
AFRL-AFOSR-VA-TR-2019-0093

Exploiting Amorphous Data Parallelism Through Software and
Architecture Co-Design

Christopher Batten
CORNELL UNIVERSITY
373 PINE TREE RD
ITHACA, NY 14850-2820

04/16/2019
Final Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory
AF Office Of Scientific Research (AFOSR)/RTA2

Page 1 of 2

4/16/2019https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

DISTRIBUTION A: Distribution approved for public release.

Arlington, Virginia 22203
Air Force Materiel Command

Page 2 of 2

4/16/2019https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

DISTRIBUTION A: Distribution approved for public release.

 a. REPORT

Unclassified

 b. ABSTRACT

Unclassified

 c. THIS PAGE

Unclassified

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
 data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
 any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188).
 Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
 if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY)
 16-04-2019

2. REPORT TYPE
 Final Performance

3. DATES COVERED (From - To)
 01 Sep 2015 to 31 Aug 2018

4. TITLE AND SUBTITLE
Exploiting Amorphous Data Parallelism Through Software and Architecture Co-Design

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA9550-15-1-0194

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)
Christopher Batten

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
CORNELL UNIVERSITY
373 PINE TREE RD
ITHACA, NY 14850-2820 US

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AF Office of Scientific Research
875 N. Randolph St. Room 3112
Arlington, VA 22203

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR RTA2

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)
AFRL-AFOSR-VA-TR-2019-0093

12. DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
To address serious technology challenges, computer system designers are increasingly turning to a heterogeneous mix of
general-purpose multicores and data-parallel accelerators integrated onto a single die. Unfortunately, this heterogeneity
clearly increases complexity and costs at all levels of the computing stack. To complicate matters further, emerging application
workloads are often exhibit amorphous data-parallelism with irregular control flow, unstructured data accesses, atomic tasks,
and dynamic work generation. Significant breakthroughs to address these challenges will not happen by exploring either
software or hardware in isolation. Therefore, this project used a cross-layer approach to rethink the software and hardware for
heterogeneous systems with specific attention to efficiently supporting amorphous data parallelism. At the heart of our
proposal was a new explicit-parallel-call (XPC) architectural design pattern that is based on the concept of explicitly encoding
parallel function calls in the software/hardware interface.
15. SUBJECT TERMS
Parallelism, Amorphous Data, Software

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON
NGUYEN, TRISTAN

19b. TELEPHONE NUMBER (Include area code)
703-696-7796

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Page 1 of 1FORM SF 298

4/16/2019https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

Grant Number: FA9550-15-1-0194

Year: Sep. 2015–Aug. 2018

Lead Organization: Cornell University

Project Title: Exploiting Amorphous Data Parallelism Through
Software and Architecture Co-Design

Technical Dr. Christopher Batten
Point of Contact: Cornell University, ECE

addr: 323 Rhodes Hall, Ithaca, NY 14853
phone: 607-255-2672
email: cbatten@cornell.edu

Administrative Columbia Warren
Point of Contact: Cornell University, Sponsored Projects Office

addr: 373 Pine Tree Road, Ithaca, NY 14850
phone: 607-255-0655; fax: 607-255-5058
email: cjw43@cornell.edu

AFOSR Dr. Erik Blasch
Program Manager: AFOSR, Information Directorate

email: erik.blasch.1@us.af.mil

1. Executive Summary
To address serious technology challenges, computer system designers are increasingly turning to a

heterogeneous mix of general-purpose multicores and data-parallel accelerators integrated onto a single
die. Unfortunately, this heterogeneity clearly increases complexity and costs at all levels of the comput-
ing stack. To complicate matters further, emerging application workloads are often exhibit amorphous
data-parallelism with irregular control flow, unstructured data accesses, atomic tasks, and dynamic work
generation. Significant breakthroughs to address these challenges will not happen by exploring either soft-
ware or hardware in isolation. Therefore, this project used a cross-layer approach to rethink the software
and hardware for heterogeneous systems with specific attention to efficiently supporting amorphous data
parallelism. At the heart of our proposal was a new explicit-parallel-call (XPC) architectural design pat-
tern that is based on the concept of explicitly encoding parallel function calls in the software/hardware
interface.

The project was organized around two research thrusts. In Research Thrust #1: XPC Hardware, we de-
signed a new XPC instruction set and investigated three microarchitectures: tightly coupled lanes where
parallel function calls are executed in lock step, loosely coupled lanes where parallel function calls are ex-
ecuted using dynamic load balancing, and cooperative multicore where traditional in-order cores work
together with hardware support for work redistribution. In Research Thrust #2: XPC Software, we explored a
productive XPC programming framework; ported interesting amorphous data-parallel applications to this
framework; investigated dynamic binary translation to enable XPC binaries to run on legacy systems; and
explored new runtime systems to adaptively schedule XPC binaries on various heterogeneous tiles. This
work will hopefully benefit the Air Force by contributing fundamental research on techniques for maintain-
ing portability across heterogeneous systems, and by demonstrating the potential for XPC in computational
contexts relevant to the Air Force mission, e.g., high-performance computing for modeling and simulation,
and embedded systems for unmanned aerial vehicles.

We began by mapping a set of benchmarks to a traditional chip-multiprocessor (CMP) and two pro-
grammable accelerators: an Intel many-integrated-cores (MIC) and an NVIDIA general-purpose graphics

1
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

processing unit (GPGPU). We implemented these applications using various combinations of existing soft-
ware frameworks and hardware architectures. Our experiences gave us deep insight into the fundamental
trade-offs between productivity, portability, and performance (the 3Ps) and helped provide additional mo-
tivation for the XPC vision. We then developed the new XPC instruction set which involves adding a new
jalr.xpc instruction to a standard RISC instruction set. The jalr.xpc instruction is an instantiation of the
explicit-parallel-call design pattern discussed in the proposal. This instruction elegantly encodes loop-task
execution by explicitly identifying the specific indirect function call used to execute loop-tasks in a soft-
ware runtime. We developed an XPC programming framework which enables programmers to express
both loop-level, fork-join, and nested parallelism, and we also developed a state-of-the-art work-stealing
runtime which includes support for child-stealing, occupancy-based victim selection, and Chase-Lev task
queues. The runtime is able to take advantage of the new XPC instruction set. We created a single, unified
microarchitectural template that can be configured at design time to use either tightly coupled lanes, loosely
coupled lanes, or a hybrid of both tightly and loosely coupled lanes. We developed a novel taxonomy that
helps explain the space of these accelerators, and we conducted a detailed design-space exploration of the
XPC microarchitecture. This design-space exploration spans application development, runtime develop-
ment, instruction set design, microarchitectural design, and VLSI implementation. Compared to an in-
order (out-of-order) CMP baseline, XPC yields average improvements of 5.5× (3.0×) in raw performance,
2.5× (1.7×) in performance per area, and 1.2× (2.5×) in energy efficiency. Our results suggest that aug-
menting CMPs with lightweight XPC engines improves performance and energy efficiency on both regular
and irregular loop-task parallel programs with minimal software changes.

This project led to the publication of the following four top-tier conference publications, two Ph.D. the-
ses, and one workshop paper:

• Christopher Torng, Moyang Wang, and Christopher Batten. “Asymmetry-Aware Work-Stealing Sched-
ulers.” 43rd ACM/IEEE Int’l Conf. on Computer Architecture (ISCA), June 2016.

• Ji Kim, “Software/Hardware Co-Design to Improve Productivity, Portability, and Performance of
Loop-Task Parallel Applications,” Cornell Ph.D. Thesis, Feb. 2017.

• Ji Kim, Shunning Jiang, Christopher Torng, Moyang Wang, Shreesha Srinath, Berkin Ilbeyi, Khalid
Al-Hawaj, and Christopher Batten. “Using Intra-Core Loop-Task Accelerators to Improve the Pro-
ductivity and Performance of Task-Based Parallel Programs.” 50th ACM/IEEE Int’l Symp. on Microar-
chitecture (MICRO), Oct. 2017.

• Shreesha Srinath, “Lane-Based Hardware Specialization for Loop- and Fork-Join-Centric Paralleliza-
tion and Scheduling Strategies,” Cornell Ph.D. Thesis, May 2018.

• Tuan Ta, Lin Cheng, and Christopher Batten. “Simulating Multi-Core RISC-V Systems in gem5.” 2nd
Workshop on Computer Architecture Research with RISC-V (CARRV), June 2018.

• Shunning Jiang, Berkin Ilbeyi, and Christopher Batten. “Mamba: Closing the Performance Gap in
Productive Hardware Development Frameworks.” 55th ACM/IEEE Design Automation Conf. (DAC),
June 2018.

• Tao Chen, Shreesha Srinath, Christopher Batten, and Edward Suh. “An Architectural Framework for
Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware.” 51st ACM/IEEE Int’l Symp.
on Microarchitecture (MICRO), Oct. 2018.

The core work on XPC was published in MICRO’17 and formed the heart of the Ph.D. thesis for Ji Kim,
one of the students funded through this project. The thesis is titled “Software/Hardware Co-Design to
Improve Productivity, Portability, and Performance of Loop-Task Parallel Applications”. Ji Kim’s thesis
was awarded the prestigious Cornell ECE Outstanding Ph.D. Thesis Award, and this was the first time this
award was given to a Ph.D. thesis in computer architecture!

Section 2 provides a detailed summary of the research conducted throughout this project, Section 3
briefly reviews the tasks for the project as outlined in the proposal, and Section 4 discusses the project
finances.

2
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

2. Detailed Research Summary
In this section, we first describe how our thinking has evolved on the motivation for XPC based on

the need for creating new platforms that can improve productivity, portability, and performance (3Ps).
Section 2.2 describes our experiences traversing a modern development flow for high-performance appli-
cations which helps motivate why current solutions struggle to excel at the 3Ps. Section 2.3 describes our
XPC software stack, and Section 2.4 describes our progress on the XPC hardware. Section 2.5 describes our
evaluation methodology including the application kernels, validating the XPC runtime, cycle-level model-
ing, and area/energy modeling. Section 2.6 provides a detailed design-space exploration of our new XPC
engine microarchitecture including a qualitative and quantitative evaluation of the 3P’s for an XPC platform
(productivity, portability, and performance). Finally, Section 2.7 describes our related work on extending
XPC to handle asymmetric multicores, fork-join parallelism, and application-specific accelerators. We also
describe simulator infrastructure research that was a key enabler for this project.

