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1 Introduction

The MURI program entitled Managing the Mosaic of Microstructure started officially on September
30, 2012 and ended (with a no-cost extension) on November 30, 2018. The program was a joint research
project between groups from seven major universities: Carnegie Mellon University (lead institution), Cal-
Tech, Georgia Tech, Northwestern University, Purdue University, University of Michigan, and the University
of Minnesota. BlueQuartz Software acted as a software consultant on the project.

This research program aimed to create break-through concepts and methodologies for elucidating the
microstructure-properties link to enable materials design by bringing together cutting-edge theories and
techniques from materials science, mathematics and information science – many of which are unknown to
researchers outside individual disciplines. The main objectives of our research plan were stated in terms of
three Grand Challenges (GCs) around which our efforts were built:

• GC1: to establish a standardized methodology, grounded in sound mathematics, for acquiring, storing,
analyzing, modeling, and querying “beyond 3-D” materials data, taking full account of the potential sparsity
of such data as well as the associated uncertainties and variabilities;

• GC2: to employ advanced stochastic/probabilistic models that allow not only for the description of the
“average” microstructure, but also for the inclusion of rare events (large deviations), and to set up the proper
data structures to enable such a stochastic description;

• GC3: to employ advanced data mining approaches, constrained by accurate mathematical models and
accounting for variability, to instantiate large numbers of digital microstructures to search for an optimal
microstructure and its process path, to achieve a desired property combination.

The first two challenges required the creation of several new methodologies, and the third challenge repre-
sented an overarching goal of the research program. The ability to predict what a microstructure should look
like in order to achieve a given property or performance would be transformational to the field of materials
science and engineering.

To address these three Grand Challenges, we implemented a multi-pronged approach divided into three
main thrust areas:
• Thrust Area 1 − [T1] Representation of structure and time evolution in microstructures: What can
we measure and how can we compactly represent microstructure?
• Thrust Area 2 − [T2] Mathematical quantification of microstructures for bridging scales: What infor-
mation about a microstructure is relevant for its properties?
• Thrust Area 3 − [T3] Multi-scale materials design using informatics: How can we use microstructure
information for design?

The thrust areas were selected so that each team member, through his/her own relevant expertise, could
contribute to addressing each of the three Grand Challenges; they were also formulated to be consistent with
discovery-based university style research. The MURI project produced a variety of deliverables, some in the
form of algorithms, some in the form of mathematical models, and others in the form of methodologies or
frameworks for microstructure design and microstructure-property relations modeling:
— algorithms for: optimal design of magnetoelastic and energy conversion devices; optimization of multifer-
roic microstructure; reconstruction and generalized forward projectors for focused ion beam serial sectioning,
vector field electron tomography, and time-dependent X-ray computed tomography; reconstruction code ca-
pable of detecting/identifying rare events; extraction of accurate interface curvatures from 3D time-dependent
data sets; data storage and retrieval, compatible with high-end data mining approaches; optimal sampling
of microstructure space; robust importance samples for stochastic modeling of rare events.

— mathematical models for: microstructure-property relations in multiferroics; time-dependent tomographic
reconstructions; thin-manifold description of microstructures; probabilistic graphical model adapted to ma-
terials microstructures and data acquisition;

— methodologies/frameworks for: microstructure-sensitive design in multiferroic alloys, Ni-based superalloys
and α–β Ti alloys; robust process design of polycrystalline materials for customized performance; experi-
mental validation of process designs.

In the remainder of this document, we will present a few statistics related to the program, followed by a
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description of 10 selected joint research results. The document concludes with a list of all publications that
acknowledge MURI support.

1.1 Program Participants

During the six years of this program, a total of 30 graduate students and 9 post-doctoral researchers par-
ticipated in various research projects. Table 1 lists all students and post-docs along with their current
occupation, if known.

Graduate Students

Ruoqian Liu Research Scientist at Uber AI Labs
Arindam Paul EECS, Northwestern University (expected to graduate end of 2019)
Ahmet Cecen Exxon-Mobil Chemicals, Houston TX
Yuksel Yabansu Research Engineer, Georgia Tech
Xian Chen Assistant Professor, Hong Kong University of Science and Technology
Yintao Song rincipal Software Engineer, Lattice Engines, San Mateo, CA
Amartya Banerjee Assistant Professor, Materials Science and Engineering, UCLA
Vivekanand Dabade Postdoctoral Fellow, Ecole Polytechnique
Abhishek Kumar Asst Prof at Northeastern University
Pinar Acar Asst Prof at Virginia Tech
Siddhartha Srivastava Current PhD student at U Michigan
Michael Chapman Air Force Research Laboratory (Dayton OH)
Saransh Singh Post-doctoral researcher (CMU)
Ashwin Shahani Assistant Professor (U. Michigan)
Yue Sun JP Morgan Chase
Chun-Jen Hsueh Currently working at Amazon 126
Dingyi Sun postdoc at Brown University
Jin Yang Currently a post-doc at University of Wisconsin at Madison
Md. Zubaer Hossain Currently Assistant Professor at University of Delaware
G. M. Dilshan Godaliyadda Texas Instruments
Suhas Sreehari Wells Fargo
Kadri Aditya Mohan Lawrence Livermore National Laboratory
Singanallur V. Venkatakrishnan Oak Ridge National Laboratory
Maliha Hossain Graduate Student Purdue University
Soumendu Majee Graduate Student Purdue University
Benjamin Foster Lockheed Martin Corporation
Emma Reid Graduate Student Purdue University
Huixi Zhao Technical Lead, Zoom Video Communications
Dae Woo Kim Programmer Analyst, Washington University at St. Louis
Camilo G Aguilar Herrera Current PhD student, Purdue University
Tianyu Li Current PhD student, Purdue University

Postdoctoral Researchers

Vijay Srivastava Lead Materials Scientist, GE Global Research
Amy Wang (The Netherlands)
Farangis Ram Carnegie Mellon University
Emine Begum Gulsoy Nortwestern University
Gal Shmuel Currently Assistant Professor at Technion, Israel
Stella Brach Continuing as a postdoc at Caltech
Dong Hye Ye Assistant Professor, Marquette University

Table 1: Graduate students and post-doctoral researchers who participated in the MURI program, along
with their current employer (if known). Students in italics continued as post-doctoral researchers after
graduation, students/post-docs in bold became faculty members.
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1.2 Reviews and Team Meetings

1.2.1 Program Review Meetings

The MURI program held annual review meetings at a number of locations (Table 2); details of the presen-
tations given at those reviews can be found on the MURI website.

Meeting Dates Locations
MURI Kickoff Meeting 10/18-19/2012 Carnegie Mellon University
Sayir Portfolio Review Presentation 2/18/2013 Arlington, VA
MURI Review 1 1/21-22/2014 Dayton, OH
Sayir Portfolio Review Presentation 5/13/2014 Arlington, VA
MURI Review 2 6/22-23/2015 Arlington, VA
Sayir Portfolio Review Presentation 5/21/2015 Arlington, VA
Final Program Review 12/18-19/2017 Arlington, VA

Table 2: Dates and locations of all official meetings associated with MURI kickoff, annual reviews and final
review.

1.2.2 Team Summer Meetings

The MURI team organized four work meetings at different host institutions. The purpose of these meetings
was two-fold: (1) to make sure that the graduate students and post-doctoral researchers from different groups
would get to know each other, and (2) to present recent research results to the complete group, to facilitate
“cross-pollination” across research fields. The meeting locations and dates are listed in Table 3.

Meeting Dates Locations
Team Meeting 1 7/1-2/2013 Northwestern University
Team Meeting 2 8/14-15/2014 Purdue University
Team Meeting 3 8/17-18/2015 Carnegie Mellon University
Team Meeting 4 8/22-23/2016 CalTech

Table 3: Dates and locations of all Summer MURI Team Meetings.

1.3 Scientific Advisory Committee

The MURI program benefitted from the input from our Scientific Advisory Committee, consisting of:

• Jeff Simmons (AFRL);

• Tresa Pollock (UCSB);

• Shlomo Ta’asan (CMU);

• David Furrer (PW);

• Peter Chung (UMD).

The committee provided detailed written feedback, in particular early on in the program during the first two
years, that helped us focus our research efforts into areas that would benefit strongly from multi-disciplinary
approaches, instead of more individual efforts.

1.4 Team Member Awards and Recognitions

• S. Kalidindi: International Khan Plasticity Medal, 2019; Vannevar Bush Faculty Fellow, 2018; Vajra
Faculty, Department of Science and Technology, India, 2018; Advisor of the Best Doctoral Dissertation
2018, Sigma Xi, Georgia Institute of Technology Chapter; First place winner in the national 2016
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Materials Science and Engineering Data Challenge along with Joshua Gomberg and Andrew Medford;
Runner up winner in the national 2016 Materials Science and Engineering Data Challenge along with
Eva Popova, Theron Rodgers, Xinyi Gong, Ahmet Cecen, and Jonathan Madison; Elected Fellow of
TMS, 2015; Alexander von Humboldt Award, 2013.

• R. James: Simons Fellow, Issac Newton Institute for Mathematical Sciences, Cambridge, 2018;
Theodore von Karman Prize, SIAM, 2014; Department of Mechanical Engineering Distinguished Lec-
ture, Colorado School of Mines, 2015; Plenary Lecture, ESOMAT 2015 (Antwerp); Panorama of Math-
ematics Lecture (Hausdorff Institute: Bonn), 2015; Keynote Lecture: 2nd Midwest Workshop on Me-
chanics of Materials and Structures (Northwestern), 2016; Timoshenko Lecture (Stanford University),
2017; Golden Medallion Lecture, College of Science and Engineering (UMN), 2017; Plenary lecture:
SMST-2017, San Diego; Distinguished Lecture at IAS, Hong Kong University of Science and Technol-
ogy, 2017; Invited lecture, International Congress of Mathematicians, Rio de Janeiro, 2018; The Hooke
Public Lecture (Oxford University, https://www.youtube.com/watch?v=IBvHw 5mlRc), 2018; Ple-
nary: AMS Current Events Bulletin, Joint Mathematics Meetings, San Diego, 2018; Tedori-Callinan
Distinguished Lecture, Department of Mechanical Engineering, University of Pennsylvania, 2018.

• K. Bhattacharya: Distinguished Alumnus Award, Indian Institute of Technology, 2019; Outstand-
ing Achievement Award, University of Minnesota, 2018; Warner T. Koiter Medal for distinguished
contributions to the field of Solid Mechanics, American Society of Mechanical Engineering, 2015.

• V. Sundararaghavan: 2018 AFRL Summer faculty fellow; 2017 Aerospace Engineering Department
Award, University of Michigan Ann Arbor; Pinar Acar: Amelia Earhart Fellow 2016; Abhishek Kumar:
Ivor McIvor Award for Applied Mechanics, 2014; Richard and Eleanor Towner Prize for Distinguished
Academic Achievement, 2014

• A. Agrawal and A. Choudhari: Ankit Agrawal and Alok Choudhary, Best Paper Finalist, HiPC
2017; Alok Choudhary, Best Tech Manager, Third Annual Timmy Awards, 2017; Ankit Agrawal and
Alok Choudhary, Best Paper Award at IEEE Cluster 2016; Alok Choudhary, BITS Pilani Distinguished
Alumni Award, 2016; Ruoqian Liu, EECS/TGS conference travel grant for KDD 2016; Arindam Paul,
EECS/TGS conference travel grant for KDD 2016; Ruoqian Liu, Runner-up, poster presentation at
EECS Student Poster Fair Award, 2015; Ankit Agrawal and Alok Choudhary, Outstanding Paper
Award awarded by Tata Consultancy Services for joint work published in IMMI, 2014; Ruoqian Liu,
Runner-up, poster competition at the Symposium of Multidisciplinary Computer-Aided Design and
Simulation-Based Optimization - Recent Applications & Future, Evanston IL, December 2014.

• C. Bouman: Showalter Professor of Electrical and Computer Engineering and Biomedical Engineer-
ing; Member of the National Academy of Inventors; Fellow of the IEEE, a Fellow of the American
Institute for Medical and Biological Engineering (AIMBE); Fellow of the society for Imaging Science
and Technology (IS&T); Fellow of the SPIE professional society; 2014 Electronic Imaging Scientist of
the Year award; IS&Ts Raymond C. Bowman Award; Editor-in-Chief for the IEEE Transactions on
Image Processing; Distinguished Lecturer for the IEEE Signal Processing Society; Vice President of
Technical Activities for the IEEE Signal Processing Society; Lead creation of the IEEE Transactions
on Computational Imaging; Vice President of Publications and a member of the Board of Directors
for the IS&T Society; Founding and Co-Chair of the IS&T conference on Computational Imaging.

• P. Voorhees: Moore Distinguished Scholar, California Institute of Technology, 2018; Member, Amer-
ican Academy of Arts & Sciences, 2016; Fellow, The Minerals, Metals and Materials Society, 2013; J.
Willard Gibbs Phase Equilibria Award ASM International, 2013

• M. De Graef: 2016 DoD Vannevar Bush Faculty Fellowship (formerly known as the National Security
Science and Engineering Faculty Fellow program); Saransh Singh: Paxton Award for Best Doctoral
Dissertation, Carnegie Mellon University, 2018; Best paper Award (Software and Instrumentation), Mi-
croscopy and Microanalysis, 2018; Cover Article, Microscopy and Microanalysis, 2018; Student Scholar
Award, Microscopy and Microanalysis, 2017; Student Award, EBSD Meeting, May 2016; Bertucci
Fellowship, Carnegie Mellon University, 2016.
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Selected Joint Research Results

The final program review took place in Arlington, VA, on December 18-19, 2017 and consisted of joint
presentations by the co-PIs. The main body of this report (sections 2 through 11) mimics the structure of the
final review and provides 10 sections describing important results from our joint research, i.e., research that
would likely never have happened if it were not for this MURI program. The final list of publications that
acknowledge MURI support can be found in reverse chronological order at the end of this report starting on
page 58.
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2 Microstructure in Three and Four Dimensions

C. Bouman, M. Comer, P.W. Voorhees

Abstract: Using new signal processing algorithms solidification structures from dendrites to irregular eu-
tectic growth structures are investigated. The combination of state-of-the-art algorithms and high brightness
X-ray synchrotron radiation has allowed unprecedented insights into the dynamics of solidification processes.
We present a few vignettes of this groundbreaking research.

Dendrites exist almost everywhere, from industrial metal castings to Li metal anodes in Li-ion batteries.
Not only are dendrites ubiquitous, they also have a profound effect on the properties of materials; for
example, their morphology has a major influence on materials properties as a result of the coupling between
the dendrite arms and the chemical non-uniformity of the solid and in Li-ion batteries, dendritic growth is a
major failure mechanism. This combination of prevalence and influence on material performance means that
the dendrite growth kinetics and morphology have profound technological implications. In addition, dendrites
are also an example of an out-of-equilibrium pattern forming system. Here the focus is on understanding
the processes underlying the formation of the complicated dendrite morphology from a featureless liquid.

Far from equilibrium, solids may crystallize into highly ordered patterns, or eutectics, of remarkable
complexity. Eutectic systems are ubiquitous in nature, and have been discovered in a vast array of organic,
metallic and semi-metallic alloys. Such materials can exhibit outstanding mechanical and electrical prop-
erties because their microstructures act as natural or in situ composite materials. To tune the eutectic
microstructures to technological demands, we must understand the fundamental processes underlying their
formation from a featureless liquid. An exploration of this crystallization process has the potential to provide
the models necessary to accelerate the design of new advanced alloys, thereby fulfilling the promise of the
Materials Genome Initiative. The eutectic morphologies that may arise during solidification can be classified
as either regular or irregular. Regularity refers to the periodic arrangement of lamellae, and is typical of
non-faceted systems. The situation is more complex when irregular eutectics are considered, in which one
of the phases is faceted (for example, Si and Ge) and the other non-faceted (for example, Al and Ag). The
faceted phase does not easily change direction due to its atomic structure, covalent bonding and defect-
mediated growth mechanism. Due to this inherent a “stiffness” of the faceted phase, the microstructure is
non-periodic with varying interphase spacing.

While great insights have been gained into the structure and crystallography of irregular eutectics and
dendritic growth, their interfacial dynamics have remained an area of great interest. Previous studies have
been limited to “quench-and-look” experiments wherein a completely solid alloy sample is analysed post
mortem. However, it is well known that the quenching needed to convert the liquid to solid can distort the
morphology of the solid–liquid interface from that present during crystallization. Thus, it is only through
in situ experiments that interfacial dynamics can be tracked with a high degree of precision. To circumvent
these challenges, these processses have been investigated via optical microscopy where solidification can
be observed using transparent organic films sandwiched between two glass slides. Yet many details of the
microstructural evolution remain unclear because of the effects of the constraint imposed by the thin film on
an inherently 3D phenomenon. Furthermore, the ability of organic materials to accurately mimic the growth
process of faceted phases has not been ascertained.

