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Final Report for AFOSR Contract FA9550-14-1-0403: Network Coding for Strong
Consistency Semantics in Distributed Shared Memory Networks

1 Basic Information

Principal Investigator: Nancy Lynch
Primary Contact Email: lynch@csail.mit.edu
Primary Contact Phone Number: 617-253-7225
Organization Name: MIT
Program Manager: Tristan Nguyen
Reporting Period start date: 09/30/2014
Reporting Period end date: 09/29/2018

Summary: Our project involved developing techniques for implementing atomic (linearizable)
data storage on distributed servers, using coding techniques.

2 Research report

Continuation of earlier work: Our first work in this area was [1] below, which was completed
at around the starting time of this contract. This paper develops the CAS and CASGC algorithms
for implementing atomic memory efficiently on data servers using erasure coding methods. Subse-
quently, we wrote a complete, improved version for journal publication [2]. This paper appeared in
the journal Distributed Computing during this reporting period.

[1] Viveck Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial. A Coded Shared Atomic
Memory Algorithm for Message Passing Architectures. IEEE International Symposium on Network
Computing and Applications (NCA14), 2014. Best Paper Award.

[2] Viveck R. Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial, A Coded Shared Atomic
Memory Algorithm for Message Passing Architectures. Distributed Computing 30(1): 49-73, Febru-
ary, 2017.

Abstract: This paper considers the communication and storage costs of emulating atomic (lineariz-
able) multi-writer multi-reader shared memory in distributed message-passing systems. The paper
contains three main contributions:

1. We present an atomic shared-memory emulation algorithm that we call Coded Atomic Storage
(CAS). This algorithm uses erasure coding methods. In a storage system with N servers
that is resilient to f server failures, we show that the communication cost of CAS is N

N−2f .
The storage cost of CAS is unbounded.

1
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2. We present a modification of the CAS algorithm known as CAS with Garbage Collection
(CASGC). The CASGC algorithm is parameterized by an integer δ and has a bounded
storage cost. We show that the CASGC algorithm satisfies atomicity. In every execution of
CASGC where the number of server failures is no bigger than f , we show that every write
operation invoked at a non-failing client terminates. We also show that in an execution of
CASGC with parameter δ where the number of server failures is no bigger than f , a read
operation terminates provided that the number of write operations that are concurrent with
the read is no bigger than δ. We explicitly characterize the storage cost of CASGC, and
show that it has the same communication cost as CAS.

3. We describe an algorithm known as the Communication Cost Optimal Atomic Storage (CCOAS)
algorithm that achieves a smaller communication cost than CAS and CASGC. In particular,
CCOAS incurs read and write communication costs of N

N−f , measured in terms of number of
object values. We also discuss drawbacks of CCOAS as compared with CAS and CASGC.

Viveck Cadambe and Zhiying Wang (earlier postdocs on this project, now faculty members at Penn
State and U.C. Irvine, respectively) have studied techniques for efficiently storing multiple versions
of a data object in a distributed storage system. They have written several papers on this topic,
containing a variety of new storage techniques and matching lower bounds. During this reporting
period, they produced a full arXiv version summarizing the work:

[3] Zhiying Wang and Viveck R. Cadambe. Multi-Version Coding - An Information Theoretic Per-
spective of Consistent Distributed Storage. Report available online at http://arxiv.org/abs/1506.00684.

Lower bounds for shared-memory emulation: In the following papers, we consider the fun-
damental limitations on the storage cost for implementing atomic memory (and some weaker forms
of memory) in a distributed system. Our results are a series of information-theoretic lower bounds
on these costs. They are proved using interesting lower bound and impossibility proof techniques
that are adapted from distributed computing theory:

[4] Zhiying Wang and Viveck R. Cadambe and Nancy Lynch. Information-Theoretic Lower Bounds
on the Storage Cost of Shared Memory Emulation. Proceedings of the ACM Symposium on Prin-
ciples of Distributed Computing (PODC), Chicago, IL, pages 305-313, July 2016.