2.1. XPC Motivation
Fine-grain loop-level parallelism has traditionally been exploited in chip multi-processors (CMPs) at the

intra-core level using packed-SIMD extensions (e.g., Intel SSE/AVX and others). Packed-SIMD extensions
use a relatively low-level abstraction of operations on packed data elements. At the same time, many ap-
plications exploit coarse-grain task-level parallelism in CMPs at the inter-core level using task-based parallel
programming frameworks (e.g., Intel’s C++ Threading Building Blocks (TBB) and others). Task-based par-
allel programming frameworks unsurprisingly use tasks as the primary abstraction, and these tasks are
often dynamically scheduled using a common thread pool. Ideally, programmers would be able to produc-
tively and portably exploit both intra- and inter-core mechanisms at the same time, but the significantly
different abstractions make it challenging to elegantly compose these intra- and inter-core mechanisms.

Efficiently exploiting both loop- and task-level parallelism becomes even more important on modern
accelerators that have significantly more intra- and inter-core resources. For example, Intel’s many inte-
grated cores (MICs) include dozens of lightweight cores containing wide packed-SIMD units. While MICs
support the same task-based parallel programming frameworks as CMPs, porting applications written for
CMPs to MICs is rarely trivial and often requires MIC-specific optimizations to achieve the highest per-
formance. NVIDIA/AMD’s general-purpose graphics processing units (GPGPUs) also have tens of cores,
each with dozens of tightly coupled compute lanes. GPGPUs use low-level CUDA threads as the com-
mon intra- and inter-core parallel abstraction. GPGPUs harden the thread scheduling logic and require a
detailed understanding of the microarchitecture to achieve the highest performance. For MICs and GPG-
PUs, resource-proportional performance is difficult for applications with irregular control and/or memory
accesses.

These challenges suggest that software programmers and hardware architects should focus on “the
3P’s” of productivity, portability, and performance as the primary metrics when developing and evaluat-
ing computing platforms. A 3P platform would achieve the goals of our original proposal by enabling
programmers to quickly develop parallel applications, map these applications to both traditional CMPs as
well as accelerators, and achieve resource-proportional performance across a wide range of applications.
Existing approaches to 3P platforms, such as unified offload programming frameworks (e.g., OpenCL, C++
AMP), virtual ISAs (e.g., AMD HSA), and domain-specific languages (e.g., Halide, Delite), partially achieve
this goal, but the software-centric focus of these approaches result in a loss of efficiency and/or require fo-
cusing on a limited application domain. We argue the key to achieving a 3P platform is raising the level
of abstraction in the instruction set and microarchitecture to better match programming abstractions that
have been proven to be productive.

To narrow the scope of the first year of the project, we focus on a very common parallel pattern we
call loop-task parallelism usually captured with the ubiquitous parallel_for primitive, where a loop-task is
a functor that is applied across a range of loop iterations. Loop-task parallelism is more flexible than fine-
grain loop-level parallelism, but less general than coarse-grain task-level parallelism. Loop-task parallelism
is essentially a specific example of the amorphous data parallelism described in the proposal. In the begin-

3
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

SW Runtime XPC SW Runtime

S
IM

T

HW Sched

(a) CMP/MIC (b) GPGPU (c) XPC

GPP

SIMD
XPC

Engine

GPP

SIMD

GPP

SIMD

GPP

SIMD
XPC

EngineS
IM

T

S
IM

T

Figure 1: Vision for XPC Platform

Name Suite Input CS CA CT CTA MTA GC

sgemm I, C 2K×2K float matrix 22 53 26 56 56 76
dct8x8m I, C 518K 8×8 blocks 58 128 63 62† 62† 146
mriq I 262K-space 2K pnts 28 76 35 78 78 133
rgb2cmyk I 7680×4320 image 20 70 17 69 85 65
bfs-nd P rMatG_J5_10M 27 29‡ 48 51‡ 51‡ 94
maxmatch I, P randLocG_J5_10M 22 24‡ 36 38‡ 38‡ 73
strsearch I 512 strs, 512 docs 35 38‡ 42 45‡ 45‡ 95

Table 1: Application Kernels – I = in-house implemen-
tation; C = CUDA SDK; P = PBBS. The last six columns
show logical source lines of code (LOC): CS = cmp-
scalar; CA = cmp-avx; CT = cmp-tbb; CTA = cmp-tbb-
avx; MTA = mic-tbb-avx; GC = gpgpu-cuda. †Lower LOC
because programming model does not support using the
more efficient LLM algorithm. ‡Used only basic auto-
vectorization, since manual optimizations resulted in no
improvement.

scalar
TBB

AVX

TBB
+

AVX

TBB+AVX

CUDA

CMP MIC

GPGPU

Figure 2: High-Performance App Development Flow

sgemm dct8x8m mriq rgb2cmyk bfs-nd maxmatch strsearch
0

5

10

15

20

S
p

ee
d

u
p

63
165

478
59 132 32

cmp-scalar

cmp-avx

cmp-tbb

cmp-tbb-avx

mic-tbb-avx

gpgpu-cuda

Figure 3: Performance Comparison of Selected SW/HW
Platforms – Normalized to cmp-scalar, the non-vectorized
single-threaded implementation. cmp = Intel Xeon E5-
2620 v3 (12 cores, AVX2/256b); mic = Intel Xeon Phi 5110P
(60 cores, AVX-512); gpgpu = NVIDIA Tesla C2075 (14
SMs); avx = ICC v15.0.3 with auto-vectorization; tbb = TBB
v4.3.3; cuda = CUDA v7.5.17.

ning of this project, we are exploring a new XPC platform that uses loop-tasks as the common parallel
abstraction in the programming model, runtime, instruction set, and microarchitecture. An XPC plat-
form includes a traditional task-based parallel programming framework with parallel_for primitives, an
XPC work-stealing runtime, a new XPC hint in the instruction set to explicitly identify loop-task execution,
and a new XPC engine template that can be configured at design time to achieve resource-proportional
performance on both regular and irregular applications (see Figure 1).

2.2. Traditional Software/Hardware Platforms
In this section, we describe our experiences traversing a development flow for applications that employ

various combinations of existing SW frameworks and HW architectures to improve performance. We de-
velop both regular and irregular loop-task parallel applications and summarize our experiences for each
platform with respect to the 3P’s. Figure 2 illustrates how application development begins with a scalar
reference implementation before moving towards exploiting intra-core parallelism through packed-SIMD
extensions (e.g., Intel AVX) or towards exploiting inter-core parallelism through parallel frameworks (e.g.,
Intel TBB). More performance is possible with dedicated accelerators like MICs or GPGPUs. Table 1 lists the
application kernels used in this study and logical source lines of code (LOC; number of C++ statements).
Figure 3 compares the performance of six different SW/HW platforms.

cmp-avx shows the performance of the single-threaded implementation with auto-vectorization using
AVX on a CMP. Vectorization only targets regular loop-task parallelism within a core, as both control and
memory-access divergence can prevent lock-step execution. Kernels with regular loop-task parallelism (i.e.,
sgemm, dct8x8m, mriq, rgb2cmyk) see a speedup of at least 2.5×, while kernels with irregular loop-task par-
allelism (i.e., bfs-nd, maxmatch, strsearch) see negligible benefits. Because vectorization primarily increases
compute throughput, memory bottlenecks can still limit performance. Note that “auto-vectorization” is a
misnomer, since naive attempts at auto-vectorization by only annotating loops with #pragma simd yielded
speedups of less than 1.10× across all seven kernels. Maximally utilizing the SIMD units required nu-
merous manual optimizations: SIMD-aligning memory accesses, converting branches into arithmetic, con-
verting array of structs into struct of arrays, annotating non-overlapping arrays with the __restrict__

4
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

keyword, and of course annotating vectorizable loops with #pragma ivdep/simd. Although AVX can
improve performance for regular loop-task parallelism, we found that the required manual optimiza-
tions greatly reduced productivity; implementing, testing, and tuning kernels for AVX took us multiple
programmer-weeks for the full suite (≈2× increase in LOC), and no amount of manual optimization
significantly improved performance for irregular loop-task parallelism.

cmp-tbb shows the performance of the multi-threaded implementation running on 12 threads with no
vectorization on a CMP. For this study, we use TBB due to its productive task-based programming model,
library-based implementation, and work-stealing runtime for fine-grain dynamic load balancing. Unlike
vectorization, multi-threading can improve performance for both regular and irregular loop-task paral-
lelism, as seen by the 2–11× speedup across all kernels. However, the benefits of multi-threading can be
limited by memory bottlenecks; bfs-nd and maxmatch rely on atomic memory operations that can exacer-
bate this issue. TBB was the most productive framework in this study; the LOC were similar to scalar
implementations and approximately one programmer-week was required to develop a relatively high-
performance parallel implementation of the benchmark suite. Unfortunately, TBB is limited to exploit-
ing loop-task parallelism across cores as opposed to within a core. Note that we also experimented with
porting our benchmark suite to OpenMP, and we found similar trends.

cmp-tbb-avx shows the performance of TBB running on 12 threads on a CMP combined with auto-
vectorization using AVX. Regular loop-task parallel applications can combine multi-threading across cores
and vectorization within a core to achieve multiplicative benefits in performance; sgemm achieves a close-
to-ideal multiplicative speedup of 63×. However, combining TBB and AVX can sometimes worsen perfor-
mance, as in dct8x8m and mriq, for two key reasons. First, task partitioning with TBB can interfere with
auto-vectorization with AVX; vectorization might fail even if SIMD-multiple task sizes are specified be-
cause TBB cannot guarantee exact task sizes at compile time. Second, vector-optimizations to enable AVX
can limit load balancing with TBB. Specifically, eliminating control divergence during vectorization may
also eliminate opportunities for load balancing by superficially equalizing the work across the SIMD width.
Aside from not guaranteeing better performance, combining TBB with AVX negates the productivity of
the former; it took multiple programmer-weeks of manual optimization to add auto-vectorization to our
original TBB implementations with similar LOC as cmp-avx.