For these reasons, we employ a fully 4D analysis in order to investigate the dynamics of irregular eutectic
and dendritic growth. X-ray microtomography (XRT) is a nondestructive method to determine the evolution
of a microstructure in 3D and as a function of time. In this work, we have succeeded in tracking in situ
the growth dynamics of an irregular eutectic alloy and dendritic growth via synchrotron based XRT. The
predominant challenge with the tomographic imaging of eutectic solidification is associated with the length
scale of the lamellae, as well as the rate at which these lamellae evolve in time.

To this end, we meet the necessary spatial and temporal resolution requirements by using the time-
interlaced model-based iterative reconstruction methodology, described by Mohan and coworkers [26, 21, 22].
In this research, we introduced a time-interlaced model-based iterative reconstruction (TIMBIR) method,
which is a synergistic combination of two innovations. The first innovation, interlaced view sampling, is
a novel method of data acquisition, which distributes the view angles more evenly in time. The second

7
DISTRIBUTION A: Distribution approved for public release



innovation is a 4-D model-based iterative reconstruction algorithm (MBIR), which can produce time-resolved
volumetric reconstruction of the sample from the interlaced views. In addition to modeling both the sensor
noise statistics and the 4-D object, the MBIR algorithm also reduces ring and streak artifacts by more
accurately modeling the measurement non-idealities. Our experimental results on both simulated and real
X-ray synchrotron data indicate that TIMBIR can improve temporal resolution by an order of magnitude
relative to existing approaches.

(a) K = 1, Nθ = 16 (b) K = 2, Nθ = 16

(c) K = 4, Nθ = 16 (d) K = 16, Nθ = 16

Figure 1: Illustration of interlaced view sampling pattern

for different K values. (a-d) show θnmod(π) vs. time index,

n, for K = 1, 2, 4, and 16. The arrows show the relative

difference between the angular values across sub-frames.

In order to satisfy the spatial Nyquist sampling
requirement for each 3D time sample of a 4D recon-
struction, it is typically necessary to collect approx-
imately Nθ = Np progressive views, where Np is the
number of sampled pixels perpendicular to the axis
of rotation. In the traditional approach, these Nθ
progressive views are taken in sequence while the
sample is rotated continuously over π radians. The
object is then reconstructed at a temporal rate of
Fs = Fc/Nθ where Fc is the data acquisition rate.

In contrast to this traditional approach, TIM-
BIR uses an interlaced view sampling method where
each frame of data consists of Nθ distinct views
that are acquired over K interlaced sub-frames (see
Fig. 1). Each sub-frame of data then consists of
Nθ/K equally spaced views, but together the full
frame of data contains all Nθ distinct views of the
object. The key innovation is that by collecting the
data in this interlaced format and using MBIR re-
construction, it is possible to reconstruct at a tem-
poral frequency of Fs = KFc/Nθ, which is K times
higher than would normally be possible. In typi-
cal experimental scenarios, we have used K = 16 to
achieve 16× the temporal resolution with compara-

ble quality to what would be possible with traditional reconstruction methods.

Figure 2: Morphology of the full sample at (a) 5.8, (b) 7.6

and (c) 9.4 seconds after the start of solidification. The

dendrite that is growing out into the sample is the one that

is isolated and analyzed. Solid fraction (fs) and interfacial

area per unit volume (Sv) are shown in (d).

Using TIMBIR, the growth of Al dendrites in
an Al-Cu liquid alloy was examined. We examined
the evolution of the complex morphology of the sec-
ondary dendrite arm structure of a dendrite growing
into a supersaturated liquid. The sample evolution
during solidification at a few times is shown in Fig.2.

A single dendrite forms on the side of the sam-
ple with primary arms growing out across the sam-
ple and four arms growing near the sample walls.
By symmetry, all of these arms are growing in the
〈100〉 direction, as are the secondary and tertiary
arms. The evolution of the volume fraction of the
solid phase (fs), shown in Fig.2d, indicates that the
sample is significantly undercooled when nucleation
occurred, leading to a rapid rise in the solid fraction
to just over 20% solid by volume. At this point, the
supersaturation is exhausted and further solidifica-
tion is driven by the cooling rate of the furnace.
The datasets that are analyzed in this work are
in the solute supersaturation-driven growth regime,
which closely matches with theoretical and simula-
tion work on dendrite evolution behavior.
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Figure 3: Morphology of the eutectic colony during the

growth process. Reconstructions given at (a) 100, (b) 140,

(c) 180, (d) 220 and (e) 260 s after the start of solidifica-

tion. Shown are three views per time-step, corresponding

to the front (0◦), back (180◦) and side (90◦) of the eutectic

colony. The arrow in the side view of c points to the tips

of the Ge plates that lead the solidification event; the ar-

row in the front view of d points to another eutectic colony

that impinges upon the one of interest. When viewed from

either the front or the back, the interfacial morphology

is markedly different from that seen in transparent organic

materials: bulbous-like domains of Al envelope the surfaces

of Ge as solidification proceeds. Scale bar, 100 µm.

The surface area per unit volume of solid phase
(Sv) is also shown in Fig.2. This quantity is in-
versely proportional to the average feature size in
the system; thus, the decreasing Sv is indicative of
the average feature size increasing. The decrease,
however, is only about 30% of the value after 5
seconds of solidification; in comparison, the volume
fraction of solid has increased by nearly a factor of
2.5. So, while the solid–liquid interfacial area in-
creases dramatically during solidification, the vol-
ume fraction increases as well leading to a small
change in Sv. The morphology of the dendrite has
been quantified in a manner appropriate for compar-
ison to future simulations [26]. We find a lack of self-
similarity of the structure, no significant coarsening
of the structure, power laws for the volume frac-
tion transformed, surface area and surface area per
volume that are different from those seen in trans-
parent organic materials, and a markedly different
side branch structure from that seen in transparent
organic materials. The presence of tip splitting of
the secondary arms implies that solute segregation
should be present at levels that exceed those given
by estimates of the secondary arm spacing.

We have investigated irregular eutectic alloy
growth via 4D XRT, see Fig.3 which shows the mor-
phology of the eutectic colony at five representative
time-steps during the growth process [29]. As each
time-step, we view the colony from its front (0◦),
back (180◦) and side (90◦). While plates of Ge are
evident at the earlier stages of growth, bulbous-like
domains of Al envelope its surfaces at longer times.
One might suppose that these bulbs of Al impede
the growth of the colony in the lateral (horizon-
tal) direction, since the Ge crystals cannot grow
through the solid metal layer. However, even be-
fore the emergence of the outermost bulbs of Al, the
colony extends very slowly in the lateral direction.
In fact, throughout the growth process, interfacial
velocities are roughly 10 times lower in the lateral
direction compared with the transverse (vertical).
Any non-zero growth rate in the lateral direction at
long times may be due to the growth and coarsen-
ing of the outermost Al bulbs, since the Ge plates
do not become appreciably thicker. Through these
experiments we have resolved a longstanding contro-
versy in the field, and demonstrate that none of the

existing models for irregular eutectic growth are fully adequate for describing the rich variety of anisotropic
patterns that arise during crystallization. We find that defects play a critical role in the growth of the
eutectic, in which pockets of metal engulf the exposed facets and control the overall growth rate of a eutectic
colony. These experimental results identify a new mechanism for the growth of an irregular eutectic, and
provide the key insights needed to model the crystallization of these technologically complex materials.
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Stochastic Models for Microstructure Segmentation

Precise boundary information helps to characterize many important materials properties that depend on in-
terfaces, boundary curvature, or topology. However, imaging noise and low contrast sometimes cause nearby
boundaries to merge, hence creating a challenging task in the segmentation of microstructural elements such
as dendrites.

Our work presented in [24] uses geometric representations for narrow gaps, or channels, in a stochastic
modeling framework to detect channels in an image, and uses this information to correct merging defects in
segmentation. Our approach uses a Marked Point Process (MPP) framework to detect the position, width,
length and rotation of each channel. Compared to the conventional Markov random field model, which is
defined on a fixed lattice, the advantage of using an MPP is that it can model randomly-located objects and
their spatial relations.

Marked Point Process

A 2D marked point process X = {X1, . . . , Xn} defined on space a S = M ×K is a point process, where the
positions of the points are defined on K = [0, Iwidth] × [0, Iheight], a bounded subset of R2, and each point
has associated with it a collection of random variables, known as marks, defined on a space M. Each marked
point consists of a random spatial location and corresponding random variables that describe the shape of
an object, such as an ellipse, a rectangle, or a line segment located at that spatial location. For example, if
an image is composed of randomly located circular particles, we can model this image with the radius and
locations and radii of all of the circles in the image. In this case, the ith marked point can be expressed as
Xi = (Si, Ni), where Si is the location and the mark Ni represents the radius of the circle object.

The probability density function of an MPP is given by the Gibbs distribution as:

p(x) =
1

zmpp
exp(−U(x)) (1)

where U(x) is the Gibbs energy of a configuration x and zmpp is a normalizing constant. To describe a
density p(x) conditioned on image data y, Bayesian modeling is used, so

p(x|y) ∝ p
likelihood

(y|x)pprior (x) (2)

Then a Gibbs energy can be described as:

U(x|y) ∝ UD(y|x) + UP (x) (3)

where UD(y|x) is a data energy and UP (x) is a prior energy. The term UD(y|x) can be further expanded as
a sum of individual potentials over n objects in a configuration.

UD(y|x) =
n∑
i=1

Vd(y|xi) (4)

Vd(y|xi) is a data potential for an individual object. If Vd(y|xi) ≤ 0, the object xi is a favorable candidate,
since it increases the density p(x|y). For the prior energy UP (x), we use only single-object and two-object
cliques. Then the prior energy can be expressed as:

UP (x) =
n∑
i=1

Vp(xi) + λint
∑
xi∼xj

Vint(xi, xj) (5)

Vp(xi) is a prior potential for an individual object, and Vint(xi, xj) is an interaction potential, where a
neighborhood relation ∼ is defined between a pair of objects and λint is a parameter to control the amount
of contribution of the interaction potential to the prior energy.

The first microscope sample image is a René88 DT compound. The size of this image is 194×149 pixels.
Figure 4 shows the results of applying the curved channel method. For this experiment, we set λo = 34,
ωf = 20, ωs = 1, ωd = 2, ωc = 8, ωeo = 1.
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We apply the channel information to improve segmentation results. To do this, we control the interaction
parameter value in the EM/MPM segmentation algorithm according to the channel configuration. The main
idea is that the energy cost for connecting regions found to be separated by a channel is increased during
the segmentation procedure, to avoid merging dendrites separated by a channel. Figure 4 shows a compar-
ison of the original EM/MPM and the EM/MPM after detecting channels and adapting the segmentation
accordingly. These figures show that the modified EM/MPM corrects many bridged channel defects.

Figure 4: Results for sample image 1, René88 DT Compound: (a) Test image, (c) Original EM/MPM,
(g) Curved channels (running time 40sec), (h) β̃(1, a, b) of curved channel, (i) EM/MPM after detecting
curved channels, Interaction parameters of all the EM/MPM results are set as 2.9 , which was determined
experimentally to give a reasonable trade-off between noise and channel bridging.

The image presented in Figure 5 represents a slice of Pb-Sn volume obtained during a coarsening process.
Its size is 398×528 pixels. Figure 5 shows that our method successfully models the gaps between neighboring
dendritic arms and shows the improved segmentation after extracting information from the detected channels.

Figure 5: Results for sample image 3,Pb-Sn: (a) Test image, (b) Curved channels (c) Original EM/MPM,
(d) EM/MPM after detecting curved channels. Interaction parameters of all the EM/MPM results are set
as 2.8.
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3 Two-Point Statistics of Microstructures

S.R. Kalidindi and P.W. Voorhees

Abstract: We extend the existing framework of two-point spatial correlations to allow for the quan-
tification, analyses, interpretation and visualization of microstructure coarsening measured by time-resolved
X-ray computed tomography. Specifically, extensions were made to facilitate (i) the incorporation of non-
conventional local attributes such as solid-liquid interface, interface curvature, and interface velocity in the
description of the local state, and (ii) the efficient computation of bulk spatial correlations when the local
attributes are sparsely defined only at special locations in the three-dimensional volume (e.g., solid-liquid
interfaces). We have explored multiple variants of spatial correlations, including Pearson correlation coeffi-
cients and two-point joint probabilities, and examined their relative merits in providing useful new insights
into the coarsening process. Algorithmic enhancements needed to carry out these computations on the
large datasets produced in the experiments are also described. The results demonstrate the remarkable
ability of these new protocols in automated (unbiased) capture of the fourfold symmetry of the dendritic
microstructure, and in providing quantitative and reliable estimates of the characteristic lengths associated
with the dendritic microstructure (including the secondary and tertiary dendrite arm spacings, secondary
dendrite arm diameter, and the solute diffusion length). These estimated quantities agree well with the
direct measurements from the microstructure. The results also indicate that interfaces with high negative
and near-zero mean curvature have long range spatial auto-correlations, whereas all values of the interfacial
normal velocity are only auto-correlated in the short range in space.

Microstructures, which arise from inhomogeneities in composition or structure, are ubiquitous in materials
ranging from condensed matters, to hydrodynamic systems, and to biological soft matters. Microstructures
of materials can often have deterministic impacts on the properties of the materials on the macro-scale.
Dendrites are one of the most frequently seen microstructures during solidification of metals and alloys. The
morphologies of these dendritic microstructures can strongly affect the physical, chemical and mechanical
properties of the subsequent products of many metallurgical technologies, such as casting. This makes the
study of the evolution of dendritic microstructures a crucial part in predicting and controlling the properties
of metallic materials.

However, like many other microstructures present in nature, dendrites are complex structures. They
have irregular shapes, and are often highly interconnected. Moreover, as most real problems demand three-
dimensional or even four-dimensional (including time) considerations, it makes it practically difficult to
visualize the data, and even more so to analyze it. As a result, two-dimensional sections of the data are
usually made in order to obtain salient attributes of the three-dimensional dataset, such as the secondary and
tertiary arm spacings of the dendrite. As the system size grows larger, the dataset may become unwieldy
to handle as a whole, and hence data processing and interpretation must be done in a piece by piece
manner. This adds significantly to the challenges in arriving at meaningful global (bulk) descriptors of the
microstructure that are also of high value in correlating to its performance characteristics.

A rigorous statistical framework that can capture efficiently and systematically the directionally resolved
higher-order microstructural features (i.e., spatial correlations) is necessary for aggregating and curating the
core materials knowledge in the form of processing-structure- property (PSP) linkages. Towards this end, we
develop and demonstrate for the first time, a new and efficient set of protocols for the computationally efficient
quantification of the spatial correlations between microstructural features defined on the interfaces [41].
These new protocols are built on the existing framework of two-point statistics that have been used previously
to quantify the spatial correlations between local attributes defined in the bulk of the microstructure (as
opposed to the attributes defined only on the interfaces in this work). Additionally, the new protocols are
demonstrated using a scalable algorithm suitable for large and high-dimensional datasets.

In this work, we demonstrate the application of the concepts presented in the earlier sections on an
experimental dataset of a dendritic microstructure in an Al-Cu alloy undergoing coarsening. The sample
raw material is a directionally solidified Al-Cu alloy with 19 wt% of Cu. During the experiment, the sample
was heated to 558+C (5+C above the eutectic temperature), forming a liquid-solid mixture with a constant
amount of the two phases (volume fraction of liquid 0:4704). The sample was then held at that temperature,
in which state the interfaces between liquid and solid can rapidly coarsen to decrease the total interfacial
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area and thus total energy of the system. The isothermal condition was held for 79 min while the sample
was being scanned by X-ray computed tomography (XCT).

Figure 6: 2D slices of the signed distance function (SDF). The value of the SDF indicates the distance in
pixels to the nearest interface, with positive values being the solid phase and negative being liquid. (a) 3D
view of the 2D SDF slices. The three slicing planes are orthogonal to each other and chosen to be aligned
with the primary dendrite arm (a1), secondary dendrite arm (a2), and tertiary dendrite arm (a3) directions.
The x, y, z are the original data axes. (bed) Enlarged 2D views of the SDF slices in (a). The black lines
indicate the location of the interface (i.e. SDF = 0).

