Λ ◦ f

)
(q) + η(q) , (25)

where f is the ideal image (object) function, Λ is the PSF,
and η a random function representing an additive noise.
In Fourier space 7 convolutions become products, 8 hence
recovering the unknown ideal image amounts to solving
the (usually ill-posed) inverse problem

Λ̃($) f̃ (η; $) = F̃($)− η̃($) (26)

with its “exact” r.h.s. F̃ perturbed by the noise, hence the
dependence of the solution f on η.

A naive inverse filtering procedure amounts to con-
structing

f̃ (η; $) =
F̃($)− η̃($)

Λ̃($)
; (27)

division by the Fourier-space PSF enhances large Fourier
components of the observed image and improves the res-
olution. In particular, when applied to the PSF itself
(F̃ = Λ̃), inverse filtering would yield a constant in the
Fourier space (hence a delta function in $), provided the
noise contribution could be neglected.

However, the prescription Eq. (27) is well known to fail
in many (if not most) realistic problems just because of the
noise: while, typically, both F̃ and Λ̃ represent functions
smoothly varying from pixel to pixel, and thus rapidly de-
caying for large |$|, the noise at different pixels is largely
uncorrelated and thus its spectrum is very wide. For this
reason, the noise contribution in Eq. (27) may, for large
|$|, overwhelm the measured image data F̃($) – which
is a symptom of the problem being ill-posed. Decades of
research and experience in such problems suggest that in
many situations an adequate solution solution is a simple
regularized deconvolution

f̃β(η; $) =
Λ̃($)

[
F̃($)− η̃($)

]

Λ̃2($) + β2
(28)

with a real regularization parameter β > 0. The solu-
tion f̃β(η; $) is a result of minimizing a modified penalty
function |Λ̃ f̃ − (F̃− η̃)|2 + β2 | f̃ |2, instead of the original
function |Λ̃ f̃ − ( f̃ − η̃)|2.

7 In a practical implementation q would be discrete and would repre-
sent image pixels, hence the Fourier transform would be also a discrete
one. In our problem f̃ , F̃, and Λ̃ are real.

8 More generally, the discretized equation (26) can be diagonalized
by applying to it the singular-value decomposition.

As it is known in general and will be seen in the proce-
dure described below, the parameter β can be adjusted so
that, depending on $, the noise contribution to f̃ β(η; $) is
much smaller than the signal (F) contribution, or both η
and F contributions are negligibly small.

To assess the resolution improvement achievable with
the described regularized deconvolution, we apply it to
the PSF itself and define the “deblurred PSF” by

Λ̃β(η; $) =
Λ̃($)

[
Λ̃($)− η̃($)

]

Λ̃2($) + β2
. (29)

It is convenient to express the above deconvolution in
terms of the (now time-independent) MTF defined by
M̃t($) = Λ̃($)/Λ̃(0) and the dimensionless noise η̂ and
regularization parameter β̂, defined by

η̂($) :=
η̃($)

Λ̃(0)
, β̂ :=

β

Λ̃(0)
. (30)

We also assume here an approximately white noise, i.e.,
η̂($) ≈ const throughout the entire $ range (in the sense
of the values of the autocorrelation of η̂). In order to In
the deblurred MFT,

M̃β(η; $) =
M̃($)

[
M̃($)− η̂($)

]

M̃2($) + β̂2
, (31)

we have to take β̂ satisfying the conditions

|η̂($)| � β̂� 1 . (32)

In analyzing the behavior of MFT Eq. (31), we can dis-
tinguish three regions:

(A) β̂� |M̃($)| ≤ 1: Here we have

M̃β(η; $) ≈ M̃($)− η̂($)

M̃($)
, (33)

hence the signal contribution is nearly unity and the
noise relative to the signal is small, |η̂($)|/|M̃($)| �
β̂� 1.

(B) |η̂($)| � |M̃($)| � β̂: In this domain

M̃β(η; $) ≈ M̃($)
[
M̃($)− η̂($)

]

β̂2
(34)

and the signal contribution to M̃β(η; $) is small,
S($) := M̃2($)/β̂2 � 1. However, the noise compo-
nent N($) is even smaller, ensuring a small ratio
N($)/S($) ≈ |η̂($)|/|M̃($)| � 1.

(C) |M̃($)| � |η̂($)| � β̂: Here the approxima-
tion (34) still applies and yields extremely small
signal and the noise, S($) ≈ M̃2($)/β̂2 ≪ 1 and
N($) ≈ M̃($) η̃($)/β̂2 < η̃2($)/β̂2 ≪ 1.
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As a reliable model of noise would have to depend on
the details of the technical implementation of the consid-
ered imaging scheme, we rather assume a certain noise
level, say η0, and take β̂ sufficiently large (Eq. (32)) to
make the deconvolution result simply immune to noise.

The original MTF and the deconvolution result
M̃β(η; $) are plotted in Figs. 5(a) and (b) for the two con-
sidered propagation distances. In both cases we assumed
the noise η0 at the level of the quasi-coherent large-$ con-
tribution to the MTF, which means that the coherent com-
ponent of the image is, in practice, unobservable. Cor-
respondingly, we took β̂ = 0.01 and β̂ = 0.001, about
10 times higher than the noise level. In this sense, our
deblurred PSF is dominated by the incoherent early-time-
diffusion component of the signal. It is seen that the val-
ues of the deblurred MFT stay close to 1 in a considerable
range of q values, hence a significant resolution improve-
ment can be expected.
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Fig. 5. MTFs for two layer thicknesses, original and after
deconvolution, with the indicated values of the regu-
larization parameter β̂, under the assumption that the
noise levels coincide with the levels of the high-$ tails of
the original MFT. The shape of the Fourier transform of
the scattering cross-section is plotted for comparison.

This expectation is confirmed in Figs. 6(a) and (b) which
show the original PSF Λ($) and the “deblurred PSF”,
i.e., the absolute value of the inverse Fourier transform
Mβ(η; q) ≡ Λβ(η; q)/Λβ(η; 0) of the function M̃β(η; $),

both normalized to their values at q = 0. It is evident that
the distribution of Mβ is significantly narrower than that
of Λ and the differential cross-section σ. The above state-
ment holds not only for the smaller propagation distance
(for which there is still a significant coherent component
contribution, represented by the narrow component of Λ)
but also for R/`t = 24, for which the coherent component
is negligible.
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Fig. 6. Original and deblurred PSFs for two layer thick-
nesses, R/`t = 16 and R/`t = 24. The FWHM widths
of the distributions are, approximately, 0.004 and 0.010
radians.

Finally, Fig. 7 shows a simulated image (for R/`t =
24) of two point objects separated by the angle of 0.015
radians, corresponding to the original (a) and deblurred
(b) PSFs. After deblurring, the two points are clearly
distinguishable, although still surrounded by halos, which
will, generally, reduce the image contrast.
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(a)

(b)

Fig. 7. Simulated images, before (a) and after (b) deblur-
ring, for R/`t = 24 and for the angular distance of 0.015
radians between the two point objects.

6. SUMMARY
In this paper we extended the previous treatment of the
early-time diffusion (ETD) phenomenon to the description
of an imaging scenario involving a two-way propagation
of a short pulse through a layer of a random medium.
We carried out a detailed analysis of the angular distribu-
tions of the energy flux in solutions of the time-dependent
RTE, resulting in computation of the point-spread func-
tion (PSF) based on the extracted ETD component of the
image.

The obtained PSF and the corresponding modulation
transfer function (MTF) characterizes both the incoher-
ent ETD contribution (i.e., lower Fourier components of
the PSF) and the quasi-coherent ETD contribution (the
highest Fourier components), as well as the important
transition between the two regions. The computation,
which included very high angular momenta (l > 1000),
was facilitated by development of a novel analytic tech-
nique allowing efficient transformation between angular
momenta in the RTE solution and the Fourier components
of the PSF.