mic-tbb-avx shows the performance of TBB implementations with vectorization running on 60–240 threads
on a 60-core MIC accelerator in native mode. MICs have relatively lightweight single-issue in-order cores,
longer cache-to-cache latencies, and no shared L3 cache. Kernels with regular loop-task parallelism demon-
strate the greatest improvement compared to cmp-tbb-avx due to the increased number of cores and wider
SIMD units (512b vs. 256b). MICs are designed to accelerate applications with immense regular loop-task
parallelism, thus performance heavily depends on maximally utilizing the SIMD units. Despite using the
same SW framework as the CMP, the MIC required re-tuning: optimal thread counts change, task sizes
change, and optimal load balancing across 60 cores may necessitate algorithm restructuring. Overall, port-
ing and optimizing CMP implementations for the MIC was a non-trivial process, and MICs do not
achieve resource-proportional performance for irregular loop-task parallelism.

gpgpu-cuda shows the performance of CUDA implementations running on 448 threads (maximum) on
a GPGPU. GPGPUs have higher computational throughput than CMPs/MICs, as evident by the 60–165×
speedups on regular kernels. Irregular kernels struggle to achieve resource-proportional performance due
to serialized execution and inefficient scatters/gathers. Productivity-wise, CUDA offers a unified approach
to exploiting loop-task parallelism across and within cores, but its offload programming model requires
several substantial changes: explicit allocation/copying of device memory, manual work partitioning into
blocks/grids (due to HW scheduler), effective utilization of texture/shared memory, and limitations on
programming features available from within a kernel. Inter-thread communication, like in bfs-nd and max-
match, is especially difficult to express efficiently, and may require a different algorithm to avoid barriers
that can cause deadlock. Though not explored here, OpenCL and C++ AMP are alternative frameworks
that face similar challenges due to their offload programming models. Unsurprisingly, porting CMP im-
plementations to the GPGPU was a heavily involved process requiring multiple programmer-weeks for

5
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

1 void vvadd(int dest[], int src0[],
2 int src1[], int size)
3 {
4 XPC_PARALLEL_FOR(0, size, (dest,src0,src1),
5 ({
6 dest[i] = src0[i] + src1[i];
7 }));
8 }

(a) Element-Wise Vector-Vector Addition with Macro

1 void loop_task_func(void* a, int start,
2 int end, int step=1)
3 {
4 args_t* args = static_cast<args_t*>(a);
5 int* dest = args->dest;
6 int* src0 = args->src0;
7 int* src1 = args->src1;
8 for (int i = start; i < end; i += step)
9 dest[i] = src0[i] + src1[i];

10 }

(b) Loop-Task Function Generated by Macro

Figure 4: XPC Programming API – A parallel_for con-
struct is used to express loop-tasks that can be exploited
across cores and within a core. We use a preproces-
sor macro in our current XPC runtime, since our cross-
compiler does not yet support C++11 lambdas.

0 127 *func *args

0 63 *func *args

0 31 *func *args 32 63 *func *args 64 95 *func *args 96 *func *args

64 *func *args

parallel_for

steal steal

steal

core task

task

task task

core taskcore taskcore task

GPP
1

XPC
Engine

jalr.xpc

GPP
0

XPC
Engine

jalr.xpc

GPP
3

XPC
Engine

jalr.xpc

GPP
2

127

127

Figure 5: Example XPC Runtime Task Partitioning –
XPC runtime partitions tasks into core tasks which are
distributed across cores to exploit loop-task parallelism.
Core tasks are executed using the jalr.xpc instruction.
If an XPC engine is not available, a jalr.xpc instruction
acts as a standard indirect function call. If an XPC engine
is available, the jalr.xpc instruction enables an XPC en-
gine to further exploit loop-task parallelism within a core.

the full suite with particular difficulty for the more irregular kernels. The LOC were the highest for the
GPGPU implementations.

We condense the insights from this study into four key observations. First, our (admittedly qualitative)
productivity analysis suggests that most SW frameworks are less productive than we might hope, except
for TBB (without manual vectorization) which involved straight-forward modifications of the scalar imple-
mentation. Second, it can be difficult to easily port applications across different HW architectures, even
when using the same SW framework. Third, exploiting loop-task parallelism across cores and within a
core does not always yield a multiplicative effect in performance. Fourth, it is very difficult to achieve high
performance on irregular loop-task parallel applications proportional to HW resources. In this project, we
argue that SW alone is not enough and instead careful SW/HW co-design is required to elegantly address
these weaknesses in a unified manner. We take a SW/HW co-design approach to enable us to: (1) raise
the level of abstraction in the HW to better match proven, productive task-based programming models;
(2) execute the same binary used for CMPs on accelerators improving portability; (3) reduce overheads and
achieve a true multiplicative effect in performance; and (4) improve the performance of both regular and
irregular applications.

2.3. XPC Software
In order to maintain the productivity of TBB that we observed in Section 2.2, we use the parallel_for

primitive to express loop-tasks that can be exploited both across and within cores (see Figure 4(a)). Loop-
tasks are functors applied across a range of loop iterations. More specifically, loop-tasks are expressed as
a four-tuple of a function pointer, an argument pointer, and the start/end indices of the range. Figure 4(b)
illustrates the loop-task function generated in this example, which is applied to the range 〈0, size〉. The step
argument is called the range step value and is hidden from the application-level programmer but provides
flexibility in the microarchitecture (see Section 2.4).

Although we could port an existing full-featured library such as TBB to the XPC platform, we chose
instead to develop our own task-based work-stealing runtime inspired by TBB. This enabled us to focus
on just those features supported by the current version of the XPC platform and to ensure we had detailed

6
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

insight into all aspects of the software stack. The XPC runtime is responsible for efficiently distributing tasks
across cores, and it employs child-stealing, Chase-Lev task queues, and occupancy-based victim selection.
Figure 5 illustrates how a work-stealing runtime recursively partitions loop-tasks into subtasks to facilitate
load balancing. Tasks are partitioned until the range is less than a configurable core task size at which point
the subtask is called a core task. The basic runtime uses a core task size of N/(k× P), where N is the size of
the initial range, k is a scaling factor, and P is the number of cores. Increasing k generates more core tasks
with smaller ranges (better load balancing, higher overhead), whereas decreasing k generates less core tasks
with larger ranges (worse load balancing, lower overhead).1

One of the key differences in an XPC runtime is how the runtime actually executes core tasks. A tradi-
tional runtime simply uses an indirect function call (i.e., jalr) on the core task’s function pointer with the
given range and argument pointer, while the XPC runtime uses a new jalr.xpc instruction. A jalr.xpc
is still an indirect function call with the same semantics as a jalr, except that a jalr.xpc can only be used
to call a loop-task function pointer with the special signature in Figure 4(b). A jalr.xpc acts as a hint to
the HW that it can potentially use the XPC engine to further partition the core task into micro-tasks (µtasks)
and that these µtasks can be executed concurrently in any order by the XPC engine using micro-threads
(µthreads). If an XPC engine is not available, the jalr.xpc hint can be treated as a standard jalr. The run-
time can execute core tasks the same way regardless of XPC engine availability; a single implementation of
an application can be used on any architecture that implements jalr.xpc, greatly improving portability.

Another key difference in an XPC runtime is how the runtime partitions tasks into subtasks. A naive
partitioning can result in core tasks sizes that are not an even multiple of the number of µthreads within
an XPC engine, causing poor intra-core resource utilization. If t is the total number of µthreads within an
XPC engine, then an XPC runtime will ensure that in each partitioning step at least one subrange is evenly
divisible by t. This can increase µthread utilization and performance when using an XPC engine, and causes
negligible overhead when an XPC engine is not available.

2.4. XPC Hardware
An XPC engine partitions a core task into µtasks which are then mapped to µthreads. There is a large

design space for organizing these µthreads in space and/or in time. Throughout this section, we will use
terminology from traditional vector processors, where µthreads may be organized spatially across lanes
and/or temporally with chimes.

Figure 6(a) illustrates one approach for an 8-µthread XPC engine that tightly couples µthread execution
in both space and time. At a high level, the task-management unit (TMU) receives information about a core
task from the general-purpose processor (GPP), divides this core task into eight µtasks, and (compactly)
sends the µtasks to the fetch/dispatch unit. The HW is responsible for setting the argument registers for
each µthread appropriately. Figure 6(b) illustrates how the core task that is mapped to GPP 0 in Figure 5
might execute on this tightly coupled XPC engine. All eight µthreads must execute in lock-step in space
across the four lanes and also in lock-step in time across the two chimes. To expose potential memory
structure across µtasks, µthreads on neighboring lanes execute consecutive µtasks. To enable this, the HW
sets the range step value mentioned in Section 2.3 so that µthreads execute iterations at a stride of eight.
Tightly coupled execution enables the XPC engine to exploit arithmetic, control, and memory structure
across µtasks. Unfortunately, tightly coupled execution means that if one µthread stalls due to a RAW
dependency or cache miss, then all µthreads must stall (e.g., marked with× in Figure 6(b)). Overall, tightly
coupled XPC engines perform best on regular loop-task parallelism, but can perform poorly on irregular
loop-task parallelism.

Figure 6(d) illustrates a different approach for an 8-µthread XPC engine that loosely couples µthread ex-
ecution in both space and time. Figure 6(e) illustrates how the same core task from the previous example
might execute on this loosely coupled XPC engine. All eight µthreads execute in a completely decoupled
fashion in space (i.e., lanes can slip past other stalling lanes) and in time (i.e., chimes use fine-grain ver-
tical multi-threading to execute whenever ready). Additional stalls may occur due to conflicts at shared

1Sensitivity studies indicate that k = 4 is a reasonable design point, although obviously this is input dependent. Setting k adaptively
is an interesting direction for future work.