In order to visualize the microstructure, Fig.6 shows the signed distance function (SDF) that is used to
implicitly define the interface locations. An SDF is an array of data in which the value at each voxel gives
the distance to the nearest interface, with opposite signs on the two sides of the interface. In this study, we
use positive values to represent voxels inside the solid phase, and negative values the liquid phase. Therefore,
the interface is defined as where the SDF crosses zero. Two-dimensional slices of the SDF are shown in Fig.6
with zero value contour lines marked by black lines. Since the sample was directionally solidified along the
axial direction of the cylinder, the primary dendrite arms are all aligned approximately in the axial direction
of the cylindrical sample. Perpendicular to the primary arm are the secondary arms, and perpendicular to
the secondary arms are the tertiary arms. This is shown in Fig.6, where the primary, secondary and tertiary
arm directions are labeled as a1, a2 and a3, respectively on the signed distance function plots. Note that the
dendrite arm axes (a1, a2, a3) are slightly different from the data axes (x, y, z). In Fig.6b and c, quaternary
dendrite arms can be seen along directions roughly perpendicular to tertiary arms. However, due to the
small spacing between the tertiary arms, the quaternary arms are short and tilted.

We first treat correlations with the mean curvature H and interfacial velocity V data as continuous local
states and compute the two-point Pearson correlations. We present the autocorrelations of H and V and
the cross correlation between H and V . All three correlation maps are shown in Fig.7 in forms of orthogonal
two-dimensional slices, up to vectors whose components are smaller than 200 pixels 358µm. The 2D slices
shown in this figure are selected perpendicular to secondary a2 and tertiary a3 arm directions; compare with
the sections of the microstructure volume shown in Fig.6d and c, respectively. In all of the three correlation
maps (H −H, V − V H − V ), we see four-fold symmetric patterns, reflecting the four-fold symmetry of the
dendrite arms. In the H −H auto-correlation (Fig.7a,d), we see long range correlations along the secondary
and tertiary dendrite arm axes (a2 and a3). More specifically, the two-point Pearson correlation function
H − H for values up to 0:2 up to a distance of 250 µm along a3. This correlation distance is even larger
for the a2 direction, where the correlations is greater than 0:2 for distances as far as 350 µm. These long
range correlations of the interfacial curvatures along the tertiary and secondary dendrite arms indicate that
the secondary and tertiary dendrite arms are aligned parallel to each other (along the a2 and a3 axes,
respectively), and that their interfacial shapes are similar along their respective axial directions. This can
also be verified from the slices of the SDF in Fig.6. The continuous correlations come from the stems of
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Figure 7: Two-dimensional slices of the two-point Pearson auto-correlation of interfacial mean curvature H
(a,d) and velocity V (b,e), and two-point Pearson cross-correlation of H and V (c,f). The slices are selected
perpendicular to the tertiary dendrite arms, and perpendicular to the secondary dendrite arms. These slices
correspond to the 2D slices of the SDF in Fig. 6c and d, respectively.

the secondary and tertiary dendrite arms, which have extended structures along directions matching the
strong correlation stripes. Along the a1 axis, the Pearson autocorrelation coefficient of H shows periodic
patterns with a periodicity of 270 µm (Fig.7a,d). This indicates periodically repeated microstructures along
the primary dendrite arm direction in the sample, which naturally suggests that this periodicity comes from
the secondary branches on the primary arm. Therefore, this distance of 270 µm should correspond to the
secondary dendrite

We have developed a two-point statistics method for analyzing microstructure datasets. This method
includes two sets of spatial correlation tools: two-point Pearson correlation function, which measures how
much two arbitrary spatial functions correlate in space on a scale of 1 to 1, and two-point probability function,
which gives the joint or conditional probability distribution of two discretized local states in space. These
two-point correlations allow us to retrieve important microstructure attributes in large and high-dimensional
datasets in a physically interpretable form. It also provides an objective, reliable, and systematic way of
measuring the characteristic length scales in the microstructure. Using this approach we have been able to
extract the average spacing between secondary dendrite arms in complicated dendritic mixtures, the average
width of these arms as well as the spacing between tertiary arms.
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4 Data-driven approaches for structure-property linkages in high
contrast composites

Zijiang Yang, Ruoqian Liu, Yuksel Yabansu, Reda Al-Bahrarni,
Wei-keng Liao, Alok Choudhary, Surya Kalidindi and Ankit Agrawal

Abstract: Data-driven methods are emerging as an important toolset in the studies of multiscale, multi-
physics, materials phenomena. More specifically, data mining and machine learning methods offer an efficient
toolset for extracting and curating the important correlations controlling these multiscale materials phenom-
ena in high-value reduced-order forms called process-structure-property (PSP) linkages. Broadly speaking,
PSP linkages can be cast in both directions of scale-bridging: (i) homogenization (going from smaller scales
to larger scales) and (ii) localization (going from larger scales to smaller scales). In this project, data-driven
approaches are implemented to model PSP linkages (i.e. homogenization and localization linkages) of high
contrast composites. In particularly, localization is studied by two approaches based on traditional machine
learning methods, while deep learning is used to model homogenization.

4.1 Motivation & Major Goals

There has been a growing popularity in the use of data mining and machine learning methods in stud-
ies of various phenomena in materials science. In particular, parametric models are learned from massive
amounts of collected data, either from laboratory experiments or from computational simulations, in order to
represent, describe, and approximate process-structure-property (PSP) relationships for materials systems.
Models built in such manner are often used as surrogate models for the more expensive and/or compu-
tationally intensive physics based models (e.g., thermochemical and microstructural evolution models). In
contrast to the modeling style in physical models, where we explicitly specify equations, physical constraints,
variable spaces to the extreme, data models often free the designers from such specifics. The logical and
mathematical formula they use tend to form automatically or semi-automatically, with only the supply of
data examples, and specifications of model structures, loss functions, and optimizers, to extract unknown
correlations between inputs and outputs.

An important attribute of most materials systems employed in advanced technologies is that they exhibit
heterogeneous structures at a multitude of hierarchical length scales. Consequently, most materials phe-
nomena of interest are inherently multiscale, and the communication of the salient information between the
hierarchical structure scales is the central challenge in any modeling and simulation effort. Historically, the
multiscale materials modeling efforts have addressed either homogenization (communication of information
from the lower length scale to the higher length scale) or localization (communication of information from
the higher length scale to the lower length scale). Although both homogenization and localization have been
studied extensively in literature using physically based approaches, recent work has identified the tremen-
dous benefits of fusing these approaches with data-driven approaches. However, most of the prior effort has
only addressed a limited number of the multiscale features. For example, many of the previous efforts are
not readily extendable to high contrast composites (i.e., large differences in the properties of the microscale
constituents in the composite).

One of the goals of this project was to use data-driven approaches to model PSP linkages (i.e. ho-
mogenization and localization) of high contrast composites. More specifically, localization was studied by
two approaches based on traditional machine learning methods, while deep learning was used to model
homogenization. All of the three works are described in the following sections.

4.2 Significant Results

4.2.1 Machine learning approaches for elastic localization linkages in high-contrast composite
materials

This work [23] explores and presents multiple viable approaches for computationally efficient predictions
of the microscale elastic strain fields in a three-dimensional (3-D) voxel-based microstructure volume ele-
ment (MVE). Advanced concepts in machine learning and data mining, including feature extraction, feature
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ranking and selection, and regression modeling, are explored as data experiments. Improvements are demon-
strated in a gradually escalated fashion achieved by (1) feature descriptors introduced to represent voxel
neighborhood characteristics, (2) a reduced set of descriptors with top importance, and (3) an ensemble-
based regression technique.

The dataset used in this work is a high-contrast two-phase compisite system. The contrast refers to the
ratio of the elastic stiffness parameters of the constituent phases of the composite system, and this dataset
has a contrast of 10. A total of 2500 microscale volume element (MVE) with varying volume fractions are
included in this study. They are evenly distributed in 100 variations of volume fraction values, from 1.0%
to 99.4%. Therefore, 25 MVEs are present in each variation, within which, 15 are used as calibration (for
feature extraction, model training), and the remaining 10 are used for testing.

The performance of the models is evaluated by the mean absolute strain error (MASE) e in a MVE,
defined as

e =
1

S

S∑
s=1

| ps − p̂s
pimposed

| × 100% (6)

where pimposed denotes the average strain imposed on the MVE, and ps and p̂s denote the values of the
strain in the voxel s from the FE model and the surrogate model developed in this work, respectively. This
metric quantifies the average error for a single MVE microstructure.

Figure 8 schematically illustrates the main data-driven protocol for establishing a predictive model. It
generally comprises of two key processes: (i) feature extraction, and (ii) construction of the regression model.

Figure 8: Flowchart of data-driven single-agent predictive modeling.

A set of features are designed to describe local information of targeted voxel. Figure 9 shows the definition
of the set of features used in this work. Then, feature extraction is applied to select the most important
features related to output, and different regression methods are used to train predictive models. The results
show that the predictive model using Random Forest method trained on 57 selected features gives the best
performance, which can achieve 13.02% average MASE on the testing set.

Figure 9: Definition of the set of features.

Figure 10 shows a comparison of FE and machine learning model predictions of the strain fields in an
example MVE with the volume fraction of 50%. We can observe that the results of FE model and predictive
model are almost indistinguishable.
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Figure 10: A comparison of FE and statistical model predictions of the strain fields in an example MVE
with the volume fraction of 50 %.

4.2.2 Context aware machine learning approaches for modeling elastic localization in three-
dimensional composite microstructures

In this work [42], we design a new data modeling approach that is explicitly hierarchical to be able to
take advantage of the multiscale characteristics of a heterogeneous material structure. The design is to be
manifested through the idea of context detection, which is a concept used in reinforcement learning and
robotics to deal with non-stationary environments. Context detection is defined here as finding the right
high-level, low-dimensional, knowledge representation in order to create coherent learning environments.
Once different contexts are identified from data, one can build separate models out of each context group.
This approach has many similarities with the divide and conquer scheme, which breaks a large, difficult
problem into a set of small, simpler problems.

This work examines the advantage of building context aware learning systems by solving an elastic
localization problem in high contrast composites. More specifically, we aim to provide a computationally
efficient surrogate model, with parameters learned from data, to predict the microscale elastic strain field
in any given voxelized three-dimensional (3-D) volume element of a high contrast composite subjected to a
prescribed macroscale elastic strain (applied as a periodic boundary condition). We address the multiscale
challenge by identifying and representing the higher level data distribution through context detection. In
our designed two-stage system, the first stage attempts to find the contexts in data, while the second stage
builds context specific learning models. We compare the results from this new data model with benchmarks
from previous work in section 4.2.1 using same dataset and demonstrate that the two-layer data modeling
scheme provides a viable approach for capturing the elastic localization linkages in high contrast composites.

The outline of such a learning structure is shown in Figure 11. The major advancement of this model
is designed two layers of feature extraction: the macro-layer, and the micro-layer. The macro-layer features
are generated to probe MVE-level similarity in structures. Once a representation of similarity is defined,
the original set is divided into multiple subsets with low inter-similarity and high intra-similarity. MVEs
within the same context group possess higher resemblance with each other, in terms of solely their structure
representation, than those from different groups. In this work, we examines three macro features, which are
volume fraction, data clustering and two-point statistics. Micro-layer features, on the other hand, specialize
in learning the voxel level characteristics. We adopt selected features from previous section that gave the
best performance as micro features. Random forest method is applied to train the predictive model.

The results show that using two-point statistics as macro features gives the best performance, which can
achieve 8.04% average MASE on testing set. The prediction output of a center slice of a randomly selected
MVE with 50% volume fraction is illustrated in Figure 12. The difference between a ground truth slice
(annotated “FEM”) and a predicted slice (annotated “Multi-agent model”) is almost indistinguishable.
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Figure 11: Flowchart of data-driven multi-agent predictive modeling.

Figure 12: A comparison of FE and mult-agent model predictions of the strain fields in an example MVE
with the volume fraction of 50 %.

4.2.3 Deep learning approaches for mining structure-property linkages in high contrast com-
posites from simulation datasets

Traditional machine learning methods usually depend on intensive feature engineering, and have enjoyed
some success in establishing the desired PSP linkages. In contrast, deep learning approaches provide a
feature-engineering-free framework with high learning capability. In this work (under review), a deep learn-
ing approach is designed and implemented to model an elastic homogenization structure-property linkage in
a high contrast composite material system. More specifically, a standalone 3-D convolutional neural network
(CNN) is built for the first time to establish structure-property linkages for high contrast elastic 3-D com-
posites using a completely feature-engineering free approach. An extensive analysis of CNNs with different
numbers of convolution and pooling layers is performed.

In order to explore and evaluate the performance of CNN models in predicting the effective elastic
properties of high contrast composites, we generated 8550 3-D MVEs from micromechanical finite element
models with contrast of 50. In the effort to generate a rich morphological diversity in the generated set of
MVEs, 3-D Gaussian filters with different covariances were employed. Some examples of MVEs with different
microstructural details are shown in Figure 13. The MVE in part (a) is generated by a 3-D Gaussian filter
with three identical diagonal entries in the covariance matrix. On the other hand, the microscale constituents
of MVEs in part (b),(c) and (d) have clear directionality in x, y and z directions. To train the model and
evaluation models performance, the ensemble of 8550 MVEs are split into 2 sets. 5700 MVEs are used for
training the CNN, and rest 2850 MVEs are solely used as test set.

The model performance is evaluated by calculating mean absolute stiffness error (MASE) for both training
and testing sets. MASE for a selected set (i.e. training or testing set) reflects the average error between the
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Figure 13: Visualization of selected MVEs generated by applying different 3-D Gaussian filters to a random
number field.

predicted values and ground truth values calculated from FE models. This error metric is defined as

MASE =
1

N

N∑
i=1

| Si − Ŝi
Saverage

| × 100% (7)

where N denotes the total number of MVEs in the selected dataset, Si and Ŝi represent ground truth effective
stiffness and predicted effective stiffness for the ith MVE, respectively. Saverage denotes the average effective
stiffness of all the MVEs in the dataset. In other words, MASE can be calculated by dividing mean absolute
error between ground truth values and predicted values by the average of effective stiffness in the dataset.

Different architectures of varying depths and different number of filters in each convolution layer of 3-D
CNNs are explored to examine which architecture produce the best model for the present application. The
depths of 3-D CNNs are gradually extended from 10 layers to 16 layers where multiple stacked convolution
layers and pooling layers are added gradually. In other trials, the number of filters in each convolution layer
was gradually increased for a fixed depth. The results show that a 14 layers 3-D CNN achieves the best
performance (good accuracy without over-fitting). In the description of the architecture, if “convX” denotes
a convolution layer with X 3 × 3 × 3 filters, “pool” a pooling layer and “fcX” a fully connected layer with
X neurons. The best CNN can be described as input − conv16 − pool − conv32 − pool − conv64 − pool −
conv128 − pool − conv256 − pool − fc2048 − fc1024 − output. Then, we carry out further exploration and
optimization of the hyperparameters space for this architecture. The results shown that when batch size is
32 MVEs and no dropout is applied, the deep learning model gives the best performance.

We compare the results obtained from deep learning approach with the results obtained from the corre-
lation based method, which is shown in Table 4. The proposed 3-D CNN improves the model performance
of benchmark method by as much as 54% (1 - 3.10/6.79) in terms of testing MASE. The partiy plots of
both methods for both training and testing sets are shown in Figure 14. The top and bottom row depict the
results of both methods for training and testing sets, respectively. The left and right columns correspond to
CNN, correlation-based methods, respectively. From Figure 14, it is seen that the parity plots of 3-D CNN
for both training and testing sets exhibit high accuracy and low variance. In particular, it is noted that
the deep learning approach performs better in very low and very high effective stiffness values, where the
benchmark approach produces significantly higher errors in its predictions.