The angular resolution implied by the computed PSF
is controlled by the behavior of the dominant RTE modes

responsible for the ETD signal and is comparable to the
angular width of the scattering cross-section. We then
showed that, by using regularized deconvolution tech-
niques, one can significantly improve the angular image
resolution by effectively enhancing higher Fourier compo-
nents $ of the PSF, up to the highest $ values for which the
radiance is still attenuated at a reduced rate. This finding,
illustrated in Sec. 5, may further improve the prospects of
application of the ETD phenomenon in imaging.
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A. SUMMARY OF THE RTE AND A SOLUTION
TECHNIQUE

The RTE [3, 11–13] for the coordinate space Green function
Γ in an unbounded statistically homogeneous random
medium can be written in the standard form
(
µt + v−1

0 ∂t + ŝ ·∇R
)

Γ(t, R; ŝ, ŝ′) (35)

−
∫

d2 ŝ′′ Σ(ŝ ·ŝ′′) Γ(t, R; ŝ′′, ŝ′) = δ(t) δ3(R) δ2(ŝ− ŝ′) ;

here Γ(t, R; ŝ, ŝ′) is the radiance at the observation point
(t, R) due an infinitely short pulse emitted at the time
t = 0 from the origin R = 0 in the direction ŝ′ (|ŝ| =
|ŝ′| = 1). The differential operator in the first line of the
RTE (35) represents pulse propagation along a straight
line, with the velocity v0 ≈ c (for a dilute medium) and
with the attenuation coefficient (the inverse of the maen
free path) µt = 1/`t = n0 σt, where n0 is the number
density of the medium and σt is the ensemble-averaged
total cross section on a single scatterer. Scattering in the
medium is described by the kernel Σ(ŝ ·ŝ′) = n0 σ(ŝ ·ŝ′),
proportional to the (also ensemble-averaged) differential
scattering cross-section σ on a single medium constituent.

After decomposing the Green function in plane waves
of frequencies Ω and wave vectors P,

Γ(t, R; ŝ′′, ŝ′) =
∫ dΩ

2π

∫ d3P
(2π)3 e− i Ω t e i P·R

Γ̃(Ω, P; ŝ, ŝ′) , (36)

the integro-differential equation (35) becomes
(
µt − i v−1

0 Ω + i P ẑ·ŝ
)

Γ̃(Ω, P; ŝ, ŝ′) (37)

−
∫

d2 ŝ′′ Σ(ŝ ·ŝ′′) Γ̃(Ω, P; ŝ′′, ŝ′) = δ2(ŝ− ŝ′) .

Here the wave vector P has been taken along the z axis,
since a general solution can be obtained from this one by
a simple rotation.

In the angular-momentum formulation, the Green func-
tion in the RTE (37) is expanded in spherical harmonics,

Γ̃(Ω, P; ŝ, ŝ′) = ∑
m,l,l′

Yl,m(ŝ)Y∗l′ ,m(ŝ
′) Γm

l,l′(Ω, P) . (38)
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By substituting the above expansion in Eq. (37) and
projecting the equation on the same set of spherical har-
monics, one obtains an infinite system of equations

∑
l′′

Mm
l,l′′(Ω, P) Γm

l′′ ,l′(Ω, P)− Σl Γm
l,l′(Ω, P) = δl,l′ , (39)

where

Σl = 2π
∫ 1

−1
dx Pl(x)Σ(x) (40)

and

Mm
l, l′(Ω, P) = (µt − i v−1

0 Ω) δl, l′ + i P Bm
l, l′

≡ − i v−1
0 Ω δl, l′ + Mm

l, l′(P) , (41)

with

Bm
l, l′=

∫
d2 ŝ Y∗l,m(ŝ) ẑ·ŝ Yl′,m(ŝ)

= δl, l′+1 bm
l + δl′ , l+1 bm

l′ , (42)

where bm
l =

√
(l2 −m2)/(4l2 − 1).

The Green function, truncated to N partial waves (l <
N), can be then represented as

Γm
l, l′(Ω, P) = i v0

N

∑
j=1

wm
j,l(P) wm

j,l′(P)

Ω−Ωm
j (P)

(43)

in terms of frequency eigenvalues Ωm
j (P) and eigenvec-

tors wm
j (P) of the equation

Mm(P)wm
j (P) = i v−1

0 Ωm
j (P) wm

j (P) . (44)

As can be seen, e.g., from Eqs. (36), (46), and (47), the
imaginary parts of the frequency eigenvalues control at-
tenuation coefficients µ of the radiance modes and their
real parts yield the modes’ propagation velocities v,

µm
j (P) = −

Im Ωm
j (P)

v0
, vm

j (P) =
Re Ωm

j (P)

P
. (45)

As discussed in [2], the eigenvalues Ωm
j (P) can

be, for each P, approximately partitioned into
a “discrete” spectrum of well separated points
and a “quasi-continuum” concentrated near the
set Ωm

j (P) ∈ C ≡ [−v0 P− i v0 µt, v0 P− i v0 µt], i.e.,
µm

j (P) = µt and −v0 ≤ vm
j (P) ≤ v0. With the improving

discretization (truncation N → ∞), the quasi-continuum
spectrum converges to the continuum set C.

The quantities µm
j (P) and vm

j (P) in Eq. (45), computed
with the medium parameters listed in Section 2 and with
the RTE truncation 9 N = 800 are plotted in Fig. 8. As
marked in the Figure, low-attenuation and low-velocity
modes appearing for smaller P values (say, P/µt < 1) are
responsible for the ordinary late-time diffusion. Early-
time diffusion is associated with those high-P modes for

9 Results for higher truncation values are visually almost identical,
except that the width of the “quasi-continuum band” in µm

j (P)/µt de-
creases approximately as ∼ 1/N.

which velocities approach the coherent wave velocity and
which are still attenuated significantly less than the coher-
ent component.

The crucial feature of the spectrum is that its discrete
component persists only up to a certain maximum P value,
estimated [1] as Pmax ∼ (k0 a)2; in our case Pmax ∼ 2500.
Beyond that P value all the modes belong to the contin-
uum and are attenuated at the same rate as the coherent
wave.

The point-spread function (Section 4) is expressed in
terms of the radiance (11), which, according to Eqs. (36),
(38), and (43), takes the form of the partial-wave expansion

I(t, R, cos θ) =
∞

∑
l=0

√
2l + 1 Pl

(
cos θ

)
Il(t, R) (46)

with the coefficients 10

Il(t, R) =
v0

2π2

∫ ∞

0
dP P2 ∑

j
e− i Ω0

j (P) t il j l(PR)

w0
j,0(P)w0

j,l(P) , (47)

where the spherical Bessel functions result from a decom-
position of a plane wave into spherical harmonics and
from angular integration.

In reality, the transmitted intensity pulse always has a
finite time duration; for example, it may be a Gaussian
(9a) of width Tp. The observed radiance is then the con-
volution I ◦ A of the radiance (46) with the pulse profile
A. That convolution, in turn, is equivalent to introduc-
ing in the integral (47) a window (or a low-pass filter),
effectively limiting the P integration to P/µt . `t/(v0 Tp).
The window corresponding to Tp = 0.002 `t/v0, hence
P/µt . 500, is shown by the dashed lines in Figs. 8. In
this case the P cutoff is high enough to include essentially
all the ETD contributions; further shortening of the trans-
mitted pulse has practically no effect, since it only adds
contributions attenuated at the rate of the coherent signal.

While distribution of the eigenvalues Ω0
j mostly affects

the time dependence of the radiance (46), its angular de-
pendence is controlled by the behavior of the components
of the eigenvectors w0

j (Eq. (47)).
Fig. 9 shows partial-wave distributions of several eigen-

functions for small P (contributing to the late-time diffu-
sion) and for large P (contributing to the ETD signal). The
plots show that, for each P, the eigenvector components
decay with l nearly exponentially, but with P-dependent
slopes.