7
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

Space (Lanes)

T
im

e
(C

h
im

es
)

A

B

C

D

A

B
C

A

A

B

D
E
D
E

A

A

B
A

B

C

D

A

B
C

A

A

B

A

A

B

IMU
Space (Lanes)

T
im

e
(C

h
im

es
)

TMU

F

DMU

μR
F
μR

F
μR

F

μR
F
μR

F
μR

F
μR

F
μR

F

A

B

C

D
D

E
E

A

(a) μArch
Sketch

(b) Execution

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7

6 7

6 7

8 9 10 11
1213 14 15

0 1
4 5

2 3

2 3

0 1 2 3
4 5 6 7

D
E
D
E

A
A

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

0 1 2 3

4

5

6 7

0

1

4 5

2

36

72

36

7

8 9

10

11

12 13

14

15

IMU

TMU

DMU

F F F F

μR
F

μR
F

μR
F

μR
F

F F F F

(d) μArch
Sketch

(e) Execution

Tightly Coupled Loosely Coupled

(c) Abstract
View

(f) Abstract
View

μR
F

μR
F

μR
F

μR
F

Figure 6: Tightly vs. Loosely Coupled XPC Engines –
Two 8-µthread XPC engines each with 4 lanes, 2 chimes:
(a–c) µthreads are tightly coupled in space and time; (d–
f) µthreads are loosely coupled in space and time. Instruc-
tion sequence is denoted by letters (e.g., “µthreads 0, 1, 4,
and 5 execute instructions A, B, and C”) and divergent
control flows are colored differently. IMU = instr mgmt
unit; TMU = task mgmt unit; DMU = data mgmt unit; F =
fetch/dispatch unit; µRF = µthread regfile.

4/1x8/1 4/2x8/1 4/4x8/1

4/1x8/2 4/2x8/2 4/4x8/2

4/1x8/4 4/2x8/4 4/4x8/4

4/1x8/8 4/2x8/8 4/4x8/8

8/1x4/1 8/2x4/1 8/4x4/1 8/8x4/1

8/1x4/2 8/2x4/2 8/4x4/2 8/8x4/2

8/1x4/4 8/2x4/4 8/4x4/4 8/8x4/4

2/1x4/1 2/2x4/1

2/1x4/2 2/2x4/2

2/1x4/4 2/2x4/4

4/1x2/1 4/2x2/1 4/4x2/1

4/1x2/2 4/2x2/2 4/4x2/2

T
ig

ht
er

 T
em

po
ra

l C
ou

pl
in

g

Looser Spatial Coupling

(c) 8 Lanes x 4 Chimes (d) 4 Lanes x 8 Chimes

(b) 2 Lanes x 4 Chimes

(a) 4 Lanes x 2 Chimes

Tighter Spatial Coupling

L
oo

se
r

Te
m

po
ra

l C
ou

pl
in

g

Figure 7: Task-Coupling Taxonomy – All possible spa-
tial and temporal task-coupling configurations for: (a) 4
lanes, 2 chimes; (b) 2 lanes; 4 chimes; (c) 8 lanes, 4 chimes;
(d) 4 lanes, 8 chimes. For given subfigure, most-coupled
configuration is bottom left and least-coupled configura-
tion is top right. Configurations likely to be study in next
year of the project are highlighted.

0 1

2 3

4 5

6 7 Lane Group

4 Lanes
(execution in space)

2 Chimes
(executionin time)

Chime Group

μThread Task Group

Figure 8: Terminology for Task-Coupling Taxonomy – Exam-
ple of 8-µthread XPC engine with 4 lanes (l) and 2 chimes (c).
8 µthreads are divided into 4 task groups (gt) which execute in
lock-step in both space and time. The four lanes are partioned
into two lane groups (gl), and the two chimes are partitioned
into two chime groups (gc), representing the XPC-4/2x2/2 con-
figuration.

resources (e.g., marked by × on B3 in this example). Loosely coupled execution enables the XPC engine
to better tolerate irregular control flow and memory latencies since each µthread can independently fetch,
decode, dispatch, issue, and execute instructions. Loosely coupled execution also simplifies dynamically
sharing expensive execution resources across the µthreads. Unfortunately, loosely coupled execution is not
able to exploit structure across µtasks, potentially reducing area and energy efficiency.

The microarchitectures in Figure 6 are at two ends of a task-coupling spectrum. To simplify our discus-
sion, Figures 6(c,f) and 8 illustrate abstract diagrams of how µthreads are coupled within an XPC engine.
In Figure 8, the µthreads are divided into four task groups, which execute in lock-step in both space and
time. This example has two lane groups and two chime groups, which can be executed spatially or temporally
in a loosely coupled manner. For the remainder of this work, we abbreviate different XPC configurations
with the following scheme: num_lanes/num_lane_groups x num_chimes/num_chime_groups. For example,
Figure 8 represents the XPC-4/2x2/2 configuration (4 lanes organized into 2 lane groups, 2 chimes organized
into 2 chime groups).

Given this terminology, we can describe all possible spatial and temporal task-coupling configurations
for a given number of lanes and chimes using a task-coupling taxonomy as shown in Figure 7. Figure 7(a)
shows the six configurations for the 8-µthread XPC engine we have been discussing with four lanes and
two chimes. Figure 7(b) presents an alternative 8-µthread XPC engine with two lanes and four chimes
Although we have performed extensive simulations of 8–64-µthread XPC engines, the rest of this work will
focus on the 12 configurations for 32-µthread XPC engines highlighted in Figures 7(c) and (d). In general,

8
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

IMem Xbar

Lane
Group

PIB

DMem Xbar

FPU
Group

Lane
Group

Lane
Group

MDU
Group

FPU
Xbar

μTask
Queue

MDU
Xbar

PDB

Mem
Ports

IM
U

T
M
U

D
M
U

L1 Instruction Cache

Task Distributer

L1 Data
Cache

Coalescer

IU Seq

MD Interface FPU Interface

IU Seq IU Seq

Writeback Arbiter

WQ

WCU

DU

FU

FPU Xbar

D
M

U

IMUTMU

From
GPP

Lane
Group

4B

32B

y

y

SLFU LSU

y

IQ

y y y

y y

z chimes per
chime group

y lanes per lane group

gc
chime
groups

μRF

μRF

μRF

μRF

μRF

μRF

μRF

μRF

μRF

MDU Xbar

gc

gcgc gc

g
l

y SLFU y

gc

RT PFB

PC

(a) Top-Level XPC Engine Microarchitecture (b) Detail of Lane Group

Figure 9: XPC Engine Template – IMU = instr mgmt unit; TMU = task mgmt unit; DMU = data mgmt unit; PIB =
pending instr buffer; FPU = floating-point unit; MDU = integer mult/div unit; PDB = pending data buffer; FU = fetch
unit; DU = dispatch unit; IU = issue unit; Seq = chime sequencer; SLFU = short-latency integer functional unit; LSU =
load-store unit; WCU = writeback/ commit unit; PC = program counter; RT = rename table; PFB = pending fragment
buffer; IQ = issue queue; WBQ = writeback queue; µRF = µthread regfile. l = tot num lanes; gl = num lane groups; y =
num lanes per lane group (l/gl); c = tot num chimes; gc = num chime groups; z = num chimes per chime group (c/gc).
Thick green arrows indicate channels that can transfer y worth of data in a single cycle.

more tightly coupled configurations in the lower left of the taxonomy perform better on regular loop-task
parallelism, while more loosely coupled configurations in the upper right of the taxonomy better tolerate
irregular loop-task parallelism.

Figure 9 illustrates the XPC engine microarchitectural template we will use for design-space exploration.
Our proposed template can be configured at design time with any number of µthreads, lanes, lane groups,
chimes, and chime groups.

The task management unit (TMU) is the interface between the GPP and XPC engine. The TMU is respon-
sible for dividing the core task sent by the GPP into µtasks, then dynamically scheduling these µtasks across
lane groups by injecting them into per-lane-group µtask queues. Upon receiving a new core task, the TMU
initializes a pending µtask counter with the number of generated µtasks. Lane groups assert a completion
bit when they finish executing a µtask. The TMU aggregates the completion bits and decrements the pend-
ing µtask counter accordingly. The TMU acknowledges the completion of a core task once the counter is
zero by sending a completion message to the GPP. Currently, the GPP stalls until it receives this completion
message.

A lane group manages a set of µthreads organized in task groups. Each µthread executes one of the µtasks
assigned to the lane group in the corresponding µtask queue. Lane groups begin execution by jumping to
the loop-task function pointer, but they must first initialize their argument registers: argument pointer in
a0, start index in a1, end index in a2, and the range step value in a3. The range step value is set to be
the number of µthreads in a task group, resulting in the µtask partitioning described earlier. Note that
load balancing occurs naturally as lane groups that finish µtasks faster will obtain more µtasks from the
TMU. The level of spatial task coupling can be configured by organizing the lanes into different numbers
of lane groups, each of which has an independent instruction stream and dynamically arbitrates for shared

9
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

resources. The level of temporal task coupling can be configured by varying the number of frontends per
lane group that can sustain separate instruction streams.

Each lane group is further composed of a fetch unit (FU), a decode/dispatch unit (DU), issue units (IUs),
short-latency functional units (SLFU), a load-store unit (LSU), and a writeback-commit unit (WCU). These
units are connected by latency-insensitive interfaces, enabling a highly elastic pipeline. Recall that µthreads
within a task group must execute in lock-step in both space and time. In this case, the frontend (e.g., FU, DU,
IU) is amortized across the entire task group and each instruction operates at a task-group granularity. The
FU has a program counter (PC) for each task group and an instruction from a different task group is fetched
every cycle. The DU can temporally multiplex task groups by dispatching instructions from different task
groups with round-robin arbitration. Note that task groups must stall on conditional branches until all
µthreads in the task group have resolved the branch, but another independent task group can be dispatched
to hide this latency. Instructions are dispatched in order within a chime group, but simple register renaming
is used to allow out-of-order writeback. Dispatched instructions wait in the in-order issue queue (IQ) until
its operands are ready to be bypassed or read from the register file. Operands are read for the entire task
group from a 6r3w register file with per-µthread banks. The IU then sequences the chimes, which are
executed by the appropriate functional unit; the µthreads within a chime are executed in parallel across the
lanes. The SLFU handles integer operations and branches, while the LSU handles memory operations. The
LSU can generate one memory request per lane per cycle, and supports coalescing across µthreads within
the same chime. The WCU arbitrates writes from functional units to the writeback queue (WQ) at chime
granularities. The register file is updated in order once the entire task group has written to the WQ.