Table 4: Performance comparison of predictive models
Method Training MASE Testing MASE Training time Testing time

3-D CNN 2.10% 3.10% 25 min 6.75 s

Correlation function based method 6.81% 6.79% 70 s 35 s

In addition, two software packages have been developed based on this work, which can be found in
http://cucis.ece.northwestern.edu/projects/MURI/workpred.html. One is deuNet, which is a theano based
deep learning software package. It is a general package that makes exploring different neural network architec-
tures, training schemes, hyperparameters easy. The other one is MES Predictor, and it can be directly used
to predict macroscale (effective) stiffness of high-contrast two-phase three-dimensional composite materials.
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Figure 14: Parity plots of CNN and correlation based method. The top and bottom rows depict the results
for training and testing sets, respectively. The columns represent the CNN and correlation based method,
respectively.
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5 A CNN architecture for the indexing of electron diffraction pat-
terns

Dipendra Jha, Ruoqian Liu, Saransh Singh, Reda Al-Bahrani, Wei-keng Liao,
Alok Choudhary, Marc De Graef and Ankit Agrawal

Abstract: Electron Backscatter Diffraction (EBSD) is one of an array of tools widely used by domain
scientists to determine the crystal orientation of individual grains in polycrystalline materials. Current
methods for indexing of diffration patterns include the dictionary based indexing and the Hough transform.
While the former is computationally very expensive, the latter method is highly sensitive to noise present in
experimental patterns. In this project, we have designed and implemented several machine learning based
prediction models for indexing EBSD patterns. We demonstrated how a deep learning approach can be
leveraged to build a predictive tool that can learn the crystal orientations of polycrystalline materials from
simulated EBSD patterns, and perform indexing of diffraction patterns from real experiments with better
accuracy than dictionary based indexing.

5.1 Motivation and Major Goals

Since its development in the early 1990s, automated Electron Backscatter Diffraction (EBSD) has become
the primary tool to determine the crystal orientation of crystalline materials across a wide variety of ma-
terial classes [5]. The technique provides quantitative information about the grain size, grain boundary
character, grain orientation, texture and phase identity of the sample by measuring the angular distribution
of backscattered electrons using a combination of scintillator screen and a charge coupled device (CCD)
camera. The schematic of the EBSD setup is shown in 15. The sample sits at a tilt of σ (typically 70◦)
with the camera tilted at angle θc (typically 0◦ − 10◦). A parallel beam of electron travels from the pole
piece and interacts with the sample at point O. The backscattered yield is measured by the scintillator.
The physics-based model predicts the backscattered yield based on the principles of quantum mechanics.
Assuming the microscope is parametrized by M, the geometry of the setup is denoted by G and the crystal
under investigation is parametrized by C, the forward model is given by

F ≡ F (M,G, C) . (8)

Further details of the model can be found in [18]. An example experimental EBSD pattern from Iron with
its corresponding physics-based simulation is shown in Fig. 15(b) respectively.
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(a) Schematic of the EBSD geometry.

(a) (b)

(b) EBSD pattern from Iron- Experimental and Simulation.

Figure 15: EBSD geometry and patterns.

There are two major techniques to indexing EBSD patterns, each with its advantages and drawbacks.
These include the commercially available Hough-transform based approach and the newly developed Dic-
tionary Indexing method. The commercially available solution to the indexing problem is performed using
a feature detection algorithm [3]. A Hough transform of the diffraction is performed to identify linear
features from the diffraction pattern. The angles between the extracted linear features are compared to
a pre-computed look up table to determine the crystal orientation. This method has been very success-
ful in indexing EBSD patterns and has led to significant advances in materials characterization. However,
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the performance of this method quickly deteriorates in the presence of noise. Domain scientists also use a
newly developed dictionary-based indexing approach for the prediction of crystal orientation from the EBSD
patterns. Dictionary based indexing [28] is a nearest neighbor search approach in which the output angles
correspond to the orientation angles of the closest EBSD pattern present in dictionary. This method has been
shown to be very robust to noise in the diffraction pattern and outperforms the line feature based Hough
transform method [11] for a wide variety of crystal classes. However, this approach is computationally very
expensive, which limits the technique to be an off-line method, and a real time solution to the indexing
problem is not possible using this approach.

In this project, our goal was to design and implement a machine learning based predictive model that can
be trained using a simulation diffraction dataset, but can also predict the crystal orientations for experimental
data, such that they have a minimum “disorientation” with respect to their ground truth. The project was
carried out in two phases. In the first phase, we focused on designing convolutional neural network to learn
and optimize for each of the individual crystal orientation angles [31]. In the second phase, we designed a
convolutional neural network model for multi-output learn all the three orientation angles using one network
and optimize for the mean disorientation [46].

5.2 Deep Learning Approach

5.2.1 Optimizing for Individual Angles

In the first phase [31], we constructed a deep convolutional neural network (CNN) that took the EBSD images
as input, and learn to predict the three real-valued Euler angles as output. It used multiple convolutional
layers that are used to take into consideration the spatial dependencies among image pixels, and fully
connected layers for multi-layer regression. The dataset was composed of 333, 227 simulated EBSD patterns
of polycrystalline Nickel. The input data was a set of grey scale images with input pixel values between 0
(black) and 255 (white). Each image is associated with three target Euler angle values for determining the
crystal orientation. We separately modeled for each Euler angle output, resulting in three different tasks. A
random set of 300, 000 samples was used for training, and 30, 000 was used for testing each of these tasks.

A special loss function was designed to account for the periodicity of angular data (the fact that 0◦ is
close to 359◦) when measuring the difference between predicted outputs and the ground truth. Suppose
a training set of m samples is given as {Xi, y

i
j}mi=1, where Xi ∈ Rn denotes the i-th training sample, and

yji denotes the j-th output, j = 1, 2, 3, of the same training sample. For j = 1, 3 the output yj is and
orientation angle between 0◦ to 360◦. For j = 2, yj is bounded by a smaller range between 0◦ to 60◦. To
quantitatively measure the difference between the predicted angle ŷi and ground truth yi, while taking care
of the periodicity of angular expressions, the loss Li is computed from the predicted angle ŷi and the ground
truth yi as:

Li(yi, ŷi) = arccos(cos(||yi − ŷi||)) (9)

where the j index in y is omitted because we used the same form across all three tasks. Such a loss
function converted any angular difference between [360◦, 360◦] to [0◦, 180◦], or [0, ] in radians. In CNN
training, this customized loss function is used instead of the cross-entropy in classification. We designed
and experimented with several CNN architectures, we present the best architecture- that is composed of 4
convolutional layers and 3 fully connected layers (including the last output layer), in Figure 16.

The best CNN network trained for the first angle had a normalized error rate of 0.007 on test data, after
300 epochs, that is a Mean Absolute Error (MAE) of 2.5◦ when predicting an angle between 0◦ and 360◦.
For the second and third Euler angles, the MAE in predictions were 1.8◦ and 4.8◦ respectively. The result
were compared with the state-of-the-art benchmark of the dictionary based indexing presented in [28]. We
replicated the method using the same split of training and test as used in deep net training, and obtained
MAEs of 5.7◦, 5.7◦ , and 7.7◦, respectively for each angle. On an average our results were 54% better than
the benchmark method. The evaluation in for this phase was carried out using simulated test samples which
are very clear and pristine with no noise. The CNN network developed here treated the three Euler angles
as independent. Rather than minimizing the difference between the three actual and predicted Euler angles,
domain scientists are interested in minimizing the disorientation between the predicted and ground truth
crystal orientations.
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Figure 16: CNN architecture for optimizing for individual angles.

5.2.2 Optimizing for Disorientation

In the second phase of this project [46], our goal was to develop a machine learning based predictive model
to predict the crystal orientations of the experimental diffraction patterns such that they have minimum
disorientation with the ground truth. The ideal data driven approach for building a predictive model would
be to train a machine learning model on the EBSD patterns from experiments. Nevertheless, experiments are
very expensive; we have 1000 “experimental” diffraction patterns. Hence, we leveraged only the simulation
EBSD patterns for training such that the model can predict the crystal orientations for the experimental
EBSD patterns with minimum disorientation with respect to the true orientations. The training and test
datasets were composed of EBSD patterns of polycrystalline Nickel. The training dataset contained two
EBSD pattern dictionaries from simulation, one generated with a cubochoric sampling of N = 100 samples
along the cubic semi axis, the other with N = 50. The first dataset has 333, 227 patterns, the second
one has 41, 625 patterns. Combining them, 374, 852 patterns were obtained to form the training set. The
performance of the models were evaluated by indexing 1000 EBSD samples from real experiments with known
orientations. The disorientation between the predicted and known Euler angles provides the efficacy of the
approach.

Figure 17: CNN architecture for learning multiple outputs.

It required optimizing for the domain specific function of mean disorientation between the predicted and
the true crystal orientations. It was challenging due to two main reasons. First, the disorientation is the
distance metric of a non-euclidean manifold. In the absence of symmetries in orientation, this metric is easy to
compute using analytical expressions. However, the presence of crystal symmetries introduces degeneracies
in the space and introduces discontinuities in the gradient of the disorientation metric with respect to
the input orientations. It rendered the disorientation function inappropriate to be used for optimization
using stochastic gradient descent for any deep learning model. Second, the original disorientation algorithm
was computationally intensive; it takes one pair of predicted and true Euler angles and computes their
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symmetrically equivalent orientations to find the disorientation (Equation 10):

D(g1,g2) = min
i,j∈N

{
arccos

((
tr
[(
Oicg1

)−1 (Ojcg2

)]
− 1
)
/2
)
, arccos

((
tr
[(
Oicg2

)−1 (Ojcg1

)]
− 1
)
/2
)}

. (10)

Due to the presence of crystal symmetry given by the set Oc with cardinality #Oc = 24 in our case, there
exist 24 symmetrically equivalent orientations for both– the predicted and true orientations. This gave
24× 24 = 576 symmetrically equivalent orientation pairs for each disorientation computation.

The disorientation computation contains arccos(x) function which is undefined for values outside its
domain of [−1, 1]. We approximated it by putting an upper bound of 1 to the magnitude of all the values
passed to the arccos(x) function. We implemented a differentiable approximation of the mean disorientation
by building a computational tensor graph using TensorFlow [39]. We leveraged its auto-differentiation
support for computing the gradients of the mean disorientation with respect to the Euler angles. The
mean disorientation was optimized by training a deep learning model using the stochastic gradient descent
algorithm [2]. However, it was very costly both in terms of processing time and memory transfer; it took
around 24 hours to train our model for one epoch using a TitanX GPU with 12GB memory. This made
it impractical to train a deep learning model using the sequential implementation in feasible time. We
optimized it to process one mini-batch so that it could leverage the parallelization available in GPUs.

Optimizing for mean disorientation required learning the crystal orientation angles using a single model
such that they can be used to optimize the mean disorientation. Figure 17 demonstrates a novel CNN model
architectures– a branching model with individual and independent model components for each output. The
first four model components are composed of multiple convolution layers and max pooling. Convolution
layers captures the locally correlated features present in the input EBSD patterns; they learn the high level
abstract features from the inputs. As the three outputs require similar learning capability, the branched
model is composed of three classifier branches containing equal numbers of layers and parameters. As
the outputs are correlated with each other, they all shared the same convolution outputs and the first fully
connected component. The convolutional layers are the computationally expensive components; they extract
high level features from the inputs that are required for learning all outputs. Sharing the convolutional layers
kept the computational cost comparable to using conventional approach of using three different models for
learning three different outputs. All models were implemented using python and TensorFlow [39]. They
were trained using Titan X GPUs with 12GB memory. An extensive search was carried out to tune the
hyperparameters such as learning rate, optimization algorithm, momentum and learning rate decay. The
models were evaluated using the mean disorientation and mean symmetrically equivalent orientation absolute
error (MSEAE). The MSEAE was computed by considering the periodicity of orientation angles as follows:

mseae1(~ys, ~̂ys) =
1

n

n∑
i=1

3∑
j=1

| ~ysj − ~̂ysj |, (11)

mseae2(~ys, ~̂ys) = mseae1(~ys, ~̂ys) mod (2π), (12)

MSEAE(~ys, ~̂ys) =

{
mseae2(~ys, ~̂ys), if mseae2(~ys, ~̂ys) ≤ π

= 2π −mseae2(~ys, ~̂ys), else
(13)

where ~ys and ~̂ys are Euler angles of the symmetrically equivalent true and predicted orientations with
minimum disorientation.

First, we experimented with several conventional loss functions to optimize the orientation angles. The
model with MAE as loss function achieved the best accuracy in predicting the Euler angles in the experimental
set; it outperformed the dictionary based indexing by an MSEAE of 40% as seen in Table 5. The three Euler
angles exhibited different errors; the error for the second Euler angle being the lowest. Nevertheless, the
mean disorientation for the test set did not reach such low value as the training set; it stopped improving
after reaching 0.596◦. The mean disorientation for the test set while using MSE as the loss function was
1.285◦. Next, we optimized using the domain specific loss function of mean disorientation. Since our goal was
to optimize for disorientation, we expected it to result in a better mean disorientation on both sets. However,
the mean disorientation alone as the loss function did not work well; it achieved a mean disorientation of
1.224◦ on the test set.
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Table 5: Mean Disorientation (MD) and mean symmetrically equivalent orientation absolute error (MSEAE)
using different models and loss functions.

Model Loss Function
Simulation Data Experimental Data

MD MD MSEAE

Dictionary-based Indexing - - 0.652◦ [0.6592◦, 0.3534◦, 0.6484◦]

Deep Learning MAE 0.064◦ 0.596◦ [0.4039◦, 0.1776◦, 0.4426◦]

Deep Learning MSE 0.292◦ 1.285◦ -

Deep Learning Mean Disorientation 0.272◦ 1.224◦ -

Deep Learning MAE+Mean Disorientation 0.132◦ 0.548◦ [0.7155◦, 0.2194◦, 0.7066◦]

Deep Learning MSE+Mean Disorientation 0.171◦ 0.658◦ -

Since optimizing for mean disorientation did not perform well, we designed and experimented with several
hybrid loss functions combined the mean disorientation with the conventional loss functions. The best loss
function was the sum of the MAE and the mean disorientation. The model achieved a mean disorientation
of 0.548◦ on the experimental set- 16% better than using dictionary based indexing.
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6 Vector Field Electron Tomography

C. Bouman and M. De Graef

Abstract: Tomography has been used traditionally to reconstruct 3D scalar fields. In our research, we
have applied Bayesian concepts to the reconstruction of 3D vector fields in the area of magnetic materi-
als. Our approach allows for the accurate 3D reconstruction of both the magnetic vector potential and the
magnetization of nano-scale magnetic samples, based on phase reconstructions from Lorentz transmission
electron microscopy

6.1 Introduction

In conventional tomographic reconstructions, the object being reconstructed is of a scalar nature; mass den-
sity is perhaps the most frequent quantity being reconstructed, but in principle any scalar field could be
handled. When the field has vector character, for instance the magnetization field of a magnetic material, or
the polarization of a ferroelectric material, then a tomographic reconstruction requires additional experimen-
tal data, since one has to determine three numbers for each voxel instead of just one. Vector field tomography
has been used in the past to reconstruct velocity fields in fluids based on transmission of acoustic waves [].
In classical electromagnetism, the fundamental fields are the electric field E and the magnetic induction B.
When a magnetic object is studied by means for transmission electron microscopy, however, the interactions
between the incident beam and the sample require a quantum mechanical formulation, which, in turn, re-
quires the use of the more fundamental fields, namely the electrostatic potential V and the magnetic vector
potential A. In our application of vector field electron tomography (VFET), we aim to reconstruct, in 3D,
all three components of either the magnetic vector potential A(r) or the magnetization M(r) as a function
of position r.

Consider a magnetic object of arbitrary shape, described by a shape function D(r) which equals 1 inside
and 0 outside the object. The function is described with respect to an origin that is located somewhere inside
the object, possibily in the center-of-mass. The object has both a charge density, ρ(r) (number of charges
per unit volume), and a magnetization M(r) (total dipole moment per unit volume); the charge density
is assumed to be a constant throughout the object, whereas for the magnetization only the magnitude,
M0, of the vector field is constant. The charge density is measured in C/nm3, whereas the magnetization
is expressed in A/nm. The charge density is related to an electrostatic potential through the following
convolution integral:

V (r) =
1

4πε0

∫∫∫
dr′

ρ(r′)

|r− r′|
, (14)

whereas the magnetic vector potential can be derived from the magnetization as:

A(r) =
µ0

4π

∫∫∫
dr′M(r′)× r− r′

|r− r′|3
; (15)

ε0 = 8.854 × 10−21 F/nm is the permittivity of free space, and µ0 = 4π × 107 N/A2 is the permeability of
vacuum. The electrostatic potential is measured in V, whereas the vector potential is expressed in units of
Vs/nm. The goal of VFET is to determine both ρ and M as a function of position for a given sample, based
on projected through-focus image series as a function of sample tilt angle.