Another way of assessing the angular dependence of
radiance is to consider the individual partial-wave contri-
butions (47). In Fig. 10 we plot, in the time range compa-
rable to the estimated ETD time scale (6), the coefficients
Il(t, R) convolved with the transmitted pulse (9a), as ap-
pearing in Eq. (16). The low partial waves have a smooth
time dependence characteristic of late-time diffusion. In

10 These coefficients are identical to Jl defined in [2], Eq. (8), for a
delta-function source, A(t) = δ(t).
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particular, the l = 0 coefficient is very small in the consid-
ered time range and becomes large only in the late-time
diffusion regime, (v0t− R)/`t > 1 and (v0t− R)/`t � 1.
As l increases, the functions Il(t, R) rise with time more
and more steeply and, for sufficiently large l, also decay
more rapidly with t. In other words, high-l contributions
to radiance become entirely concentrated in the ETD time
range.

We note here that the individual partial-wave com-
ponents of the radiance are not constrained to be non-
negative; the non-negativity condition applies only to the
total radiance (46), and holds for the results of our com-
putations.
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Fig. 8. Eigenvalues of attenuation coefficients and prop-
agation velocities (45) of the RTE modes, relative to the
corresponding quantities for the coherent wave prop-
agation. Dashed curves represent the window in the
integration variable P, due to the transmitted pulse (9a)
of duration Tp = 0.002 `t/v0.
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Fig. 9. Partial-wave components of leading modes for
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spectively, the lower- and higher-l components of the
eigenvectors. The RTE is truncated at N = 1200.
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Fig. 10. Time dependence of the partial-wave coeffi-
cients (47) convolved with a short transmitted pulse
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R/`t = 24 (b), for the indicated angular momenta
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able only for (v0t − R)/`t > 1, i.e., in the late-time
diffusion regime.
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Abstract—The radiative transport theory predicts that a short
pulse propagating through a random medium consisting of
discrete scatterers of sizes large compared to the wavelength
develops to develop an “early-time diffusion” (ETD) component:
a sharply rising structure in the time-resolved intensity, imme-
diately following the coherent (ballistic) signal, but attenuated
at a rate substantially lower than the coherent attenuation. This
phenomenon offers a possibility of application in imaging through
obscuring (e.g., atmospheric) media. We describe here an imaging
scenario utilizing the ETD signal, evaluate the resulting point-
spread function characterizing the image resolution, and show
how that resolution can be significantly improved by means of
regularized deconvolution techniques.

Index Terms—propagation, random medium, imaging radia-
tive transfer

I. INTRODUCTION

We have previously identified [1] an interesting behavior of
solutions of the time-dependent radiative transport equation
(RTE) describing propagation of short pulses in a discrete-
scatterer medium: if scatterers are large compared to the
wavelength, the time-resolved intensity develops a sharply
rising structure immediately following the coherent (ballistic)
signal but attenuated at a significantly lower rate.

In this note we concentrate on the angular distribution
of the energy flux associated with the ETD components of
the radiance and on the problem of the angular resolution
in imaging based on the ETD signals. The main envisaged
applications include imaging through particulate obscuring
atmospheric media, such as fog, mist, and aerosols; however,
a closely similar approach can be applied to laboratory-scale
imaging: medical, fuel-combustion, etc.

We show that the image point-spread function (PSF) ob-
tained from the RTE solutions contains a significant amount
of Fourier components higher than θ−10 (θ0 being the width of
the forward scattering peak in the medium constituent cross-
section). Those components can be enhanced by an appropriate
regularized deconvolution, leading to a substantial angular
resolution improvement, typically by the factor of 3 of 4 for
propagation through the distance of about 20 mean free paths.

(a) (b)

Fig. 1: A schematic representation of the considered imaging
scenario (a) and a simpler propagation problem (b), with
greatly exaggerated deviations of the light propagation path
from the straight line.

II. THE IMAGING SCENARIO AND SIMPLE ESTIMATES

We discuss here, for conceptual simplicity, a non-scanning
imaging scenario (Fig. 1), in which a fairly large part of the
scene is illuminated by a wide pulsed beam emitted by a source
S and the image is taken by a camera, understood as an array
of sensors recording time-resolved intensity.1

For definiteness, we consider a flat scene covered by a layer
of an obscuring medium (such as fog, smoke, or other aerosol)
of thickness L. In the assumed active optical imaging scenario
(Fig. 1(a)) the pulsed beam source and the detector is located
at the height H directly above the objects(s) of interest.2

1 It is straightforward to show that this scheme results in the same angular
resolution as a more practical scanning imaging, in which a narrow pulsed
beam moves across the scene, illuminates individual patches, and the reflected
light is registered by a “single-pixel camera”, i.e., an optical sensor collecting
light from a large angular field of view.

2 The above assumptions are made for simplicity only; our treatment can
be easily generalized to a medium layer located above the scene and to a
slanted-view geometry.



In the above scenario the illuminating pulsed beam passes
through the medium layer and undergoes scattering, which
causes its spread in time. 3 Nevertheless, the evolved pulse
will always contain a short rise-time ETD signal. Next, the
incident pulse scatters from the scene and that scattering

In the optical domain, most objects of interest are dif-
fuse scatterers; therefore, reflecting points on the scene can
be considered secondary, practically omnidirectional intensity
sources, re-emitting the incident pulses. The reflected pulse
due to a scatterer located at the origin (Fig. 1(a)) propagates
through the medium layer and undergoes further scattering,
until it emerges from the layer’s upper boundary. After trav-
eling along a straight line through the camera lens it forms
a focal-plane intensity image, identified with the point-spread
function (PSF) characterizing effects of the medium. In that
image, distances of pixel locations from the optical axis of
the camera are approximately proportional to the pulse arrival
angle θd.

For simplicity, we will only discuss angular flux distribu-
tions at the upper boundary of the medium layer and described
them in terms of the angle θ (Fig. 1(a)); these distributions are
independent of the camera location H . Because of the relation
θd ≈ (R/H) θ, the actual resolution of the camera can only
be better than the resolution for the camera located just above
the medium layer (Fig. 1(b)).

In the calculations reported here we assume parameters
typical of optical propagation through a cloud, fog, or mist:
λ0 = 0.633µm, a = 5µm ≈ 8λ0, hence k0 a ≡ 2πa/λ0 ≈
50 and the forward peak in scattering on a single droplet has
the width θ0 ≈ 1/(k0a) ≈ 0.02 rad. The assumed number
density of water droplets is n0 = 10−6 m−3, resulting in a
relatively short mean-free path 4 `t ≈ 6 m. In our examples of
propagation through the distance R = 24 /`t the estimated [1]
temporal width of the ETD signal is ∆tETD(R) ≈ 0.4 ns,
much less than the time scale `t/v0 ≈ 20 ns of the ordi-
nary, late-time diffusion (LTD). Accordingly, we will consider
transmitted pulses shorter than the ETD time scale, typically
of duration T t . 0.1 ns, and in isolating the ETD signal (as
described below), we will use filters of temporal width T f

somewhat larger than the ETD time scale and much smaller
than the LTD time scales.

III. SOLUTION OF THE RTE AND THE POINT-SPREAD
FUNCTION

The RTE [2]–[5] for the coordinate space Green function Γ
can be written in the standard form
(
µt + v−10 ∂t + ŝ ·∇R

)
Γ (t,R; ŝ, ŝ′) (1)

−
∫

d2ŝ′′Σ(ŝ ·ŝ′′) Γ (t,R; ŝ′′, ŝ′) = δ(t) δ3(R) δ2(ŝ− ŝ′) ;

3 The scattering-induced angular spread is small compared to the assumed
already wide beam, and practically does not affect scene illumination.