Within a lane group, divergent branch resolutions within a task group are handled by executing the not-
taken µthreads (active) first and pushing a task group fragment representing the taken µthreads (inactive) into
a pending fragment buffer (PFB) to be executed later. Fragments in the PFB can reconverge with other frag-
ments (including the active fragment) with matching PCs. We implement a two-stack PFB that prioritizes
fragments in current loop iterations. We denote task groups as being spatially diverged when µthreads
across lanes in the same chime have diverged, or temporally diverged when µthreads across chimes in the
same lane have diverged. Lane groups also support density-time execution, which allows the sequencer to
skip scheduling chimes that have no active µthreads.

Expensive resources are shared across lane groups to improve area efficiency and to exploit the elastic
pipeline within lane groups. These shared resources include the instruction memory port, which is man-
aged by the instruction management unit (IMU), the long-latency functional units (LLFUs) like the floating-
point unit (FPU) and the integer multiply-divide unit (MDU), which are organized into an FPU group and
an MDU group, and the data memory ports, which are managed by the data management unit (DMU). The
number of FPUs, MDUs, and data memory ports is equal to the number of lanes per lane group, which
means that the number of shared resources decreases as the number of lane groups increases (assuming a
constant number of total lanes in the XPC engine). While we recognize that resource sharing is orthogonal
to spatial task coupling, the irregular application kernels that benefit from increasing the number of lane
groups usually have low LLFU intensity. This motivates significant sharing of resources across lane groups
to improve area efficiency.

At the top level, IMUs consist of per-lane-group pending instruction buffers (PIBs) that can store a
cache-line-worth (32B) of instructions to amplify the fetch bandwidth, and a crossbar with round-robin
arbitration. DMUs consist of pending data buffers (PDBs) that can store a task-group-worth of 4B words to
facilitate access/execute decoupling, and a crossbar with round-robin arbitration. Data bandwidth across
ports can be combined for wide coalesced accesses.

2.5. Experimental Methodology
In this section, we describe the details of our vertically integrated research methodology spanning ap-

plications, runtime, architecture, and VLSI. In our first year report, we described a new XPC taxonomy that
helps classify both spatial and temporal coupling. Figure 8 illustrates the naming convention we will use,
and Figure 7 illustrates all possible spatial and temporal task-coupling configurations for XPC engines with
both eight and 32 µthreads. The 12 XPC engine configurations used in this study are highlighted.

10
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

DynInst (M) Avg Size Intensity
MC
-IO

MC
-O3

XPC-8/1x4/1 XPC-8/4x4/1 XPC-8/4x4/4

Name Suite Input S P T% Task Iter slfu llfu mem IO I A S% M I A S% M I A S% M

nbody pbbs 3DinCube_1000 92 93 99% 1000 31K 18% 43% 33% 239.7 3.6 3.6 0.04 30 9.5 0.4 0.14 31 21.2 0.2 0.32 25 14.8 1.0
bilateral cust 256×256 image 26 27 99% 66K 409 25% 51% 16% 61.9 4.3 3.8 0.03 31 8.5 2.1 0.14 31 20.4 1.2 0.26 31 11.6 1.2
mriq cust 100-space, 256 pts 11 11 99% 256 23K 53% 20% 21% 13.9 4.0 4.1 0.04 32 6.0 0.0 0.14 32 15.4 0.0 0.27 32 6.0 0.0
sgemm cust 256×256 fp mtrx 75 76 99% 576 131K 47% 19% 21% 113.3 3.8 3.9 0.03 32 2.5 3.4 0.13 32 12.8 0.9 0.26 32 5.6 0.8
rgb2cmyk cust 1380×1080 image 43 43 99% 1380 31K 47% 0% 39% 57.1 3.3 2.5 0.04 29 0.5 9.7 0.15 30 0.8 4.4 0.27 31 0.0 7.1
dct8x8m cust 782 8x8 blocks 55 55 99% 50K 1096 4% 64% 30% 81.4 4.0 3.9 0.03 31 0.0 24.6 0.13 32 0.0 18.4 0.25 32 0.0 18.2
knn pbbs 2DinCube_10K 35 43 33% 9867 716 17% 32% 37% 57.3 1.5 1.3 0.21 5 17.5 10.7 0.41 11 32.0 10.6 0.57 15 17.6 10.6
bfs-nd pbbs randLocG_J5_150K 23 55 81% 36K 99 56% 0% 26% 88.6 1.5 1.1 0.07 17 0.0 23.5 0.22 21 0.0 16.4 0.36 24 0.0 16.1
radix-2 pbbs exptSeq_500K_int 57 69 81% 46 92K 59% 0% 33% 102.3 1.1 1.1 0.04 30 0.0 49.5 0.14 31 0.0 48.9 0.27 30 0.0 48.7
radix-1 pbbs randomSeq_1M_int 93 104 94% 229 74K 57% 0% 33% 175.1 3.4 3.6 0.05 26 1.0 35.9 0.18 28 0.8 34.5 0.30 29 0.8 34.7
rdups pbbs trigrSeq_300K_int 36 56 99% 508K 23 56% 0% 21% 87.1 3.0 2.0 0.12 11 0.0 30.5 0.28 18 0.0 22.5 0.41 22 0.0 22.5
sarray pbbs trigrString_200K 68 75 86% 76K 50 56% 0% 29% 203.9 2.5 1.7 0.10 11 2.5 60.5 0.22 20 1.6 41.1 0.35 24 0.8 42.2
strsearch cust 210 strs, 210 docs 20 20 99% 210 49K 57% 0% 19% 30.0 3.3 3.7 0.20 6 1.5 0.5 0.51 10 0.8 0.6 0.49 18 0.0 0.6
bfs-d pbbs randLocG_J5_150K 23 35 95% 50K 75 56% 0% 26% 88.6 2.4 1.5 0.11 10 0.5 13.7 0.29 16 0.8 10.0 0.41 21 0.0 9.8
dict pbbs exptSeq_1M_int 39 51 99% 451K 25 66% 0% 19% 82.1 3.4 1.7 0.06 20 0.0 23.4 0.17 27 0.0 13.1 0.29 29 0.0 13.0
mis pbbs randLocG_J5_400K 14 32 99% 400K 27 52% 0% 25% 79.4 3.4 1.6 0.25 5 0.0 20.1 0.49 10 0.0 13.9 0.61 15 0.0 14.2
maxmatch pbbs randLocG_E5_400K 23 49 94% 1.7M 19 58% 0% 19% 154.3 3.4 1.3 0.05 25 0.0 16.3 0.17 28 0.0 12.2 0.30 29 0.0 12.3

Table 2: Application Kernels – Suite = benchmark suite {PBBS or custom}; Input = input dataset; DynInsts = dynamic
instruction count in millions (S for serial impl, P for parallel impl); T% = percent of total dyn. insts in tasks; Avg Task
Size = average number of dyn. insts per task; Avg Iter Size = average number of dyn. insts per iteration; { slfu, llfu, mem
} Intensity = percent of total dyn. insts that are {short-latency arithmetic, long-latency arithmetic, memory operation};
IO = number of cycles (in millions) of optimized single-threaded implementation on in-order core; MC-IO = speedup of
multi-threaded implementation on four in-order cores over single in-order core; MC-O3 = speedup of multi-threaded
implementation on four out-of-order cores over single out-of-order core; I = ratio of total inst fetches to total dyn. insts;
A = average active µthreads in XPC engine per dyn. inst; S% = percent of execution time stalled due to non-memory
microarchitectural latencies; M = misses in L1 D$ per thousand dyn. insts. Coupling of XPC engines: XPC-8/1x4/1 (tight
spatial x tight temporal), XPC-8/4x4/1 (moderate spatial x tight temporal), and XPC-8/4x4/4 (moderate spatial x loose
temporal).

2.5.1. Application Kernels

We ported 16 C++ application kernels to a MIPS-like architecture. We used a cross-compiler based on
GCC-4.4.1, Newlib-1.17.0, and the GNU standard C++ library. Most application kernels were ported from
the problem-based benchmark suite (Shun et al., SPAA’12) and the remaining were developed in-house.
Table 2 illustrates their diverse application-level characteristics with respect to task-level and instruction-
level characteristics. A brief description of each kernel is included below.

nbody computes the net 3D force vector on each particle when subject to forces arising from other par-
ticles. The Barnes-Hut (BH) approximation is used with a traditional divide-and-conquer approach. Re-
cursive spawn-and-sync is used to build an oct-tree, which organizes particles and is used to approximate
the center of mass of particle groups. bilateral performs a bilateral image filter with a lookup table for the
distance function and an optimized Taylor series expansion for calculating the intensity weight; we par-
allelize across output pixels. mriq is an image reconstruction algorithm for MRI scanning; we parallelize
across the output magnetic field gradient vector. sgemm performs a single-precision matrix multiplication
for square matrices using a standard blocking algorithm; we parallelize across blocks. rgb2cmyk performs
color space conversion on an image and is parallelized across the rows. dct8x8m calculates the 8x8 discrete
cosine transform on an image using the LLM algorithm; we parallelize across 8x8 blocks. knn finds the
nearest neighbor to each point in a 2D array. A quad-tree is built to speed up neighbor lookups, and work
is then parallelized across the nodes to find the nearest neighbors. The quad-tree is built with recursive
spawn-and-sync. bfs-nd uses a non-deterministic algorithm to do a bread-first search which finds the short-
est path from a given source node to all target nodes. radix executes a stable sort of fixed-length unsigned
integer keys in ascending order. We include two datasets for radix, since it exhibits strong data-dependent
variability. rdups uses a parallel loop to insert elements into an internally deterministic hash table. sarray
is a parallel variant of the Karkkainen and Sanders algorithm that generates the suffix array of a sequence
of strings. strsearch implements the Knuth-Morris-Pratt algorithm with a deterministic finite automata to
search a collection of byte streams for a set of substrings; we parallelize across different streams. The search

11
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

sgemm dct8x8m mriq bfs-nd maxmatch strsearch

Cilk+ 10.42 3.32 7.53 2.29 1.61 11.18
TBB 11.76 3.33 8.83 1.77 1.73 9.97
XPC 10.32 3.38 9.54 1.77 2.05 11.22

Table 3: Comparison of Various Runtimes on x86 –
Speedup over optimized single-thread implementation of
various work-stealing runtimes using 12 threads on a Linux
server with two Intel Xeon E5-2620 v3 processors. Cilk+ =
uses Cilk+’s cilk_for; TBB = uses TBB’s parallel_for;
XPC = uses x86 port of the XPC runtime. All apps are com-
piled with Intel C++ Compiler 15.0.3.