When an electron wave travels through a region of space with a non-vanishing magnetic vector potential,
A(r), then the phase of that wave is modified as follows:

ϕm(r⊥) = − e
~

∫ +∞

−∞
A(r⊥ + `ω) ·ω d`, (16)

where ω is a unit vector along the electron beam propagation direction, and ` parameterizes the electron
trajectory; r⊥ is a vector in the plane normal to ω. The prefactor can also be written as π/φ0, with φ0 = h/2e
the flux quantum (φ0 = 2070 T nm2). In general, there will also be an electrostatic contribution to the phase
shift:

ϕe(r⊥) =
π

λE

∫ +∞

−∞
V (r⊥ + `ω) d`, (17)
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where V (r) is the electrostatic lattice potential (measured in Volt), λ is the (relativistic) electron wavelength,
and E is the relativistic accelerating potential of the microscope. Note that both of these integrals can be
regarded as tomographic projection integrals, so that acquisition of the two phase shifts as a function of object
tilt should, in principle, permit for a 3D reconstruction of both potentials V and A. Such reconstructions have
been possible for a while, but they always use the “traditional” reconstruction approaches, i.e., filtered back-
projection (FBP), simultaneous iterative reconstruction technique (SIRT), discrete algebraic reconstruction
technique (DART), and so on. None of these approaches takes into account any prior information about
the object being reconstructed. In the MURI program, we worked in a close collaboration between Carnegie
Mellon University and Purdue University to apply Bayesian principles to the 3D reconstruction problem
in the form of Model-Based Iterative Reconstructions (MBIR). Some of the underlying theory and a few
selected results are described in the following sections [43, 45].

6.2 Theoretical Model

We introduce the MBIR approach by first formulating its framework for a generic tomography problem.
Let x ∈ RN be the discrete vector of an unknown image and y ∈ RM be the discrete vector of projection
measurements of x at a variety of angles. Then the MBIR approach performs a reconstruction by maximizing
the joint probability distribution resulting from the likelihood function, P(y|x), and the prior distribution,
P(x). This methodology is more commonly known as the maximum-a-posteriori (MAP) estimation technique
[4]. Mathematically, the MAP estimate is expressed as:

x̂MAP = argmin
x
{− logP(y|x)− logP(x)} . (18)

We use the Poisson probability mass function to model the likelihood term. We use a second order Taylor
series expansion of the logarithm of the Poisson distribution [4] to approximate the first term of eq. 18 as:

logP(y|x) ≈ −1

2
(y −Hx)TW (y −Hx) + f(y), (19)

where H is the forward projection matrix, W is a diagonal noise weighting matrix and f(y) is a term
independent of the optimization variable x. Additionally, H is an orthogonal matrix such that HT = H−1;
hence, HT denotes the back projection operator.

For the problem of reconstruction of magnetization vector fields, the forward model has the form

y = FHx+ w ,

where F is the sparse tomographic projection matrix, H is a non-sparse convolution matrix that performs
linear space-invariant convolution, and w is the noise vector with covariance W−1. In [45], we derive a
general form for the structure of H of the form

z = Hx, (20)

where z =
[
z(u)t, z(v)t, z(w)t

]t
, x =

[
x(u)t, x(v)t, x(w)t

]t
, and

H =

 0 H(w) −H(v)

−H(w) 0 H(u)

H(v) −H(u) 0

 . (21)

where H(w), H(v), and H(u) are three Green’s function operators that are efficiently implemented with FFTs.
The prior term in eq. 18 is modeled using a Markov Random Field (MRF) in:

logP(x) = −
∑
{i,j}∈C

bijρ(xi − xj), (22)

where C denotes the set of neighboring pixels, bij is a non-causal symmetric weighing filter that is normalized
such that

∑
bij = 1, and ρ( · ) is the potential function. The choice of the MRF as the prior model is due
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to its proven usefulness in image processing as well as in tomographic reconstructions [8]. In our work, we
resort to a class of MRFs called the q-Generalized Gaussian Markov Random Field (q-GGMRF) to model
the prior. Accordingly, the potential function in eq. 22 is given by:

ρ(∆) =
|∆|p

pσpx


∣∣∣ ∆
Tσx

∣∣∣q−p
1 +

∣∣∣ ∆
Tσx

∣∣∣q−p
 , (23)

where ∆ = xi − xj , and p, q, σx and T are the q-GGMRF parameters. Typically, 1 ≤ p ≤ q ≤ 2 is used
to ensure strict convexity of the potential function and, subsequently, of the MAP optimization [15]; for our
work we use q = 2. When p is set to 2, the potential function is quadratic and the prior model facilitates
a reconstruction with smooth edges. On the other hand, when p is close to 1, the prior model performs
sharp edge preserving reconstructions. Similarly, σx is the variance of the prior distribution and its value is
set to achieve a balance between noise and resolution. Finally, the constant T determines the approximate
threshold of transition between low and high contrast regions.

Substituting the log-likelihood expression of eq. 19 and the prior model of eq. 22 into eq. 18, and con-
sidering W as the identity matrix, one obtains the MAP reconstruction to be the solution of the following
optimization problem:

x̂MAP = argmin
x

1

2
‖y −Hx‖2 +

∑
{i,j}∈C

bijρ(xi − xj)

 , (24)

where the cost (objective) function being minimized is given by

c(x) =
1

2
‖y −Hx‖2 +

∑
{i,j}∈C

bijρ(xi − xj). (25)

The resulting optimization problem is difficult to solve directly, so we solve it by breaking into couple
optimizations using the augmented Lagrangian formulation, and then using the alternate direction method
of multipliers (ADMM) optimization approach.

Reconstruction of Magnetization using MBIR (u− v axes)

(a) w-axial component (b) v-axial component (c) u-axial component

Reconstruction of Magnetization using MBIR (v − w axes)

(d) w-axial component (e) v-axial component (f) u-axial component
Figure 18: Reconstructions of magnetization and magnetic vector potential of a Ni-Fe sample using the
conventional method and MBIR. (a-c) and (d-f) show the reconstruction of magnetization using MBIR
along the u− v plane and v − w plane respectively. Previously, there was no algorithm in the literature for
reconstructing 3D magnetization.
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7 Results

A dedicated Lorentz TEM equipped with a spherical aberration corrector was used to image a NiFe sample
patterned into interacting islands using vector field electron tomography [10, 14]. At each tilt angle, the
electron phase is recovered from measurements using the transport-of-intensity phase retrieval algorithm
presented in [20]. The data consists of electron phase images at tilt angles ranging from −50◦ to 50◦ at steps
of 1◦ for tilt across both the u−axis and v−axis.

Fig. 18 (a-f) shows the MBIR reconstruction of the 3D magnetization. There is no other conventional
reconstruction shown since we could not find any other implementation of an algorithm that reconstructs 3D
magnetization in the literature. We can see that the vertically aligned magnetic domains have magnetization
oriented along the v−axis and the horizontally aligned magnetic domains have magnetization oriented along
the u−axis.

Reconstruction of Magnetic Vector Potential using Conventional Method (u− v axes)

(g) w-axial component (h) v-axial component (i) u-axial component

Reconstruction of Magnetic Vector Potential using Conventional Method (v − w axes)

(j) w-axial component (k) v-axial component (l) u-axial component

Reconstruction of Magnetic Vector Potential using MBIR (u− v axes)

(m) w-axial component (n) v-axial component (o) u-axial component

Reconstruction of Magnetic Vector Potential using MBIR (v − w axes)

(p) w-axial component (q) v-axial component (r) u-axial component
Figure 19: (g-i) and (j-l) show the reconstruction of magnetic vector potential using the conventional method
along the u − v plane and v − w plane respectively. (m-o) and (p-r) show the reconstruction of magnetic
vector potential using MBIR along the u − v plane and v − w plane respectively. The 1st, 2nd, and 3rd

columns show the vector field components oriented along the w−axis, v−axis, and u−axis respectively.
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Fig. 19 (g-r) shows the reconstruction of the 3D magnetic vector potential using both MBIR and the con-
ventional method presented in [10]. The conventional method results in prominent artifacts in the magnetic
vector potential reconstruction of the v−axial component shown in Fig. 18 (h,k) and the u−axial component
shown in Fig. 18 (i,l). Ideally, the u and v components of the magnetic vector potential must be zero. This is
because the sample is engineered such that the w-axial component of magnetization is zero while the u−axis
and v−axis components of magnetization do not vary along the w−axis. Hence, it follows that the u−axis
and v−axis components of magnetic vector potential are zero.
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8 Data Sampling and Linear Schemes for Microstructure Design
with Vibrational Tuning Constraints

Arindam Paul, Pinar Acar, Ruoqian Liu, Abhishek Kumar, Zhengzhang Chen,
Wei-keng Liao, Alok Choudhary, Veera Sundararaghavan and Ankit Agrawal

Abstract: Microstructure sensitive design has a critical impact on the performance of engineering ma-
terials. While theoretical models for computing properties given the microstructure are known for a given
alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging,
primarily due to the high dimensionality of microstructure space, multi-objective design requirement and
non-uniqueness of solutions. Furthermore, the safety and performance requirements of critical components,
as well as the cost of material and machining of components, make dovetailing of the microstructure based
on the design objective imperative. This project addresses optimization of several microstructure design
problems, and two broad sets of approaches are delineated: numerical and data-driven methods. Proposed
methodologies provide schemes to overcome local optima, accelerate the optimization process as well as
generate numerous optimal and near-optimal solutions that can accelerate materials development.

8.1 Motivation & Major Goals

Exploring and harnessing the association between processing, structure, properties, and performance is a
critical aspect of new materials exploration. Variation in microstructure leads to a wide range of materi-
als properties and that in turn impacts the materials performance. The performance of materials can be
significantly improved by dovetailing the microstructure. Furthermore, in actual engineering problems, mi-
crostructure optimization problems are often constrained by design constraints. One of the primary goals of
materials design is enhancing properties of a material in specific directions while sacrificing the properties
in other directions where they are not as crucial to the design problem.

The microstructure modeling of this study is based on a one-point probability descriptor, orientation
distribution function (ODF). The ODF measures the volume fractions of different orientations in a poly-
crystalline material. We use a finite element technique to discretize the ODF values in the Rodrigues
orientation space. The finite element discretization is advantageous for design optimization since it can
represent sharper textures, even single crystal designs. The goal is to find the best ODF distribution to
optimize the macro-engineering material properties. Traditional techniques for materials design involves in
numerical optimization techniques such as gradient based and genetic algorithms.

However, numerical methods suffer from few drawbacks. First, the efficiency of mathematical search
deteriorates quickly as the candidate space grows, with a microstructure represented by hundreds of dimen-
sions, traditional searches for microstructure design can be slow. Furthermore, these methods often suffer
from getting stuck in a local optimum for non-convex constrained optimization objectives. Dimension reduc-
tion techniques are known to be influential in analyzing variable relationships in large datasets containing
high variable dimensions. For optimization problems, data-driven methods can be considered to reduce the
search space by limiting the number of design variables in search and finding patterns to form a superior
searching strategy. Data-driven analysis from reasonable collection of variable-objective data instances could
provide valuable insights towards the variable relations as well as discover directions that could lead to quick
convergence.

8.2 Significant Results

This section discusses some of the notable results from the methodologies propounded as part of the project,
with the first and second subsections discussing the numerical and data-driven approaches respectively.

8.2.1 Linear Schemes for Microstructure Optimization

The microstructure is modeled using the ODF values that are modeled using the finite element discretization.
The problem of interest (illustrated in Fig. 20) includes a cantilever beam made of Galfenol, which has a
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body-centered cubic (BCC) structure. The material is modeled using 145 ODF values, and 76 of them are
independent. The design objective is determined as maximization of the yield stress while the first bending
and torsional natural frequencies are constrained for vibration tuning. The main goal of the problem is
to find the best microstructure design that maximizes the yield stress of the beam and satisfies the given
vibration constraints.

Figure 20: Geometric Representation of Galfenol Beam Vibration Problem

According to the coordinate system introduced in Fig. 20, the analytical equations of the first torsional
and bending natural frequencies for an orthotropic material can be shown respectively as below:

ω1t =
π

2L

√
G12J

ρIp
(26)

ω1b = (αL)2

√
E1I1
mL4

and αL = 1.87510 , (27)

where G12 = 1/S66, E1 = 1/S11 and S being the compliance elements (S = C−1). In these formulations, J
is torsion constant, ρ is density, Ip is polar inertia moment, m is unit mass, L is length of the beam and I1
is moment of inertia along axis-1. The computation of the yield stress using the upper bound approach is
given in Eq. 28 respectively.

< σy >=

∫
σAdV (28)

where A denotes the ODF and dV is the elemental volume. The mathematical formulation of the optimization
problem is given below:

max σy (29)

subject to

∫
AdV = 1 (30)

subject to 19 Hz ≤ ω1t ≤ 21 Hz (31)

subject to 120 Hz ≤ ω1b ≤ 122.5 Hz (32)

A ≥ 0 (33)

The optimization problem includes the unit volume constraint by definition (volume fractions should sum
unity over the orientation space) as well as the constraints for the first natural frequencies to tune the beam
vibration. To solve the problem, the length of the beam is taken as L = 0.45 m and the beam is considered
to have a rectangular cross-section with dimensions a = 20 mm and b = 3 mm. The steps taken to optimize
the microstructure are summarized below:

• The solution space is firstly reduced to a new space, called property closure. The property closure is the
space of important material properties, and it includes all possible microstructure designs. Therefore
the same optimization problem can be solved in a reduced space with less number of variables compared
to the original solution space. The procedure for calculating the property closure is given next.
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Property closures represent complete range of properties obtainable from the space of ODFs. These are
approximated by the space between upper and lower bounds of the given property. Upper bound closure
of stiffness values represent the range of properties obtainable by the upper bound homogenization
relation. The hull maps the full range of upper bound values of a combination of stiffness values.
The extreme textures were found to correspond to single crystals. A simple technique for constructing
property closures (for the homogenization relations considered here) is by establishing the smallest
convex region enveloping single crystal property points. Linear programming although more rigorous,
is more intuitive for construction of property closures, since closures are obtained as a result of property
maximization or minimization. Connecting faces on the closure may contain polycrystals that are
explicitly identified by the LP approach. This approach is also well-suited for other problems, such as
identification of textures with desired property combinations where several properties are optimized
simultaneously. Let v1, v2 be the set of properties for which the closure is required. The closure
for property v1 is first found by obtaining the extremal values (v1max, v1min). Then, property v1 is
discretized into m values vi1, i = 1, ..,m between v1max and v1min. The property closure of the combined
set of properties (v1, v2) is found by executing a similar extremum LP problem at each point vi1 with
the additional constraint that pT1 A = vi1. In general, the closure for a combined set of n properties
(v1, v2, ..., vn) is a n-dimensional volume found by executing an LP problem extremizing vn at a set of
discrete points (vi1, v

j
2, .., v

l
n−1) in the closure area of (v1, v2, .., vn−1). The corresponding LP problem

for minimizing vn is written below:

min
A
vn = pTnA satisfying the constraints

qTA = 1

A > 0

pT1 A = vi1

pT2 A = vj2
...

pTn−1A = vln−1 (34)

To maximize vn another similar problem is executed where the objective is changed as minA vn =
−pTnA. The closure represents the range of properties obtainable when using the homogenization
methodology. The infinite solutions can be represented as shown below:

Xi = X1 + λVi, where i = 1, 2, 3, 4, ..., n (35)

Vi = Null(C(:, i)) , (36)

where Eq. 35 defines the infinite solutions, Xi, using one solution, X1, and null space vectors, Vi. n is
the number of null space vectors. Even though the number of null space vectors is finite, the number of
solutions are infinite since λ can be any number that satisfies the ODF positiveness constraint (A ≥ 0).
Since the optimization problem is solved in macro properties’ space (property closure), and the macro
properties’ space is generated by the ODF values through averaging equations, any point inside this
solution domain corresponds to a known set of ODF values. Therefore there is always at least one
optimal ODF solution inside this domain. The solution strategy aims to find this optimum solution
not only when it is unique but also when it is multiple.

• One solution of the problem should be computed to start the algorithm. The solution technique
depends on either the problem is linear or not. For a linear problem, ”one solution” can be computed
solving a Linear Programming (LP) problem. However, sampling can be performed to find one solution
of a nonlinear problem. The values of the microstructure dependent input parameters will be the same
in all solutions if multiple solutions exist.

• As providing the same microstructure dependent property values, independent solution directions are
computed using the Null Space approach of the linear solver. For a single solution problem, there is
no existing solution direction since the single solution defines a point in the solution space.
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• In case of having multiple solutions, these solutions are computed using ”one solution” of the problem
and the independent solution directions (Eq. 35).