[5] Zhiying Wang and Viveck R. Cadambe and Nancy Lynch. Information-Theoretic Lower Bounds
on the Storage Cost of Shared Memory Emulation. http://arxiv.org/abs/1605.06844 (2016). Full
version of [4].

Abstract: The focus of this paper is to understand storage costs of emulating an atomic shared mem-
ory over an asynchronous, distributed message passing system. Previous literature has developed
several shared memory emulation algorithms based on replication and erasure coding techniques,
and analyzed the storage costs of the proposed algorithms. In this paper, we present the first
known information-theoretic lower bounds on the storage costs incurred by shared memory emu-
lation algorithms. Our storage cost lower bounds are universally applicable, that is, we make no
assumption on the method of encoding the data.

2
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We consider an arbitrary algorithmA that implements an atomic multi-writer single-reader (MWSR)
shared memory variable whose values come from a finite set V over a system of N servers connected
by point-to-point asynchronous links. We require that in every fair execution of algorithm A where
the number of server failures is smaller than a parameter f , every operation invoked at a non-failing
client terminates. We define the storage cost of a server in algorithm A as the logarithm (to base
2) of the number of states it can take on; the total storage cost of algorithm A is the sum of the
storage cost of all servers. Previously, it was known that the storage cost cannot be smaller than
N

N−f log |V |. We develop three new lower bounds on the storage cost of algorithm:

1. In our first lower bound, we show that if algorithm A does not use server gossip, then the
total storage cost is lower bounded by 2N

N−f+1 log |V |+ o(log |V |).

2. In our second lower bound we show that the total storage cost is at least 2N
N−f+2 log |V | +

o(log |V |), even if the algorithm uses server gossip.

3. In our third lower bound, we consider algorithms where the write protocol sends information
about the value in at most one round. For such algorithms, we show that the total storage
cost is at least νN

N−f+ν−1 log |V |+o(log |V |), where ν is the minimum of f + 1 and the number
of active write operations of an execution.

Our first and second lower bounds are approximately twice as strong as the previously known
bound N

N−f log |V |. Furthermore, our first two lower bounds apply even for regular, single-writer
single-reader (SWSR) shared memory emulation algorithms. Our third lower bound is much larger
than our first and second lower bounds, although it is applicable to a smaller class of algorithms
where the write protocol has certain restrictions. In particular, our fourth bound is comparable
to the storage cost achieved by most shared memory emulation algorithms in the literature, which
naturally fall under the class of algorithms studied.

Improved algorithms for coded atomic storage: Recently, we have been working on im-
proving upon our earlier CAS and CASGC algorithms for Coded Atomic Storage. Papers [6] and
[7] reduce the time costs considerably, while simplifying the algorithm. Papers [8] and [9] tackle
the problem of integrating server-failure recovery into the algorithms.

[6] Kishori M Konwar, N. Prakash, Erez Kantor, Muriel Medard, Nancy Lynch, and Alexander
A. Schwarzmann. Storage-Optimized Data-Atomic Algorithms for Handling Erasures and Errors
in Distributed Storage Systems. 30th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 720-729, May 2016.

[7] Kishori M Konwar, N. Prakash, Erez Kantor, Muriel Medard, Nancy Lynch, and Alexander A.
Schwarzmann. Storage-Optimized Data-Atomic Algorithms for Handling Erasures and Errors in
Distributed Storage Systems. arXiv:1605.01748. Full version of [6].

Abstract: Erasure codes are increasingly being studied in the context of implementing atomic
memory objects in large scale asynchronous distributed storage systems. When compared with

3
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the traditional replication based schemes, erasure codes have the potential of significantly lowering
storage and communication costs while simultaneously guaranteeing the desired resiliency levels.
In this work, we propose the Storage-Optimized Data-Atomic (SODA) algorithm for implementing
atomic memory objects in the multi-writer multi-reader setting. SODA uses Maximum Distance
Separable (MDS) codes, and is specifically designed to optimize the total storage cost for a given
fault-tolerance requirement. For tolerating f server crashes in an n-server system, SODA uses an
[n, k] MDS code with k = n− f , and incurs a total storage cost of n

n−f . SODA is designed under
the assumption of reliable point-to-point communication channels. The communication cost of a
write and a read operation are respectively given by O(f2) and (d+1)n

n−f , where d denotes the number
of writes that are concurrent with the particular read. In comparison with the recent CASGC
algorithm, which also uses MDS codes, SODA offers lower storage cost while pays more on the
communication cost.

