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MATHEMATICAL METHODS FOR PREDICTIVE SIMULATION OF
STOCHASTIC TURBULENCE SYSTEMS

AFOSR GRANT FA 9550-16-1-0355

Catalin Trenchea
Department of Mathematics
University of Pittsburgh

Abstract

Mathematical modeling and computer simulations are nowadays widely used tools to predict the
behavior of problems in engineering and in the natural and social sciences. All such predictions are
obtained by formulating mathematical models and then using computational methods to solve the
corresponding problems.

We use a probability theory approach for uncertainty quantification (UQ) since it is particularly
well suited for SPDE models, and focus on the broad research areas of algorithmic development and
numerical analysis for the discretization of systems of linear or nonlinear SPDEs, building upon and
significantly extending our previous successful work.

We conduct comprehensive theoretical and computational comparison of the efficiency, accuracy,
and range of applicability of non-intrusive methods, such as stochastic collocation methods, and
intrusive techniques, such as stochastic Galerkin methods, for solving SPDEs and for UQ applica-
tions.

We extend the algorithmic and analysis advances wrought by these efforts to the even more challeng-
ing settings of optimal control and parameter identification problems for SPDEs. The parameter
identification problem is especially important in the SPDE setting since it provides a very useful
mechanism for determining statistical information about the input parameters from, e.g., measure-
ments of output quantities. This effort builds on our previous work on adjoint and sensitivity-based
methods for deterministic optimal control and parameter identification problems to develop similar
methods for tracking statistical quantities of interest from the computational solutions of linear and
nonlinear SPDEs driven by high-dimensional random inputs.

Status/Progress

We have developed approaches to modeling turbulence and predicting uncertainty in turbulence
models. However, the current situation is that, even with the current best UQ algorithms, doing a
full turbulent flow computation including generating the full PDF of both initial, parametric/model
and forcing uncertainty for a full simulation of a complex flow (typical in engineering flows) over a
long time interval is not possible within time and resource constraints.

Many applications central to predictive CFD today face the challenge of computing multiple
realizations. These include modeling non-fully resolved processes with stochastic terms, Uncer-
tainty Quantification, estimation of sensitivities, control, parameter identification, increasing skill
of predictions and accounting for the effects of uncertain data and models. The fundamental and
intractable issue is that each realization of a 3d, complex (often turbulent) flow can require large
amount of computing time (even weeks) while performing enough realizations to generate a full PDF
can require thousands of realizations. This is the fundamental and intractable competition between
computing ensembles and the resolution required for a single accurate realization. The avoidance of
addressing competition explains the very many papers on UQ in computational fluid dynamics that
have tests limited to the 1d Burgers equation.

In the proposed research we continued the de\{elopment of novel algorithms to address the choke
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point issues faced in modern computational fluid dynamics at the chaotic crossroads where theory
and application meet. At this crossroads, data is uncertain and models must incorporate the effects of
unresolved processes through various parameterization schemes. Both introduce uncertainty which
must be quantified and impose a finite predictability horizon. Estimating uncertainty and extending
predictability both require substantial ensemble calculations. Computing ensembles of flow data
when each realization requires a fine mesh for accuracy introduces the conflict between high resolution
single realizations and computing and ensemble of sufficient size for accurate statistics. One specific
realization of this research is as follows. The main uncertainty in groundwater flow is the unknown
and unknowable porous matrix.

The research performed by Roxana Tanase in her Ph.D. thesis was to develop algorithms for
estimating spatially varying permeability for elliptic and parabolic groundwater flow equations using
Kalman filter Markov chain Monte Carlo and adjoint variable based algorithms. These algorithms
[1, 2, 3, 4] were fully validated through analysis, error estimates and numerical simulations.

The focus of her study was to analyze methods for the optimal control / parameter identification
of systems governed by partial differential equations with random input data. She considered several
identification objectives that either minimize the expectation of a tracking cost functional or minimize
the difference of desired statistical quantities in the appropriate spatial-LP norm (including higher
order moments, hence allowing to match any statistics, e.q., the variance, skewness, kurtosis, etc.).
One specific problem of parameter identification of a linear elliptic PDE that describes flow of a fluid
in a porous medium with uncertain permeability field was examined in full detail. The numerical
results reveal [6] the consequences of the moment-tracking approzimation and the significant increase
in efficiency of the method. The stochastic parameter identification algorithm integrates an adjoint-
based deterministic algorithm with the sparse grid stochastic collocation mized-FEM approach. She
also derived rigorous error estimates for the fully discrete problems, using the Fink-Rheinboldt theory
for the approzimation of solutions of a class of nonlinear problems.

The fundamental approach to turbulence modelling in various applications begins with an en-
semble of solutions which is statistically averaged. Computing a full ensemble has, until our current
work, not been realizable. Thus various ergodic hypotheses have been invoked and statistical aver-
aging converted to time averaging. Following this, models, such as k-epsilon, are developed for time
averages of flow quantities. The models have developed this way because there was no other path
for progress. However, it has long been recognized that the assumption ergodicity is fundamentally
false in the nalve form in which it has been applied. Further there are simple flows which are at
statistical equilibrium that cannot ever be at steady state and thus equivalence of statistical and
time averages once again fails. Clearly what is needed is a good theory that give a mathematically
precise proof of ergodicity. Such a proof also gives very valuable information of how ergodicity fails
and what extra terms must be incorporated into models when naive ergodicity fails. There has been
some recent progress in developing such a theory by Hairer and Mattingly. Again, the value of such
a theory lies in its certainty and in its delineation of how models must be adapted to account for
cases where ergodicity fails in its naive setting.

Yong Li developed ergodicity results [7] for the two-dimensional stochastic Boussinesq equation:
formulated the problem in an appropriate functional setting and proved existence and uniqueness,
via an approximating reqularizing scheme. He also proved the existence of an invariant measure
corresponding to the stochastic flow t — (u(t), 0(t)) an its uniqueness via coupling methods.
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