The optimization problem of Galfenol beam vibration tuning has linear design objective and constraints.
Therefore, the one solution to the problem could be found by solving an LP problem directly. The multiple
solutions of this problem correspond to the designs having the same values for microstructure dependent
input parameters (E1 and G12). The problem has 73 solution directions (76 optimization variables, 3 linear
equations - 2 of them are for computation of E1 and G12, and 1 of them is for unit volume constraint) and
these solutions are polycrystal designs. The parameters of the multiple optimum solution are given and
compared to the best single crystal solution in Table 6. Some of the optimum microstructure designs are
shown in Fig. 21. Since the linear solver was able to compute independent solution directions for Galfenol
beam optimization problem, each design in Fig. 21 is different than the others and has different ODF
values. However, they are still providing an identical maximum yield stress value and satisfying the design
constraints.

Parameters Optimum Polycrystal Best Single Crystal
σy 384.1256 MPa 352.7132 MPa
E1 210.2585 GPa 215.2910 GPa
G12 78.4528 GPa 78.0022 GPa

Table 6: Optimization Results for Vibration Tuning of the Galfenol Beam

Figure 21: Some of the Optimum ODF Solutions

8.2.2 Data-Driven Microstructure Optimization

Galfenol Microstructure Optimization This work [42] attempts to identify the complete space of
microstructures for yielding the desired combination of properties demanded by a given application. The
problem involves microstructure design of magnetoelastic Fe-Ga alloy (Galfenol) for enhanced elastic, plastic
and magnetostrictive properties. While theoretical models for computing properties given the microstructure
are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired
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properties is challenging. The challenges are primarily due to the high dimensionality of microstructure
space, complexity of the constraints and non-uniqueness of solutions. These challenges render traditional
search-based optimization methods insufficient concerning both searching efficiency and result optimality.
In this work, a route to address these challenges using a machine learning methodology is proposed. A
systematic framework consisting of random data generation, feature selection, and classification algorithms
are developed. Experiments with five design problems that involve identification of microstructures that
satisfy both linear and nonlinear property constraints show that our framework outperforms traditional
optimization methods with the average running time reduced by as much as 80% and with optimality that
would not be achieved otherwise.

Table 22 illustrates the flow diagram of this methodology, and it consists of four steps (a) Random
Data Construction (b) Search Path Refinement (c) Search Path Reduction (d) Enhanced Optimization. The
dataset is generated using several randomization methods that exhaustively sample the search space. The
motivation of introducing feature ranking into optimization is to obtain a specific search path in the form of
a sorted order of variables before the start of a search, to improve the searching efficiency. For this problem,
feature ranking is determined by voting across the ranks across four feature ranking algorithms. To reduce
the search region of each variable, we build a rule-based classification tree to learn the most promising region
of values for each variable. The data instances with desired function values are represented by the class ‘1’
and the contradictory class is labeled as ‘−1’. After a tree is constructed, we look for the leaf nodes with
“−1”. We traverse from the root to each of the “−1” leaf nodes, and rules describing the are generated along
the path. The searching effort is thus reduced to a more concentrated area on these variables. Compared to
the original region of [0, 1], the search region has been reduced significantly. A gradient-based line search can
be conducted on an ordered list of variables, finding, one variable at a time, the value of it that optimizes
the function from a reduced value space. Optimization becomes a much promising endeavor when the search
space is reduced, and a pre-planned searching path is deployed.

Figure 22: Framework of material structure optimization. The flow on top is the traditional search-based
mathematical optimization method. The bottom is the machine learning based method we propose. Three
additional steps are inserted to learn a refined and reduced search space.

The three baseline methods to compare with are: 1) an exhaustive search (eSearch) containing 1 million
random searches, 2) a generalized pattern search, which can be considered as a smarter-than-exhaustive
guided search (gSearch), 3) a traditional optimization algorithm, specifically linear programming (LP) is
used for linear problems and genetic algorithms (GA) for nonlinear problems. Table 7 shows the comparison
of results obtained by the aforementioned methods. As we can deduce from this comparison, for linear
properties as yield stress (Y ) and magnetostrictive strain (m), LP always provides a valid solution. It is
the nonlinear problems such as Young’s modulus (E) and composite functions F1 and F2 that pose a more
significant challenge for traditional optimization methods. Exhaustive search gives unstable results. Guided
search tend to get stuck at local optima, which can sometimes be even worse than the naive exhaustive search
(although the running time is much less). Surprisingly, GA has worked poorly on nonlinear problems (we
also tried GA on linear problems, and the answer is never as good as LP). In fact, for nonlinear problems,
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the guided search is often a better choice than GA.

Table 7: Comparison summary of optimal values for different design problems across methods
Property Objective eSearch gSearch LP/GA ML
E (GPa) Min 127.56 89.5667 136.25 85.9878
Y (MPa) Max 301 306.54 353.11 353.11
m Max 9.0034e-5 1.3797e-4 1.5498e-4 1.5498e-4
F1 Max 1.0911e-7 1.2609e-7 1.0122e-7 2.9347e-7
F2 Max 9.81 10 9.9987 10

A machine learning (ML)-based guided search aims to reduce the search space, that is, the set of candidate
solutions, by using heuristics specific to the problem class, and was able to achieve a fine balance between
accuracy and efficiency, and more importantly, it can find the complete set of solutions that none of the other
methods can. Furthermore, a software has been developed based on this work, which can be found in http:

//cucis.ece.northwestern.edu/projects/MURI/workopt.html. It is a general optimization package that
performs search space reduction given an objective function and mathematical constraints.

Vibrational Tuning of Galfenol This work [44] addresses optimization of microstructure design to
maximize the yield stress of a Galfenol beam under vibration tuning constraints defined for the first torsional
and bending natural frequencies. The presence of vibrational constraints to the design objective renders the
previous methodology of guided pattern search infeasible. Pattern search approaches the optimal point by
creating a mesh from a sequence of satisfying points, and is not able to converge for this problem as a mesh
satisfying the constraints is not attainable. A two-step data-driven solution scheme 23 is proposed to find
optimal microstructure satisfying performance requirements, and design and manufacturing constraints. The
first phase of the approach involves developing and executing sampling algorithms to generate possible ODF
solutions meeting the process limitations. The sampling algorithms i.e. partition and allocation scheme
complement one another and ensure sampling the entire feature space. Partition warrants that different
permutations of non-zero ODF dimensions are explored for a given set of ODF dimension. Allocation
guarantees that all the ODF dimensions are explored sufficiently. There are two sets of objectives (Equations
1 and 2) with different vibrational constraints that were explored in this work. The flow-diagram for the
proposed methodology is illustrated in Figure 23.

First set of constraints:
subject to 19.5 Hz ≤ ω1t ≤ 21.5 Hz (37a)

subject to 120 Hz ≤ ω1b ≤ 122.5 Hz (37b)

Second set of constraints:
subject to 21.5 Hz ≤ ω1t ≤ 23.5 Hz (38a)

subject to 100 Hz ≤ ω1b ≤ 114 Hz (38b)

Figure 23: Flow diagram of the proposed methodology. Upper and lower bound approaches for both sets of
constraints are repeated for both problems.

We evaluate the proposed data-driven approach in yielding optimal and near-optimal solutions and
find that it outperforms or matches previous state-of-the-art methods and produces numerous near-optimal
solutions which is one of the most significant contributions of this study. Table 8 presents the total number
of near-optimal solutions, or in other words, solutions that are proximal to the optimal solutions. The
near-optimal solutions of this problem correspond to different designs having same or similar values for yield
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stress. The algorithms were executed to produce around 5 million valid (which obey all the constraints)
solutions. For all the four problems (upper and lower bound approaches for two sets of constraints), 3-9
near-optimal solutions with a neighborhood of 10−4 (from the optimal solution) are discovered. Further,
between 89-402 solutions in a neighborhood of 10−3 and between 147-1579 solutions in a neighborhood of
5*10−3, across all the categories are identified. For the upper and lower bound approaches, our solutions are
compared against the genetic algorithm based scheme and LP-based methods respectively.

The proposed data sampling approach based on the sampling algorithms surpassed the yield stresses
obtained from genetic algorithm based solver for the upper bound approach (as shown in Table 9). In
particular, we get an improvement of more than 25% for upper bound approach on the first set of objectives
against the previous state-of-the-art approach. Additionally, the results for the lower bound are comparable
to the optimal values achieved by the LP method (Table 10). It is important to note that only the LP solution
(used for the lower bound approach by Acar et al. [37]) yields the theoretical maximum value in contrast
to the genetic algorithm solver scheme used by them for the upper bound approach [36]. As described
before, obtaining multiple optimal solutions are critical as traditional low-cost manufacturing processes can
only generate a limited set of microstructures. While a single solution may not be economically feasible
to manufacture, hundreds or thousands of near-optimal solutions can accelerate the speed of materials
development. Therefore, it provides flexibility to produce solutions which are cost-effective selectively, and
improve the overall efficiency of manufacturing immensely.

Table 8: Number of solutions within 0.01%, 0.1% and 0.5% of the optimal solutions. For each set of
constraints (5 million valid data points were generated.

Constraint Bound within 0.01% within 0.1% within 0.5%
1 Upper 3 89 147
1 Lower 9 92 222
2 Upper 7 402 2015
2 Lower 3 116 1579

Table 9: Comparison of the maximum yield stress achieved for the 2 sets of constraints with the proposed
approach and the previous state-of-the art genetic algorithm solver (GA) [36] approach for microstructure
design with process constraints(upper bound Equations 37a, 38a). The yield stress σy, bending ω1b and
torsional ω1t frequencies of the optimal solutions generated by both methods. The units for yield stress σy
is MPa and the frequencies is Hz.
Constraint Bound σy(current) σy(GA) ω1b(current) ω1b(GA) ω1t(current) ω1t(GA)
1 Upper 385.237 384.126 120.006 120.210 21.341 21.498
2 Upper 388.089 308.446 102.589 113.918 23.482 23.485

Table 10: Comparison of the maximum yield stress achieved for the 2 sets of constraints with the proposed
approach and the previous state-of-the-art LP [37] approach for the microstructure design with process
constraints (lower bound Equations 37b, 38b). The yield stresses σy, bending ω1b and torsional ω1t

frequencies of the optimal solutions generated by both methods. The units for the yield stress σy is MPa
and the frequencies is Hz.
Constraint Bound σy(current) σy(LP) ω1b(current) ω1b(LP) ω1t(current) ω1t(LP)
1 Lower 385.113 385.650 121.272 120.020 21.344 21.500
2 Lower 387.134 387.259 106.519 100.000 23.477 23.499

Optimization techniques including the methods used by Acar et al. such as a genetic algorithm [36] or
linear programming based scheme [37] lead to a unique microstructural solution or sometimes a few. One
of the limitations of their approaches for vetting equivalent solutions is that it only searches for identical
optimal value. However, for practical design applications, a near-optimal solution is adequate as long as
the constraints are strictly obeyed, and the near-optimal solutions are proximal to the optimal solution. A
future direction for reducing the dimensionality of microstructure space is highlighted that can accelerate
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the process of achieving solutions satisfying all the constraints by isolating ODF dimensions that are mostly
non-zero across a majority of near-optimal ODF solutions.

ML-Guided Optimization of α-Titanium In this work, we explore the microstructure optimization of
multiple design problems for a Titanium panel. Two different mesh sizes to represent ODFs are investigated
in this proposed work - 50 and 388. Three separate properties: coefficient of expansion α, stiffness coefficient
C11 and yield stress σ are maximized, and four different design problems explored. The dimensionality of
the search space increased considerably for a mesh size of 388 compared to the previous vibration tuning
problem where the mesh size for Galfenol was 76. An ML-assisted sampling scheme was implemented where
we use random forests to narrow down the search space by iteratively selecting the ODF dimension groups
that deliver the maximal values. Figure 24 delineates the flow diagram of the optimization methodology.

Table 11 depict the number of near-optimal solutions obtained for one of the design problems. For
the upper and lower bound approaches, our solutions are compared against the genetic algorithm based
scheme and LP-based methods respectively. The proposed data sampling approach based on the sampling
algorithms surpassed the yield stresses obtained from genetic algorithm based solver for the upper bound
approach. Additionally, the results described in Table 11 for the lower bound are comparable to the optimal
values achieved by the LP method. The proposed approach generates numerous near-optimal solutions
(about 102-106, i.e., 3− 4 orders of magnitude higher than prior methods).

Figure 24: Flow diagram of our methodology. The green arrows depict the data generation process, and the
orange arrow signifies the feedback-aware sampling.

Table 11: Number of solutions within 0.01%, 0.02%, 0.05% and 1% of the optimal solutions.
ML-Guided Sampling

Bound Mesh Size within 0.01% within 0.02% within 0.05% within 1%
Upper 388 140 280 759 1.255x103

Lower 388 0 6.223x103 1.078x105 1.084x105

The proposed work provides a future direction for feedback aware sampling that can iteratively incentivize
distinct ODF dimensions using feature selection using machine learning. This would yield ODF vectors with
higher objective value, which can be investigated to accelerate the process of attaining optimal or near-
optimal solutions.
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9 Algorithms for the design of functional materials

Kaushik Bhattacharya, Marc De Graef and Richard D. James

Abstract As part of this project, the PIs have developed a suite of algorithms for the discovery of
functional materials. These are adapted for the systematic discovery of functional materials based on highly
reversible first-order phase transformations between one crystalline phase and another, which also can be
accompanied by an abruptly changing polarization, magnetization or transport property. The algorithms
developed under the project enable the seamless passage from high accuracy powder or micro-Laue X-ray
measurements of crystal structure and lattice parameters to the discovery of a new highly reversible alloy or
oxide, by a procedure that is described in this final report.

9.1 Introduction

Figure 25: Multiferroism in the alloy
Ni45Co5Mn40Sn10[33]. Note the strong mag-
netism of the high temperature phase of this
ferroelastic: pure iron has a magnetization of 1400
emu/cm3 at 150◦C. The high temperature phase
also has low coercivity and high permeability.

Multiferroics are materials that combine at least two of the
three “ferroic” properties ferroelectricity, ferromagnetism,
and ferroelasticity. Despite an intense search over the
past decade, there has been limited success in finding sin-
gle phase (“intrinsic”) multiferroic compounds that exhibit
strong ferroelectricity and ferromagnetism above room tem-
perature, and are switchable. In the Mosaic MURI project
we have instead followed a design route made possible by
theoretical and algorithmic advances in the project: mul-
tiferroic response driven by reversible phase transformation
(Figure 25). In this case elasticity, electricity, magnetism
and temperature are coupled, and can be simultaneously
controlled along with transport and optical properties. Such
a broad combination creates a host of possibilities for novel
sensors, actuators, microelectronic and optical devices, in-
formation storage media, energy storage media, magneto-
electro-caloric and energy conversion devices.

The pervasive bottleneck with phase transformations,
especially strong first order phase transformations, is reversibility. Fracture often occurs after a few cycles.
Even the most reversible such alloy, binary NiTi, has significant migration of transformation temperature,
typically ∼ 20◦C after a few hundred cycles, and exhibits complete failure after a few thousand cycles under
stress-induced transformation with stresses as in Figure 26 or 27.

Figure 26: Demonstration [27] of reversibility of stress-
induced full phase transformation, under demanding con-
ditions of 400 MPa peak tensile stress (each cycle), in a
TiNiCuCo alloy. Cycle 1 is plotted on the same diagram
as cycle 10 million. This alloy satisfies to high accuracy
the cofactor conditions [25, 17]

As a direct result of work on the Mosaic MURI
project, this limitation has been breached. Two al-
loys have emerged ([27, 25, 30] and Figures 26, 27)
that demonstrate a new route to the reversibility of
phase transformations, resolving the key limitation
of “multiferroism by phase transformation”. These
two alloys closely satisfies the cofactor conditions
[2] derived previously by James and collaborators
and studied extensively under the MURI project.
The cofactor conditions are nongeneric conditions
of compatibility between phases (“supercompatibil-
ity”) within the Geometrically Nonlinear Theory of
Martensite, a theory developed by James and col-
laborators. In Figure 27 note the extreme behavior:
the peak stress is of the order of the yield stress of
a Ni superalloy, the strain is an order-of-magnitude
larger than the yield strain of such an alloy, and yet
it exhibits 100,000 cycle reversibility with full recov-
ery.
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A key aspect of this breakthrough [27, 16, 25] is that theory proceeded synthesis. Theory identified
special conditions on lattice parameters at which singular behavior is expected. Compositional changes were
then designed to achieve the particular compositions at which these special conditions are satisfied. The
whole procedure was enabled by the algorithms developed under the project and summarized here.