We also present a modification of SODA, called SODAerr, to handle the case where some of the
servers can return erroneous coded elements during a read operation. Specifically, in order to
tolerate f server failures and e error-prone coded elements, the SODAerr algorithm uses an [n, k]
MDS code such that k = n − 2e − f . SODAerr also guarantees liveness and atomicity, while
maintaining an optimized total storage cost of n

n−f−2e .

[8] Kishori Konwar, Nancy Lynch, Muriel Medard and Prakash Narayana Moorthy. RADON:
Repairable Atomic Data Object in Networks. Proceedings of the 20th International Conference on
Principles of Distributed Systems (OPODIS 2016), Madrid, Spain, December 2016.

[9] Kishori Konwar, Nancy Lynch, Muriel Medard and Prakash Narayana Moorthy. RADON:
Repairable Atomic Data Object in Networks. arXiv:1605.05717. Full version of [8].

Abstract: In this paper, we provide fault-tolerant algorithms, for implementing atomic memory
service in asynchronous network of storage nodes, having the ability to perform background repair
of crashed nodes, thereby increasing the durability of the storage service. A node that crashes is
assumed to lose all its data, both from the volatile memory as well as the stable storage. A repair
operation of a node in the crashed state is triggered externally, and is carried out by concerned
node via message exchanges with other active nodes in the system. Upon completion of repair,
the node reenters active state, and resumes participation in ongoing/future read, write and repair
operations.

We argue that under arbitrary conditions where there is no restriction on the number of repair
processes being performed in relation to reads and writes, it is not possible to simultaneously
achieve liveness and atomicity. Therefore, we introduce two network “stability” conditions, N1
and N2, which are mostly likely to be respected by practical storage networks. Next, we design
the RADONL algorithm which guarantees liveness and safety as long as condition N1 holds in the
network. However, the algorithm may violate safety of an execution if N1 is not observed by the
network. Next, under the assumption of the slightly stronger network condition N2, we design
the algorithm RADONS, which guarantees atomicity of any execution, but liveness is guaranteed
only if N2 holds. The guarantee of safety in RADONS comes at the cost of adding an additional
phase in the read and write operations, compared to RADONL. Both RADONL and RADONS use
replication of data for fault tolerance.

4
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Further, we provide a third algorithm, called RADONC, that is based on erasure codes. RADONC
guarantees liveness and atomicity under the assumption of N1, and significantly improves upon the
storage and communication costs of RADONL and RADONS, under scenarios when the number
of write operations concurrent with a read or a repair operation is bounded.

Finally, in our most recent work, we have developed a novel two-layer erasure-coded fault-tolerant
distributed storage system, LDS, which offers atomic access for read and write operations. The
front-end layer provides low-latency access and temporary storage for client operations, and uses the
back-end layer for persistent storage. This flexible architecture allows for separate implementations
of atomicity protocols and and erasure-code protocols. This architecture is particularly suitable in
modern edge computing environments, such as Internet-of-Things.

[10] Kishori M Konwar, N. Prakash, Muriel Medard and Nancy Lynch, A Layered Architecture for
Erasure-Coded Consistent Distributed Storage. Proceedings of the ACM Symposium on Principles
of Distributed Computing (PODC), Washington D.C., July, 2017.

[11] Kishori M Konwar, N. Prakash, Muriel Medard and Nancy Lynch, A Layered Architecture for
Erasure-Coded Consistent Distributed Storage. arXiv:1703.01286. Full version of [10].

Abstract: Motivated by emerging applications to the edge computing paradigm, we introduce a
two-layer erasure-coded fault-tolerant distributed storage system offering atomic access for read
and write operations. In edge computing, clients interact with an edge-layer of servers that is
geographically near; the edge-layer in turn interacts with a back-end layer of servers. The edge-
layer provides low latency access and temporary storage for client operations, and uses the back-end
layer for persistent storage. Our algorithm, termed Layered Data Storage (LDS) algorithm, offers
several features suitable for edge-computing systems, works under asynchronous message-passing
environments, supports multiple readers and writers, and can tolerate f1 <

n1
2 and f2 <

n2
3 crash

failures in the two layers having n1 and n2 servers, respectively.

