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Abstract

The following report contains a summary of the research carried out in the Aerospace

Computing Laboratory under award number FA9550-14-1-0186 from the Air Force

Office of Scientific Research (AFOSR). The objective of this research program is to

further the state-of-the-art in high-order methods for unsteady compressible flows.
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1 Introduction

Fluid motion is a complex physical phenomena that can be found in a variety of

different engineering applications ranging from the analysis of blood flow in the

cardiovascular system to the supersonic flight of aircraft. The primary tool used

to analyze this phenomena is computational fluid dynamics (CFD). The modern

engineer relies heavily on CFD to obtain an accurate representation of fluid motion.

However, current generation CFD software—as deployed in industry—is not capable

of accurately predicting transient, highly separated flows over complex geometries.

Examples of such flows include an aircraft wing during takeoff or the complex

vortex structure generated by the blades of a rotorcraft.

The inability of current generation CFD software to adequately resolve such

flows is twofold. Firstly, the numerical methods, typically second order accurate

finite volume schemes, have a tendency to be overly dissipative. Hence, they require

an excessive amount of resolution in order to successfully track complex flow

features over time. Secondly, the methods themselves are not well suited to the

requirements of modern hardware platforms which typically include co-processors

and GPUs. These limitations have prevented engineers from conducting the types

of large eddy simulations (LES) that have the ability to accurately resolve the

aforementioned phenomena.

The purpose of this project is to address this issue through the development

of high-order methods. High-order methods refer to a collection of numerical

schemes whose spatial accuracy is at least third order. Specifically, our focus is on

the advancement of the flux reconstruction (FR) approach. The FR approach has

the ability to recover a variety of different high-order schemes include the spectral

3

DISTRIBUTION A: Distribution approved for public release.



difference (SD) method and the discontinuous Galerkin (DG) method, along with

several new and novel schemes. Along with high-order accuracy—which serves to

reduce numerical dissipation—the FR approach is also eminently parallelizable on

both CPUs and GPUs.

This report outlines the advances that the Aerospace Computing Lab has made

in the development of these methods over the past year. The project continues to

improve these schemes on both a theoretical and a practical level.

2 Executive Summary

2.1 Highlights

During the course of the grant the Aerospace Computing Lab:

1. Developed of direct FR (DFR), a simplified formulation of the FR method

that greatly reduces the theoretical and implementation complexity of the FR

method, along with a novel extension to triangular elements.

2. Investigated an extension of tensor-product FR to triangular elements using

collapsed-edge elements.

3. Developed a shock capturing scheme for high-order methods based on a novel

concentration sensor.

4. Developed of a novel parallel direct cut algorithm to enable FR to be employed

within the context of moving overset grids.

5. Developed a multi-colored Gauss-Seidel scheme to enable implicit time

stepping on GPU platforms.

4
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6. Via Fourier analysis gained additional insight into the behaviour of FR for

both steady and unsteady advection-diffusion problems.

7. Proved the stability of the VCJH FR schemes on quadrilateral grids for both

advection and advection-diffusion problems.

8. Derived a new range of energy stable FR schemes which are conservative and

energy stable. These new schemes are shown to be a superset of the existing

VCJH schemes.

9. Extended the FR approach to the incompressible Navier–Stokes equations via

artificial compressibility combined with polynomial multigrid technology.

10. Demonstrated the scalability of high-order FR on the Titan supercomputer at

Oak Ridge National Laboratories with the code, PyFR, sustaining in excess

of 13 DP-PFLOP/s on a real-world problem with in excess of 200 billion

degrees of freedom.

11. Conducted the first high-order large eddy calculations of static and spin-

ning golf balls, and showed excellent agreement to prior experimental and

computational studies.

12. Conducted leadership scale direct numerical simulations of the MTU T161

low pressure turbine cascade at Re = 200 000.

2.2 Publications

Publications supported during the duration of the grant.
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3 Key Developments

3.1 Overset Methods

3.1.1 High order overset review

Many problems of interest to both industry and academia involve complex geome-

tries and moving grids, such as the problem of simulating a helicopter in hover

or flight. Although many methods exist to handle moving bodies within a CFD

simulation, the simplest and in some respects easiest approach is the use of overset

grids, where each body is meshed independently and assembled into a larger grid

system. Once the inter-domain connectivity is established, solution data is interpo-

lated between grids using matching donor and receptor nodes or cells. Each grid

is then able to operate independently, essentially unaware of the other grids in the

system.

Until recently, work on overset grids has focused on the use of traditional finite-

volume or finite-difference solvers, sometimes mixing the two together as is done

in Helios [57], where an unstructured finite-volume near-body solver is combined

with an high-order adaptive Cartesian off-body solver. Unfortunately, as shown by

several groups [39, 56], without a high-order near-body solver, vortical structures
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and other flow features incur a rather large amount of diffusion either before or

while passing through the overset boundary, causing a large increase in error and

limiting the utility of a high-order off-body solver.

High order discontinuous finite element methods have a number of properties

which make them attractive solutions to this problem of near-body and inter-grid

overset performance. Not only are they less dissipative, meaning they can capture

and preserve vortex-dominated flows with less degrees of freedom, they have also

been shown to give extremely good results when used in the context of implicit large

eddy simulation (ILES) or direct numerical simulation (DNS) [43, 52]. Furthermore,

due to the compact nature of the polynomial representation in each element, they

can be used quite naturally in an overset framework.

Galbraith [19] first used this property of the DG method to naturally extend

it into the Artificial Boundary (AB) overset method. In the AB method, once the

overset hole cutting has been performed (removing any elements either inside of

solid boundaries or otherwise not required for the simulation), the newly created

boundary faces become artificial boundaries. These artificial boundaries are treated

by the solver nearly identically to standard inter-processor ‘MPI interfaces’ (when

the Message Passing Interface (MPI) standard is used), with solution (and gradient, if

needed) data interpolated to the ‘right’ side of each face and used in an approximate

Riemann solver as usual. The polynomial representation of the solution within each

element allows for simple interpolation to the flux points along each of these faces.

3.1.2 Previous overset work in the ACL

More recently, the ACL has extended Galbraith’s work to moving grids [16, 17],

and explored several different interpolation methods that showed some promise
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in reducing a measure of the interpolation error. Over the past year, however, the

ACL has returned to the original Artificial Boundary method as the most promising

method, and focused on using the method with our fast in-house GPU-accelerated

solver, ZEFR. Our work began with interfacing ZEFR with the open-source domain-

connectivity package TIOGA [47], which had some capability to interface with

high-order solvers through the use of callback functions previously developed for

interfacing with a 3D DG code [6].

The first task involved modifying or creating callback functions to implement the

AB method, which involves functions to create the artificial boundary faces, locate

their flux points, and pass interpolated data back to the solver for solver-specific

unpacking into face-based data structures, rather than the global element-based

solution structure. For our GPU-accelerated solver, this required large amounts of

data transfer back and forth from the GPU, along with a rather large amount of

CPU-side processing. This resulted in a significant amount of overhead for even

static overset cases, where the domain connectivity had to be performed only once

during preprocessing. Moving cases were unfeasibly burdened by this overhead.

To reduce the overset connectivity overhead, we began to experiment with meth-

ods for porting TIOGA’s functionality to GPU architectures. Although significant

speedup was achieved by porting the existing algorithms, they were not well suited

to the massively parallel GPU architecture. Additionally, the curved grids required

for accurate boundary representation in high order methods incurred a far higher

cost per element than for standard linear elements. Hence, work was begun on the

new Parallel Direct Cut method, which aims to eliminate most of the bottlenecks

associated with applying moving overset grids to GPUs.