9.2 Supercompatibility

To summarize the state-of-the-art at this time, there are two levels of conditions of compatibility that have
yielded record low hysteresis in strong first order phase transformations and record high levels of reversibility
measured by cyclic repeatability of properties. These two conditions are:

λλλ2 = 1 [6, 7, 12, 13]. Here, λ2 is the middle eigenvalue of the transformation stretch tensor [35]. Satisfying
λ2 = 1 to high accuracy (1.0000 ± 0.0002) in a transforming material leads to exceptionally low hysteresis
(Figure 29), with the width of the thermal hysteresis loop, (1/2)(As + Af −Ms −Mf ) < 2◦ C. Accurate
satisfaction of λ2 = 1 has been demonstrated in several metal alloy systems, including NiTiX alloys and

Figure 27: Demonstration [30] of 100,000 cycle
reversibility of full phase transformation, un-
der > 500 MPa peak compressive stress, > 6%
strain on 2 micron pillars of a ZnAuCu alloy
satisfying accurately the cofactor conditions.
Note also the low stress hysteresis.

various Heusler alloys (Figure 29). This is done by preparing
alloys in either bulk or film form, accurate measurement of lat-
tice parameters by X-ray methods, calculation of λ2 using the
Cauchy-Born rule, and then systematically changing composi-
tion and repeating these steps to achieve λ2 = 1. The indica-
tions are that the reversibility of the transformation as mea-
sured by the migration of transformation temperature during
cyclic transformation is also significantly improved by tuning
the composition to make λ2 ≈ 1.

However, from the recent demonstrations, Figures 26,27,
the cofactor conditions (see below) appear to have a stronger
effect on reversibility. The physical meaning of λ2 = 1 is that
it allows for a perfect, untwinned interface between the phases,
and therefore eliminates the stressed transition layer that or-
dinarily exists there. Low hysteresis of strong first order phase
transformations enable the realization of multiferroic energy
conversion devices and new concepts for sensors.

Cofactor conditions ([17, 16, 25, 6]). The cofactor conditions include the condition λ2 = 1, as well as a
second condition on lattice parameters, and an inequality (which is typically satisfied). The physical meaning

Figure 28: A predicted complex microstruc-
ture possible under the cofactor conditions.
Austenite is red. The martensite consists of
four variants. In each region the crystal struc-
ture is at its stress-free, minimum free energy
state and exhibits large deformation, yet the re-
gions fit together perfectly. Similar microstruc-
tures are seen in Zn45Au30Cu25 [16].

of the cofactor conditions is that they are necessary and suffi-
cient conditions that the crystallographic theory of martensite
is satisfied for any volume fraction of the twins and also for
many twin systems. The crystallographic theory of martensite
is a broadly successful theory that describes in detail the low
energy twinned and stressed interface between two crystalline
phases. The cofactor conditions imply the existence of a great
many additional microstructures involving both phases which
have either low energy transition layers (in the sense of the
crystallographic theory) or zero elastic energy [17]. An exam-
ple is shown in Figure 28 which, despite the large distortions,
contains zero elastic energy and exhibits perfect fitting. These
zero-elastic-energy microstructures include nucleation mecha-
nisms in which a nucleus of the martensite phase grows con-
tinuously from zero volume, and other zero-energy microstruc-
tures where the austenite grows continuously from zero volume

within a twin band of martensite [17]. In all these cases there is flexibility: some volume fractions can be
freely changed keeping the microstructure at zero stress.
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(a) Hysteresis vs. λ2, close up (b) Hysteresis vs. λ2

Figure 29: Measured thermal hysteresis vs. λ2 in alloys from a combinatorial library (red and triangles) and from
bulk alloys of TiNi(Cu, Pd, Pt, Au) [7, 12, 13]. Each marker corresponds to a different alloy. Figure (a) is a close-up
of (b) near λ2 = 1. Note that the size of the hysteresis can be reduced to near zero by tuning composition to make
λ2 = 1.

While many groups worldwide are currently pursuing these conditions in various alloy systems, currently,
there are two alloys known that accurately satisfy the cofactor conditions: Zn45Au30Cu25 ([16] and Figure 27)
and the alloy shown in Figure 26, Ti54.7Ni30.7Cu12.3Co2.3 [27]. The first, Zn45Au30Cu25 [16], was developed
in the laboratory of James by systematic changes of composition. It exhibits the lowest hysteresis (1/2)(As+
Af −Ms −Mf ) ≈ 0.2◦C measured in a bulk alloy with a strongly first order phase transformation (> 5%
transformation strain)1. It also exhibits many unusual features: nonreproducibility of microstructure from
cycle to cycle, independence of microstructural changes across a grain boundary during cyclic transformation,
an unprecedented shape memory effect at small scales (Figure 27), and complex microstructure but with few
stressed transition layers [34]. It also exhibits exceptional reversibility under thermal or stress cycling [16,
30].

Figure 30: Flow chart
of alloy discovery procedure.
Each arrow is enabled by
algorithms developed under
the project.

A fascinating aspect of Zn45Au30Cu25 is its behavior at small scales [30].
In typical cases of pillar compression experiments with ≈ 1 micron pillars,
such as those in NiTi [9], transformation is accompanied by the formation of
a single large shear band having sharp re-entrant corners, and failure occurs
after a few cycles. In contrast, in the cofactor alloy Zn45Au30Cu25 the 2 micron
pillar of the experiment of Figure 27 showed complex fine microstructures and a
smooth boundary during transformation even at micron scales [30]. Evidently,
interfaces cost so little energy, and there are so many possibilities, that bulk-
like microstructures are observed even at scales at which interfacial and bulk
transition layers are thought to be prohibitive.

9.3 Main algorithms

A flow chart of the alloy development procedure for supercompatible alloys is
shown in Figure 30. This is schematic with regard to method of synthesis and
characterization: sputtered (or MBE grown) films [27] or cold crucible methods
sometimes replace arc melting, and micro-Laue methods replace powder X-ray
methods [34]. Algorithms developed under the project are now being used for
all the arrows in this figure, but the most critical (and most difficult) steps
are X-ray methods→ Lattice parameters (α, β, γ, δ)→ Transformation stretch
matrix→ Variants U1, . . .Un and twin systems. The key problem is that X-ray
methods give – at best and with considerable difficulty in these low symmetry

1This alloy has about 6% transformation strain.
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systems – the primitive unit cell (fundamental periodicity) and space group2.
In practice the primitive unit cell of the low symmetry martensite has much larger volume than the primitive
unit cell of austenite. In this case a sublattice unit cell of austenite (having about the same volume as the
martensite primitive unit cell) transforms to the primitive unit cell of martensite. But the ratio of volumes
of the sublattice unit cell of austenite to the primitive unit cell of austenite can be large; this ratio is
approximately 18 in the case of the cubic to monoclinic transformation in Zn45Au30Cu25. The atoms within
the (potentially large) sublattice unit cell of austenite shuffle to new positions in the martensite lattice.

Thus, there are two problems. First, there are a huge number of sublattices of austenite that have unit cells
with about the same volume as that of martensite. Second, given one of them, there are infinitely many unit
cells for that sublattice. Which one of them transforms to a given primitive unit cell of martensite? This is a
classic problem in phase trans-
formations that was already
faced by Bain, who theorized
that one should seek “a mode
of atomic shift [that] requires
minimum motion” [1]. His
conjectured solution, the well-
known Bain strain, is accepted
today in a number of cases,
but also is not the correct so-
lution for many transforma-
tions, particularly in complex
lattices.

As part of the Mosaic
MURI project, we have devel-
oped an algorithm ([35], see
also structrans.org) that
rigorously finds the “a mode
of atomic shift [that] re-
quires minimum motion”, in-
terpreted in a precise and
physically sound way. “Minimum motion” is defined by a norm. Thus, given only results that come from
the X-ray methods, the algorithm searches out all sublattices of austenite, and finds those with minimum
atomic motion. Despite the fact that there are an infinite number of sublattices, the algorithm finds the
exact minimum, because we first establish a rigorous, quantitative upper bound which reduces the search to
a large but fine number of sublattice unit cells.

This algorithm is enhanced by calculations of λ2 and the three cofactor conditions, calculation of all
twin systems, calculation of all solutions of the crystallographic theory of martensite, and accurate display
of these results (see structrans.org), also including unusual microstructures possible under the cofactor
conditions.

Technology areas that may be initiated or impacted by this research are listed in Table 1.

2In practice the space group is guessed and fitting is done. The quality of the fit then suggests the most likely space group.
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10 Markov random fields for microstructure synthesis: examples
and validation

A. Kumar, P. Acar, L. Nguyen, D. Turner, A. Cecen,
S. Kalidindi, M. DeGraef, V. Sundararaghavan

Abstract: In this MURI task, we have pioneered an new methodology based on Markov Random Fields
(MRFs) for quantification and reconstruction of material microstructures. In the MRF approach, microstruc-
tures are quantified using the conditional probability density for the state of a pixel given the known states
of its neighboring pixels. If only the nearest neighbors are chosen, this amounts to modelling a microstruc-
ture as an Ising graph. While in Ising models, a lattice is constructed with pixels (with binary states)
interacting with its nearest neighbors, in MRFs, pixels take up integer or vector states and interact with
multiple neighbors over a window. The sampling of conditional probability of a pixel given the states of its
known neighbors is based on a Markov chain. In the sampling method, a set of neighbor pixels are used as a
template to determine the probability distribution function (PDF) of the unknown pixel[32]. To improve the
computational efficiency, an alternate methodology based on optimization was also validated. The approach
minimizes a neighborhood cost function that ensures that the local neighborhood of the Ising lattice taken
along the x-,y- or z- directions through the 3D microstructure is similar to some neighborhood in the 2D
lattice imaged along that plane. This reconstruction problem leads to anisotropic microstructures that have
similar high order statistics[19], which is in contrast to other such works in literature that use assumptions
of microstructural isotropy. The sampling approach and the optimization approach can also be applied in
tandem for modeling time varying microstructures[38]. In this report, we primarily illustrate examples from
this method as applied to spatial and temporal microstructure reconstruction.

10.1 Introduction

Some of early attempts at microstructure modeling were based on Ising models. In the Ising model, a N ×N
lattice (L) is constructed with values Xi assigned for each particle i on the lattice, i ∈ [1, .., N2]. In an Ising
model, Xi is a binary variable equal to either +1 or −1 (eg. magnetic moment). In general, the values Xi

may contain any one of G color levels in the range {0, 1, .., G− 1} (following the integer range extension of
the Ising model). A coloring of L denoted by X maps each particle in the lattice L to a particular value in
the set {0, 1, .., G−1}. Ising models fall under the umbrella of undirected graph models in probability theory.
In order to rewrite the Ising model as a graph, we assign neighbors to particles and link pairs of neighbors
using a bond as shown in Fig. 31(a). The rule to assign neighbors is based on a pairwise Markov property.
A particle j is said to be a neighbor of particle i only if the conditional probability of the value Xi given all
other particles (except (i, j), i.e., p(Xi|X1, X2, .., Xi−1, Xi+1, .., Xj−1, Xj+1, .., XN2)) depends on the value
Xj .

In the classical Ising model, each particle is bonded to the next nearest neighbor as shown in Fig. 31(a).
For modelling microstructures, a higher order Ising model (Fig. 31(b)) is used. The particles of the lattice
correspond to pixels of the 2D microstructure image. The neighborhood of a pixel is modeled using a square
window around that pixel and bonding the center pixel to every other pixel within the window. Using this
graph structure, a Markov random field can be defined as the joint probability density P (X) on the set
of all possible colorings X, subject to a local Markov property. The local Markov property states that the
probability of value Xi, given its neighbors, is conditionally independent of the values at all other particles.
In other words, P (Xi|all particles except i) = p(Xi|neighbors of particle i). The theory to sample from the
conditional probability density p(Xi|neighbors of voxel i) can be found in References [19, 32, 38]. In this
chapter, we describe various example applications of this approach including generation of synthetic 2D and
3D microstructures and modeling temporal evolution of 2D microstructures using experimental data.

10.1.1 Example 1: Reconstruction of a Polycrystal

A polycrystalline structure was chosen for reconstruction. The free parameter in the reconstruction is the
sampling window size which is taken to be w = 13× 13 pixels.
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(a) (b)
Figure 31: Markov random field as an undirected graph model, circles are pixels in the image and bonds are
used to connect neighbors: (a) Ising model with nearest neighbor interactions (b) Microstructure modeled by
including higher order interactions in the Ising model.

Figure 32: Initial microstructure (left) and the synthesized microstructure (right) from our Markov random
field code. Note that local features such as grain boundaries are effectively captured.

We compared descriptors that describe the shape distribution of individual grains in the experimental
and synthesized grains in Example 1, rather than the global (average) feature represented in the histograms
of Fig. 33. Moment Invariants(MIs) are non-linear combinations of moments of an object shape that are
invariant with respect to a class of coordinate transformations. For 1D distribution of data, the second order
moment is analogous to standard deviation while the 4th order moment invariant is similar to kurtosis. For
2D shapes, DeGraef and coworkers have identified 2 MI’s (ω1, ω2) of second order. Graphical representation
for these two second order moment invariants in a x–y plot is known as Second Order Moment Invariant map
(SOMIM). The SOMIM for the image in Fig. 32 and its reconstruction using MRFs is shown in Fig.33. To
compare the SOMIMs, we need to introduce an appropriate similarity metric. The modified Bhattacharya
coefficient H(p, q), also known as Hellinger distance, provides a metric to distinguish between two different
density maps p and q. The regular Bhattacharya coefficient β(p, q) is a measure of the similarity between
two normalized distributions and can be written in discrete form as

β(p, q) =
N∑
i=1

√
p(i)q(i),

(
with

N∑
i=1

p(i) =
N∑
i=1

q(i) = 1

)
(39)

where the summation runs over the N bins of the SOMIM. The larger the value of β, more similar the two
distributions are. The Hellinger distance H(p, q) is defined as

H(p, q) =
√

1− β(p, q) (40)

Value of H for SOMIM is 0.47 for the polycrystalline case in Example 1. This value indicates good repro-
duction of polycrystalline shapes using the MRF synthesis approach.
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Figure 33: SOMIM density map original(left) and synthetic(right) microstructure

10.1.2 Example 2: 3D reconstruction of a two phase composite

The properties of the reconstructed image was studied based on an experimental dataset. The author
provides a high resolution planar microstructure image (Fig. 34(a)) of a silver-tungsten composite with
porous tungsten matrix and molten silver (volume fraction of silver phase p = 20%). A 657 × 657 pixel
region of the microstructure corresponding to 204 µm square area was converted to a black and white image
for distinguishing the two phases. This was done by selecting a threshold color below which phases were
set to white (the silver phase) and the rest of the image was set to black (the tungsten phase). The final
black and white image is shown in Fig. 34(a)(inset). A 64 µm square cell within this image was chosen to
reconstruct the 3D image.

An instance of the reconstructed microstructure is shown in Fig. 34(b,c) with the distribution of each
phase shown separately. The two-point correlation measure, Si(2)(r), of this image can be obtained by
randomly placing line segments of length r within the microstructure and counting the fraction of times

the end points fall in phase i. The auto-correlation function for the silver phase γ(r) =
S1
(2)(r)−p

2

p−p2 of the

reconstructed 3D microstructure and the experimental image are compared in Fig. 35(a). The decay in
the two point correlation function is identical for the reconstructed image up until 3µm, showing excellent
reproduction of the short–range correlation. Although the longer range correlations match qualitatively, there
is a drift seen as the distance between pixels increases. Both the excellent match in short range correlation
and the small drift in the long range correlation can be explained based on the reconstruction algorithm,
which models a stronger interaction of a center pixel to pixels in its immediate local neighborhood than
pixels farther away. In effect, the algorithm gives a stronger weighting towards matching the short range
correlations in the microstructure. Short range correlations carry the greatest weightage in determining
mechanical properties such as elastic modulus, although long range correlations have been found to be
important for phenomena such as surface roughening during plastic deformation. To test if the elastic
properties are well captured in the reconstructed 3D microstructure, we compared against the experimental
data of the elastic modulus as a function of temperature. The computed properties of the reconstructed 3D
microstructure closely follow the experimentally measured Young’s modulus as shown in Fig. 35(b) with an
average error from experimental data of about 5 %.