4 This quantity is given by `t = 1/(n0 σt), where n0 is the medium
number density and σt the ensemble-averaged total cross-section on a single
medium constituent.
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Fig. 2: Partial-wave components of leading discrete-spectrum
modes for the indicated P values, compared to the behavior of
the scattering kernel Σl. The RTE is truncated at N = 1600.

here Γ (t,R; ŝ, ŝ′) is the radiance at the observation point
(t,R) due an infinitely short pulse emitted at the time t = 0
from the origin R = 0 in the direction ŝ.

A practical solution of the RTE involves decomposition of
the Green function in plane waves of frequencies Ω and wave
vectors P , exp(−iΩ t) exp(iP ·R), and its decomposition, as
a function of flux directions ŝ and ŝ′, in rotated spherical
harmonics Yl,m(ŝ; P̂ ) and Y∗l′,m(ŝ′; P̂ ) defined relative to
the direction of the wave number. In this representation,
expansion coefficients of the Green function, truncated to
l, l′ < N , can be expressed in terms of the frequency
eigenvalues Ωmj (P ), indexed with j = 1, 2, . . . N and the
corresponding eigenvectors wmj (P ), whose components are
labeled with l = 0, 1, . . . , N − 1.

As can be seen from the form of the plane-wave expansion,
the imaginary parts of the frequency eigenvalues are propor-
tional to attenuation coefficients µmj (P ) = − ImΩmj (P )/v0
of the radiance modes and their real parts are related to the
modes’ propagation velocities vmj (P ) = ReΩmj (P )/P . As
discussed in [1], low-attenuation modes appearing for smaller
P values (say, P/µt < 1) are responsible for the ordinary late-
time diffusion; these modes are also characterized by nearly
zero velocities. Early-time diffusion is associated with those
high-P modes for which velocities approach the coherent wave
velocity and which are still attenuated significantly less than
the coherent component.

Fig. 2 shows partial-wave distributions of several eigenfunc-
tions for large P (contributing to the ETD signal). The plots
show that the eigenvector components decay with l nearly
exponentially, but more and more higher l values are present
with increasing P , very significantly exceeding the range of
angular momenta present in the scattering cross-section (the
coefficients Σl); this fact will be crucial in the deconvolution
procedure (Sec. IV).

The PSF obaserved by the camera (Fig. 1) is expressible
in terms of the time- and angle-resolved intensity at the
observation point R, due to the considered instantaneous
(proportional to δ(t)) pulse emitted from the point 0; because
of diffuse scattering from the scene, the emitted pulse may be



assumed omnidirectional. The PSF is thus related to the RTE
Green function integrated over the initial flux directions,

I0(t, |R|, R̂ · ŝ) =

∫
d2ŝ′ Γ (t,R; ŝ, ŝ′) ; (2)

by invariance of the RTE, the intensity I0 is a function of only
the distance R = |R| and the cosine of the angle θ.

In order to specify the PSF as an image formed on the focal
plane, we must map the pulse arrival direction ŝ (parame-
terized in terms of the polar angle θ and the corresponding
azimuthal angle φ) to a point q(ŝ) (Fig. 1(b)). It will be con-
venient to calibrate the coordinates q(ŝ) such that |q(ŝ)| ≈ θ
for θ � 1. A uniquely appropriate mapping turns out to be

cos θ(q) = 1− 1
2 q

2 , (3)
meant to be an exact expression, and not a small-angle
approximation.

Now we simply define an interim time-dependent axially
symmetric PSF as the intensity (2) with θ expressed in terms
of q; in an ad-hoc notation, we set

Υ (t, R; q) := I0(t, R, cos(θ(q))) ≡ I0
(
t, R, 1− 1

2 q
2
)
. (4)

With the RTE solution given by the eigenmode representation,
the radiance I0 and thus the time-dependent PSF

Υ (t, R, q) =
v0

2π2

∫ ∞

0

dP P 2
∑

j

e− iΩ0
j (P ) t w0

j,0(P )

∞∑

l=0

√
2l + 1 il j l(PR) Pl

(
1− 1

2 q
2
)
w0
j,l(P ) ,

≡
∞∑

l=0

Pl
(
1− 1

2 q
2
)
Υl(t, R) (5)

are expressed in terms of the RTE eigenvalues and eigenvec-
tors.

The time-dependent basic PSF specified above is due to an
infinitely short emitted pulse, i.e., a source proportional to the
delta function in time.

However, in the considered imaging scenario discussed in
Section II the transmitted pulse of time profile S0(t) and a
certain initial angular spread travels the distance R to the scene
and evolves to become a stretched in time pulse SR(t), whose
time-dependence depends also on the angular width w of the
emitted beam.

By assuming a Gaussian angular beam source distribution
defined, in image coordinates, by B(q) = e− q

2/2w2

/(2πw2)
we can express the evolved pulse profile SR(t) as the source
convolution with the same as before basic PSF (4).

Now the actual measured time-dependent PSF is the convo-
lution

(
Υ (·, R; q) ◦ SR(·)

)
(t) of the evolved pulse illuminating

the scene and the PSF (4) due to signal propagation from the
scene to the detector. Both of these functions involve temporal
pulse spreading due to diffusion, and that spreading can be
removed by applying an appropriate high-pass filter Φ [1].
The result of the filtering can be represented as

ΥΦ(t, R; q) =
(
Φ ◦ Υ (·, R; q) ◦ SR(·)

)
(t) (6)

≡
∫

dt′
∫

dt′′ Φ(t− t′)Υ (t′ − t′′, R; q)SR(t′′) .

The above quantity is, generally, not positive-definite; there-

fore, we define the final time-independent, non-negative PSF
Λ by taking the absolute value of ΥΦ(t, R; q) and integrating it
over a time interval containing its peak. The integration limits
t1 and t2 can be automatically determined on the basis of the
shape of the filtered signal, without any a-priori knowledge of
the arrival time of the pulse. The proposed prescription for the
PSF (and, generally, for image formation) is thus

ΛΦ(R; q) =

∫ t2

t1

dt
∣∣ΥΦ(t, R; q)

∣∣ . (7)

IV. THE DEBLURRING PROCEDURE

A widely used approach to improving resolution of images
is based on deconvolution with Tikhonov-type regularization
(e.g., [6], [7]).

In the considered optical imaging scenario, linearity of the
measured image intensity in the objects’ reflectivity implies
that the observed image is given by the convolution

F (q) =
(
Λ ◦ f

)
(q) + η(q) , (8)

where f is the ideal image (object) function, Λ is the PSF,
and η a random function representing an additive noise.

In practice, convolutions such as in Eq. 8 are performed
in Fourier space, where they become products of Fourier
transforms. A very useful property of our mapping (3) is that it
provides a simple relation between the those Fourier (or Han-
kel) transforms of the PSF and the partial-wave coefficients in
Eq. (5),

Υ̃ (t, R; %) := 2π

∫ ∞

0

dq q J0(q%)Υ (t, R; q)

=

∞∑

l=0

Dl(%)Υl(t, R) , (9)

with closed-form coefficients

Dl(%) =
4π

%
J 2l+1(2%) , (10)

strongly peaked at % ≈ l. As a result, presence of high angular
momenta l in the RTE eigenmodes (Fig. 2) implies presence
of high Fourier transforms in the PSF.

Now, recovering the unknown ideal image amounts to
solving the (usually ill-posed) Fourier-space inverse problem

Λ̃(%) f̃(η;%) = F̃ (%)− η̃(%) (11)
with its “exact” r.h.s. F̃ perturbed by the noise, hence the
dependence of the solution f on η.