The Parallel Direct Cut method is based upon the Direct Hole Cut method of
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Galbraith [19], an adapted implementation of the direct cut approach introduced

by Noack [40]. In a direct cut method, solid or other predefined boundaries in

a grid are used as cutting surfaces for other grids. To handle curved grids, the

approach Galbraith used to determine what elements were ‘cut’ by a surface was a

Nelder-Mead minimization of the distance between an element and a face of the

surface. Our own experiments have shown this method to not be robust in 3D, and

furthermore to be quite expensive — acceptable for static grids, but not ideal for a

moving-grid overset method.

The approach we are taking instead is to take inspiration from the original

purpose of GPUs — namely, computer graphics — and convert the high-order

boundary representations into approximate triangulated representations, as shown in

Figure 1. All intersection or distance calculation operations can then be performed

on sets of linear triangles rather than high-order Lagrange quadrilaterals, and the

full 3D Lagrange representation of elements is not required for the majority of the

algorithm. Because performing a very large number of triangle–triangle intersection

checks is still quite expensive, a hierarchy of approximate distance calculations

ranging from basic bounding-box checks to low-resolution quad/hex intersection

checks are used to quickly remove elements and faces from consideration and reduce

the total cost of the algorithm. For the full details of the algorithm, see [17], [15].

3.2 Moving Overset Grids: Compressible Flow Applications

3.2.1 Static Golf Ball

As a test of our method applied to external flow problems, the first 3D Navier–Stokes

test case we shall consider is flow over a golf ball. We first consider a static golf ball,
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(a) (b) (c)

Figure 1. Example of splitting a high-order quadrilateral into linear triangles. (a)
The exact tensor-product Lagrange polynomial representation; (b) Treating the
tensor-product grid as a grid of linear quadrilaterals; (c) Splitting linear quads into
triangles.

for which numerous computational and experimental studies exist for comparison.

Second, we consider a spinning golf ball to more fully test our method for moving

grids and complex fluid dynamics.

The flow physics behind the phenomenon of drag reduction of dimpled spheres—

golf balls—has been investigated since at least the 1970s [3, 36]. Early studies

relied primarily on wind tunnel experiments, typically collecting force data, and

occasionally also performing flow visualizations with, for example, oil streaks. It is

only recently, with the advent of large-scale LES and DNS simulations of modest

Reynolds numbers, that the accurate, predictive CFD simulation of a golf ball has

allowed deeper insight into the effects of dimples.

The typical goal of a golf ball design is to maximize the range it can be driven

in a straight line. This primarily leads to the desire to reduce its drag as much as

possible, with a secondary goal of minimizing variation in side forces to maintain

straight–line flight. Putting backspin on the ball will produce a lift force via the

Magnus effect, which extends the flight time and distance of the ball. Drag reduction

is mostly due to the dimples, which are sized to create a series of separation bubbles
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that will lead to early transition in the unstable shear layer above the bubbles. The

exact size, depth, and arrangement of dimples all contribute to the final aerodynamic

characteristics of a golf ball under various conditions.

The rotation of a golf ball is typically defined with the non-dimensional spin

parameter V/U, where V is the equatorial velocity of the ball and U is the ball’s

speed of flight. The typical range of rotation speeds for a realistic golf ball range

from 2 000 to 4 000 rpm (33 to 66 s−1), giving spin parameters in the range of 0.1 to

0.2 [1, 3, 36]. In contrast to smooth spheres, which exhibit a negative Magnus effect

near the critical Re [3, 38], the forces generated by a spinning golf ball increase

monotonically with the spin parameter.

3.2.2 Previous Studies

The first noteworthy experimental investigation of the aerodynamics of golf balls

under a variety of flow conditions is by Bearman and Harvey in 1976 [3]. Their study

used wind tunnel testing of scaled golf ball models to compare the characteristics of

round vs. hexagonal dimples, with a smooth sphere used to assess the validity of

their experimental setup. The hexagonally dimpled ball also had far fewer dimples

than the “conventional" ball (240 vs. 330 or 336). They found that the hexagonally

dimpled ball had a lower drag coefficient (CD) and higher lift coefficient (CL) over

most of the Re and spin rate range of interest, hypothesizing that the hexagonal

dimples led to more discrete vortices due to the straight edges of the dimples. The

effect of the dimple edge radius was not studied. For both dimple types however,

they showed that the dimples serve to reduce the critical Re at which a drag reduction

occurs, and that the drag coefficient remains nearly constant for a large range of Re

after this point.
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Another detailed wind tunnel study was more recently performed by Choi et al.

[11]. They studied both fully-dimpled and half-dimpled spheres without rotation.

In comparison to Bearman and Harvey, they used only round dimples with a much

smaller depth (k/d = 4 · 10−3 for Choi et al. vs. k/d = 9 · 10−3 for Bearman and

Harvey, where k is the dimple depth and d is the sphere diameter) and also with

a larger number of dimples (392 vs. approximately 330). Their results showed a

slightly higher critical Re (∼80 000 vs. ∼50 000) with a slightly lower CD (∼0.21

vs. ∼0.25) afterwards, with a much more noticeable rise in CD after the initial

drop. Velocity data collected with a hot-wire anemometer was used to confirm

that the turbulence generated by the free shear layer over the dimples led to an

increase in momentum near the surface of the golf ball after reattachment, and that

the separation angle remained at a constant 110o after the critical Re.

Further studies have been performed using a combination of RANS [50, 51],

LES [1, 30, 31], DNS [4, 48], and wind tunnel experiments [1, 26]. Li et al.

proposed a link between small-scale vortices created at the golf ball dimples and

a reduction in side-force variations at supercritical Reynolds numbers. Also, both

Ting [51] and Chowdhury et al. [26] have shown a positive correlation between

dimple depth the supercritical drag coefficient, and a negative correlation between

dimple depth and critical Reynolds number. Aoki et al. performed wind tunnel

experiments on static and spinning golf balls and showed a positive correlation

between lift force and spin rate (though smaller in magnitude than the negative lift

force generated by a similar smooth sphere), and a slight correlation between drag

and spin rate as well.
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3.2.3 Golf Ball Geometry

In this study, the golf ball surface geometry was created as a parameterized CAD

model with 19 rows of circular dimples (9 rows per hemisphere + 34 dimples

around centerline), for a total of 388 dimples, as shown in Figure 2. The golf

ball diameter is 42.7mm, the dimple depth is 6.41 · 10−4m (k/D = .015), and the

dimple diameter is a constant 2.99mm (c/D = 7.0 · 10−2). The dimple edges are

filleted with a radius of 0.75mm. The surface was exported in the STL format

and used within the multiblock structured mesh generator GridPro [18] to create

a spherical grid with a boundary layer. The surface of the golf ball was divided

into 24 roughly square regions, each with a resolution of 144 × 144 quadrilaterals,

with 60 layers in the radial direction, for a total of 29 859 840 linear hexahedra, or

1 105 920 cubically curved hexahedra after agglomeration. The first cell height was

chosen to be at an estimated y+ value of 6.667 (3.4 · 10−5m), the first 18 layers were

held to a constant thickness, and the remaining 42 layers were allowed to grow out

to a final outer diameter of 31.82mm. The first cell height was chosen such that

after agglomeration into cubically-curved hexahedra and run with 4th order tensor-

product solution polynomials, the first solution point inside the element would lie

at a y+ of approximately 1. The surface mesh resolution was chosen to match the

recommendations of Li et al. [30], which are based upon recommendations from

Muto et al. [38]. The golf ball grid of Li used a surface resolution of less than

1
2δB, where δB = 3

√
Dν
2V is the estimated laminar boundary layer thickness 90o from

the stagnation point [38] (D is the diameter, ν is the kinematic viscosity, and V is

the freestream velocity). Here, with δB ≈ 2 · 10−4m, our surface mesh resolution

at the level of the linear grid is slightly more than 1
2δB, with the final resolution
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(a) Side View. (b) Top View. (c) Closeup of mesh within a
single dimple.