We use a class of erasure codes known as regenerating codes for storage of data in the back-end
layer. The choice of regenerating codes, instead of popular choices like Reed-Solomon codes, not
only optimizes the cost of back-end storage, but also helps in optimizing communication cost of
read operations, when the value needs to be recreated all the way from the back-end. The two-
layer architecture permits a modular implementation of atomicity and erasure-code protocols; the
implementation of erasure-codes is mostly limited to interaction between the two layers.

We prove liveness and atomicity of LDS, and also compute performance costs associated with read
and write operations. In a system with n1 = Θ(n2), f1 = Θ(n1), f2 = Θ(n2), the write and
read costs are respectively given by Θ(n1) and Θ(1) + n1I(δ > 0). Here δ is a parameter closely
related to the number of write operations that are concurrent with the read operation. The cost
of persistent storage in the back-end layer is Θ(1). The impact of temporary storage is minimally
felt in a multi-object system running N independent instances of LDS, where only a small fraction
of the objects undergo concurrent accesses at any point during the execution. For the multi-object
systems, we identify a condition on the rate of concurrent writes in the system such that the overall
storage cost is dominated by that of persistent storage in the back-end layer, and is given by Θ(N).

5
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Coding-based data management in the presence of uncertainty and change: In volatile
network environments, node connectivity and availability changes rapidly. This poses a challenge
to efficient repair of failed nodes in a network distributed storage: traditional erasure-correcting
and regenerating codes perform poorly, because they rely on access to a sufficiently large number
of surviving nodes, and/or specific subsets of them. The following papers are devoted to potential
solutions to problems arising in the above settings.

In [12], we consider a stochastic model for network storage, motivated by such scenarios. Under
this model, we analyze an RLNC-based regenerating coding scheme, and show that with high
probability it performs surprisingly well in repairing the coded data in such dynamic environments.

[12] Abdrashitov, Vitaly and Medard, Muriel, Durable network coded distributed storage, Proceed-
ings of 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton),
p. 851856, 2015.

We further study this coding scheme in [13] and demonstrate its efficiency in preventing data loss for
a wide range of system parameters. In particular, the scheme can perform well even with relatively
low field size (order of 17). In [13] we study a generalization of the setting of regenerating codes,
motivated by applications to storage systems consisting of clusters of storage nodes. This scenario
can happen when the user data is spread across distinct geographically separated data-centers of a
cloud-service provider. Alternatively, this can be the case of user-defined cloud-of-clouds, when the
user data is spread across data centers corresponding to multiple cloud service providers in order
to improve high availability in a local geographic zone, flexibility to avoid vendor lock-in, and data
security.

[13] Abdrashitov, Vitaly and Medard, Muriel, Staying Alive – network coding for data persistence
in volatile networks, Signals, Systems and Computers, 2016 Asilomar Conference on, 2016.

In [14] we model a data file as coded and stored across mn nodes on n clusters, with m nodes per
cluster. Nodes represent entities that can fail. Node repair is accomplished by downloading data
from both other clusters, and the surviving nodes in the same cluster. We identity the optimal
trade-off between storage-overhead and inter-cluster (IC) repair-bandwidth, and present optimal
code constructions for a class of parameters. Our results imply that it is possible to simultaneously
achieve both optimal storage overhead and optimal minimum IC bandwidth, for sufficiently large
values of nodes per cluster. The simultaneous optimality comes at the expense of intra-cluster
bandwidth, and we obtain lower bounds on the necessary intra-cluster repair-bandwidth.

[14] N. Prakash and Vitaly Abdrashitov and Muriel Medard, A Generalization of Regenerating
Codes for Clustered Storage Systems, Proceedings of the 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), 2016.