A naive inverse filtering procedure amounts to constructing

f̃(η;%) =
F̃ (%)− η̃(%)

Λ̃(%)
; (12)

division by the Fourier-space PSF enhances large Fourier com-
ponents of the observed image and improves the resolution.
However, it is well known to fail in realistic problems because
of the effects of noise. Since noise has, typically, a wide
spectrum, its contribution to the expression (12) may, for
large |%|, overwhelm the measured image data F̃ (%). In such



situations often an adequate solution is a simple regularized
deconvolution

f̃β(η;%) =
Λ̃(%)

[
F̃ (%)− η̃(%)

]

Λ̃2(%) + β2
(13)

with a real regularization parameter β > 0 [6], [7]. That
parameter can be adjusted so that, depending on %, the noise
contribution to f̃β(η;%) is much smaller than the signal or
both η and F contributions are negligibly small.

To assess the resolution improvement achievable with the
described regularized deconvolution, we apply it to the PSF
itself and define the “deblurred PSF” by

Λ̃β(η;%) =
Λ̃(%)

[
Λ̃(%)− η̃(%)

]

Λ̃2(%) + β2
. (14)

To assess effects of this procedure, we apply it to the
normalized modulation transfer function (MTF) M̃(η;%) :=
Λ̃(η;%)/Λ̃(η;0) and express the result in terms of the dimen-
sionless noise η̂(%) := η̃(%)/Λ̃(0) and the dimensionless reg-
ularization parameter β̂ := β/Λ̃(0). Straightforward estimates
show then that, if one takes β̂ satisfying the conditions

|η̂(%)| � β̂ � 1 , (15)
the deblurred MTF,

M̃β(η;%) =
M̃(%)

[
M̃(%)− η̂(%)

]

M̃2(%) + β̂2
, (16)

is immune to noise.
As an example, the original MTF and the deconvolution

result M̃β(η;%) are plotted in Fig. 3 for the propagation
distance R = 24 `t. The original MTF clearly exhibits a long
tail which can be shown to be dominated by the coherent
contributions to the radiance. We assume here the noise η0 at
the level of the asymptotic large-% contribution to the MTF,
which means that the coherent component of the image is, in
practice, unobservable. Correspondingly, we took β̂ = 10−3,
about 10 times higher than the assumed noise level. It is seen
that the values of the deblurred MTF stay close to 1 in a
considerable range of q values, hence a significant resolution
improvement can be expected.

This expectation is confirmed in Fig. 4 which show the
original PSF Λ(q) and the “deblurred PSF”, i.e., the absolute
value of the inverse Fourier transform Mβ(η; %) of the function
M̃β(η; %), both normalized to their values at q = 0. It is
evident that the distribution of Mβ is significantly narrower
than that of Λ and the differential cross-section σ – a finding
that may further improve the prospects of application of ETD
phenomena in imaging.
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Abstract—We consider an approach allowing conversion of
surface integrals (over planar surface elements) to line integrals,
in evaluating matrix elements of Helmholtz-equation Green
function and its derivatives, in particular the vector Green
function in electromagnetics. A general procedure is outlined
consisting of finding suitable auxiliary functions applicable to
particular kernel operators and explicit expressions are provided
in the static limit. In the latter case, the accuracy and the
computational cost of the proposed technique are compared
to those of conventional approach based on evaluating surface
integrals with the conventional singularity extraction method.

Index Terms—Integral equations, Moment methods, Numerical
analysis

I. INTRODUCTION

In our recent paper [1] we presented a procedure for the
evaluation of matrix elements of the kernels of surface integral
equation operators – the tensor and the vector Green functions
– sandwiched between the surface Rao-Wilton-Glisson (RWG)
[2] basis functions defined on parallel triangular supports. In
contrast to the majority of methods [3] used in computation of
matrix elements of singular Green functions, i.e., singularity
subtraction (e.g., [4]) and singularity cancellation (e.g., [5],
[6], [7] techniques), our procedure consisted of converting
four-dimensional surface integrals with singular integrands
to two-dimensional line integrals involving auxiliary non-
singular functions. The most essential element of the procedure
consisted of employing a representation of the Green function
of the scalar Helmholtz equation,

g(k,R) =
e i kR

4πR
, (1)

in terms of an auxiliary, non-singular function

m(ξ) =

∞∑
p=1

ξp

p p!
,

g(k, |R|) = − 1

4πik
∇(2)
R ·∇

(2)
R m(ik |R|) , (2)

where
∇(2)
R = n̂× (∇(3)

R × n̂) (3)

are gradients in the plane of the considered triangular patches
T 1 and T 2, expressed in terms of the unit vector normal n̂
to that plane and the three-dimensional gradient ∇(3)

R . The
representation (2) allowed us to convert, by making use of the
Gauss divergence theorem, the integral over the surfaces of
two triangles to line integrals, with regular integrands, over
triangle edges.

In the subsequent paper [8], we considered an extension
of our method to problems involving non-planar geometries.
The essence of our approach was to generalize the repre-
sentation (2) of the Green function to non-parallel geometry
elements: the new representation involves a bilinear form of
two gradient operators ∇1 and ∇2 acting in two different,
non-parallel, planes, Π1 and Π2, containing the triangles T 1

and T 2. Specifically, we determined a function Φ(1) such that,
schematically,

g
(
k, |R1 −R2|

)
=
{
∇1 · [ M̂a∇2 ]

}
Φ(1)(k, a,R1 −R2) ,

(4)
where M̂a is a suitably constructed (2 × 2) diagonal matrix
(Eq. (11) below) dependent on the “inclination parameter”

a = sin2 θ ≤ 1
2 , (5)

2θ being the angle between the planes Π1 and Π2 (Fig. 1).
The representation (4), in which the auxiliary function

Φ(1)(k, a,R1 − R2) is a counterpart of the function m in
Eq. (2), allows us, by proceeding along similar lines as
in [1], to convert the double surface integral of the scalar
Green function (as well as as all integrals appearing in the
matrix elements of the tensor Green function sandwiched
between two RWG basis functions) over two flat non-coplanar
triangles T 1 ⊂ Π1 and T 2 ⊂ Π2 to the line integral over
surfaces’ perimeters,∫

T1

dS1

∫
T2

dS2 g(k, |R1 −R2|) (6)

=

∮
∂T1

dl1

∮
∂T2

dl2
{
û1 · [ M̂ u2]

}
Φ(1)(k, a,R1 −R2) ,

with û1 and û2 representing unit vectors perpendicular to the
perimeter lines, located in the planes Π1 and Π2.



Fig. 1: Geometry of two intersecting planes, Π1 and Π2,
defining “local” coordinates (xi, yi) = ri ∈ R2 and “global”
coordinates (Xi, Y i, Zi) = Ri ∈ R3. The y-axes of the three
systems coincide, hence y1 = y2 = Y 1 = Y 2.

In the present paper we describe a procedure for construct-
ing a set of auxiliary functions which allow us to convert
expressions for matrix elements of both tensor and vector
Green functions from surface line integrals.. The final result
for matrix elements are given in terms of line integrals over
triangle perimeters with simple and nonsingular integrands.
The line integrals can be further evaluated analytically. How-
ever, the computation cost of evaluating the obtained analytical
expression may be comparable to the cost of quadratures.

II. THE GENERAL APPROACH

We list below the elements of our approach, combined with
brief comments on the role they play in the complete derivation
of the result for the vector Green function.

Our procedure consists of the following steps:
• Choice of a suitable Cartesian coordinate system defined

by three mutually orthonormal vectors, with the axis
Ŷ along the line of intersection of the planes Π1 and
Π2 (Fig. 1). In this coordinate system we denote the
vector representing the difference of two positions on the
individual triangles with

R1 −R2 ≡ R = (X,Y, Z) (7)

(with few exceptions, we denote global coordinates with
capitals, and the coordinates in the local systems of the
planes Π1 and Π2 with lower-case letters).
The local coordinates ri = (xi, yi) on the planes are
mapped to the global coordinates by

R1(r1) = (X1, Y1, Z1)

≡
(√

1− a x1, y1,
√
a x1

)
(8a)

and
R2(r2) = (X2, Y2, Z2)

≡
(√

1− a x2, y2, −
√
a x2

)
, (8b)

hence

R(r1, r2) ≡ R(r1)−R(r2)

=
(√

1− a (x1 − x2), y1 − y2,
√
a (x1 + x2)

)
.