Figure 2. Golf ball surface. Figure (c) shows the pre-agglomerated element sizes;
the actual surface resolution of the golf ball is 4/3 times greater than that shown.

being slightly less than 1
2δB once the high-order polynomials are introduced into the

agglomerated hexahedra.

The mesh was output in the CGNS structured multiblock format and imported

into HOPR (High-Order Pre-Processor) [24], a utility which can agglomerate the

cells of a structured mesh into high-order curved hexahedra. The new high-order

mesh, in an HDF5-based HOPR-specific format, was then converted into the PyFR

mesh format [59], which ZEFR has the capability to read.

This pseudo-structured golf ball grid was then combined with a mostly Cartesian

background grid created in Gmsh [22] to fill the desired extents of the full computa-

tional domain. The box has a width and height of 0.6832m (16 times the golf ball

diameter D), and length 1.0248m (−12D to 12D). A refined region was created in

the area to be occupied by the golf ball, with a refined wake region stretching out to

the rear of the domain for a total of 715 750 linear hexahedra elements.

The simulation was advanced in time using the same adaptive RK54[2R+]

scheme as before. Third-order solution polynomials were utilized, as 4th order
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Table 1. Simulation conditions for all golf ball test cases.

Reynolds number 150 000 ρ 1.0kg/m3

Mach 0.2 V 1.0 m/s
Prandtl 0.72 P 17.85714286 Pa

γ 1.4 R 17.85714286 J/(Kg K)
L 0.0427 m T 1 K

Figure 3. View of approximate streamlines and velocity magnitude field through
the y = 0 plane (golf ball centerline).

polynomials resulted in too restrictive of a time step on this grid to generate results

in a reasonable amount of time. The flow is along the x-axis, with a Reynolds

number of 150 000 based upon the golf ball diameter of 0.0427m, and a Mach

number of 0.2. The full physical freestream conditions used (scaled such that the

freestream velocity is 1) are shown in Table 1. An instantaneous view of velocity

contours and approximate streamlines in the mid plane of the ball are shown in

Figure 3.

The time histories of the drag and total side forces are shown in Figure 4a,
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(a) Time history of force coefficients
(b) Side forces polar

Figure 4. Force coefficients for the static golf ball simulation, compared with those
produced by Li et al. under similar conditions.

and a polar plot of the two side forces CY and CZ are shown in Figure 4b. As a

verification that our results are reasonable, our force coefficient histories are also

plotted alongside those generated by Li et al. [30] for a very similar case. The

conditions for their study were Re = 110 000 incompressible flow; a lower Reynolds

number than that used here, but still corresponding to the supercritical regime where

the drag coefficient should remain nearly constant. A second-order finite-volume

LES solver was utilized for their simulation, using implicit time-stepping. Their

golf ball had 392 dimples with a dimensionless diameter c/D = 9.0 · 10−2 and

depth k/D = 0.005. An unstructured prism / tetrahedron grid was used with a

total of approximately 1.45 · 106 elements in the domain, with overall extents

−13D ≤ x ≤ 13D and −5.6D ≤ y, z ≤ 5.6D.

Since the dimples primarily change the drag, it would be expected that the side

forces should be quite similar between the two cases. Indeed, that is the case as

shown in Figure 4; the average and standard deviation of the side force histories

are nearly identical. The side-force polar plot shows this as well; the two studies
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show similar trajectories, simply offset by a rotation about the axis of the flow. The

present study was run for much longer (100 passes vs. 40), leading to a more visibly

bimodal polar plot, but the trends remain the same. The drag histories are also in

agreement; the offset between the two is to be expected, as the dimple depth used

here is far greater than the dimple depth used by Li et al. Results from a variety of

studies have shown a direct correlation between dimple depth and supercritical drag

coefficient, along with an inverse correlation to the critical Reynolds number. Of

course, many other factors have an effect on the aerodynamic properties of golf balls,

including the number, shape, and placement of the dimples, but here the effects of

varying dimple depth are quite apparent.

3.2.4 Spinning Golf Ball

In order to fully test the effectiveness of our moving-grid overset capability, we next

move on to the case of a spinning golf ball. We keep the golf ball fixed at the origin,

but apply a constant rotation rate around the z-axis; to fall in line with other studies,

we choose a non-dimensional spin rate Γ = ωr/Uin f = 0.15. All other physical flow

parameters are left the same. We simplify our handling of moving grids through

the use of rotation matrices to map between the updated and original positions of

the golf ball grid. To handle arbitrary rigid-body motion, however, the full 6 DOF

equations of rigid-body motion are integrated in time to keep track of the current

translation and rotation of the inner golf ball grid (although the translation is not

modified here, in the future the calculated surface forces on the golf ball could be

integrated in time for a full 6 DOF simulation).

Our average CD values are compared against the results from a number of

other studies, both experimental and computational, in Figure 8. As expected from
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previous literature, the spin induces a slightly higher drag coefficient than the static

case but imparts a more regular variation in side forces upon the golf ball; the

averages for all force coefficients (with standard deviations) are summarized in

Table 2 and the time history is shown in Figure 5. While the out-of-plane side

force (CZ) hovers near zero, the lift (CL or CY ) hovers around a value of 0.16, with

relatively large low-frequency oscillations. However, looking at a polar plot of the

side forces, the oscillations are far more constrained than in the static case, where

the symmetric nature of the flow allows the wake to oscillate randomly with no

preferred direction. In addition to providing a sizable lift force, the spin has the

effect of imposing some structure and a more preferred direction to the oscillations

of the wake.

As was done with the case of the static golf ball, we may compare against the

prior results of Li et al. [31], who have also performed detailed LES calculations

of golf balls at a similar Reynolds number (110 000 vs. 150 000) and spin rate (.1

vs. .15). Figure 5 shows the time history of lift, drag, and side forces between the

present results and those of Li et al., along with a polar plot of the lift and side

forces. The polar plots from the same cases without spinning are also included for

comparison. As in the static case, the present drag value is larger, as should be

expected; our present value is about 5% larger than that of the static golf ball. The

average lift value is also larger, as is also expected due to the higher spin rate used

in the present study.

We can also more quantitatively compare our results to those of Li et al. by using

the power spectrum of the golf ball forces, shown in Figure 6. While the two side

force spectra in Figure 6c show the same large peak at .04 Hz and nearly identical

behavior over the remaining frequency spectrum, the lift and drag coefficients show
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(a) Time history.
(b) Side forces polar.

Figure 5. Comparison of force time histories for our spinning golf ball vs. the
results from Li et al. 2017. The dashed curves in (b) re-plot the same polar data
from the static golf ball cases.

slight differences. In particular the drag spectra show a difference in peak, with the

present results showing more low-frequency components. Similarly, the present lift

coefficient spectra also show a slight shift to lower frequencies for the two primary

frequencies which appear, although the two smaller peaks are in the same locations

as those of Li et al.

The present values of lift and drag coefficients agree well with those of Bearman

and Harvery. Using the data shown in Figure 7, the estimated CD for a conventional

golf ball at a nondimensional spin rate of .15 would be about .28, or 8% higher

than that of a static golf ball, with a lift coefficient of about .18. Our results align

more with their results at a spin rate of .13, with a lift coefficient of .16 and a

spinning-to-static CD ratio of 1.05. The results of Li et al, meanwhile, predict a

much higher rise in CD with respect to spin rate, with a change of 11% at a spin rate

of .1.