Area XPC Area XPC Area XPC Area XPC Area

IO 0.61 4/1x8/1 1.34 4/2x8/2 1.23 8/1x4/1 1.74 8/8x4/1 1.27
O3 0.76 4/2x8/1 1.23 4/2x8/4 1.24 8/2x4/1 1.46 8/4x4/2 1.33

4/4x8/1 1.17 4/2x8/8 1.24 8/4x4/1 1.32 8/4x4/4 1.34

Table 4: XPC Engine Area Estimates – Area is shown
in mm2 for single-core configurations and includes the L1
I$ and D$. Area is estimated using the component-based
model described in Section 2.5.4.

Technology TSMC 40nm LP, 500MHz nominal
frequency

ALU 4/10-cycle Int Mul/Div, 6/6-cycle FP
Mul/Div, 4/4-cycle FP Add/Sub

IO 1-way, 5-stage in-order, 32 Phys Regs

O3 4-way, out-of-order, 128 Phys Regs, 32
Entries IQ and LSQ, 96 Entries ROB,
Tournament Branch Pred

Caches 1-cycle, 2-way, 32KB L1I, 1-cycle 4-way
32KB L1D per core with 16-entry MSHRs;
20-cycle, 8-way, shared 1MB L2; MESI
protocol

OCN Crossbar topology, 2-cycle fixed latency

DRAM 200ns fixed latency, 12.8GB/s bandwidth
SimpleMemory model

Table 5: Cycle-Level System Configuration

is parallelized by having all threads search for the same substrings in different streams. The deterministic
finite automata used to model substring-matching state machines are also generated in parallel. bfs-d is sim-
ilar to bfs-nd except it uses a deterministic two-phase reserve-commit algorithm. dict measures performance
of batch operations on a dictionary data structure. Work is parallelized across batch inserts, deletes, and
searches of sequences of values and accommodates repeated keys. mis finds the maximal independent set
of an undirected graph, parallelizing across nodes and resolving conflicts using atomic compare-and-swap
operations. maxmatch finds a maximal matching on an undirected graph, parallelizing work across edges.
Threads claim endpoints using compare-and-swap operations.

2.5.2. Validating the XPC Runtime

To show that our basic XPC runtime is competitive with other popular task-based work-stealing run-
times, Table 3 compares the performance of the x86 port of the XPC runtime (using a standard indirect
function call instead of jalr.xpc), Intel Cilk+, and Intel TBB with the same setup as in the first year report.
The results verify that the XPC runtime has comparable performance to Intel TBB and is slightly faster in
some cases because it is lighter weight (e.g., no support for C++ exceptions or task cancellation).

2.5.3. Cycle-Level Methodology

For cycle-level performance modeling, we utilize a co-simulation framework with gem5 and PyMTL,
a Python-based hardware modeling framework. Table 5 lists the corresponding gem5 configurations. IO
describes the baseline scalar in-order processor, and O3 describes the baseline four-way superscalar out-of-
order processor; we show both baselines as reference points in our evaluation. Multi-core configurations
have four cores. The cycle-level models for XPC engines were implemented in PyMTL. Each core and its
XPC engine share the L1 caches and all cores share the L2 cache. We simulate a bare-metal system with
system call emulation. In Table 2, we supplement our evaluation with detailed information from our cycle-
level simulation regarding fetch, µthread activity, stalling, and memory system sensitivity for three specific
XPC engine configurations.

2.5.4. Area/Energy Modeling

Area/energy are estimated using component/event-based modeling based on VLSI results from Verilog
RTL implementations of microarchitectures somewhat comparable to XPC engines previously developed

12
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

by the PI’s research group. We synthesized and placed-and-routed these designs using Synopsys Design-
Compiler and IC Compiler with a TSMC 40 nm LP standard-cell library characterized at 1 V. We used the
results to identify the dominant contributors to area/energy and inform our component- and event-based
models. We modeled SRAMs with CACTI, since we did not have a memory compiler.

We used FG-SIMT from our work presented in ISCA’13 to model the area of a lane-group, DMU, and
D$ crossbar network; and we used XLOOPS from our work in MICRO’14 to model the area of the IMU
and TMU. The dominant contributors were the L1 caches (33%), regfiles (26%), LLFUs (20%), SLFUs (10%),
and assorted queues (7%). We modeled the D$ crossbar network area by scaling roughly quadratically with
the number of ports. Because we did not have RTL for the rename table, reorder buffer, and arbitration
logic, we modeled these using flop-based 1r1w regfiles, integer ALUs, and muxes. Table 4 shows the area
estimates for different XPC configurations. Since we did not have O3 RTL, we determined a reasonable
scaling factor for O3 vs. IO (≈3×) based on rough McPAT area estimates.

We developed a suite of 70+ energy microbenchmarks to measure per-access energies for the dominant
contributors (e.g., caches, regfiles, SLFUs/LLFUs) using gate-level simulation. Net activity factors are com-
bined with post-PAR layout using Synopsys PrimeTime PX for total power estimates and breakdowns. We
then built an event/component-based modeling tool that can parse event traces from cycle-level simula-
tions to estimate energy. Events in the XPC engine and O3 with no corresponding RTL were estimated
using carefully tuned McPAT component-level models.

2.6. Evaluation
In this section, we begin by exploring the design space for a single 32-µthread XPC engine by first exam-

ining the impact of spatial task coupling on performance, area, and energy efficiency, then doing the same
for temporal task coupling. Next, we use the most promising XPC engines to evaluate the multiplicative
effect of exploiting loop-task parallelism across cores using the XPC runtime and within a core using these
XPC engines. We conclude with a qualitative evaluation of the productivity and portability of the XPC
platform.

2.6.1. XPC Engine: Spatial Task-Coupling

Figure 10 shows the single-core performance of different XPC engines each with one chime group but
varying spatial task coupling. Tighter spatial task coupling improves the performance on regular kernels
with high LLFU instruction density. Examples include nbody, bilateral, mriq, sgemm, and dct8x8m. This is
due to the higher LLFU bandwidth available with more lanes per lane group. In bilateral, the percent of time
when stalled waiting on LLFUs decreases from 33% on XPC-8/2x4/1 to 17% on XPC-8/1x4/1. Similar trends
between XPC-8/4x4/1 and XPC-8/1x4/1 are also shown in Table 2, column S%. One tradeoff with bigger
task groups is that more µthreads stall on a cache miss since task groups execute in lock-step; this behavior
is seen in sgemm and dct8x8m. In sgemm, the percent of time when stalled waiting on D$ increases from
16% on XPC-8/4x4/1 to 35% on XPC-8/2x4/1. Conversely, looser spatial task coupling improves the per-
formance on irregular kernels. Examples include rdups, strsearch, bfs-d, mis, and maxmatch. By increasing
the number of lane groups, we allow more (smaller) task groups to be executed concurrently. This effect is
most beneficial when µthreads across lane groups exhibit high control divergence. In strsearch, the average
number of active µthreads per cycle across all lanes increases from 6 on XPC-8/1x4/1 to 14 on XPC-8/8x4/1
(see also Table 2, column A). This does not address temporal control divergence since density-time already
eliminates inactive chimes. In general, 8-lane configurations will outperform 4-lane configurations due to
the increased SLFU and LSU bandwidth. On average, the XPC engines achieve 4–5× speedup vs. IO and
2–2.5× speedup vs. O3.

Looser spatial task coupling improves area-normalized performance as sharing resources reduces
absolute area while not severely impacting average performance. Shared resources include the LLFUs
and D$ memory ports, the latter of which impacts how the cache is banked and ported, as well as the
crossbar network used to access cache banks. For the largest XPC engine in this study, XPC-8/1x4/1, the
area of the LLFUs and the D$ crossbar network is 30% of the total area, which decreases as we share more
resources. However, this is partially offset by an increase in area from per-lane-group PIBs and frontend

13
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

nbody
bilateral mriq

sgemm
rgb2cmyk

dct8x8m knn
bfs-nd

radix-2
radix-1 rdups

sarray
strsearch bfs-d dict mis

maxmatch avg
avg/area

0

2

4

6

8

10

12

S
p

ee
d

u
p

12.5 15.2 15.5

Tighter Spatial Coupling Looser Spatial Coupling Tighter Spatial Coupling Looser Spatial Coupling

More Irregular
Kernels

More Regular
Kernels

IO O3 XPC-4/1x8/1 XPC-4/2x8/1 XPC-4/4x8/1 XPC-8/1x4/1 XPC-8/2x4/1 XPC-8/4x4/1 XPC-8/8x4/1

Figure 10: Performance of Single-Core XPC Engine with Variable Spatial Task-Coupling – All XPC engines have 32
µthreads and all results are normalized against the performance of the baseline scalar in-order core for each kernel.

io o
3

4
/1

x
8
/1

4
/2

x
8
/1

4
/4

x
8
/1

8
/1

x
4
/1

8
/2

x
4
/1

8
/4

x
4
/1

8
/8

x
4
/1

0.0

0.4

0.8

1.2

1.6

2.0
bilateral (regular)

io o
3

4
/1

x
8
/1

4
/2

x
8
/1

4
/4

x
8
/1

8
/1

x
4
/1

8
/2

x
4
/1

8
/4

x
4
/1

8
/8

x
4
/1

0.0

0.4

0.8

1.2

1.6
strsearch (irregular)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
n
er

g
y
 (

m
J)

icache

pib

tmu

front

rf

rt/rob

slfu

llfu

lsu

dcache

Figure 11: Energy Breakdown (Spatial Task-Coupling) –
Results are shown for one kernel with regular loop-task
parallelism (e.g., bilateral) and one kernel with irregular
loop-task parallelism (e.g., strsearch).