10.1.3 EXAMPLE 3: Spatio–temporal sampling (2D + time) of grain growth

The temporal Markov Random Field (MRF) algorithm from [38] is used to synthesize the evolution of
microstructure over a larger region given a small input movie. The movie is obtained from a phase field
simulation of grain growth. The image size of the original gray-scale movie is 71×71. The synthesized movies
are double the size (142×142 pixels) but over the same time steps as the original phase field simulation. The
snapshots from the original phase field simulation and the synthesized movies for initial, an intermediate and
the final time are compared in Fig. 36. These synthesized microstructures correspond to window sizes of
5,7 and 9 used in the MRF model. The window size is the adjustable parameter in the method for different
microstructures. At window sizes much smaller than the correlation lengths, false matches lead to high noise
in the reconstructions. The window size of 5 does not produce a good quality reconstruction as seen in the
clusters of small grains that persist at longer times. At very high window sizes, not enough matching windows
can be identified and in addition, more computations are needed that slow down the simulation. As seen in
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(a)

(b)

(c)

Figure 34: (a) Experimental Tungsten-silver composite image (204 × 236µm) from Umekawa et al (JMPS,
1965). The black and white image corresponds to a thresholded image with white representing the silver
phase and black representing Tungsten. A 64 µm square cell shown in inset was used to reconstruct the 3D
image. (b) A 64 µm length cell of reconstructed 3D microstructure of the experimental image showing silver
distribution (c) The tungsten phase of the reconstructed microstructure.
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Figure 35: Comparison of properties of 3D reconstruction of Silver-Tungsten composite (a) The autocorre-
lation function for the silver phase (b) Experimental Young’s modulus is shown along with the FEM results
for the reconstructed 3D microstructure.
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Fig. 36, the window sizes of 7 and 9 visually look similar to the phase field simulation. To quantitatively
compare the grain size and shapes of the input and synthesized images, two global feature vectors were
extracted from the input microstructure and compared to the synthesized microstructure (window size 9).
The feature vectors are described below:

Phase 

Field 

MRF 

window 

size = 5 

MRF 

window 

size = 7 

MRF 

window 

size = 9 

Initial time Intermediate time Final time 

Figure 36: Snapshots of the gray-scale movie are compared to the synthesized movie snapshots at initial,
intermediate and final times. The synthesized microstructures are obtained using three different window
sizes.

1. Grain size and grain boundary perimeter statistics: The grain size and grain boundary (GB) perimeter
of each grain is tabulated. A histogram containing the area or the perimeter of grains in the x–axis
and the fraction of grains with the corresponding area (or GB perimeter) is plotted in the y–axis.

2. Grain shape statistics using the Rose of intersections: To obtain the rose of intersections, a network of
parallel equidistant lines is placed over the microstructure image at several angles and the number of
grain boundary intersections with each test line is measured. The histogram of intersections with the
angle of orientation of the lines is called the rose of intersection.

The plot in Fig. 37(a,b) shows the fraction of grains as a function of grain area and grain perimeter
(measured in pixels) for initial and final times. The rose of intersections graphs are illustrated using lines
with 11 different angles at initial and final times. The shape histogram depicts the decrease in overall grain
size with time (shrinking of the contour) while the overall grain shape as indicated by the contour shape
remains mostly equiaxial. Fig. 37 shows that the synthesized microstructures are able to capture the grain
size and shape statistics of the original microstructure evolution predicted by the phase field method. MRF
sampling approach proposed here is significantly faster than performing a phase field simulation for larger
spatial regions. We do not solve any differential equations and as such, are not constrained by the small
time increments needed to maintain numerical stability.
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Figure 37: Comparison of statistical features of phase field and MRF algorithms (a,b) grain area and grain
perimeter statistics at initial and final time (c) Rose of interactions at initial and final time

10.1.4 EXAMPLE 4 Microstructure embedding in CAD models

The 3D reconstruction methodology shown in this chapter can be extended to any geometry. In principle, one
could use sampling and optimization methodologies to embed microstructures over a engineering (computer
aided design (CAD)) model. To demonstrate this, we have embedded a microstructure (of stainless steel)
into a CAD geometry in Fig. 38. The microstructure was obtained using serial sectioning and diffraction
techniques. The microstructure is in the form of voxels colored by grain numbers. The 3D microstructure is
then sampled onto the CAD geometry using an extension of the sampling method described in the previous
sections. Such methodologies will be useful for developing 3D computational models of microstructures at a
component level using limited experimentally sampled volumes.

Figure 38: (left) AL6XN microstructure from serial sectioning, Al6XN RVE (Alexis Lewis, NRL) (right)
Synthesized geometry
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10.2 Conclusions

It is human intuition that different windows taken from a polycrystalline microstructure generally ‘look
alike’. This can be quantified through an underlying stationary probability distribution that generates all
possible microstructural windows. While quantifying this high dimensional joint probability distribution of
all pixel colors is computationally intractable, we looked at sampling and optimization methods to model this
distribution. For many microstructures, the probability of a pixel color depends only on the pixel state of
its close neighbors. Thus, one could represent microstructures in the form of undirected probabilistic graphs
called Markov Random Fields (MRFs) with pixels interacting with neighbors over a sampling window.
Previous methods for reconstructing polycrystals using algorithms based on a common set of underlying
features such as marginal histograms and point probability functions have often failed to capture the local
information such as sharp grain boundaries. We find that the MRF approach is an attractive solution in this
regard. We show that not only are the global features such as grain size/shape distribution captured but
also the mechanical (elastic) properties of the synthesized microstructures as computed using finite element
method were also found to closely reproduce the experimental values. We also presented an extension of this
MRF algorithm for synthesizing microstructure evolution. A promising method for reconstructing diverse
microstructures from two–dimensional microstructures imaged on orthogonal planes was also presented. The
method is particularly promising for anisotropic cases where the x–,y– and z– slices look different. With these
developments, we believe that Markov random fields presents an exciting avenue for practical reconstruction
of spatio–temporal evolution of microstructures.
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11 Software packages created in this program

MURI co-PIs

11.1 Mined-MatKit

A collection of materials informatics tools wrapped in easy to use GUIs (Fig. 39) for license-free deployment.
Currently consists of the following:

• Microstructure Generation module. Creation of a vast variety of randomized microstructures under
physical and statistical constraints;

• Fitting module. Used for establishing functions/linkages between material descriptors and process or
property parameters;

• Segmentation module. Deals with the transition from raw imaging data to microstructure representa-
tions;

• Dimensionality Reduction module. Deals with the identification of dominant descriptors of microstruc-
ture from a large set of statistics;

• Spatial Statistics module. Deals with the calculation of spatial statistics under variety of scenarios and
definitions.

Mined-MatKit Download Link: https://github.com/MINED-MATKIT

Figure 39: Selected screen shots of the MatKit interface.

11.2 Project Pages

Project-Pages is a Jekyll based scientific blogging tool, made easily accessible to the non-coder researcher
through simple heavily opinionated templates, while preserving the freedom of the code savvy user to cus-
tomize all functionality as they please. Project-Pages (Fig. 40) uses a specialized re-skin of Prose.io to
provide a CMS-like overlay.
Organization Level Functionality:

• Adaptive Tags

• Text and Tag Based Search

• Ability to Manage Multiple Projects

• Members Page
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• Mention Tracking via Altmetric

• Google Analytics

• Comments with Disqus

• Responsive Design

Post Level Functionality:

• Code Highlighting

• MathJax for Equations

• Presentation Layout using Reveal.JS with Easy to Use Jekyll Helpers

• MATLAB Layout with Direct to Post Export Function in MATLAB

• Jupyter Notebook Layout Directly from Notebook Files

• Mermaid.JS for Automated Workflow Visualization

• Projector Layout using DataProjector.JS to Visualize 3D Point Cloud Data from JSON Files

• ThreeJS Layout to Visualize 3D Surface Data

Project Pages Download Link: https://github.com/projectpages

Figure 40: Screen shot of the Project Pages interface.

11.3 MicroFract

The open source MicroFract 2D and 3D codes formulate an image-based methodology for identifying the
path of least resistance in the microstructure [40]. The user specifies the line direction of the macroscopic
crack and a cohesive energy map corresponding to the weak and strong interfaces in the microstructure. The
code outputs the crack trajectory as shown in the Figure below.

Microstructural crack trajectory is overall driven by the macroscopic crack direction, while microstructure
resolves the crack along surfaces of low resistances: in effect, the crack follows a zig-zag trajectory following
weak microstructural features. The excess energy to be supplied at the microstructural scale to form a crack
of area A is taken as

E[A] =

∫
A

(Γ− Φ)dA (41)
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where Γ is the cohesive energy along the crack path and Φ is the supplied macroscopic energy that acts
against cohesion. We define the crack path to be the area A that minimizes this energy. In effect, we are
searching for a path of least resistance that has both high stresses and low interfacial strength, and is thus
amenable for fracture.

Figure 41: A 3D example of MicroFract code. The user inputs a microstructure cohesive energy map and a
approximate crack line. The code outputs the 3D crack trajectory. The green particle is more brittle than
the red matrix and the predicted crack maximizes its area along the brittle particles.

The problem of finding the crack area A that minimizes the above equation is an exercise in functional
minimization. Computationally, the solution typically involves solution of a partial differential equation that
tracks fracture surface evolution using gradient descent schemes, phase field parameters or level sets. The
drawback of these approaches are that the solution may lead to a local minima and there is no guarantee
of global minimum energy path. The primary purpose of this software is to introduce the use of graph cuts
method to solve this problem. The above equation can be exactly solved (to get global minimum) by the
max-flow min-cut theorem. The results are shown via 2D and 3D examples from literature and the code and
examples are made available to users.
MicroFract Download Link: http://umich.edu/~veeras/projects/MicroFract.html

11.4 Pruned Search

Pruned Search is an enhanced searching algorithm for general optimization. It combines the concept of
importance ranking and dimension reduction and generalizes them into meta-heuristics, to help better search
for optimal objectives. The primary idea is to have the search force focus on a more promising path and
reduce the irrelevant effort. The validity of this heuristic is rooted in two assumptions.

Firstly, we assume the desired function value depends only on a reduced, albeit unknown, set of variables.
Secondly, we assume that the impact of each variable on the search value is different. Hence, there exists an
optimal order regarding searching priority. The next task is obtaining an optimal search path, and at the
same time, reducing the viable search region of each variable so that it is faster. For that, a representative
set of data needs to be collected. We call that process - data distillation (Figure 42). Next, we perform
complexity reduction on two branches, in parallel: one creates an ordered list of variables based on their
impact towards the function, and the other reduces of the feasible region for each variable. The former is
achieved through feature selection methods where a ranking is guaranteed. The latter is realized through
examining a rule-based classifier and looking for the critical thresholds. After the above steps, meta-heuristics
about searching are obtained. Optimization becomes a more promising endeavor after the search space is
pruned. We then employ a simple line search algorithm that takes a prefixed searching order and replaces
the original constraints with those obtained from the pruning process.

The Pruned Search tool requires a set of control variables x as inputs, an objective function in the form
of y=f(x), where y is the target of optimization and a set of constraints as bounds and functions of x. The
example demo provides a case study for optimizing few materials properties. To use this software, follow-
ing packages are required: MATLAB 7.6/2008a (or higher) with Pattern Recognition Toolbox, Python 2.7,
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Figure 42: The method consists of three key processes. Data Distillation collects a significant and repre-
sentative data set from an objective function. Complexity Reduction ranks the importance and prunes the
search space for each variable. Finally, the Enhanced Optimization searches within the reduced space and
seeks for the optimal solution.

Sklearn 0.14 (or higher), Scipy 0.7 (or higher), and Numpy 1.4 (or higher).

Pruned Search Download Link: http://cucis.ece.northwestern.edu/projects/MURI/workopt.html

11.5 MES Predictor

The open source MES Predictor is developed to establish the process-structure-property (PSP) linkages.
More specifically, it’s used to establishing high value structure-property homogenization linkages for high-
contrast elastic 3-D composite microstructures. The model is based on 3-D convolutional neural network
(CNN), and the source code is written in Python 2.7. In order to use this software, some packages are
required, which are Python 2.7, Numpy, Sklearn, Keras, Tensorflow, Pickle and HDF5.

To use this software, what the algorithm requires as input are a numpy array. The shape of this numpy
array is (x, 51, 51, 51, 1) where x is the number of microscale volume elements (MVEs) and the dimension
of microstructure should be three-dimensional (i.e. 51*51*51). The CNN will establish the PSP linkages in
the materials system and predict its macroscale (effective) stiffness.

The MES Predictor is currently command-line program, and it can only be used to make predictions. To
make more contributions to the community, we are developing another software and an online application.
The new software will also provide the source code that users can use to train their own customized CNN.
The online application is based on MES Predictor, and users can just upload their data on the website
to get predictions instead of downloading and installing all the packages and using command-line to make
predictions.
MES Predictor Download Link: http://cucis.ece.northwestern.edu/projects/MURI/workpred.html

11.6 Plug&Play

We distribute Plug & Play as an open source Matlab software package. The software package supports a
basic implementation of P&P for interpolation and in-painting applications, and is designed to be easily
ported to applications such as tomography.
Plug&Play Download Link: https://engineering.purdue.edu/~bouman/Plug-and-Play/

11.7 TIMBIR

The time-interlace model-based iterative reconstruction (TIMBIR) algorithm is available as open-source C
for MPI implementation on large scale computers. The software is designed to compute 4D reconstructions
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of objects from view samples at arbitrary times/angle intervals. It is actively used by researchers at the
Advanced Photon Source (APS).
Plug&Play Download Link: https://engineering.purdue.edu/~bouman/software/tomography/

11.8 Structural Phase Transformation Web Tools

The Structural Phase Transformation Web Tools (structrans.org) is a is a user-friendly web-based research
and educational platform for structural phase transformation. The most straightforward usage of STRUC-
TRANS is to calculate the transformation stretch tensor and correspondence between two crystal structures,
as described in this report. The basic algorithm is described in [35]. The underlying calculation is the follow-
ing: given the lattice parameters and space groups of the two phases, related by a group-subgroup relation,
find the minimum strain (measured in a reasonable norm [35]) that maps a sublattice of the austenite phase
to the primitive lattice of the martensite phase. From this minimization the transformation stretch tensor
is found.

Additional capabilities include the ability to generate the associated twin systems, compatible interfaces,
solutions of the crystallographic theory of martensite, and to check conditions of supercompatibility (λ2 = 1
and the cofactor conditions). Plans are in place to display the solutions by the visualization method de-
scribed in [17].

Structural Phase Transformation Web Tools Download Link: www.structrans.org

11.9 EMsoft: a package for electron scattering simulations

The open source EMsoft package was developed to provide simulation algorithms for electron scattering, in
particular diffraction experiments in the scanning electron microscope (SEM). The source code is mostly
written in Fortran-2003, with bits in OpenCL (to drive GPU cards) and some interfacing code in C/C++.
With the help of Mike Jackson and his coworkers at BlueQuartz Software (Dayton, OH), EMsoft has been set
up with both a public (at GitHub) and private source code repository as well as a nightly build system to
make sure that the code compiles on Mac OS X, Windows 10, and Linux platforms. The GitHub repository
(URL at bottom of page) provides access to all the source code under a BSD 2 license, as well as all resource
and template files; a number of program manuals are made available in PDF format from the repository,
and a wiki page has detailed information about program input and several examples for EBSD, ECP, and
TKD pattern simulations.

The majority of the EMsoft programs are currently command-line programs, and require a bit of a learning
curve to properly use them. To make the interface more user-friendly, we have started the task of creating a
graphical user interface (GUI) called EMsoftWorkbench. This GUI is under development by BlueQuartz, and
can be accessed from their nightly build beta site (URL below). Currently, only the EBSD-related programs
are available in the GUI; others will be added in the future, depending on the availability of funding.

The EMsoft package makes available all the dictionary indexing programs for EBSD, ECP, TKD, and
PED modalities.
Download Link: https://github.com/EMsoft-org
EMsoftWorkbench Link: http://www.bluequartz.net/binaries/EMsoft/experimental
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Science. Ed. by A. Planes, L Manõsa, and A. Saxena. Vol. 9. Berlin: Springer-Verlag, 2005, pp. 159–175.

[5] Brent L. Adams, Stuart I. Wright, and Karsten Kunze. “Orientation imaging: The emergence of a new
microscopy”. Metallurgical Transactions A 24.4 (1993), pp. 819–831. issn: 1543-1940. doi: 10.1007/
BF02656503. url: http://dx.doi.org/10.1007/BF02656503.

[4] C. A. Bouman and K. Sauer. “A Generalized Gaussian Image Model for Edge-Preserving MAP Esti-
mation”. IEEE Trans. on Image Processing 2.3 (1993), pp. 296–310.

[3] N.C. Krieger Lassen. “Automatic crystal orientation determination from EBSPs”. Micron and Micro-
scopica Acta 6 (1992), pp. 191–192.
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