The present results represent a milestone in the use of high-order methods for
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(a) Drag Coefficient (b) Lift Coefficient

(c) Side Coefficient

Figure 6. Comparisons of power spectrum density for our spinning golf ball vs. the
results from Li et al. 2017

Table 2. Summary of average force coefficients for the static and spinning golf balls;
CQ refers to the combined magnitude of the lift and side forces CY and CZ . Present
results compared to the similar study from Li et al.

Static Spinning (Γ = .15) Li 2015 (Static) Li 2017 (Γ = .1)

CD 0.2469 ± 0.005 0.256 ± 0.010 0.217 ± 0.008 0.238 ± 0.0057
CQ 0.076 ± 0.020 0.165 ± 0.021 0.079 ± 0.019 0.190 ± 0.025
CY −0.047 ± 0.032 0.164 ± 0.021 −0.029 ± 0.045 0.134 ± 0.018
CZ −0.044 ± 0.032 0.002 ± 0.022 0.046 ± 0.040 −0.022 ± 0.026
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Figure 7. CD and CL vs. nondimensional spin rate. Data for conventional golf balls
over a wide range of supercritical Reynolds numbers, from Figure 9 of Bearman
and Harvey [3]

Figure 8. Comparison of CD values from several experimental and computational
studies.
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the accurate simulation of difficult, large-scale fluid physics problems including

moving objects. These are believed to be the first high order simulations of static

and spinning golf balls, and represent an advance in the state of the art in both

scale-resolving CFD and overset grid calculations. Many interesting applications

are now within reach of high-fidelity simulation using the overset methods described

here, including high-lift systems, turbomachinery, and a variety of multicopters and

small-scale unmanned aerial vehicles (UAVs).

3.3 Computational Performance of the Parallel Direct Cut Method

It is important to evaluate the computational efficiency of our overset connectivity

method, as high accuracy is useless if the method is too expensive to produce a

result in a reasonable amount of time. Therefore, in this section, detailed profiling

results and performance metrics will be presented on real test cases — specifically,

the preceding test cases of the Taylor–Green vortex and the static/spinning golf ball.

An important performance optimization was implemented with respect to the

interpolation of solution gradients. ZEFR uses the Local Discontinuous Galerkin

(LDG) [12] viscous flux, which in general requires solution gradient data from

both sides of every interface. The LDG flux relies on several parameters; in

particular, there is a parameter β which can be varied to produce a more upwinded,

downwinded, or central viscous flux. For β = ±0.5, the viscous flux requires the

solution from only one side of the interface, and the gradient only from the opposite

side of the interface. For MPI faces, as discussed by Romero [44], inter-process

boundaries can be preprocessed such that one side of the boundary only sends

gradient data, and the other side only receives gradient data. We handle overset

boundaries similarly: at any artificial boundary face, the value of the LDG parameter
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β is set such that the gradient from the ‘external’ side of the interface is not needed -

i.e., the gradient does not need to be interpolated and communicated between grids.

Since in 3D simulations the gradient would require 3x as much computation and

communication as the solution already requires, this constitutes a significant savings

in terms of wall time per time step.

All cases in this section have been run on the Stanford Research Computing

Facility’s XStream supercomputer, a Cray CS-Storm GPU compute cluster. XStream

has a 1.0 petaflops total computing capability comprised of dense nodes with 8

x NVIDIA Tesla K80 GPUs (16 logical GPUs), 2 x 10-core Intel Xeon E5-2680

v2 CPUs, and 1 x FDR Infiniband card. CUDA-aware MPI was enabled to allow

the MPI distribution to operate directly on the memory resident on each GPU, and

handle the CPU/GPU memory transfers automatically in the background, or even

use direct GPU memory access with RDMA or PCI-e.

3.3.1 Performance of the Taylor–Green Test Case

To evaluate the performance of our new algorithm, the previous test cases have

been profiled in detail and compared to equivalent non-overset cases. Both static

and moving overset grids are compared. For the Taylor–Green case, the grids are

partitioned such that the inner grid is run on one rank, and the background grid is

run on three ranks. In order to ensure that the GPUs are being utilized efficiently,

each rank contains ∼46 000 elements; we size the background grid to have 523

elements and the inner grid to have 363 elements. Each rank has approximately

14 980 000 DOF for p = 3 and 29 260 000 DOF for p = 4.

Figure 9 shows the timeline of overset-related work performed during one

complete time step, consisting of five Runge–Kutta stages, for the static and moving
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overset Taylor–Green test cases for two polynomial orders. Since only overset- and

MPI-related functions are plotted, the white space in each timeline corresponds to

work solely being done in the solver — i.e., the underlying FR operations. Note

that non-blocking MPI sends/receives are used throughout ZEFR and TIOGA, so

that much of the MPI communication time is overlapped with useful work in the

solver. For both p = 3 and p = 4, the unblanking procedure—moving the grid and

performing the hole cutting twice to locate cells which must be added/removed from

the grid—takes up the first ∼0.15 seconds of the time step, with the remaining time

devoted to the residual calculation and Runge–Kutta stage updates. This highlights

the efficiency of high-order methods; if coarser grids with higher polynomial orders

can be used, the amount of time spent on geometry-related operations relative to the

numerical scheme is reduced. The time required to complete the unblank procedure

is fairly evenly split between the MPI communication of search points and the

construction of the hole maps (‘TIOGA-PreProc’), the MPI communication required

to ensure consistency in assigning a blanking status (normal/hole/artificial boundary)

to all MPI interfaces (‘DC-Face Iblank’), and the actual Parallel Direct Cut procedure

(‘DC-GPU’). Once within the main residual computation, the main sources of

overhead are the moving of the grid and corresponding geometry-related updates

with ZEFR (‘ZEFR-Move Grid’), and the point connectivity process required to find

updated donor elements for all fringe points (‘TIOGA-Point Conn’), which includes

communication of search points, searching the ADT, and computing interpolation

weights. On paper the TIOGA data interpolation and MPI communication (‘TIOGA-

MPI’) appear to take a sizable portion of the wall time as well. However, since

these operations are overlapped with other useful work within the solver, the actual

impact on the runtime is somewhat less than it appears.
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Figure 9. Timeline of overset grid work during one full five-stage explicit time
step over all ranks of the Taylor Green test case. Top: Static overset grids; Bottom:
Moving overset grids. The prefix ‘DC’ refers to work specific to our Direct Cut
method; ‘TG’ refers to standard procedures used within TIOGA; and ‘ZEFR’ refers
to work performed within the solver.
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This same data from the moving-grid cases is also plotted proportionally in

Figure 10. Here, the timing data from the four MPI ranks have been averaged

to get representative values for the overall simulation. The outer ring of each

donut plot shows the proportion of time spent on the unblanking procedure vs. the

Runge–Kutta stages. The middle ring breaks up the overset work into its high-level

components (with the legend in the middle), and the innermost ring breaks down

each component further (with the legend at the top). Legend items appear in CCW

order in the plots, starting at the top of each ring. ‘Unblank-1’ and ‘Unblank-2’ refer

to the two stages of the unblank procedure, where the hole cutting is performed for

the time step’s beginning and ending grid positions. This includes updating each

MPI rank’s OBB and hole map (‘OBB’ and ‘HoleMaps’), in addition to performing

the Parallel Direct Cut procedure (‘DirectCut’) and determining the final blanking

status of all faces (‘FaceIblank’). ‘PtConn’ refers to the point connectivity process,

where fringe points are sent to possible donor ranks (‘Comm’), donors are found

with an ADT search (‘ADT’), and interpolation weights are calculated from the

donor search results (‘Weights’). The final operations displayed are ‘Copy2GPU’,

which is the host-to-device copy of the new iblank values for elements and faces,

and ‘Interp’, which involves both the actual interpolation kernel as well as the MPI

buffer packing, sending/receiving, and unpacking time (‘Unpack’).