2 4 6 8 10 12 14

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tighter

Spatial Coupling

bilateral (regular)

1 2 3 4 5 6

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Looser

 Spatial Coupling

strsearch (irregular)

0.0 0.2 0.4 0.6 0.8 1.0

Performance

0.0

0.2

0.4

0.6

0.8

1.0

E
n
er

g
y
 E

ff
ic

ie
n

cy

io

o3

4/1x8/1

4/2x8/1

4/4x8/1

8/1x4/1

8/2x4/1

8/4x4/1

8/8x4/1

Figure 12: Energy Efficiency vs. Performance (Spatial
Task-Coupling) – Each point represents the energy
efficiency and performance of a different configuration in
the XPC task-coupling taxonomy normalized to the
baseline scalar in-order core.

nbody
bilateral mriq

sgemm
rgb2cmyk

dct8x8m knn
bfs-nd

radix-2
radix-1 rdups

sarray
strsearch bfs-d dict mis

maxmatch avg
avg/area

0
1
2
3
4
5
6
7
8
9

10

S
p

ee
d

u
p

10.9 12.0

Tighter Temporal Coupling Looser Temporal Coupling Tighter Temporal Coupling Looser Temporal Coupling

More Irregular
Kernels

More Regular
Kernels

IO O3 XPC-4/2x8/1 XPC-4/2x8/2 XPC-4/2x8/4 XPC-4/2x8/8 XPC-8/4x4/1 XPC-8/4x4/2 XPC-8/4x4/4

Figure 13: Performance of Single-Core XPC Engine with Variable Temporal Task-Coupling – All XPC engines have
32 µthreads. All results are normalized against the performance of the baseline scalar in-order core for each kernel.

io o
3

4
/2

x
8
/1

4
/2

x
8
/2

4
/2

x
8
/4

4
/2

x
8
/8

8
/2

x
4
/1

8
/2

x
4
/2

8
/2

x
4
/4

0.0

0.4

0.8

1.2

1.6

2.0
bilateral (regular)

io o
3

4
/2

x
8
/1

4
/2

x
8
/2

4
/2

x
8
/4

4
/2

x
8
/8

8
/2

x
4
/1

8
/2

x
4
/2

8
/2

x
4
/4

0.0

0.4

0.8

1.2

1.6
strsearch (irregular)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
n
er

g
y
 (

m
J)

icache

pib

tmu

front

rf

rt/rob

slfu

llfu

lsu

dcache

Figure 14: Energy Breakdown (Temporal
Task-Coupling) – Results are shown for one kernel with
regular loop-task parallelism (e.g., bilateral) and one
kernel with irregular loop-task parallelism (e.g., strsearch).

1 2 3 4 5 6 7 8 9

0.6

0.8

1.0

1.2

1.4 Tighter
Temporal
Coupling

bilateral (regular)

1 2 3 4 5 6

0.6

0.8

1.0

1.2

1.4

1.6

1.8 Tighter
Temporal
Coupling

strsearch (irregular)

0.0 0.2 0.4 0.6 0.8 1.0

Performance

0.0

0.2

0.4

0.6

0.8

1.0

E
n

er
g

y
 E

ff
ic

ie
n

cy

io

o3

4/2x8/1

4/2x8/2

4/2x8/4

4/2x8/8

8/4x4/1

8/4x4/2

8/4x4/4

Figure 15: Energy Efficiency vs. Performance (Temporal
Task-Coupling) – Each point represents the energy
efficiency and performance of a different configuration in
the XPC task-coupling taxonomy normalized to the
baseline scalar in-order core.

14
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

units (i.e., FU, DU, IU). On average, XPC engines achieve improvements in performance/area of 2× vs. IO
and 2.5× vs. O3.

Figure 11 shows the absolute energy breakdowns of XPC engines with varying spatial task coupling
for one regular kernel, bilateral, and one irregular kernel, strsearch. The results show that tighter spatial
task coupling improves energy efficiency by amortizing the front-end energy across more µthreads. This
amortization is limited to active µthreads, thus the energy reduction is more noticeable on regular ker-
nels. Regular kernels also benefit from memory coalescing with larger task groups, but this is offset by
the increased energy in a higher-ported crossbar network. Increasing the number of lane groups increases
energy due to redundant accesses for the same instruction; this is especially true for regular kernels. Fig-
ure 12 shows the energy efficiency vs. performance of XPC engines with varying spatial task coupling for
bilateral and strsearch. XPC engines achieve average improvements in energy efficiency of 1.5× vs. IO and
3.1× vs. O3.

Although the average performance in Figure 10 is similar across a given lane configuration, the key is
that the extremes are specialized for either regular or irregular kernels. The results suggest that moderate
spatial task coupling is ideal for achieving a reasonable compromise across both regular and irregular
kernels in terms of performance, area, and energy. As such, we select XPC-4/2x8/1 and XPC-8/4x4/1 as the
most promising configurations.

2.6.2. XPC Engine: Temporal Task Coupling

Figure 13 shows the single-core performance of the XPC engines selected above with varying temporal
task coupling. Moderate temporal task coupling can sometimes improve performance on both regular
and irregular kernels. Examples include bilateral, mriq, sgemm, strsearch, and maxmatch. One reason for
this is that increasing the number of chime groups creates smaller task groups, which as discussed before,
means less µthreads will stall on a cache miss. Another reason is that increasing the number of chime
groups allows more (smaller) task groups to better hide microarchitectural latencies. This can be seen in
Table 2, column S% between XPC-8/4x4/1 and XPC-8/4x4/4. However, increasing the number of chime
groups can reduce performance by significantly increasing I$ conflicts and decreasing IU utilization. As
the number of total task groups increases, the amount of frontend amortization becomes limited and the
number of redundant instruction fetches inflated. Futhermore, fewer chimes per chime group also keeps
the functional units busy for less cycles, which can create a fetch/dispatch bottleneck that outweighs these
benefits (compare column I of XPC-8/4x4/1 and XPC-8/4x4/4 in Table 2).

Figure 14 shows the absolute energy breakdowns of XPC engines with varying temporal task coupling
for bilateral and strsearch. The results show that looser temporal task coupling increases the energy due
to redundant work in the frontend, while only marginally improving performance. Area-normalized
performance also suffers as more frontend logic is added with each new chime group. Figure 15 shows
the energy efficiency vs. performance of XPC engines with varying temporal task coupling for bilateral and
strsearch.

These results seem to suggest that tighter temporal task coupling might be the most promising approach.
However, these kernels mostly fit within the L2 cache. Additional experiments show that for larger kernels
with longer memory latencies, more moderate temporal task coupling yields optimal performance. We
have also experimented with XPC engines with up to 128 µthreads and observed that for greater numbers
of µthreads, looser temporal task coupling has larger relative performance impact. Finally, examining loose
spatial task coupling with no LLFU sharing (i.e., each lane has a dedicated LLFU) revealed that while
performance on regular applications increased substantially, the energy efficiency was further decreased.
We conclude that moderate temporal task coupling with moderate spatial task coupling can achieve high
performance on both regular and irregular kernels with relatively high area and energy efficiency. We
identify XPC-4/2x8/2 and XPC-8/4x4/2 as the most promising configurations.

15
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

2.6.3. 3P’s of XPC Platform

nb
od

y

bi
la

te
ra

l

m
riq

sg
em

m

rg
b2

cm
yk

dc
t8

x8
m

kn
n

bf
s-

nd

ra
di

x-
2

ra
di

x-
1

rd
up

s

sa
rr
ay

st
rs

ea
rc

h
bf

s-
d

di
ct

m
is

m
ax

m
at

chav
g

0
4
8

12
16
20
24
28
32

S
p
ee

d
u
p

34 37 42 IO

MC-IO

MC-O3

MC-XPC-4/2x8/2

MC-XPC-8/4x4/2

Figure 16: Performance of XPC Platform on Multi-Core System –
Results are shown for baseline cores and XPC engines on a 4-core
system. All results are normalized against the performance of a single
in-order core for each kernel.

Figure 16 shows the performance of
a quad-core system with either an XPC-
4/2x8/2 or XPC-8/4x4/2 engine per core.
The results confirm that the XPC plat-
form is able to achieve multiplicative
effects from exploiting loop-task paral-
lelism both across cores and within a
core. Referring back to Figure 13, the
average speedup of the most promising
XPC engines is 4.2–5.3× over IO, and us-
ing the XPC runtime on MC-IO yields an
average speedup of 3.1× (see Table 2).
We see that both MC-XPC-4/2x8/2 and
MC-XPC-8/4x4/2 are able to achieve ideal multiplicative speedups of 13–16×. Compared to MC-IO, the
XPC platform has an average performance per area of 1.9× and energy efficiency of 1.2×. Even compared
to a more aggressive MC-O3, the XPC platform improves raw performance by 3.0×, performance per area
by 2.5×, and energy efficiency by 2.5×.

In terms of productivity, the kernels we used for the evaluation were ported from the corresponding
TBB implementations with minimal modifications. Since the XPC platform uses loop-tasks as the com-
mon abstraction across SW and HW, porting the kernels was usually a simple matter of replacing TBB’s
parallel_for constructs with our own macros and linking in the proper libraries. Although further XPC-
specific optimizations might improve performance, the key point is that they are not necessary to extract
high performance from the XPC platform for both regular and irregular kernels. In terms of portability,
a single implementation of the kernel can be written and compiled once, then executed using the XPC
platform on a system with any combination of GPPs and homogeneous or heterogeneous XPC engines.
The primary enabler for this is the jalr.xpc instruction that acts as a common SW/HW interface.

2.7. Other Research Related to XPC
This section briefly describes our work on extending XPC to handle asymmetric multicores, fork-join

parallelism, and application-specific accelerators. We also describe simulator infrastructure research that
was funded in part through this project, and was a key enabler for successfully demonstrating the potential
of XPC.

• Asymmetry-Aware Work-Stealing Runtimes – A work-stealing scheduler is critical component of
the XPC runtime, and XPC systems are fundamental heterogeneous since they can include a mix
of general-purpose cores and cores augmented with various XPC engines. We also explored more
generic asymmetry-aware work-stealing (AAWS) runtimes that target the static asymmetry (e.g., from
core microarchitecture as in ARM big.LITTLE systems) and dynamic asymmetry (e.g., applying dy-
namic voltage/frequency scaling) in traditional multicore processors. AAWS runtimes use three key
hardware/software techniques: work-pacing, work-sprinting, and work-mugging. Work-pacing and
work-sprinting are novel techniques that combine a marginal-utility-based approach with integrated
voltage regulators to improve performance and energy efficiency in high- and low-parallel regions.
Work-mugging is a previously proposed technique that enables a waiting big core to preemptively
migrate work from a busy little core. We proposed a simple implementation of work-mugging based
on lightweight user-level interrupts. We used a vertically integrated research methodology spanning
software, architecture, and VLSI to make the case that holistically combining static asymmetry, dy-
namic asymmetry, and work-stealing runtimes can improve both performance and energy efficiency
in future multicore systems. This work was published in ISCA’16.