In [15] we consider a communication problem in which an update of the source message needs to be
conveyed to one or more distant receivers that are interested in maintaining specific linear functions
of the source message. The setting is one in which the updates are sparse in nature, and where
neither the source nor the receiver(s) is aware of the exact difference vector, but only know the
amount of sparsity that is present in the difference-vector. Under this setting, we are interested
in devising linear encoding and decoding schemes that minimize the communication cost involved.

6
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We show that the optimal solution to this problem is closely related to the notion of maximally
recoverable codes (MRCs), which were originally introduced in the context of coding for storage
systems. In the context of storage, MRCs guarantee optimal erasure protection when the system
is partially constrained to have local parity relations among the storage nodes. In our problem,
we show that optimal solutions exist if and only if MRCs of certain kind (identified by the desired
linear functions) exist. We consider point-to-point and broadcast versions of the problem, and
identify connections to MRCs under both these settings.

[15] N. Prakash and Vitaly Abdrashitov and Muriel Medard, Communication Cost for Updating
Linear Functions when Message Updates are Sparse: Connections to Maximally Recoverable Codes,
(arXiv:1605.01105 ) https://arxiv.org/abs/1605.01105

ARES: Adaptive, Reconfigurable, Erasure coded, atomic Storage: Implementing atomic,
shared, read/write storage systems is a fundamental problem in distributed computing. Implemen-
tations that utilize erasure-codes, have recently been introduced to reduce the storage, communica-
tion, and latency costs compared to the traditional replication approaches. Such algorithms require
that the collection of storage hosts is known a priori and remains the same within the execution of
the algorithm. However, to ensure survivability and scalability, a storage service should be able to
dynamically mask hosts failures, joins, and removals without any service interruptions.

In [16] we examine dynamic atomic storage algorithms that use erasure-codes and allow the col-
lection of storage hosts to change in the course of an execution. We begin by presenting a generic
algorithmic structure for atomic storage algorithms, using three data access primitives (DAP): (i)
GetTag, (ii) PutData, and (iii) GetData. A number of tag-based algorithms can be converted to
the proposed form. We define the properties that DAPs must satisfy in order for the converted
algorithms to preserve atomicity. By utilizing DAPs, we then present ARES, that implements a re-
configurable, atomic storage service in the message passing environment. The usage of DAPs allows
ARES to be oblivious to the mechanics of the underlying atomic storage algorithm giving ARES
two main advantages over previous dynamic solutions: (i) it can use any logical timestamp-based
atomic algorithm designed for the static environment and able to be expressed with the DAPs,
and (ii) it can be adaptive, namely it can deploy a different algorithm per configuration without
affecting correctness. To demonstrate the use of ARES, we propose a new two-round erasure-code
based algorithm for emulating multi-writer, multi-reader (MWMR) atomic objects in asynchronous,
message-passing environments, with near-optimal communication and storage costs. The algorithm
is expressed using the proposed primitives and can be directly used by ARES, giving rise to the
first reconfigurable erasure-coded atomic storage.

[16] Viveck Cadambe, Nicolas Nicolaou, Kishori M. Konwar, N. Prakash, Nancy Lynch, Muriel
Medard ARES: Adaptive, Reconfigurable, Erasure coded, atomic Storage, (arXiv:1805.03727)
https://arxiv.org/abs/1805.03727

FLECKS: Fast Lean Erasure-coded Consistent Key-value Store In [17], we present
FLECKS, a strongly consistent key-value (KV) store that simultaneously improves storage and

7
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communication costs, using erasure codes, while maintaining same tolerance levels as replication for
practical regimes of interest. FLECKS supersedes the combined advantages of other erasure-code
based strongly consistent distributed storage protocols, SODA [6] and CAS-GC [1]. In addition,
FLECKS captures several other properties desirable in practical use: low network bandwidth usage,
low number of rounds per operation, efficient garbage collection of successful operations, etc. We
implement FLECKS and compare with standard replication based leaderless algorithm (called the
ABD algorithm). Our implementation is faithful to our algorithmic steps, and hence does not rely
on external or ad-hoc mechanisms so that the unimportant tweaks do not obscure the essential
ingredients for performance gain in our approach. We show that relaying messages is a powerful
technique that helps the erasure coded system operate at the same fault-tolerance level of replicated
system, while ensuring liveness of GET operations.