The advantages of using higher polynomial orders are quite clear here. Since

both cases use the same grid, the unblanking time is nearly identical between

the two. However, the unblanking procedure comprises 7% less of the total time

for the p = 4 case due to the additional work done by the solver. Within the

RK stages, the update of the grid positions takes up a substantial amount of time.

Since this consists mostly of several matrix-matrix multiplications to update the
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Figure 10. Breakdown of time spent on overset-related tasks for moving grids on
GPUs (single node, 4-GPU case). Middle layer: High-level overset tasks; Inner
layer: Lower-level subtasks for each slice of the middle layer.

rigid-body dynamics of the grids, there is not much that can be done to reduce

this time; it is completely independent of the domain connectivity method. The

single most expensive operation (in terms of wall time) during the RK stages is

the communication of fringe node positions between each rank and its potential

donor ranks. This is because the point connectivity operation within TIOGA is not

overlapped with any other useful work; the inter-rank communication latency is not

hidden. It may be possible in the future to separate the point connectivity process

into two stages, with useful work in between, but at present it would require invasive

changes to both ZEFR and TIOGA to implement.
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3.3.2 Performance of the Golf Ball Test Case

The large scale of the golf ball test case provides a very useful platform on which

to assess the performance of ZEFR and the Parallel Direct Cut method at scale.

The golf ball grid uses cubically curved hexahedra, while the background grid is

a structured box using linear hexahedra. A total of 715 750 elements are used in

the background grid, and 1 105 920 in the golf ball grid. The background and body

grids are partitioned into 19 and 29 ranks respectively, giving an average of 37 951

elements per GPU. The first case is run across 3 nodes of Stanford University’s

XStream cluster, each of which has 8 K80 boards (each with two logical GPUs), 2

Intel Xeon E5-2680 v2 CPUs, and 1 Infiniband card.

Detailed profiling results for both the static and moving cases for two polynomial

orders are shown in Figure 11. Similar to the profiling performed for the Taylor–

Green test case, for the moving cases, the unblank procedure at the start of the

time step is clearly distinguished from the Runge–Kutta residual calculation stages.

CPU-side preprocessing activities again take up most of the time of the unblank

procedure (‘TIOGA-PreProc’, ‘DC-PreProc’); however in this case the hole cutting

does take a noticeable amount of time. It can also be seen that the ADT search and

related operations within the point connectivity update procedure (‘TIOGA-Point

Conn’) take up a substantial amount of time during each Runge–Kuta stage.

This is shown more clearly in Figure 12. In contrast to the relatively small

and simple Taylor–Green test case, the golf ball domain connectivity takes up a

considerably larger proportion of the total time, with the underlying numerical

solver comprising just under a quarter of the total time for p = 4, and less for p = 3.

As was the case for the Taylor–Green simulation, the point connectivity procedure
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Figure 11. Timeline of overset grid work during one five-stage explicit time step
over all ranks of the golf ball test case. Top: Static overset grids; Bottom: Moving
overset grids. The prefix ‘DC’ refers to work specific to our Direct Cut method;
‘TG’ refers to standard procedures used within TIOGA; and ‘ZEFR’ refers to work
performed within the solver.
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Figure 12. Breakdown of time spent on overset-related tasks for moving grids on
GPUs (3-node, 48-GPU golf ball case). Middle layer: High-level overset tasks;
Inner layer: Lower-level subtasks for each slice of the middle layer.

— particularly the MPI communication of the fringe points — is the single largest

contributor to the total wall time.

We can further test our method by scaling the case across double the number

of computing nodes. Figure 13 shows the timelines of operations for the same

moving-grid golf ball test case, but now across 96 GPUs (6 nodes on XStream) for

p = 4 and p = 5. Running the golf ball at p = 5 was not possible on 48 GPUs due

to requiring more than 576 GB of GPU memory, but here we can see that it runs

quite well on 96 GPUs, with an efficiency comparable to that of the p = 4 case on

48 GPUs. The p = 4 case also scales reasonably well; the next section will discuss

quantitative performance metrics.
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Figure 13. Timeline of overset operations for the golf ball case across 96 GPUs.

3.3.3 Summary of Performance Results

As a solver-agnostic, quantitative metric to compare performance between codes,

Table 3 shows the average time per DOF required to compute the residual (∇ · F)

and all necessary connectivity and interpolation overhead once. Since we have

been using a 5-stage 4th order Runge–Kutta time integration method, this is defined

as 1/5 of the time per DOF required to advance one complete time step. We also

compare against the same metric provided by Witherden et al. [60] for the PyFR

code under equivalent conditions and on similar hardware (NVIDIA Tesla K40c).

Although PyFR and ZEFR are performing essentially identical numerical methods,

the ZEFR single-grid performance metrics are slightly better due to the introduction

of GiMMiK [62], a library which greatly improves the performance of sparse matrix

multiplications such as the ones which occur due to polynomial operations inside of

tensor-product elements. These numbers have also been reported for the baseline

(non-overset) ZEFR solver within the PhD thesis of Romero [44].

38

DISTRIBUTION A: Distribution approved for public release.



Considering first the Taylor–Green case, we can see that for moving overset grids

with linear hexahedra, the overhead involved is a factor of ∼2.2 − 2.6 over a single

static grid, while the overhead for performing overset interpolation without grid

motion and connectivity updates at every time step is only 35%. The ‘worst-case’

numbers are provided by the moving-overset calculations for the golf ball test case.

The case was first run over 3 nodes of the large computing cluster XStream (totaling

48 GPUs), and the body grid was represented with cubically curved hexahedra,

increasing the amount of work required in the Parallel Direct Cut algorithm as well

as the point connectivity update. In this case, the cost for moving overset grid

calculations relative to single-grid calculations becomes a factor of ∼3.8 for p = 4,

or ∼5.2 for p = 3. The increased apparent cost for p = 3 vs. p = 4 is because

both cases are using the same grid, and hence the overset and geometry-related

processing required for each time step is about the same between the two cases, but

the p = 4 case has about double the number of degrees of freedom, so the total cost

is more evenly distributed. The overhead for static overset grids, meanwhile, is at a

relatively low 14% for p = 4, and 21% for p = 3.

When the same case was run with double the number of MPI ranks (6 nodes, 96

GPUs), strong scaling efficiency of 79% was achieved for p = 4. If the amount of

work is increased by switching to 5th-order polynomials however (a 1.73x increase

in the number of DOF vs p = 4), then a weak scaling efficiency of 92% is achieved,

and is even more efficient than running p = 3 on 48 ranks. This again highlights an

advantage of high order methods: high polynomial orders combined with relatively

coarse grids (compared to a 2nd-order FV grid) can offer greatly improved efficiency

in terms of mesh generation and mesh-related operations during the simulation.
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Table 3. Time per Runge–Kutta stage per DOF in nanoseconds for various cases.
ZEFR used NVIDIA K80 GPUs and Intel Xeon E5-2680 v2 CPUs, while PyFR
used NVIDIA K40 GPUs and Intel XeonE5-2697 v2 CPUs.