16
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

• Smart Sharing Architectures – The XPC architecture described earlier focuses on data-parallel com-
putation, but we also explored support for fork-join parallelism. We proposed smart-sharing architec-
tures (SSAs) which are a multicore-based solution where a general-purpose processor is augmented
with conjoined lanes. Similar to the XPC lanes described above, SSA lanes have the same instruction
set as the general-purpose processors. Unlike the XPC lanes describes above, SSA lanes actually ex-
ecute the exact same work-stealing runtime as well. We conducted detailed studies using high-level
instruction-set simulation to characterize the amount of instruction redundancy in these fork-join-
centric parallel programs, and then we explored techniques to exploit this instruction redundancy
to reduce cost, maximize efficiency, and improve performance. We proposed instruction coalescing
based on a hybrid min-PC/round-robin reconvergence scheme, soft-barrier hints to synchronize task
execution, and lock-step execution when sharing long-latency functional units. Our results showed
the promise for extending XPC to even more diverse forms of parallelism. This work was a key part
of Shreesha Srinath’s Ph.D. thesis.

• Application-Specific Accelerators for Amorphous Data Parallelism – XPC uses hardware special-
ization to improve the performance and efficiency of general amorphous data-parallel applications,
but we also pushed this idea to the extreme and explored hardware specialization for a single amor-
phous data-parallel application. In this work, we developed an architectural framework for building
application-specific parallel accelerators meant for FPGAs. Our framework introduced a task-based
computation model with explicit continuation passing to support dynamic parallelism in addition to
static parallelism. In contrast, today’s high-level design frameworks for accelerators focus on static
data-level or thread-level parallelism that can be identified and scheduled at design time. To realize
the new computation model, we developed an accelerator architecture that efficiently handles dy-
namic task generation and scheduling as well as load balancing through work stealing. The architec-
ture is general enough to support many dynamic parallel constructs such as fork-join, data-dependent
task spawning, and arbitrary nesting and recursion of tasks, as well as static parallel patterns. We also
introduced a design methodology that includes an architectural template that allows easily creating
parallel accelerators from high-level descriptions. The proposed framework was studied through an
FPGA prototype as well as detailed simulations. Evaluation results showed that the framework can
generate high-performance accelerators targeting FPGAs for a wide range of parallel algorithms and
achieve an average of 4.0× speedup over an eight-core out-of-order processor (24.1× over a single
core), while being 11.8×more energy efficient. This work was published in MICRO/18.

• Multi-Core RISC-V gem5 Simulation – Early in the project, XPC used a MIPS variant as its base in-
struction set architecture, but near the end of the project we transitioned to using RISC-V. The RISC-V
ecosystem is becoming an increasingly popular option in both industry and academia. The ecosys-
tem provides rich open-source software and hardware tool chains that enable computer architects
to quickly leverage RISC-V in their research. While the RISC-V ecosystem includes functional-level,
register-transfer- level, and FPGA simulation platforms, there is currently a lack of cycle-level simula-
tion platforms for early design-space exploration. gem5 is a popular cycle-level simulation platform
that provides reasonably extendable, fast, and accurate simulations. We led the work on extending
gem5 to simulate multi-core RISC-V systems, and we demonstrated the ability for gem5 to execute
programs using the upstream open-source RISC-V software tool chain and several popular task-based
parallel programming frameworks. This work was published in CARRV’18.

• Fast and Productive Cycle- and Register-Transfer-Level Modeling – XPC required a mix of cycle-
and register-transfer-level modeling. Early in the project, we decided to extend our work on PyMTL,
a Python-based hardware modeling framework, for use in the XPC project. PyMTL is an example of
a hardware generation and simulation (HGSF) framework which uses a single “host” language for
parameterization, static elaboration, test bench generation, behavioral modeling, and simulation. Un-
fortunately, HGSFs often suffer from slow simulator performance which undermines their potential
productivity benefits. We developed Mamba, an improved version of PyMTL that co-optimizes both

17
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

the framework and a general-purpose just-in-time compiler. We conducted a quantitative comparison
of Mamba vs. traditional and emerging hardware development frameworks across both simple and
complex designs. Our results suggest Mamba is able to match the performance of commercial Verilog
simulators and is 10× faster than existing HGSFs while still maintaining the productivity of using a
high-level language in hardware design. This work was published in DAC’19.

3. Management Summary
The proposed work included two research thrusts with four tasks per thrust. A brief summary of the

completion of each task is discussed in more detail below. Figure 17 illustrates the updated project roadmap.

3.1. Research Thrust 1: XPC Architecture

• Task 1.1. Design a new XPC instruction set – We finished the new XPC instruction set in the first year
of the project. This new ISA adds a new jalr.xpc instruction to a standard RISC instruction set. We
did explore adding new hint instructions later in the project to enable better synchronization of task
execution across parallel lanes.

• Task 1.2. Evaluate XPC tiles with tightly coupled lanes using cycle- and/or register-transfer-level
modeling – In the second year of the project, we finished a detailed design-space exploration of our
microarchitectural template which can be configured at design time to use tightly coupled lanes. We
explored adding support for nested parallelism in the final year of the project.

• Task 1.3. Evaluate XPC tiles with loosely coupled lanes using cycle- and/or register-transfer-level
modeling – In the second year of the project, we finished a detailed design-space exploration of our
microarchitectural template which can be configured at design time to use loosely coupled lanes. We
explored adding support for nested parallelism in the final year of the project.

• Task 1.4. Evaluate XPC tiles with cooperative multicore using cycle- and/or register-transfer-level
modeling – In the final year of the project, we explored augmenting traditional in-order cores with
hardware support for work distribution and for exploiting instruction similarity across these cores.

3.2. Research Thrust 2: XPC Software

• Task 2.1. Develop a new XPC programming framework – We finished the XPC programming frame-
work in the first year of the project. This framework enables programmers to express both loop-level,
fork-join, and nested parallelism. We did make some small changes in the second and third years of
the project to support more advanced C++11 features including lambdas.

• Task 2.2. Port interesting amorphous data-parallel applications using the XPC programming frame-
work – We ported 16 C++ application kernels to use our XPC programming framework in the first
year of the project. These applications primarily used amorphous loop-level parallelism. In the final
year of the project, we added applications with fork-join and nested parallelism.

• Task 2.3. Investigate dynamic binary translation to enable XPC applications to execute on legacy
systems – In the final year of the project, we implemented a simple dynamic binary translation scheme
that enabled automatically rewriting our explicit parallel call instruction (jal.xpc to a traditional call
instruction (jal). This enables XPC applications to execute on legacy applications.

• Task 2.4. Explore an XPC runtime system that enables adaptively migrating XPC binaries between
XPC tiles – We finished development of a preliminary work-stealing runtime in the first year of the
project. This runtime included support for child-stealing, occupancy-based victim selection, and
Chase-Lev task queues. The runtime is able to take advantage of the new XPC instruction set. In
the final year of the project, we revisited this task in the context of heterogeneous mix of tiles (e.g.,
tiles with general-purpose processors, tiles with loosely coupled lanes, and tiles with tightly coupled
lanes).

18
DISTRIBUTION A: Distribution approved for public release.

AFOSR YIP Final Report

Task 1.1: XPC Instruction Set
Task 1.2: XPC w/ Tightly Coupled Lanes
Task 1.3: XPC w/ Loosely Coupled Lanes
Task 1.4: XPC w/ Cooperative Multicore

Year 1 Year 2
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

T
h

ru
st

 1
:

X
P

C
A

rc
h

it
ec

tu
re

Year 3
Q1 Q2 Q3 Q4

Task 2.1: XPC Library
Task 2.2: XPC Applications
Task 2.3: XPC Dynamic Binary Translation
Task 2.4: XPC RuntimeT

h
ru

st
 2

:
X

P
C

S
o
ft

w
a
re

EvaluationDesign
Final HW/SW

Co-Optimization

Figure 17: Project Roadmap – Roadmap was reorganized during the first year to better reflect the plan for work.

4. Financial Status Report
Figure 18 shows the budgeted and actual expenses for the entire project. It was not possible to recruit

two students to start work right away in the fall of 2015. In the fall of 2016, I recruited a new student to
work on the project. This new student had a fellowship, and thus I pushed some of the GRA funding into
the final year. I had two students working on the project in the final year of the project.

Se
p

20
15

O
ct

20
15

N
ov

20
15

D
ec

20
15

Ja
n

20
16

Fe
b

20
16

M
ar

20
16

A
pr

20
16

M
ay

20
16

Ju
n

20
16

Ju
l2

01
6

A
ug

20
16

Se
p

20
16

O
ct

20
16

N
ov

20
16

D
ec

20
16

Ja
n

20
17

Fe
b

20
17

M
ar

20
17

A
pr

20
17

M
ay

20
17

Ju
n

20
17

Ju
l2

01
7

A
ug

20
17

Se
p

20
17

O
ct

20
17

N
ov

20
17

D
ec

20
17

Ja
n

20
18

Fe
b

20
18

M
ar

20
18

A
pr

20
18

M
ay

20
18

Ju
n

20
18

Ju
l2

01
8

A
ug

20
18

0

5

10

15

20

25

30

35

40

45

M
on

th
ly

Ex
pe

ns
es

(T
ho

us
an

ds
of

D
ol

la
rs

)

Budgeted Monthly Expenses
Actual Monthly Expenses

0

50

100

150

200

250

300

350

C
um

ul
at

iv
e

Ex
pe

ns
es

(T
ho

us
an

ds
of

D
ol

la
rs

)

Budgeted Cumulative Expenses
Actual Cumulative Expenses
Budget Ceiling

Figure 18: Project Finances – Left axis is for bars showing budgeted and actual monthly expenses, right axis is for lines
showing budgeted and actual cumulative expenses.

19
DISTRIBUTION A: Distribution approved for public release.

	DTIC TITLE PAGE
	FA9550-15-1-0194 SF298
	FA9550-15-1-0194 FINAL REPORT
	amazonaws.com
	https://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/64-4e47a62c5889678aa6df2c3a10a75cec_report-final-yip-afosr.pdf