Algorithm design perspectives. FLECKS is designed with practical considerations in mind
therefore, FLECKS embodies many desirable attributes of an effective distributed storage system
such as, ability to tolerate client and server failures; graceful handling of asynchrony, without as-
suming common clock or failure detector or using timeouts etc; low communication rounds during
read (GET) and write (PUT) operations; highly available and near-optimal storage and communi-
cation costs. FLECKS can handle any number of concurrent PUTs and GETs on the stored data.
Strong consistency and availability properties of FLECKS are analytically proven.

Implementation. We implemented a software stack that can deploy the following atomicity
algorithms on OpenStack and Amazon AWS cloud platforms: (a) an optimized version of the ABD
algorithm, which is a typical quorum based replication scheme for implementing atomicity ; and
(d) FLECKS algorithm which uses erasure-codes algorithm. For each of these algorithms, multiple
atomic objects (so far, tested up to 10,000 objects) can be implemented with a set of servers
(tested up to 60 servers) and tens of readers and writers issuing read and writes requests. The
overall implementation consists of 4 main components:

1. Protocol Implementation The core implementation of the above ABD and FLECKS algorithms
implemented in golang. A C based-based socket library called ZMQ is used for point-to-point
reliable communication among the processes.

2. Orchestration Tools The orchestration component is used to control the processes for the
algorithms such as, deploy the algorithm, start or stop experiment, gather experimental data,
deliberately crash, etc;

3. Consistency Checker Though the protocol is provably strongly consistent in theory, we wanted
to ensure that our implementation also provides this guarantee. Validating strong consistency
of an execution requires precise clock synchronization across all processes, so that one can
track operations with respect to a global time. This is impossible to achieve in a distributed
system where clock drift is inevitable. To circumvent this, we deploy all the docker containers
in a single beefy machine so that every process observers the same clock running in the VM.

Our checker gathers meta-data regarding an execution, and this data includes start and
end times of all the operations, as well as other parameters like logical timestamps used by

8
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the protocol. The checker logic is based on the conditions appearing in Lemma 13.16 (in
Distributed Algorithms by Nancy Lynch), which provide a set of sufficient conditions for
guaranteeing strong consistency. The checker validates strong consistency property for ever
KV pair individually for the execution under consideration.

4. Workload Generator. We run a separate VM that communicates with the client VMs, and
acts as the workload generator. Standard off-the shelf workload generators like YCSB (by
Yahoo) tests with a single writer/single reader, whereas FLECKS is designed to support
multi-reader multi-writer. We view readers and writers as proxy clients (like coordinators in
Cassandra, a popular KV store), and our workload generation is aimed at testing the proxy
clients as well. The workload generator simply triggers a batch of operations to be run by each
proxy client in the system. For example, the workload generator sends a message to writer
1 to fire 50000 sequential PUTs, with an inter-operation time of 1 ms. The writer for each
PUT picks the KV pair for that operation either based on a uniform or zipfian distribution
on the set of stored KV pairs. By controlling the number of reader and writer clients, and
the inter-operation time, we create executions for a wide range of the PUT-GET ratios for
test purposes.

Experimental Validation. We experimentally studied FLECKS under a wide range of scenarios
and compare with a quorum based replicated system. Our implementation closely resembles the
algorithm specification of FLECKS and hence does not rely on additional distributed computing
services or primitives like leader-election or consensus protocol to achieve coordination and synchro-
nization. Our experiments show that FLECKS achieves substantially lower storage and bandwidth
costs and has a significantly lower latency of operations than the replication-based mechanisms.

[17] N. Prakash, Kishori M. Konwar, Muriel Médard and Nancy Lynch, FLECKS: Fast Lean
Erasure-coded Consistent Key-value Store. (submitted to VLDB 2019).