Time per DOF / 10−9s

NVIDIA GPUs Intel CPUs

Code Case p = 3 p = 4 p = 5 p = 3 p = 4

ZEFR TGV (Base) 4.28 4.37 – 340 370
(4 Ranks) Static Overset 5.78 5.86 – 360 380

Moving Overset 11.1 9.69 – 450 500

(29 Ranks) Golf Ball (Base) 5.54 5.67 – – –
(48 Ranks) Static Overset 6.74 6.46 – – –

Moving Overset 28.7 21.3 – – –
(96 Ranks) Static Overset 6.91 7.09 8.12 – –

Moving Overset 36.2 26.9 23.2 – –

PyFR Cylinder 4.88 6.17 – 332 383

3.4 Efficient shock sensing and capturing

While high order methods have shown great promise of improved accuracy and

efficiency over their low order counterparts, they have not yet been widely adopted

by the industry primarily due to their lack of robustness and the lack of good shock

capturing techniques for these schemes. Discontinuous solutions or shocks are one

of the major sources of nonlinear instabilities and high order methods are more

prone to such instabilities due to their lower dissipation. Discontinuous solutions

carry multiple threats to a numerical scheme. Apart from destabilizing the numerical

scheme, they can also leave behind persistent oscillations which can cause non-

physical solutions or lead to loss of accuracy around the shocks, or even farther

away from them if not handled appropriately. While a wide variety of methods have

been developed in CFD for the treatment of shocks, very few are truly suitable for
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high order unstructured methods. With this as a motivation, a shock detection and

capturing method that can be used by any finite element type method and for any

nonlinear PDE has been proposed.

The higher resolution available within a cell or element in high order methods

allow for a sub-cell resolution of shocks. To achieve this in a computationally

efficient fashion, filtering has been proposed as the shock capturing tool. Filtering

is a non-intrusive technique where the original PDE remains unaffected and the

solution is filtered as a post-processing step after every (or every few) time-steps.

This provides a major advantage in terms of computational efficiency over artificial

viscosity methods, especially in the context of explicit time-stepping methods. It is

also very suitable for implementation on GPUs since all operations can be cast in

the form of matrix-matrix multiplications.

The disadvantage of filtering over artificial viscosity methods is the lack of

an efficient approach for varying the amount of dissipation across the domain in

a smooth fashion. In order to tackle this effectively, a robust shock detection

mechanism which can clearly distinguish between shocks and other gradient rich

regions like vortices and boundary layers becomes necessary. In this regard, a

novel shock detection technique inspired by the method of concentration used in

image detection [20, 21] has been developed. While the concentration property of

Fourier expansions is used in image edge detection, our method utilizes a similar

concentration property of Jacobi polynomials to detect regions with shocks. In

comparison to image edge detection, the number of polynomial modes available in

the context of CFD is often much lower. A clear guideline for selecting parameters

so as to effectively handle this has been laid out and the method has been shown to

work very well even at polynomial degrees as low as 2.
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(a) Density at flow time t = 4s with 30 contour lines.

(b) Sensor at flow time t = 4s.

Figure 14. Results obtained from the simulation of the flow in a Mach 3 wind tunnel
with a step at t = 4s.
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The positivity preserving limiter of Xiang and Shu [64, 65, 66] which was later

extended by Lv and Ihme [34] along with Strong Stability Preserving (SSP) time-

stepping schemes have been used to provide robustness against formation of negative

or non-physical solutions along with the shock capturing tools. Several numerical

experiments were performed to test the robustness of the shock capturing method

under a variety of flow conditions and computational meshes, its performance in the

context of high order methods, and its ability to perform well for viscous problems

in the presence of boundary layers and vortices.

Figure 14 shows the results from a simulation of the flow in a Mach 3 wind

tunnel with a step, a test case popularized by Woodward and Colella [61]. The

sharp corner is a singularity of the flow and is known to generate gross errors if

not treated appropriately. While the standard approach is to implement artificial

boundary conditions, the sharp corner is handled directly using our framework

composed of sensing, filtering and positivity preservation and the results agree very

well with the reference [61]. This test case shows the robustness of this framework

in adverse flow conditions and its applicability to a wide variety of compressible

flow problems.

Some of the major observations and conclusions from the numerical experiments

were as follows:

• The method works very well with both structured and unstructured meshes in

2D and 3D.

• The method was found to be robust even under highly adverse flow conditions

and was capable of recovering accurate solutions without the need for mesh

adaptation.
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• Simulations with the same number of degrees of freedom performed better

when higher order polynomials were used even under the presence of multiple

shocks. This highlights that although it might be harder to stabilize a high or-

der scheme compared to its low order counterparts, and the order of accuracy

is reduced near the shock, if the shock capturing is handled effectively and

in a sub-cell fashion, the benefit of higher accuracy away from the shocks

provided by high order methods can be retained.

• The shock detector is capable of clearly distinguishing between shocks and

regions with vortices or boundary layers and the shock capturing method

works well when multiple shocks are present along with such viscous flow

structures.

• The shock capturing framework can also be readily utilized for convergence

acceleration in steady state problems as well as for stabilizing against aliasing

instabilities.

3.5 Fourier analysis of FR for advection-diffusion problems

Numerical analysis of DG and FR methods has primarily relied on functional

analysis and spectral decomposition. The primary tool for analyzing dissipation and

dispersion properties has been Fourier (von Neumann) analysis. Fourier analysis

of the FR formulation was performed for the linear advection-diffusion equation to

investigate the stability, dissipation and dispersion associated with the DG scheme.

This led to several significant discoveries.

We were able to show that the maximum stable time step for advection-diffusion

is stricter than that for pure-advection or pure-diffusion individually. A connection
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between maximum stable time steps for pure-advection and pure-diffusion was

found through a harmonic sum leading to a suitable CFL estimate for the linear

advection-diffusion and Navier-Stokes equations on unstructured, tensor product

elements. The estimate has been shown to be conservative on tests with Cartesian

grids but not always on unstructured grids.

Our analysis also led to a verification that centered schemes produce less error

for well resolved solutions while schemes with a one-sided bias produce less error

for solutions that are under-resolved. Figure 15 shows an approximate Gaussian

propagated through a 2D domain where elements increase in size, making the wave

more difficult to resolve. The centered schemes produce less error for well resolved

waves while the one-sided schemes produce less error for waves that are poorly

resolved. These trends become particularly important for turbulent flows because

a large spectrum of waves need to be captured accurately in order to obtain valid

results. These findings show that the combination of the schemes being used can

affect the solution.

(a) Initial condition
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(b) Relative Error vs. Time Periods

Figure 15. Initial condition and relative error of the propagation of an approximate
Gaussian. The advection-diffusion equation is solved using the FR method.

45

DISTRIBUTION A: Distribution approved for public release.



3.6 Stability Analysis of FR on tensor product elements

The linear stability of the FR approach utilizing the Vincent Castonguay Jameson

Huynh (VCJH) correction functions has been previously studied in the one dimen-

sional context by Vincent et al. [53] and the scheme has been shown to be stable

whenever the VCJH parameter c is non-negative. In fact, the VCJH correction

functions were designed to obtain stable numerical schemes. This idea was later

extended to triangles by Castonguay et al. [7] and to tetrahedra by Williams et

al. [54, 55] who developed new correction functions and criteria required for energy

stable schemes on simplex elements.

Parallel to these developments, the FR approach was formulated on quadrilateral

and hexahedral elements as a simple tensor-product like extension of the one-

dimensional approach utilizing the 1D VCJH correction functions. But the question

of whether such an extension is stable remained open until recently, due to certain

major difficulties in extending the 1D stability analysis to tensor product elements.