(9)

The inverse mappings, R −→ r1 and R −→ r2 can be
defined as

x 1
2
= ± X

2
√
1− a +

Z

2
√
a
, y 1

2
= ± Y

2
. (10)

• Construction of the representation (4) for the scalar Green
function of the Helmholtz equation g(k,R), written more
explicitly as{

∇r1· [M̂a∇r2 ]
}
Φ(1)(a, k; r1, r2)

≡
{
∂x1

∂x2
+ (1− a) ∂y1 ∂y2

}
Φ(1)(a, k; r1, r2)

= g(k; r1, r2) ,

(11)

where M̂a = diag(1, 1 − a) and where it is understood
that the Green function on the r.h.s. depends on the planar
coordinates ri through the relations (8).
The representation (11) allows us to reduce the four-
dimensional surface integral over triangular facets to line
integrals, with regular integrands, over perimeters of the
triangular facets (Eq. (6)).
In the analysis of the vector Green function we will use
Eq. (11) generalized to the gradient of the Green function
g and to the square of the considered differential operator.

• Because of the relations (10), the differential operator in
Eq. (11) can be also expressed in terms of the variables
R = (X,Y, Z) ≡ (ρ, s). Further, the coefficients in
Eq. (11) were chosen to make the differential operator
defined there invariant under rotations about the Z axis,
and hence expressible in terms of ρ = |ρ| =

√
X2 + Y 2

and s only. Consequently, the function Φ(1) depends also
only on ρ and s, such that Φ(1)(a, k; r1(R), r2(R)) ≡
Φ̂(1)(a, k; ρ, s). In these variables, Eq. (11) is equivalent
to the d’Alembert-type equation[

− (1− a) ∂

ρ ∂ρ

ρ ∂

∂ρ
+ a ∂2s

]
Φ(1)(a, k; ρ, s) (12)
= g(k; ρ, s) ,

where the r.h.s. is the Green function g(k; r1, r2) also
expressed in terms of the coordinates R.
The above d’Alembert equation can be solved in the
Fourier domain and closed-form can be obtained to all
orders in the expansion of Φ(1) in powers of k, by using
methods similar to those in evaluating Feynman diagrams.
The function Φ(1) is only defined up to a solution of the
homogeneous d’Alembert equation – a non-uniqueness
which can be utilized in choosing a solution which
behaves smoothly in the limit of parallel planes, a→ 0.

• Further, it can be shown that the expansion of Φ(1) in
powers of k has the form

Φ(1)(a, k; r1(R), r2(R)) ≡ Φ̂(1)(a, k; ρ, s) (13)

= − 1

8π (1− a)1/2
∞∑
n=0

(i k)n

(n+ 1)!
(ρ2 + s2) (n+1)/2

Φ(1)
n

(
a,

s2

ρ2 + s2

)
,

with closed-form coefficient functions Φn dependent only
on a and a single variable σ := s2/(ρ2+s2). In particular,
the lowest-order term in the expansions is

Φ
(1)
0 (a, σ) (14)

= 2Re
{√

1− a−
√
σ − a+ 1

2

√
1− a

√
σ lnλ(a, σ)

}
,



where

λ(a, σ) :=

√
(1− a)σ +

√
σ − a√

(1− a)σ −
√
σ − a

1−
√
σ

1 +
√
σ
. (15)

The above representation allows one to convert the sur-
face integral

∫
dS1 dS2 1/|R1 − R2| to line integrals

involving a smoothly behaved integrand (as in Eq. (6)).

III. CONVERSION OF THE SURFACE TO LINE INTEGRALS IN
MATRIX ELEMENTS OF THE VECTOR GREEN FUNCTION

The solutions for the functions Φ(1) and Φ(2) can be used in
the evaluation of matrix elements of the vector Green function
with RWG trial and testing functions. Such a matrix element
is a sum of integrals

A1,2(a, k) (16)

=

∫
T1

dS1

∫
T2

dS2 Ψ1(R1) · [ g(k,R1 −R2)× Ψ2(R2)]

=

∫
T1

dS1

∫
T2

dS2 [Ψ1(R1)× Ψ2(R2)] · g(k,R1 −R2) ,

where Ψ i are RWG “half-basis functions” supported on single
triangles and where g(k,R) = ∇R g(k, |R|) is the gradient
of the Helmholtz-equation Green function (1).

We now outline the procedure of converting the integral
(16) to a line integral over the triangles’ perimeters; to achieve
this goal, we need to solve generalizations of the d’Alembert
equation (11) to the gradient of the Green function and to the
“bi-d’Alembert” equation, i.e.,{

∇r1· [M̂a∇r2 ]
}
Φ(1)(a, k; r1, r2) = g(k; r1, r2) , (17a)

and{
∇r1· [M̂a∇r2 ]

}
2Φ(2)(a, k; r1, r2) = g(k; r1, r2) , (17b)

hence

∇r1· [M̂a∇r2 ]Φ
(2)(a, k; r1, r2) = Φ

(1)(a, k; r1, r2) . (18)

We need here vector-valued functions Φ simply because the
matrix element (16) involves the gradient g of the Helmholtz-
equation Green function. The reason we need a “second-order”
function Φ(2) satisfying the an equation with the square of
the d’Alembert operator is that our basis functions are linear
functions of the (local) coordinates and we have to integrate
by parts twice, to first reduce them to constants and then to
delta functions at their boundaries. Evidently, such a procedure
can be generalized to arbitrary polynomial basis functions.

By expressing the global coordinates Ri in terms of the
local coordinates ri, by using the representation (17a), and by
integration by parts, we can write Eq. (16) as

A1,2(a, k)

=

∫
T1

d2r1

∫
T2

d2r2 [Ψ1(R1(r1))× Ψ2(R2(r1))]

·
{
∇r1· [M̂a∇r2 ]

}
Φ(1)(a, k; r1, r2)

=

∫
T1

d2r1

∫
T2

d2r2 Φ
(1)(a, k; r1, r2) (19)

·
{
∇r1· [M̂a∇r2 ]

}
[Ψ1(R1(r1))× Ψ2(R2(r1))] .

Since the basis functions Ψ i are linear in ri, the d’Alembert
operator acting on their product yield terms proportional to a
constant, as well as terms proportional to the delta functions
supported on the boundaries ∂T i of the triangles; we denote
these functions by δi(ri).

The constant term – a certain vector V 1,2 – gives rise,
initially, to a surface integral. It is then converted to a line
integral by expressing the first-order function Φ(1) in terms of
the second-order one (Eq. (18)),∫

T1

d2r1

∫
T2

d2r2 Φ
(1)(a, k; r1, r2) · V 1,2

=

∫
T1

d2r1

∫
T2

d2r2
{
∇r1· [M̂a∇r2 ]

}
Φ(2)(a, k; r1, r2) · V 1,2

=

∮
∂T1

dl1(r1)

∮
∂T2

dl2(r2)
{
û1(r1) · [ M̂ u2(r2)]

}
Φ(2)(a, k; r1, r2) · V 1,2 . (20)

The term proportional to the product of the delta functions δ1
and δ2 results in the integral of the form∫

T1

d2r1

∫
T2

d2r2 Φ
(1)(a, k; r1, r2) ·U1,2(r1, r2)

δ1(r1) δ2(r2) (21)

=

∮
∂T1

dl1(r1)

∮
∂T2

dl2(r2) Φ
(1)(a, k; r1, r2) ·U1,2(r1, r2) ,

i.e., a line integral with a certain function U1,2 linear in its
arguments.