The SNOW Theorem Revisited: In highly-scalable storage systems for Web services, data
is sharded into separate objects, also called shards, across several servers. Transaction isolation,
while reading the objects, is at the heart of consistent data access when concurrent updates are
present. In practice, systems experience a much higher number of read transactions, consisting
only of read operations, compared to write transactions; consequently, lowering latency of read
transactions boosts service performance. In “The SNOW Theorem” paper by Haonan Lu et.
al., the authors proposed four desirable properties in transaction processing systems for achieving
low-latency of read transactions, with asynchronous and reliable communications, and referred
to them collectively as the SNOW properties: The underlying properties, in the context of an
execution, are (i) strict serializability (S) property where read and write transactions seem to
occur atomically; (ii) non-blocking (N) property implies that for every read operation on any
object, during a read transaction, the response at the corresponding server is non-blocking; (iii)
one version and one round (O) property implies every read operation, during a read transaction,
completes in one-round of client-server communication and the respective server responds with only
one version of the object value; and (iv) concurrent write transactions (W) property states that

9
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read transactions can have concurrent write transactions. Then they argued that it is impossible
to implement all the four properties, in the same system, even with at least three clients. They
referred to their result as the SNOW theorem, and they posed the two-client setting as an open
question.

In [18] we revisit the results of the SNOW theorem, resolve the open question and provide some
new interesting results listed below.

1. We resolve the two-client scenario: We prove that even with two clients, without client-to-
client messaging, it is impossible to design an transaction processing system which satisfies
the SNOW properties.

2. We provide a rigorous proof of the SNOW theorem for systems with at least three clients, i.e.,
we show that it is impossible to implement a transaction processing system, consisting of at
least three clients, even with client-to-client messaging, that satisfies the SNOW properties.

3. We derive a useful property for executions of algorithms that implement objects of data types
considered in our work that helps us show the strict serializability property (S property) of
algorithms presented in the paper.

4. We present an algorithm with multiple writers, single reader (MWSR) which satisfies the
SNOW properties, with client-to-client messaging.

5. We present an algorithm, for multiple-writer, multiple-reader (MWMR) setting in the absence
of client-to-client messaging, which satisfies the “S”, “N”, “W” properties and a weaker version
the O property “o”, where we use “o” to refer to the one-version requirement of a read
operation, but it can take multiple rounds of communication to complete a read operation.
Collectively, we refer to the “S”, “N”, “o” and “W” properties as the “SNoW” property.

6. We present an algorithm in the MWMR setting which satisfies the “S”, “N”, “W” properties
and a property “õ”, which refers to the one-round requirement of a read operation, but a
server can response with multiple versions of a shard. We refer to these properties as the
“SNõW” property.

[18] Kishori M Konwar, Wyatt Lloyd, Haonan Lu, Nancy Lynch, The SNOW Theorem Revisited.
(to be submitted to PODS 2019) https://arxiv.org/abs/1811.10577.

3 Patents Filed and Granted

The follwing patents, emerged out of this project, were filed through MIT.

1. TLO Case #:18616J
Disclosure Date: 05/04/2016
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Disclosure Title: Storage-Optimized Data Atomic Algorithmi for Handling Errors and Era-
sures in Distributed Storage System.
Inventors: Muriel Medard, Erez Kantor, Alexander A Schwarzmann, Kishori M Konwar,
Prakash Narayana Moorthy and Nancy Lynch

2. TLO Case #:19129
Disclosure Date: 12/20/2016
Disclosure Title: Techniques for de-duplicating Network coded Distributed Storage.
Inventors: Muriel Medard, Prakash Narayana Moorthy and Vitaly Abdrashitov

3. TLO Case #:19369
Disclosure Date: 05/01/2017
Disclosure Title: A Layered Distributed Storage Algorithm for Edge Computing Systems.
Inventors: Muriel Medard, Kishori Mohan Konwar, Prakash Narayana Moorthy and Nancy
Lynch

4 Archival Publications

[1] Viveck Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial. A Coded Shared Atomic
Memory Algorithm for Message Passing Architectures. IEEE International Symposium on Network
Computing and Applications (NCA14), 2014. Best Paper Award.

[2] Viveck R. Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial, A Coded Shared Atomic
Memory Algorithm for Message Passing Architectures. Distributed Computing 30(1): 49-73, Febru-
ary, 2017.