In order to overcome these difficulties, a norm different from the one used in 1D

and for simplex elements was formulated and it was shown that this partial Sobolev

norm is non-increasing as long as the VCJH parameter c ≥ 0. This conclusion

was obtained for both the linear advection and advection-diffusion equations on

Cartesian meshes. Since the solution is represented using a polynomial basis, norm

equivalence can then be invoked to show that the L2 energy of the solution cannot

grow in an unbounded fashion, thereby proving stability of the numerical scheme.

In addition to proving stability, the newly formulated norm for tensor product

elements also displays an explicit dependence on the VCJH parameter c, which is

unlike the 1D or simplex element cases where stability analysis only predicted a
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bound for c, above which stability of these schemes is guaranteed. This explicit

dependence provides an intuition for the results obtained through numerical experi-

ments. In particular, the higher dissipation and correspondingly higher stability of

the schemes as c increases can be anticipated directly from the results of the stability

analysis. Also, in 1D, the stability analysis breaks as c is decreased below a certain

value c−, but it is not clear whether the schemes would blow up as c is decreased

below this value. The results obtained in by us show that when c becomes negative,

there is a competing effect between stable and unstable contributions, and that the

schemes become less stable as c is decreased.

Although the analysis is focused on quadrilateral elements, the extension to

hexahedral elements, i.e., 3D Cartesian meshes is believed to be straightforward

when utilizing the new norm formulated for tensor product elements. This answers

the last major open question regarding the linear stability of the FR formulation.

3.7 Extended range of energy stable FR schemes

Various properties of FR schemes, including their dispersion and dissipation charac-

teristics and their associated CFL limits are determined in full or in part by the form

of the correction function. In 2011 Vincent, Castonguay and Jameson employed

an energy method in order to identify a family of provably stable 1D correction

functions. Parameterised by a single scalar constant these correction functions

provided a substantial degree of insight into the nature of FR.

Over the past year we, in collaboration with Peter Vincent at Imperial College

London, have developed a procedure for identifying an extended range of energy-

stable correction functions. Unlike the original energy stable FR schemes, which

are always paramerized by a single constant, the extended range of schemes are
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paramerized by one or more constants depending on the order of accuracy. For

all polynomial orders at which we have applied the procedure we have identified

the original energy stable FR schemes as a subset of the new extended range.

Interestingly, it appears that—unlike the original family of schemes—it is not

possible to cast these new extended range of schemes in the form of a filtered DG

scheme.

Work to apply these new schemes to real-world problems is still ongoing,

both at Stanford University and Imperial College London. The objective of these

investigations is to identify parametrizations of these new schemes with particularly

favourable properties for high-order turbulent flow calculations.

3.8 Extension of direct FR to triangles

The direct FR approach (DFR) is a simplified formulation of the FR approach that

admits a simpler presentation and permits a more efficient implementation. Hereto-

fore, without resorting to a collapsed-edge formulation it has not been possible to

extend DFR to triangular elements. Over the past year Romero, Witherden, and

Jameson developed a natural generalization of the DFR approach to triangular ele-

ments. The resulting scheme inherits many of the desirable properties of the original

DFR scheme and is substantially simpler to implement than existing extensions of

FR to triangular elements. A key aspect of these schemes is a novel treatment of the

auxiliary equation which arises when discretizing problems with a diffusive term.

This new scheme defines a set of Ns solution points {r1, r2, ..., rNs} in the interior

of the standard triangular element where NS = 1
2 (P + 1)(P + 2) is the number of

points required to interpolate a polynomial of degree P within the triangle. Next, a

set of NF flux points {r1, r2, ..., rNS , rNS +1, ..., rNF } which includes the previously
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Figure 16. Degrees of freedom on reference triangle for P = 2. The solution points
are represented by blue squares, flux points are represented by red circles, and unit
vectors for Raviart–Thomas flux interpolation are represented by black arrows.

defined solution points and a number of additional points on the element boundaries,

is defined. By construction the flux points in the element interior and solution

points are collocated. In a departure from the standard FR formulation on triangles

[8, 54] and the SD-RT scheme [2, 35] which place P + 1 points on each edge of the

triangular element, the DFR scheme on triangles places P + 2 points on each edge

of the triangular element, which results in NF = NS + NFB where NFB = 3(P + 2),

the number of flux points on the element boundary. A depiction of the solution and

flux point locations on a reference triangle can be found in fig. 16.

Further, we have also devised a novel means of handling the auxiliary equation

that arises when discretizing advection-diffusion problems. Whereas the standard

FR formulation on triangles computes the gradients of the corrected the solution

in transformed space, our DFR formulation computes these gradients directly in

physical space. This approach elegantly sidesteps many of the issues that have

prevented related methods, such as the aforementioned SD-RT scheme, from being

extended to advection-diffusion problems.
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To assess the performance of the DFR scheme in simulating unsteady viscous

flow problems of engineering interest, we consider the solution to the unsteady

Navier–Stokes equations over a circular cylinder of infinite length at a Reynolds

number Re = 100 at a fixed constant viscosity µ. At low Reynolds numbers,

this problem can be modeled within a two-dimensional domain, perpendicular to

the cylinder axis. This problem is simulated within a square domain [−30, 70] ×

[−50, 50] with a circular cylinder of diameter D = 1, centered at coordinate (0, 0).

The domain is partitioned into 4,030 triangular elements with quadratic edges used

to represent the cylinder wall. The outer boundaries of the domain are treated

using Riemann-invariant characteristic boundary conditions [27] and an adiabatic,

no-slip boundary condition is applied at the cylinder wall boundary. To minimize

compressibility effects, the freestream velocity was set consistent with a Mach

number M = 0.1.

For each case, the flow is marched forward in time using the low-storage

RK45[2R+] time integration scheme of Kennedy et. al. [28] until a periodic laminar

vortex shedding pattern is fully developed. At this point, the average and peak lift

coefficients, CL, and average and peak drag coefficients, CD, are computed over 10

shedding cycles, along with the Strouhal number, S t. Plots of the time history of

lift and drag coefficient over this period can be seen in fig. 17 with an associated

contour plot of vorticity in fig. 18.

A comparison of the results achieved using P = 4 with those reported by

others in the literature can be seen in table 4. In comparing the results across

polynomial order and point configuration, the lift, drag an Strouhal numbers are

equivalent, indicating that the computational grid is adequately refined for this

problem. Comparison of the computed values with the reported results of from
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Table 4. Cylinder results and comparison at Re = 100

Study Method CL CD S t

Current DFR (P = 4) ±0.326 1.339 ± 0.009 0.165
Cox et. al [14] Incompressible FR (P = 3) ±0.325 1.339 ± 0.009 0.164
Chan et. al [10] Spectral Difference (P = 3) ±0.325 1.338 ± 0.009 0.164
Park et. al [42] Fractional Step ±0.332 1.33 ± 0.009 0.165

Sharman et. al [46] SIMPLE ±0.325 1.33 ± 0.009 0.164
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Figure 17. Time history of lift and drag coefficients for cylinder at Re = 100, P = 4,
Williams-Shunn points

several other studies show excellent agreement. This result provides support for

the efficacy of the DFR scheme on triangles for simulating unsteady viscous flow

phenomenon.