Finally, terms proportional to single delta function, δ1 or
δ2, result in line integrals of derivatives of the function Φ(2).
For instance, the term proportional to δ1 gives rise to∫

T1

d2r1

∫
T2

d2r2 L1(r1, r2) δ1(r1) ·Φ(1)(a, k; r1, r2)

=

∮
∂T1

dl1(r1)

∫
T2

d2r2 L1(r1, r2) ·Φ(1)(a, k; r1, r2)

=

∮
∂T1

dl1(r1)

∫
T2

d2r2 L1(r1, r2) ·
{
∇r1· [M̂a∇r2 ]

}
Φ(2)(a, k; r1, r2)

=−
∮
∂T1

dl1(r1)

∮
∂T2

dl2(r2) L1(r1, r2)· (22){
∇r1 Φ

(2)(a, k; r1, r2) · [M̂a û(r2)]
}
,

where we have used the relation (18) and where L1(r1, r2)
is a certain function linear in its arguments.

Eqs. (20), (21), and (22) show that, indeed, all the surface
integrals in the matrix element (16) reduce to line integrals
of the auxiliary functions Φ(1) and Φ(2), as well as their
derivatives. As before, these functions can be also obtained
in a closed form, to all orders in k, by using Fourier-space
and Feynman-diagram techniques.

In particular, Φ(1) can be evaluated as a gradient of the
previous function Φ(1). With R =

√
ρ2 + s2, gradients of the



terms in the expansion (13) are given by

∇ρ,s
{
Rn+1 Φ (1)

n (a, σ)
}

= (n+ 1)Rn

[√
1− σ ρ̂
±
√
σ

]
Φ (1)
n (a, σ) (23)

+ 2Rn

[
− ρ̂
± 1

]
√
σ (1− σ) ∂σ Φ (1)

n (a, σ) ,

where the n = 0 contribution is
√
σ (1− σ) ∂σ Φ

(1)
0 (a, σ)

= Re
{
−
√
σ
(√

1− a−
√
σ − a

)
(24)

+ 1
2

√
1− a (1− σ) lnλ(a, σ)

}
,

with the previously defined function (15).
The second-order vector-valued function Φ(2) is given by

the gradient of an expansion analogous to Eq. (13),

Φ̂ (2)(a, k;ρ, s) = ∇ρ,Z Φ̂
(2)(a, k; ρ, s) (25)

=
1

16π (1− a)3/2
∞∑
n=0

(i k)n

(n+ 1)! (n+ 3)

∇ρ,s
{
(ρ2 + s2)n/2+3/2 Φ (2)

n

(
a,

s2

ρ2 + s2

)}
.

The lowest order contribution is

∇ρ,s
{
R 3 Φ

(2)
0 (a, σ)

}
= 3R2

[√
1− σ ρ̂
±
√
σ

]
Φ

(2)
0 (a, σ)

+ 2R2

[
− ρ̂
± 1

]
√
σ (1− σ) ∂σ Φ

(2)
0 (a, σ) , (26)

where the scalar second-order coefficient function Φ (2)
0 and its

derivative are given by

Φ
(2)
0 (a, σ) = 2Re

{
(1− a)3/2

6
(4− 15σ)

− (σ − a)1/2
6

[
2 (3− 10σ)− a (4− 15σ)

]
(27)

− (σ − a)1/2 σ
2 a

+
(1− a)3/2 (3− 5σ)σ1/2

4
lnλ(a, σ)

}
and
√
σ (1− σ) ∂σ Φ

(2)
0 (a, σ) = Re

{
−
√
σ
(√

1− a−
√
σ − a

)
+ 1

2

√
1− a (1− σ) lnλ(a, σ)

}
. (28)

IV. CONVERSION OF THE SURFACE TO LINE INTEGRALS IN
MATRIX ELEMENTS OF THE TENSOR GREEN FUNCTION

Since this problem can be handled similarly to the case of
the vector Green function, we only briefly sketch the main
steps. In the notation analogous to Eq. (16), a matrix element
of the tensor Green function (the electric-field operator) is a
sum of two terms:
(i) The “electrostatic” contribution involving the scalar Green
function g and surface divergences surface divergences ∇Ri ·

Ψ i(Ri) of the basis functions. For RWG basis functions these
divergences are constants, hence the considered term can be
converted to line integrals by using the basic representation
(4) or (11).
(ii) The “magnetic-potential” contribution involving the Green
function g and the dot-product Ψ1(R1) ·Ψ2(R2) of the basis
functions. By using the representation (11) and integrating by
parts, one obtains a suface integral of Φ(1) and the product
of the basis functions (a bilinear function of the coordinates)
acted upon by the d’Alembert operator; the latter quantity is
a constant. 1 This surface integral is then reduced to a line
integral by expressing Φ(1) in terms of a scalar second-order
function Φ(2) (defined as in Eq. (18)) and integrating once
more by parts.

V. ANALYTIC EVALUATION OF THE LINE INTEGRALS

We sketch here a procedure which leads, eventually, to
analytic evaluation of the matrix elements.

Our final expressions for matrix elements are double line
integrals over pairs of edges belonging to the considered two
triangles T1 and T2; schematically,

A12 =
∑

i,j=1,3

Bi,j

∫
dli(R1)

∫
dlj(R2) (29)

Φ̂(a, k, ρ(R1 −R2), s(R1 −R2)) ,

where Bi,j are constant coefficients and Φ̂ is an expression
similar to Eq. (13), i.e., a function of the variables

ρ =
√

[X̂ · (R1 −R2)]
2 + [Ŷ · (R1 −R2)]

2 (30a)

and
s = Ẑ · (R1 −R2) . (30b)

In evaluating the line integrals, we parameterize the coordi-
nates of the integration points on the edges as linear functions
R1(ξ1) and R2(ξ2) of two normalized length parameters
ξ1, ξ2 ∈ [0, 1]. It follows that s is a linear function of the
variables ξ1, ξ2, and ρ2 is a quadratic function, say

s(R1(ξ1)−R2(ξ2)) = L0(ξ1, ξ2) = a0 + b1 ξ1 + b2 ξ2 (31a)

and
ρ2(R1(ξ1)−R2(ξ2)) = Q0(ξ1, ξ2)

= A0 +B1 ξ1 +B2 ξ2 + C1 ξ
2
1 + C2 ξ

2
2 + C12 ξ1 ξ2 . (31b)

The most general form of an integrand in Eq. (29) (ex-
emplified by Eqs. (13), (23), (25), and (26) with the explicit
formulae Eqs. (14), (24), (27), and (28)) is a sum of terms of
two types:
(i) A polynomial in expressions

√
Aρ2 +B s2 (with some

constants A and B), i.e., a polynomial in
√
Q(ξ1, ξ2), where

Q is some quadratic form.

1 More precisely, a constant plus delta-functions on the boundaries of the
triangles. The resulting additionl contributions, analogous to Eq. (22), are
expressible in terms of gradients of the functions Φ(i).
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Fig. 2: The Z component of the zero-th order auxiliary
function Φ(1)

0 , plotted in logarithmic scales of its arguments
in order to emphasize the regions of small a and small σ.

(ii) A polynomial in ρ2, s2, and s (without the square-root)
multiplying the logarithm of the function λ of Eq. (15). As a
function of ρ and s, λ is given by

λ =

√
1− a s+

√
(1− a) s2 − aρ2√

1− a s−
√
(1− a) s2 − aρ2

√
s2 + ρ2 − s√
s2 + ρ2 + s

; (32)

hence, all terms of the type (ii) have the general form
P (ξ1, ξ2) ln

(
L(ξ1, ξ2) +

√
Q(ξ1, ξ2)

)
, where P is a poly-

nomial, L a linear function, and Q a quadratic function.
The integrals

∫ 1

0
dξ1

∫ 1

0
dξ2 · · · of the terms of the types (i)

and (ii) can be obtained in a closed form and are expressible
in terms of elementary functions.