[3] Zhiying Wang and Viveck R. Cadambe. Multi-Version Coding - An Informa-
tion Theoretic Perspective of Consistent Distributed Storage. Report available online at
http://arxiv.org/abs/1506.00684.

[4] Zhiying Wang and Viveck R. Cadambe and Nancy Lynch. Information-Theoretic Lower Bounds
on the Storage Cost of Shared Memory Emulation. Proceedings of the ACM Symposium on Prin-
ciples of Distributed Computing (PODC), Chicago, IL, pages 305-313, July 2016.

[5] Zhiying Wang and Viveck R. Cadambe and Nancy Lynch. Information-Theoretic Lower Bounds
on the Storage Cost of Shared Memory Emulation. http://arxiv.org/abs/1605.06844 (2016). Full
version of [4].

[6] Kishori M Konwar, N. Prakash, Erez Kantor, Muriel Medard, Nancy Lynch, and Alexander
A. Schwarzmann. Storage-Optimized Data-Atomic Algorithms for Handling Erasures and Errors
in Distributed Storage Systems. 30th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 720-729, May 2016.

[7] Kishori M Konwar, N. Prakash, Erez Kantor, Muriel Medard, Nancy Lynch, and Alexander A.
Schwarzmann. Storage-Optimized Data-Atomic Algorithms for Handling Erasures and Errors in
Distributed Storage Systems. arXiv:1605.01748. Full version of [6].
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[8] Kishori Konwar, Nancy Lynch, Muriel Medard and Prakash Narayana Moorthy. RADON:
Repairable Atomic Data Object in Networks. Proceedings of the 20th International Conference on
Principles of Distributed Systems (OPODIS 2016), Madrid, Spain, December 2016.

[9] Kishori Konwar, Nancy Lynch, Muriel Medard and Prakash Narayana Moorthy. RADON:
Repairable Atomic Data Object in Networks. arXiv:1605.05717. Full version of [8].

[10] Kishori M Konwar, N. Prakash, Muriel Medard and Nancy Lynch, A Layered Architecture for
Erasure-Coded Consistent Distributed Storage. Proceedings of the ACM Symposium on Principles
of Distributed Computing (PODC), Washington D.C., July, 2017.

[11] Kishori M Konwar, N. Prakash, Muriel Medard and Nancy Lynch, A Layered Architecture for
Erasure-Coded Consistent Distributed Storage. arXiv:1703.01286. Full version of [10].

[12] V. Abdrashitov and Médard, M., “Durable Network Coded Distributed Storage”, Allerton
2015.

[13] V. Abdrashitov and Médard, M., “Staying Alive - network coding for data persistence in volatile
networks”, invited paper, Asilomar 2016.

[14] P. Narayana Moorthy, Abdrashitov, V., and Médard, M., “A Generalization of Regenerating
Codes for Clustered Storage Systems”, invited paper, Allerton 2016.

[15] P. Narayana Moorthy and Médard, M. “Communication Cost for Updating Functions when
Message Updates are Sparse: Connections to Maximally Recoverable Codes”, invited paper, Aller-
ton 2015.

[16] Viveck Cadambe, Nicolas Nicolaou, Kishori M. Konwar, N. Prakash, Nancy Lynch, Muriel
Medard ARES: Adaptive, Reconfigurable, Erasure coded, atomic Storage, (arXiv:1805.03727)
https://arxiv.org/abs/1805.03727.

[17] N. Prakash, Kishori M. Konwar, Muriel Médard and Nancy Lynch, FLECKS: Fast Lean
Erasure-coded Consistent Key-value Store. (submitted to VLDB 2019).

[18] Kishori M Konwar, Wyatt Lloyd, Haonan Lu, Nancy Lynch, The SNOW Theorem Revisited.
(to be submitted to PODS 2019) https://arxiv.org/abs/1811.10577.

5 Other Information

Changes in research objectives: None
Change in AFOSR Program Manager: None
Extensions granted or milestones slipped, if any: NCE was granted until Sep 30, 2018 to complete
the work
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