3.9 Implicit time stepping via multi-colored parallel Gauss-Seidel method

The push towards high-order, unsteady flow simulations over complex geometries

has sparked a need for faster convergence for large scale problems. Accelerated

explicit methods and the polynomial multigrid method have been used to accelerate

convergence rates but are sometimes not enough to overcome the stiffness found
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Figure 18. Vorticity contours of cylinder at Re = 100, range scaled to [−1, 1] for
emphasis

in aerodynamic applications where the cell volume varies by several orders of

magnitude between the body and the far field [9, 32, 58]. For these class of problems,

implicit methods offer an alternate means to converge steady state solutions or drive

the solution to physical time steps in dual time stepping methods by means of larger

pseudo time steps. In particular, lower-upper symmetric Gauss-Seidel (LU-SGS) has

shown promising results in unstructured compressible flow solvers utilizing finite

volume methods, SD methods, the CPR method and more recently, the compact

high-order method [13, 25, 32, 49, 63].

Graphical Processing Units (GPUs) are also becoming more popular among

those in the scientific computing community and can demonstrate a substantial

performance gain for programs using high-order methods [9, 25, 29, 33, 58]. The

DFR method is well suited for GPUs because the vast majority of operations are

element local and the increase in amount of work per degree of freedom couples

well with the high computational potential of GPUs. Castonguay et al. has shown
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the potential of these accelerators to produce results for unsteady simulations using

explicit time stepping [9]. Typically, implicit time stepping has been a more difficult

problem to address because of the increase in memory requirements and the serial

aspects of the algorithm but there have been advances which show that there are

methods of overcoming these problems on a single GPU [25].

Recent efforts have led to the development and implementation of a multi-

GPU, implicit, high-order compressible flow solver for unstructured grids. The

solver utilizes the direct Flux Reconstruction (DFR) method and a multi-coloured

Gauss-Seidel (MCGS) method to converge the steady state Euler equations in a

multi-GPU environment. The MCGS scheme is able to obtain a fast, grid converged

lift coefficient of 0.1795 for the NACA 0012 airfoil at a 1.25 degree angle of

attack, Mach 0.5. Figure 19 shows that results are obtained with fewer degrees of

freedom when compared to Overflow and CFL3D. We also note the substantially

improved rate of convergence when compared with explicit RK4 time stepping.

The high arithmetic intensity and the ease of parallelization makes MCGS an ideal

choice for multiple GPUs. The memory size of the left-hand side matrices in the

implicit method limits the scheme’s use for high polynomial orders on a single

GPU but this bottleneck in memory usage can be mitigated by using multiple

GPUs. The scheme is able to maintain near perfect weak scaling showing that it

can be effectively distributed over multiple GPUs to solve large problems without a

significant degradation in performance.

3.10 DNS of the T161 low pressure turbine cascade

During the course of the award we also conducted scale resolving simulations of

MTU T161 low pressure turbine (LPT) cascade. These simulations, performed in
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Figure 19. Inviscid flow over the NACA 0012 airfoil, implicit MCGS.
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collaboration with MTU Aero Engines and the Vincent Lab at Imperial College

London, were undertaken on the Titan supercomputer as part of a DOE INCITE

award. The T161 is a highly loaded configuration and is representative of general

trends in turbine design. Moreover, it is also particularly challenging as it involves

complex unsteady three-dimensional flow behaviour including a large separation

bubble on the suction side of each blade and end-wall boundary layer effects. Our

specific focus with these simulations is to use Direct Numerical Simulation (DNS) to

resolve the flow over a full-scale T161 configuration at Re = 200 000 and M = 0.6.

Such a simulation provides unprecedented fidelity into the flow physics associated

with modern LPT cascades.

The mesh for the simulation is shown in fig. 20 and consists of 90,760,192

second order curved hexahederal elements. With fourth order solution polynomials

this corresponds to 11.3 × 5 = 56.5 billion degrees of freedom. For computational

reasons laminar inflow conditions were applied. Time average statistics for 200

quantities were collected over a period of 11 blade-passes. The computed distribu-

tion of ∆y+ along the suction side of the blade can be seen in Figure 21, where ∆y+

corresponds to the non-dimensional wall distance. Within the context of FR this

is taken to be the distance from the boundary to the first solution point. Looking

at the plot we observe that at all locations ∆y+ < 1 thus indicating DNS levels of

resolution in the boundary layer.

To validate the accuracy of our numerical simulations we compare our results

against the experimental data of MTU Aero Engines. The distribution of isentropic

Mach MI number over the blade at the mid-span location is shown in Figure

22. This demonstrates that our DNS results achieve excellent agreement with the

experimental data at all measurement locations on both the pressure and suction
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Figure 20. Two dimensional cross-section of the hexahedral mesh used for the T161
simulations.
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Figure 21. Distribution of ∆y+ along the suction side of the blade.

sides of the blade. Furthermore, a comparison between experimental oil streak

lines and computational shear line integral convolution (LIC) lines from the DNS

results are shown in Figure 23. On the suction side we observe that the DNS results

accurately predict the turbulent end-wall effects and their development downstream

on the suction side of the blade. Also, the location and curved shape of the mid-span

separation line, which is demarcated by a horizontal edge in the oil streak lines ahead

of the mid-chord, is also predicted accurately. Furthermore, the behaviour on the

pressure side of the blade is also qualitatively consistent with the experimental data.

Instantaneous snapshots of Q criterion isosurfaces, which define vortical structures,

over the suction- side of the blade, including a zoom of the end wall region can

be seen in Figure 24. It can bee seen that turbulent transition in the mid-span
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Figure 22. Distribution of MI over the pressure and suction sides of the LPT blade
surface at mid-span.

region occurs near the aft portion of the blade. However, for the end-wall region

transition occurs near the leading edge of the blade and propagates inwards towards

the mid-span via end-wall effects. This demonstrates that turbulent transition near

the ends of the blade is dominated by end-wall effects, whereas turbulent transition

in the mid-span region is relatively uniform across the span.

3.11 Data-driven modeling and flow control

The design of flow control systems remains a challenge due to the nonlinear nature

of the equations that govern fluid flow. However, recent advances in CFD have

enabled the simulation of complex fluid flows with high accuracy, opening the

possibility of using learning-based approaches to facilitate controller design. To
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(a) PyFR (b) Experiment 2% TI

Figure 23. Image of computational shear LIC lines (a) and experimental oil-streak
lines (b) on the pressure and suction sides of the LPT blade surface.

demonstrate the possibility of learning the forced dynamics of fluid flow directly

from data, we consider the test case of two-dimensional airflow over a rotating

cylinder at a Reynolds number of 50. Using a training procedure grounded in

Koopman theory, we have shown that it is possible to train neural network models to

accurately model the forced and unforced dynamics of the airflow over the cylinder

for significant time horizons [37].

Subsequently, we were able to incorporate the trained models into a model

predictive control (MPC) framework to suppress vortex shedding over the cylinder.

Figure 25 shows the x-momentum of the airflow over time, and demonstrates the

effectiveness of the MPC algorithm in suppressing vortex shedding. Furthermore,

by examining the selected control inputs, we discovered that the controller obtained

through MPC is functionally similar to a proportional controller performing feed-

back based on y-velocity measurements at a point in the wake of the cylinder. This

aligns with previous experimental studies that have shown that vortex suppression
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(a) All

(b) Zoom

Figure 24. Instantaneous isosurfaces of Q criterion, colored by velocity magnitude,
on the suction side of the blade.
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(a) t = 0 (b) t = 100 (c) t = 400 (d) t = 700

Figure 25. Snapshots of x-momentum over time as the MPC algorithm attempts to
suppress vortex shedding.

can be achieved based on proportional control schemes [5, 23, 41, 45]. Thus, we

were able to identify an effective, straightforward, and interpretable control law for

vortex suppression, and feel that such data-driven modeling and control approaches

may be instrumental in identifying flow control laws for other systems.

Future work will focus on incorporating uncertainty into the learned dynamical

models, which may enable the control of increasingly complex fluid flows.
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