VI. REPRESENTATIVE NUMERICAL RESULTS

In analogy to Eq. (13), the auxiliary functions Φ(1) and
Φ(2), given by Eqs. (17), can be also expanded in powers
of k. Explicit closed-form expressions for the coefficients of
the expansions, Φ(1)

n (a, σ) and Φ(2)
n (a, σ), show that these

coefficients, as functions of σ, are bounded and piecewise
continuously differentiable in the subintervals for 0 < σ < a
and a < σ < 1. At the point σ = a derivatives of the
coefficient functions may be discontinuous, as seen, e.g., in
Fig. 2.

The behavior of the functions Φ(1) and Φ(2) indicates that
integration region in the line integrals (20) to (22) should be
split into sub-domains in which derivatives of the integrand are
bounded and thus conventional Gaussian quadratures quickly
convergent.

A certain difficulty arises in the case when two edges of
the triangles, one in T 1 and the other in T 2, share a vertex.
In those cases the argument σ of the functions Φ(1)

n (a, σ)
and Φ(2)

n (a, σ), although bounded in the interval [0, 1], has
an indefinite (0/0-type) limit when the points r1 and r2
approach the common vertex. For such edges, however, the

double line integral can be reduced to a single integral with a
piecewise smooth integrand, which can be efficiently evaluated
by standard quadratures.

In general, as will be discussed in the presentation, the
proposed approach to evaluating matrix elements of the vector
Green function has definite advantages – in terms of the
accuracy versus the number of quadrature points – over
presently available methods, in particular singularity subtrac-
tion techniques.
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We consider extensions and selected applications of the recently proposed method of evaluating Galerkin
matrix elements of electromagnetic volume and surface integral equations with the help of suitably con-
structed Laplacian-type representations of singular kernels (Green functions) in terms of non-singular auxil-
iary functions. Such representations allows us, by using the Gauss divergence theorem, to convert volumetric
and surface integrals representing matrix elements to respective surface or line integrals always involving
only non-singular integrands.

The task of finding specific Laplacian representations of various kernels amounts to solving appropriate
ordinary or partial inhomogeneous differential equations. Simple solutions of resulting ordinary differential
equations which pertain to volume and planar surface geometries are obtained in terms of elementary
functions. In the case of basis functions supported on non-parallel surface elements, partial differential
equations for the auxiliary functions are first solved in Fourier space and then transformed to simple
expressions in coordinate space by evaluating integrals similar to those used in treating Feynman diagrams.

The most essential element of the procedure consisted of employing a Laplacian-type representation of
the Green function of the scalar Helmholtz equation,

g(k,R) =
e i kR

4πR
, (1)

with k being the free-space wave number. The first representation of the Green function (1) in terms of an
auxiliary, non-singular function h(ξ) of a single argument ξ = ikR ≡ ik |R1 −R2|, has the form [1]

g
(
k, |R1 −R2|

)
=

1

4πik
(∇R1

·∇R2
)h(ik |R1 −R2|) . (2)

This representation can be rewritten in the equivalent form of the second-order differential equation for the
function h(ξ)

∂2

∂ξ2
h(ξ)− 2

ξ

∂

∂ξ
h(ξ) =

eξ

ξ
,

which has the general solution h(ξ) = eξ/ξ + c1 + c2/ξ, where c1 and c2 are two arbitrary constants.
With the specific choice of c1 = c2 = −1 we obtain a particular solution of the differential equation
h(ξ) = (eξ − 1 − ξ)/ξ having a finite limit at ξ = 0. Such a choice of h(ξ) allows us to convert the 6-
dimensional volume integrals over tetrahedrons to 4-dimensional surface integrals over the tetrahedra faces
with nonsingular integrands,∫

V1

dV1

∫
V2

dV2 g(k, |R1 −R2|) =
1

4πik

∫
∂V1

dS1

∫
∂V2

dS2 (n̂1 · n̂2)h(ik |R1 −R2|) , (3)

where ∂V1 and ∂V2 are the surfaces bounding tetrahedra volumes V1 and V2 and n̂1 and n̂2 are the outward
pointing unit vectors perpendicular to the tetrahedra faces.

We have also obtained a second representation of the scalar Green function of the Helmholtz equation,
applicable to conversion of surface integrals over two triangular facets T1 ⊂ Π1 and T2 ⊂ Π1, lying in two



2

non-parallel planes Π1, Π2, to line integrals over triangle perimeters. The representation involves a bilinear
form of two gradient operators ∇1 and ∇2 acting in the planes Π1 and Π2. In analogy to Eq. (2), it has
the form [2]

g
(
k, |R1 −R2|

)
=
{
∇1 · [ M̂a∇2 ]

}
Φ(1)(k, a,R1 −R2) , (4)

where ∇1 = n̂1 × (∇R1
× n̂1) and ∇2 = n̂2 × (∇R2

× n̂2), n̂1 6= n̂2 denote unit vectors perpendicular
to triangle faces, and M̂a = diag(1, 1 − a) is a (2 × 2) diagonal matrix dependent on the “inclination
parameter” a = sin2 θ ≤ 1

2 , where 2θ is the angle between the planes Π1 and Π2, i.e., n̂1 · n̂2 = cos 2θ.
The representation (4) of the Green function can be rewritten in the equivalent form of a second-order
partial-differential equation in two spatial variables, s = ẑ · (R1 −R2) (with ẑ ≡ (n̂1 + n̂2)/|n̂1 + n̂2|)
and ρ =

√
(R1 −R2)2 − s2,[

− (1− a) ∂

ρ ∂ρ

ρ ∂

∂ρ
+ a ∂2s

]
Φ(1)(a, k; ρ, s) = g(k;

√
ρ2 + s2) , (5)

where both the (nonsingular) auxiliary function Φ(1) and the Green function g are expressed in terms of ρ
and s.

We have found a closed-form of the above d’Alembert equation to all orders in the expansion of Φ(1) in
powers of k, by means similar to those used in evaluating Feynman diagrams.

The representation (4) allows us to convert double surface integrals of the scalar Green function (as well
as integrals appearing in the matrix elements of the dyadic Green function sandwiched between two RWG
basis functions) over the triangles T1 and T2 to line integrals over the triangles’ perimeters,∫

T1

dS1

∫
T2

dS2 g(k, |R1 −R2|) =
∮
∂T1

dl1

∮
∂T2

dl2
{
û1 · [ M̂a û2]

}
Φ(1)(k, a,R1 −R2) (6)

with û1 and û2 representing unit vectors perpendicular to the perimeter lines, located in the planes Π1 and
Π2.

An advantage of the derived expressions for matrix elements is their simplicity and easily controllable
accuracy without the need of using special numerical treatments of singular behavior of kernels. Our method
results in expressions for matrix elements given in terms of integrals with well-behaved integrands, amenable
to conventional low order numerical quadratures, or simply in analytical forms given in forms of linear
combination of elementary functions. An important, demonstrated property of our expressions is that they
remain well behaved in all special geometrical configurations of practical interest, in particular for adjacent,
nearly adjacent, parallel, and nearly parallel surface elements.

The proposed method is of practical interest in such particular applications of integral equations as,
e.g., design of metamaterials of nanophotonic devices, which rely on collective resonant behavior of many
elements of sizes comparable to or less than the wavelength. The existence of resonances unavoidably in-
creases the condition number of the problems, which amplifies inaccuracies in the elements of the impedance
matrix. Therefore, reliable modeling of such systems requires highly accurate evaluation of matrix elements
of the pertinent operators. Further, engineering applications (e.g., of photonic devices) typically require
iterative optimization of the structures; hence, fast computation of the impedance matrices becomes a crucial
requirement.

Representative numerical examples illustrating the proposed method efficiency and accuracy will be
discussed.
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